

Article

Strangers, Friends, and Lovers Show Specific Physiological Synchronies In Different Emotional Contexts

Andrea Bizzego ¹ , Atiqah Azhari ² , Nicola Campostrini ¹ , Anna Truzzi ³ , Li Ying Ng ² , Giulio Gabrieli ² , Marc H. Bornstein ⁴ , Pepei Setoh ² , Gianluca Esposito ^{1,2}

¹ Department of Psychology and Cognitive Science, University of Trento, Italy

² Psychology Program, School of Social Sciences, Nanyang Technological University, Singapore

³ Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland

⁴ National Institute of Child Health and Human Development, USA, and Institute for Fiscal Studies, United Kingdom

* Correspondence: gianluca.esposito@ntu.edu.sg

1 **Abstract:** The mere co-presence of another person synchronizes physiological signals, but no study
2 has systematically investigated effects of type of emotional context and type of relationship in eliciting
3 dyadic physiological synchrony. In this study, we investigated the synchrony of pairs of strangers,
4 companions, and romantic partners while watching a series of video clips designed to elicit different
5 emotions. Maximal cross-correlation of heart rate variability (HRV) was used to quantify dyadic
6 synchrony. The findings suggest that an existing social relationship might reduce the predisposition
7 to conform one's autonomic responses to a friend or romantic partner during social situations that do
8 not require direct interaction.

9 **Keywords:** heart rate variability; dyads; physiological synchrony; relationship; emotion

10 1. Introduction

11 As social mammals, humans need to affiliate and be able to form social bonds with others in
12 order to foster and maintain social relationships. Individuals find themselves differentially affiliated
13 to several others within social pair-bonds. During the establishment of these selective attachments,
14 a bio-behavioral reorganization is thought to occur in which multiple biological, behavioral, and
15 cognitive processes between partners come to coincide [1]. Through repeated interactions, partners
16 become increasingly sensitized to one another's unique rhythms and cues, which, over time, become
17 ingrained and reflected at a physiological level. Although first manifest within the context of the
18 mother-infant relationship [1], the concept of synchrony, defined as the "dynamic and reciprocal
19 adaptation of the temporal structure of behaviors and shared affect between interactive partners" [2],
20 is increasingly applied to investigate social attachments between diverse individuals in diverse social
21 contexts.

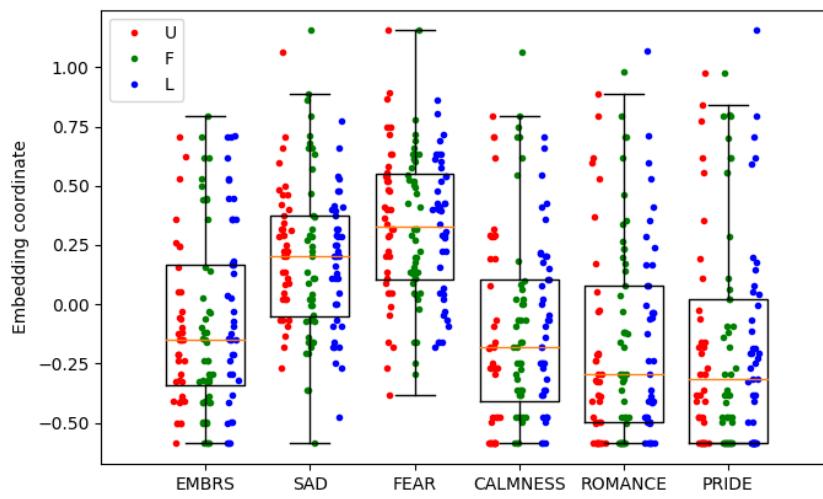
22 The exchange of emotions at a dyadic level is facilitated by the constant influence of behavioral
23 reciprocity (e.g. facial expressions, gaze patterns) on automatic physiological synchrony (e.g. heart
24 rate pattern) [3,4]. This reciprocity may influence cognition and behavior through emotional contagion
25 [3]. In a recent study, [5] showed that imitation of facial expressions (i.e. behavioral) increased the
26 synchrony of heart rate patterns (i.e. physiological) in both members of a dyad. Instances of synchrony
27 have been demonstrated in adult dyads, such as between strangers and romantic couples, using
28 various physiological parameters. In romantic pairs, within-couple hormonal associations have been
29 shown to predict levels of empathy [6] and connectedness [7]. Physiological synchrony has also been

30 observed in pairs of strangers, wherein synchrony was correlated with an enhanced ability to complete
31 collaborative tasks [5,8]. Synchrony of skin conductance at the group level has been shown to correlate
32 with a team's ability to work together cooperatively [9], which feeds back into the performance level
33 of the team [8] and increases cohesion [9].

34 It may seem intuitive that synchrony is indicative of rapport and becomes pronounced in positive
35 emotional situations [1,10–13], but contradictory findings challenge the generality of this principle. For
36 instance, negative events, such as couple conflict, have been found to synchronize heart rate variability
37 and predict elevation of inflammatory compounds [14]. Similarly, synchrony of electrodermal activity
38 (EDA), the difference in electrical potential between different areas of the skin, between romantic
39 partners was enhanced during negative rather than positive interactions [15]. Within a group setting,
40 incompatible results between heart rate variability (HRV) and skin conductance have been noted, in
41 which team cohesion was only significantly linked to synchrony measured by skin conductance but
42 not HRV. These results raise questions regarding what inferences can be drawn from measures of
43 physiological synchrony across different emotional conditions and types of social affiliations.

44 The present study sought to systematically investigate how the co-presence partners from different
45 relational categories (i.e. strangers (Strangers), companions (Friends), and romantic partners (Lovers))
46 and the emotional context (i.e. embarrassment, sadness, fear, calmness, romance, and pride) influence
47 physiological synchrony during a minimal social setup that did not require face-to-face communication.
48 To this aim, we measured HRV indices, which reflect the extent of autonomic arousal. A previous
49 study, [16] demonstrated that direct communication was not necessary to signal emotional states. That
50 study also found that degrees of synchrony of HRV and EDA signals were correlated with the extent
51 of convergence of emotional responses. With respect to its two novel components of categories of
52 persons and contexts, the present study has two sets of hypotheses. First, we expected to observe the
53 effect of mere co-presence on synchrony amongst Strangers as shown by [16], where synchrony was
54 evident between strangers, and we expected a positive correlation between closeness and synchrony
55 so that Lovers should exhibit the highest level of physiological synchrony, followed by Friends and
56 Strangers. Second, we expected Strangers to exhibit synchrony in fearful and embarrassing contexts,
57 similar to the findings by [16], whereas we anticipated that Friends and Lovers would synchronize
58 only to specific to positive emotional contexts, namely romance, pride and calmness.

59 **2. Results**


60 *2.1. Emotional Embedding*

61 To assess whether the different videos elicited different emotional contexts, we investigated the
62 values of the EE from the PCA analysis (see Figure 1 and Table 1 for Means and SDs of the EE for all
63 the emotional contexts).

64 We conducted a two-way Analysis of Variance (ANOVA) to compare the effects of the type of
65 emotional context, relationship, and gender, and their interaction on the EE. The only significant
66 effect was the type of emotional context ($F(5, 742) = 39.9, p < 0.001$) and the interaction of the type of
67 emotional context and gender ($F(5, 743) = 3.7, p < 0.003$).

68 In the post-hoc analysis, we performed a pairwise Wilcoxon signed-rank test to compare the
69 distributions of the EE between the different emotional context. Results (see Table 2) showed that the
70 first three emotional contexts are statistically different. CALMNESS resulted non statistically different
71 from EMBARRASS, and ROMANCE non statistically different from PRIDE. The statistical difference
72 between EMBARRASS and ROMANCE, EMBARRASS and PRIDE and CALMNESS and PRIDE could
73 not survive the Bonferroni's correction.

74 We then applied a two-way ANOVA to investigate the effects of the relationship and gender on
75 the EE for each emotional context. Results indicate that there is a significant effect of the Gender for
76 FEAR ($F(1, 122) = 20.7, p < 0.001$; Females: $M = 0.445, SD = 0.276$; Males: $M = 0.213, SD = 0.294$) and
77 ROMANCE ($F(1, 122), p = 0.045$; Females: $M = -0.239, SD = 0.447$; Males: $M = -0.087, SD = 0.388$).

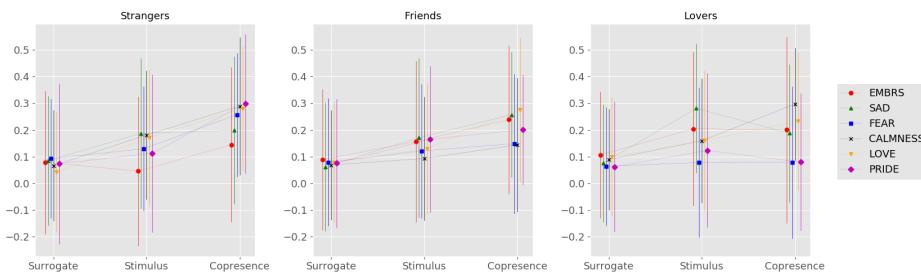

Figure 1. Distribution of the EE values for each emotional context and type of relationship.

Table 1. Means and SDs of the EE for each emotional context (Emot.), relationship group (Relat.): Strangers (S), Friends (F), Lovers (L); and gender: Females (F), Males (M).

Emot.	Relat.	Gender	N	Mean	SD	Emot.	Relat.	Gender	N	Mean	SD
Emb.	S	F	20	-0.099	0.344	Calm.	S	F	20	-0.106	0.412
		M	20	-0.148	0.289			M	20	-0.207	0.427
	F	F	23	-0.19	0.386		F	F	23	-0.076	0.396
		M	23	-0.02	0.395			M	23	-0.108	0.436
	L	F	21	-0.023	0.363		L	F	21	-0.103	0.364
		M	21	0.039	0.417			M	21	-0.06	0.338
Sad	Total	F	64	-0.107	0.367	Romance	F	F	64	-0.094	0.385
		M	64	-0.041	0.375			M	64	-0.123	0.402
		All	128	-0.074	0.371			All	128	-0.109	0.392
	F	F	20	0.289	0.256		F	F	20	-0.3	0.465
		M	20	0.181	0.273			M	20	-0.161	0.368
		F	23	0.161	0.415			F	23	-0.22	0.412
Fear	Sad	M	23	0.196	0.351		F	M	23	-0.015	0.449
		L	21	0.187	0.302			F	21	-0.201	0.482
		M	21	0.17	0.24			M	21	-0.097	0.337
	Total	F	64	0.209	0.335		Total	F	64	-0.239	0.447
		M	64	0.183	0.289			M	64	-0.087	0.388
		All	128	0.196	0.312			All	128	-0.163	0.424
Fear	S	F	20	0.481	0.28	Pride	S	F	20	-0.181	0.445
		M	20	0.208	0.335			M	20	-0.245	0.441
		F	23	0.448	0.286		F	F	23	-0.174	0.525
	F	M	23	0.194	0.269			M	23	-0.127	0.454
		L	21	0.407	0.268		L	F	21	-0.12	0.469
		M	21	0.238	0.293			M	21	-0.239	0.401
Pride	Total	F	64	0.445	0.276		Total	F	64	-0.158	0.476
		M	64	0.213	0.294			M	64	-0.2	0.43
		All	128	0.329	0.307			All	128	-0.179	0.452

Table 2. Results of the Wilcoxon signed-rank tests to compare the EE of the different emotional contexts.

Wilcoxon signed-rank test					
Emotion	SAD	FEAR	CALMNESS	ROMANCE	PRIDE
EMBARRASS	Z=7.36, p<0.001	Z=7.96, p<0.001	Z=0.72, p=0.47	Z=2.67, p<0.008	Z=2.68, p<0.008
		Z=4.01, p<0.001	Z=7.53, p<0.001	Z=8.36, p<0.001	Z=8.15, p<0.001
SAD	-	-	Z=8.29, p<0.001	Z=8.28, p<0.001	Z=8.27, p<0.001
FEAR	-	-	-	Z=1.89, p=0.059	Z=2.46, p<0.02
					Z=0.17, p=0.86
CALMNESS	-	-	-	-	-
ROMANCE	-	-	-	-	-

Figure 2. Mean and SD of the three types of physiological synchrony for each group of relationship and stimulus.

No other effects were observed, neither due to the type of relationship nor to the interaction between gender and type of relationship.

2.2. Effects of Relationship, Emotion and Gender on the Physiological Response

In the second part of the analysis, we investigated the effects of the type of relationship, emotional context and gender on the physiological response, measured in terms of average IBI during the stimulus (see Table 3).

For each video, we performed a two-way ANOVA to investigate the effects of gender and type of relationship on the physiological response. Results (see Table 4) showed an effect of gender for all emotional contexts, with the exception of CALMNESS ($F(1,116) = 3.77$, $p = 0.055$; Females: $M = 0.798$, $SD = 0.102$; Males: $M = 0.840$, $SD = 0.130$) and PRIDE ($F(1,116) = 3.43$, $p = 0.066$; Females: $M = 0.776$, $SD = 0.104$; Males: $M = 0.816$, $SD = 0.129$). No significant effect of type of relationship or of the interaction between type of relationship and gender was found. The differences due to gender are expected and can be explained by physiological differences in emotional responses found between men and women in general [17]. The non-significant differences between the relationship types indicate that individual physiological responses do not depend on the social category of the dyad.

2.3. Effects of Relationship, Emotion and Gender on the Physiological Synchrony

Results from the analyses of the EE and of the average IBI ensured that the stimuli are appropriate to elicit different emotions and that the type of relationship and gender have no effect on the perceived emotion and on the physiological response. We focused then on the investigation of the physiological synchrony between the dyads, and in particular on the effects of the different type of relationships on the synchrony associated to the stimulus and to the co-presence (see Table 5) and Figure 2).

Table 3. Means and SDs of the Average IBI for each emotional context (Emot.), relationship group (Relat.): Strangers (S), Friends (F), Lovers (L); and gender: Females (F), Males (M). Values are reported in seconds.

Emot.	Relat.	Gender	N	Mean	SD	Emot.	Relat.	Gender	N	Mean	SD
Emb.	S	F	19	0.778	0.086	Calm.	S	F	19	0.813	0.092
		M	19	0.815	0.127			M	19	0.825	0.112
	F	F	23	0.768	0.111		F	F	23	0.795	0.108
		M	23	0.831	0.152			M	23	0.848	0.137
	L	F	19	0.774	0.115		L	F	19	0.787	0.108
		M	19	0.857	0.16			M	19	0.844	0.144
	Total	F	61	0.773	0.103		Total	F	61	0.798	0.102
		M	61	0.834	0.146			M	61	0.84	0.13
		All	122	0.803	0.129			All	122	0.819	0.119
Sad	S	F	19	0.804	0.092	Romance	S	F	19	0.823	0.092
		M	19	0.833	0.129			M	19	0.84	0.109
	F	F	23	0.779	0.116		F	F	23	0.804	0.119
		M	23	0.85	0.135			M	23	0.858	0.143
	L	F	19	0.775	0.115		L	F	19	0.791	0.109
		M	19	0.861	0.156			M	19	0.858	0.151
	Total	F	61	0.785	0.108		Total	F	61	0.806	0.107
		M	61	0.848	0.138			M	61	0.853	0.134
		All	122	0.817	0.127			All	122	0.829	0.123
Fear	S	F	19	0.798	0.084	Pride	S	F	19	0.792	0.094
		M	19	0.825	0.128			M	19	0.806	0.112
	F	F	23	0.787	0.106		F	F	23	0.769	0.106
		M	23	0.839	0.137			M	23	0.826	0.133
	L	F	19	0.777	0.106		L	F	19	0.768	0.113
		M	19	0.848	0.145			M	19	0.813	0.144
	Total	F	61	0.787	0.098		Total	F	61	0.776	0.104
		M	61	0.838	0.135			M	61	0.816	0.129
		All	122	0.812	0.12			All	122	0.796	0.118

Table 4. F-statistics and p-values of the ANOVA test to investigate gender and relationship type effects on the average IBI.

Stimulus	Gender F(1,116)		Relation F(2,116)		Gender:Relation F(2,116)	
	F	p	F	p	F	p
EMBARRASS	6.91	.009	0.24	.786	0.31	.731
SAD	7.61	.006	0.01	.988	0.53	.592
FEAR	5.32	.023	0.001	.998	0.32	.726
CALMNESS	3.77	.055	0.02	.977	0.41	.662
ROMANCE	4.39	.038	0.04	.957	0.41	.662
PRIDE	3.43	.066	0.06	.941	0.36	.701

Table 5. Means and SDs of the three types of physiological synchrony (Surrogate, Stimulus and Co-presence) for each emotional context and relationship group.

Emotion	Relationship	Surrogate			Stimulus			Co-presence		
		N	Mean	SD	N	Mean	SD	N	Mean	SD
EMBARRASS	Strangers	190	0.079	0.267	171	0.045	0.279	19	0.145	0.290
	Friends	276	0.089	0.263	253	0.157	0.300	23	0.238	0.277
	Lovers	210	0.107	0.237	190	0.204	0.288	20	0.201	0.349
SAD	Strangers	190	0.085	0.241	171	0.187	0.281	19	0.199	0.275
	Friends	276	0.062	0.242	253	0.171	0.297	23	0.257	0.234
	Lovers	210	0.076	0.220	190	0.281	0.241	20	0.188	0.258
FEAR	Strangers	190	0.093	0.222	171	0.130	0.232	19	0.257	0.231
	Friends	276	0.079	0.239	253	0.121	0.251	23	0.149	0.261
	Lovers	210	0.064	0.220	190	0.078	0.280	20	0.079	0.284
CALMNESS	Strangers	190	0.067	0.206	171	0.181	0.240	19	0.289	0.259
	Friends	276	0.069	0.205	253	0.093	0.231	23	0.144	0.250
	Lovers	210	0.089	0.189	190	0.160	0.232	20	0.297	0.210
ROMANCE	Strangers	190	0.041	0.225	171	0.172	0.252	19	0.279	0.231
	Friends	276	0.079	0.225	253	0.130	0.244	23	0.276	0.269
	Lovers	210	0.099	0.221	190	0.160	0.262	20	0.233	0.256
PRIDE	Strangers	190	0.073	0.300	171	0.113	0.295	19	0.299	0.260
	Friends	276	0.075	0.240	253	0.165	0.273	23	0.201	0.205
	Lovers	210	0.062	0.242	190	0.123	0.287	20	0.080	0.257

99 2.4. Effects of Emotional Context and Co-Presence in Strangers

100 In the first stage, we focused on the dyads of Strangers to assess whether we could reproduce and
 101 extend the results in [16].

102 The Mann-Whitney tests (see Table 6 for the U-statistics and p-values) indicate an effect of stimulus
 103 and copresence for FEAR, CALMNESS and ROMANCE. SAD showed an effect due to the stimulus but
 104 not to co-presence; and PRIDE showed only an effect due to co-presence. For the video EMBARRASS,
 105 which was also used in [16], neither emotional context nor co-presence had an effect on synchronization.
 106 Overall, we partially replicated the findings in [16]; we addressed the main discrepancies in regard
 107 to differences in the shorter duration of the stimuli (about 240 s in our pipeline), and to the different
 108 types of social group ([16] tested strangers in groups of threes, whereas we tested pairs). As we
 109 extended the investigation to other types of emotions, we can conclude that emotional context- and
 110 co-presence-driven synchrony in Stranger dyads occur independent of the type of elicited emotion.

111 2.5. Effects of Type of Relationship

112 In Stage 2, we focused on the two other categories of relationships, Friends and Lovers, to assess
 113 whether physiological synchrony is dependent or independent of the type of dyadic relationship (see
 114 Table 5 and Table 6).

115 In general, while we found again an effect of the stimulus (EMBARRASS, SAD, ROMANCE,
 116 PRIDE for Friends and Lovers, FEAR for Friends only and CALMNESS for Lovers only), the effects
 117 of co-presence are found only for two videos (ROMANCE for Friends CALMNESS for Lovers). This
 118 finding suggests that, when members of a dyad engage in a social relationship, their synchrony is
 119 reduced in social situations which do not require direct interaction.

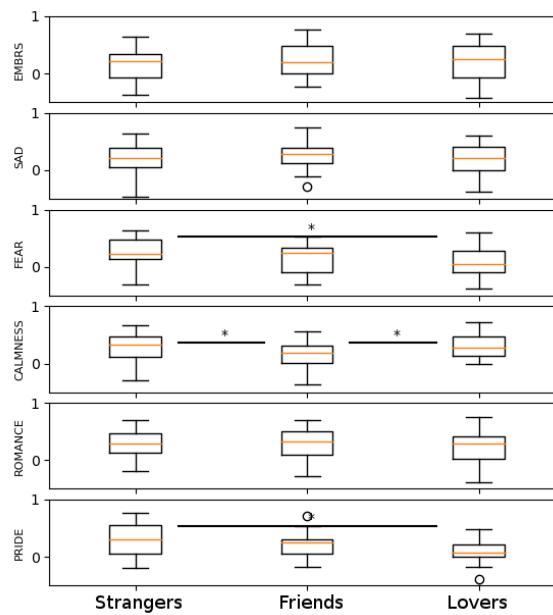

120 To further investigate, we compared the distribution of the copresence synchrony between the
 121 three relationship group for all the emotional contexts (see Table 7 and Figure). We note that in all
 122 the three videos where a significant differences is found (FEAR, PRIDE, CALMNESS), Strangers have
 123 higher synchrony than Lovers (FEAR, PRIDE) and Friends (CALMNESS) (see Figure 3). However, the

Table 6. Results of the Mann-Whitney tests to compare between Surrogate, Stimulus and Co-presence synchrony for each type of emotional context and type of relationship.

Emotion	Relationship	Surrogate v. Stimulus		Stimulus v. Copresence	
		U	p	U	p
EMBARASS	Strangers	17341	p=0.866	1313	p=0.086
	Friends	30042	p=0.003	2576	p=0.182
	Lovers	15920	p<0.001	1892	p=0.488
SAD	Strangers	12707	p<0.001	1571	p=0.408
	Friends	27963	p<0.001	2356	p=0.066
	Lovers	10629	p<0.001	2274	p=0.926
FEAR	Strangers	14581	p=0.046	1083	p=0.009
	Friends	31537	p=0.027	2663	p=0.251
	Lovers	20119	p=0.558	1869	p=0.453
CALMNESS	Strangers	11565	p<0.001	1215	p=0.036
	Friends	32648	p=0.098	2489	p=0.126
	Lovers	16037	p<0.001	1308	p=0.011
ROMANCE	Strangers	11285	p<0.001	1233	p=0.043
	Friends	30897	p=0.011	1972	p=0.005
	Lovers	16660	p=0.002	1584	p=0.111
PRIDE	Strangers	14944	p=0.094	1064	p=0.007
	Friends	27676	p<0.001	2760	p=0.342
	Lovers	17289	p=0.011	2054	p=0.725

Table 7. Results of the Mann-Whitney tests to compare the distribution of the Co-presence synchrony between the different relationship groups.

Emot.	Strangers v. Friends		Friends v. Lovers		Strangers v. Lovers	
	U	p	U	p	U	p
Embarass	187	p=0.217	218	p=0.390	170	p=0.292
Sad	190	p=0.240	195	p=0.200	183	p=0.428
Fear	176	p=0.144	190	p=0.168	120	p=0.025
Calmness	149	p=0.041	160	p=0.045	188	p=0.483
Romance	214	p=0.460	204	p=0.267	174	p=0.332
Pride	169	p=0.108	170	p=0.074	116	p=0.019

Figure 3. Comparison of the co-presence synchrony between groups, for the six stimuli. Horizontal bars indicate significant differences between the distributions of the two groups.

124 differences are do not survive the Bonferroni correction and, therefore, the results only suggest a trend
 125 and propose a direction for further investigations.

126 3. Discussion

127 We come into contact with numerous people in our daily lives, some of whom are strangers
 128 with whom we walk side-by-side, but others are friends or romantic partners with whom we share
 129 most of our personal lives. It is therefore important to understand how the presence of others, and
 130 our relationships with them, affect us at the most basic physiological level. Our study systematically
 131 investigated how physiological synchrony occurs in the co-presence of dyads who are romantic couples,
 132 friends, or strangers, and under various emotional conditions. With some notable differences, we
 133 replicated the results in [16] and showed that synchrony due to co-presence manifests mainly in dyadic
 134 pairs of strangers across an array of emotions. Contrary to our expectations, physiological synchrony
 135 was more pervasive across emotional contexts among strangers than romantic couples and friends.

136 One main finding to emerge from our study is that in the absence of a pre-existing
 137 social relationship physiological synchronization emerges between strangers. This result may
 138 seem counter-intuitive, but numerous examples from ethnic rituals to military drills attest that
 139 synchronization of physiological arousal among strangers is more common than realized [18–20].
 140 One postulation for higher physiological synchrony observed among strangers is that there exists a
 141 predisposition for strangers to coordinate autonomic responses in an attempt to initiate affiliation
 142 [21] and facilitate prosocial behavior [22], which, in this case, is applicable to strangers tasked with
 143 watching a video together. Supporting this interpretation, [23] learned that, upon engaging in the same
 144 activity and placed in close proximity to each other, strangers exhibit a natural tendency to synchronize
 145 behaviors and levels of physiological arousal. The predisposition to affiliate with the opposite gender
 146 might have been made more pronounced in our sample which comprised college students who fall
 147 within the active “partner-seeking” phase of their lives [24]. These observations bear close resemblance
 148 to a coordinated physiological response, known as “physiological linkage.” Physiological linkage is
 149 widely displayed by social mammals and is presumed to present an evolutionary advantage (i.e.,
 150 organised response) that enhances the odds of survival [1]. One recent investigation [25] of dyads
 151 composed of same-gendered strangers revealed that physiological linkage was also evident between

152 strangers who spoke or wrote about personal life events to each other. All considered, physiological
153 synchrony may represent a potential mechanism by which social reciprocity between strangers is
154 established [26].

155 More intriguing is the idea that pre-existing social relationships, whether romantic or friendly in
156 nature, were not so physiologically synchronized. Intuitively, partners in such relationships ought to
157 share emotions, which should be reflected in physiological synchrony [27]. There is also considerable
158 evidence to show that relationships serve as important social regulators of baseline homeostasis,
159 including sleep patterns [28] and emotional arousal [29]. Novelty of co-present individual represents a
160 critical variable that may account for differences in synchrony seen in friends, lovers, and strangers in
161 our study. Unlike strangers, autonomic arousal in friends and lovers may be more resistant to influence
162 of the mere presence of partners as friends and lovers have had prior experience in sharing physical
163 space, reducing the drive to convey immediate information or establish social connection.

164 Finally, specificities of synchrony in strangers, lovers, and friends could reflect variation in novelty
165 of co-present individuals in the social experiment. Previous studies have reported that the mere
166 presence of another person automatically influences mechanisms activated to drive the sharing of
167 information [30]. Moreover, the actions and goals of a co-present individual can influence one's
168 own performance [31,32]. Hence, the existing literature suggests that physiological mechanisms are
169 unintentionally affected by mere co-presence. However, in most studies, the co-present individual is a
170 stranger to the participant and is therefore a novel social factor with whom the participant may be
171 instinctively driven to consolidate a social bond with [21].

172 This study has some limitations. Firstly, we categorised dyads broadly into three main groups -
173 friends, romantic partners and strangers. In reality, not all couples within each of these groups function
174 in the same way and subgroups of dyads may have different responses. For instance, the duration
175 of relationship and extent of relationship satisfaction in romantic couples may have influenced the
176 physiological synchrony observed [33]. Similarly, relationship closeness experienced in a friendship
177 falls within a wide spectrum and may have had significant implications in modulating synchrony.
178 Future studies should obtain behavioral measures regarding the characteristics of each relationship so
179 as to better contextualise research findings. Secondly, differences in personality constructs might have
180 driven different physiological responses when viewing the series of video clips. Previous studies have
181 found that the pairing of different personality traits within each dyad influences couple dynamics
182 (e.g. [34]) and could have also elicited unique patterns of synchrony that was not captured in the
183 study. Finally, this study has only investigated the synchrony within a dyadic pair and further work is
184 required to understand whether the same mechanisms are applicable to social groups, such as triads
185 of strangers or friends.

186 4. Materials and Methods

187 4.1. Participants

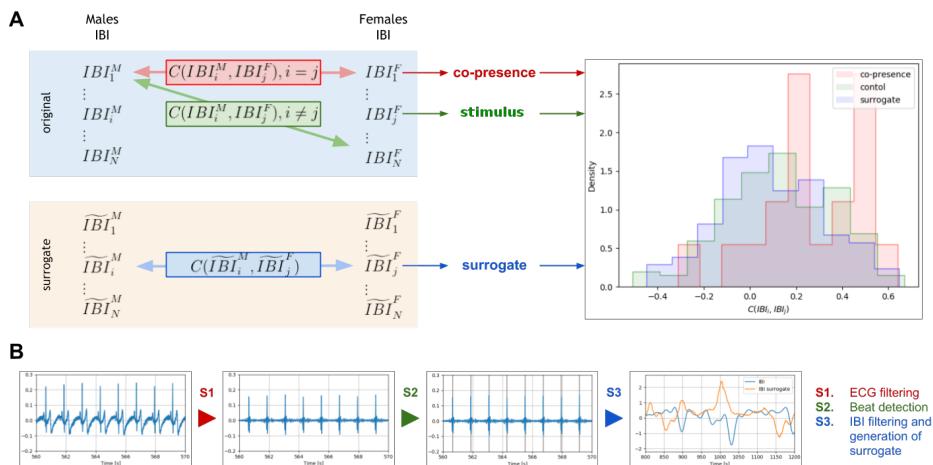
188 124 heterosexual participants took part in this study. The average ages for the 62 female and
189 62 male participants were 21.65 (SD = 2.77) and 23.48 years old (SD = 5.57), respectively. They were
190 all Caucasian, and none presented with any medical or developmental condition. Participants were
191 distributed in 62 opposite-sex pairs of friends (23 pairs), romantic partners (20 pairs), or strangers (19
192 pairs). No information about duration of the relationship and intimacy was collected from the pairs of
193 friends and lovers. Participants were required to provide informed consent before the commencement
194 of the study. Each participant was subsequently awarded university credits following the completion
195 of the study. The study was conducted in accordance with the Declaration of Helsinki, at *Institution*
196 *blinded for review*.

197 *4.2. Procedure*

198 In each experimental session, a male-female pairviewed a series of video clips together. Romantic
199 couples and friends signed up for the study together; each partner from the pair of strangers
200 was recruited separately and was subsequently paired with a stranger of the opposite sex. All
201 experimental sessions consisted of male-female pairs of participants. Upon arriving at the laboratory,
202 participants were instructed about the purpose of the study and signed the informed consent. Each
203 participant's cardiac activity was recorded using an Electrocardiogram (ECG) sensor (FlexComp,
204 Thought Technology). The ECG signal was measured throughout the entire presentation of 6 emotional
205 videos. The experimental session lasted 30 min in total.

206 *4.3. Stimuli*

207 In a pilot study, 10 participants responded to a forced-choice single-answer questionnaire where
208 they were instructed to pick one emotion from a list of six emotions that best represented each of 20
209 video clips. Beginning with 20 videos, we eventually selected six video clips that consistently elicited
210 the same basic emotion across all participants. Each video clip was carefully screened for its ability to
211 elicit one of six key emotions (i.e. embarrassment, sadness, fear, calmness, romance, and pride). Every
212 participant was exposed to six 4-min video clips from different popular films or TV series that were
213 used as the main stimuli for this study. To mitigate the possibility that a gory scene from the "The
214 Walking Dead" clip might leave participants feeling uncomfortable if viewed last, we fixed the order
215 in which the clips were presented. Specifically, the sequence of stimuli and order of presentation was:


- 216 1. A scene from the movie "When Harry met Sally" was used to elicit the emotion of embarrassment
(EMBARRASS);
- 217 2. A scene from the movie "Titanic" was used to elicit the emotion of sadness (SAD);
- 218 3. A scene from the TV series "The Walking Dead" was used to elicit the emotion of fear (FEAR);
- 219 4. A scene of a beach with a relaxing music playing in the background was used to induce calmness
(CALMNESS);
- 220 5. A scene from the movie "Notting Hill" was used to elicit romantic love (ROMANCE);
- 221 6. A scene from the penalty-kick session in the 2006 FIFA World Cup Finals was used to elicit the
emotion of pride (PRIDE).

225 Before the start of each video clip, participants were presented with a 10-sec image depicting the
226 title of the video clip (on a white background) which they were about to watch. At the end of the
227 last clip, a set of instructions would appear on the screen to inform participants that the session had
228 ended. There was an interval of 1 min between the presentations of each video clip, where participants
229 were exposed to an image of a white fixation point on a green background. After the end of the video
230 presentation, participants were asked to self report three items on a 7-point Likert scale on whether
231 each video was unpleasant/pleasant, scary/funny, embarrassing/non-embarrassing. These ratings
232 served as a manipulation check to validate the effects of the video stimuli. The entire session lasted
233 approximately 30 min.

234 *4.4. Physiological measures*

235 Participant's Heart Rate (HR) was assessed using a 3-electrodes ECG placed on the chest. Two ECG
236 electrodes were placed between left inferior area of the neck and mid-sagittal area of left collarbone.
237 The third electrode was placed near the lowest left rib area. ECG signals were preprocessed to extract
238 Inter-Beat-Intervals (IBIs) (e.g. the R-R interval between peaks of a heartbeat), which is linked to both
239 sympathetic and parasympathetic responses of the nervous system (the main preprocessing steps are
240 represented in Figure 4).

241 The R peaks corresponding to heart beats were detected from the ECG signal (Figure 4, step S2)
242 after it was first filtered (band pass filtering, cut-off frequencies: 10-48 Hz) to remove noise (Figure 4,
243 step S1). The result of the automatic detection is manually inspected for missing beats or mis-detections

Figure 4. Data Analysis: A) Three types of physiological synchrony and computation schemes, with output distribution of the measures; B) Pipeline for the processing of the ECG signal.

and corrected, to obtain the Inter Beat Intervals series (IBIs). The IBIs were resampled at 2 Hz and filtered (low pass filter, cut-off frequency: 0.04 Hz) to remove high-frequency components of Heart Rate Variability and then standardised (Figure 4B, step S3).

For each IBI series (IBI_i) a surrogate IBI series (\widehat{IBI}_i) was generated using the Iterative Amplitude Adjusted Fourier Transform (IAAFT) [35] smoothed with a moving average filter (length 5 s). The physiological synchrony between two IBI series was computed as the maximal cross-correlation value within a time shift of ± 10 s, as in [16,36] to which we refer for more details.

For the analysis of the physiological signals and the computation of the physiological synchrony we used custom scripts based on pyphysio [37].

4.5. Analysis Plan

The first analysis is aimed at validating the adopted stimuli. A principal component analysis (PCA) was performed to obtain a univariate emotional embedding (EE) of the elicited emotion contexts. The PCA was applied on the three-dimensional ratings (unpleasant/pleasant, scary/funny, embarrassing/non-embarrassing) to obtain the *emotion embedding*, *i.e.* a mono-dimensional quantification of the perceived emotion. This step was required to allow comparison of the emotions elicited by the different emotional contexts and effects of group and gender.

The second analysis investigates the effects of the type of relationship and gender on the physiological response of the individuals.

Finally, we analysed the effects of the type of relationship on the physiological synchrony. The analysis of the physiological synchrony was divided into two stages: i) Stage 1: replication of the effects of stimulus and co-presence on synchrony found by [16] and ii) Stage 2: investigating the effects of the type of relationship on synchrony.

4.5.1. Stage 1: Effects of Emotional Context and Co-Presence on Synchrony

As in [16], three types of synchrony of the physiological response were computed (see Figure 4A):

- Co-presence synchrony: between male and female of the Strangers/Friends/Lovers dyad, who watched the videos together. We expected this synchrony to be driven by both the stimulus and the effects of being with the member of the dyad;
- Stimulus synchrony: between male and female belonging to different dyads, who did not watch the videos together. This is the synchrony that was only due to the stimulus;

273 • Surrogate synchrony: between surrogate signals of males and females. This was used to compose
274 the distribution of the null hypothesis that there was no effect of synchrony due to emotional
275 context or co-presence.

276 We statistically compared the distributions of the surrogate synchrony and of the stimulus
277 synchrony to assess the effects of the emotional context, then we compared the distribution of
278 the co-presence synchrony and of the stimulus synchrony to assess the effects of co-presence. The
279 significance of the differences in the distributions was assessed with the Mann-Whitney test, fixing the
280 significance threshold to $\alpha = 0.05$. In Stage 1, we used only the data from the dyads of the Stranger
281 group, which was more similar to the sample used in [16].

282 4.5.2. Stage 2: Effects of Type of Relationship on Synchrony

283 In Stage 2, we also considered the groups Friends and Lovers and assessed the differences in the
284 co-presence synchrony across the three groups.

285 5. Conclusion

286 As social beings, humans are dynamically influenced by our social interactions with others. The
287 mere presence of others can affect us at a physiological level. From this study, we have revealed that
288 the absence of a pre-existing relationship leads to greater physiological synchrony in the context of a
289 shared social task that does not require face-to-face communication. This finding has implications on
290 the mechanisms that drive communal behaviors. From daily activities such as purchasing coffee and
291 commuting to work, to mass gatherings in advance to advance social causes, we may have more in
292 common with the strangers alongside us than previously thought.

293 **Author Contributions:** “conceptualization, G.E. and P.S.; methodology, A.B.; software, A.B. and G.G.; curation,
294 N.C and A.T.; writing—original draft preparation, A.B. and L.Y.N.; writing—review and editing, M.H.B., A.A.”

295 **Funding:** “This research received no external funding”

296 **Conflicts of Interest:** “The authors declare no conflict of interest.”

297 References

- 298 1. Feldman, R. Bio-behavioral synchrony: A model for integrating biological and microsocial behavioral
299 processes in the study of parenting. *Parenting* **2012**, *12*, 154–164.
- 300 2. Leclère, C.; Viaux, S.; Avril, M.; Achard, C.; Chetouani, M.; Missonnier, S.; Cohen, D. Why synchrony
301 matters during mother-child interactions: a systematic review. *PLoS one* **2014**, *9*, e113571.
- 302 3. Hatfield, E.; Cacioppo, J.T.; Rapson, R.L. Emotional contagion. *Current directions in psychological science*
303 **1993**, *2*, 96–100.
- 304 4. Barsade, S.G. The ripple effect: Emotional contagion and its influence on group behavior. *Administrative
305 science quarterly* **2002**, *47*, 644–675.
- 306 5. Park, S.; Choi, S.J.; Mun, S.; Whang, M. Measurement of emotional contagion using synchronization of
307 heart rhythm pattern between two persons: Application to sales managers and sales force synchronization.
308 *Physiology & behavior* **2019**, *200*, 148–158.
- 309 6. Schneiderman, I.; Kanat-Maymon, Y.; Zagoory-Sharon, O.; Feldman, R. Mutual influences between
310 partners’ hormones shape conflict dialog and relationship duration at the initiation of romantic love. *Social
311 Neuroscience* **2014**, *9*, 337–351.
- 312 7. Papp, L.M.; Pendry, P.; Simon, C.D.; Adam, E.K. Spouses’ cortisol associations and moderators: Testing
313 physiological synchrony and connectedness in everyday life. *Family process* **2013**, *52*, 284–298.
- 314 8. Chikersal, P.; Tomprou, M.; Kim, Y.J.; Woolley, A.W.; Dabbish, L. Deep Structures of Collaboration:
315 Physiological Correlates of Collective Intelligence and Group Satisfaction. CSCW, 2017, pp. 873–888.
- 316 9. Mønster, D.; Håkonsson, D.D.; Eskildsen, J.K.; Wallot, S. Physiological evidence of interpersonal dynamics
317 in a cooperative production task. *Physiology & behavior* **2016**, *156*, 24–34.
- 318 10. Cirelli, L.K. How interpersonal synchrony facilitates early prosocial behavior. *Current opinion in psychology*
319 **2018**, *20*, 35–39.

320 11. Leong, V.; Byrne, E.; Clackson, K.; Georgieva, S.; Lam, S.; Wass, S. Speaker gaze increases information
321 coupling between infant and adult brains. *Proceedings of the National Academy of Sciences* **2017**,
322 *114*, 13290–13295.

323 12. Feldman, R. Interactive Synchrony: A Biobehavioral Model of Mutual Influences in the Formation of
324 Affiliative Bonds in Healthy and Pathological Development. *Neuropsychiatrie de l'Enfance et de l'Adolescence*
325 **2012**.

326 13. Ostlund, B.D.; Measelle, J.R.; Laurent, H.K.; Conradt, E.; Ablow, J.C. Shaping emotion regulation:
327 Attunement, symptomatology, and stress recovery within mother–infant dyads. *Developmental psychobiology*
328 **2017**, *59*, 15–25.

329 14. Wilson, S.J.; Bailey, B.E.; Jaremka, L.M.; Fagundes, C.P.; Andridge, R.; Malarkey, W.B.; Gates, K.M.;
330 Kiecolt-Glaser, J.K. When couples' hearts beat together: Synchrony in heart rate variability during conflict
331 predicts heightened inflammation throughout the day. *Psychoneuroendocrinology* **2018**, *93*, 107–116.

332 15. Karvonen, A.; Kykyri, V.L.; Kaartinen, J.; Penttonen, M.; Seikkula, J. Sympathetic nervous system synchrony
333 in couple therapy. *Journal of marital and family therapy* **2016**, *42*, 383–395.

334 16. Golland, Y.; Arzouan, Y.; Levit-Binnun, N. The mere co-presence: Synchronization of autonomic signals
335 and emotional responses across co-present individuals not engaged in direct interaction. *PLoS one* **2015**,
336 *10*, e0125804.

337 17. Deng, Y.; Chang, L.; Yang, M.; Huo, M.; Zhou, R. Gender differences in emotional response: Inconsistency
338 between experience and expressivity. *PLoS one* **2016**, *11*, e0158666.

339 18. Jong, J.; Whitehouse, H.; Kavanagh, C.; Lane, J. Shared negative experiences lead to identity fusion via
340 personal reflection. *PLoS one* **2015**, *10*, e0145611.

341 19. Whitehouse, H.; Lanman, J.A.; Downey, G.; Fredman, L.A.; Swann Jr, W.B.; Lende, D.H.; McCauley, R.N.;
342 Shankland, D.; Stausberg, M.; Xygalatas, D.; others. The ties that bind us: Ritual, fusion, and identification.
343 *Current Anthropology* **2014**, *55*, 000–000.

344 20. Whitehouse, H.; McQuinn, B.; Buhrmester, M.; Swann, W.B. Brothers in Arms: Libyan revolutionaries
345 bond like family. *Proceedings of the National Academy of Sciences* **2014**, *111*, 17783–17785.

346 21. Reddish, P.; Fischer, R.; Bulbulia, J. Let's dance together: synchrony, shared intentionality and cooperation.
347 *PLoS one* **2013**, *8*, e71182.

348 22. Shilling, C.; Mellor, P.A. Durkheim, morality and modernity: collective effervescence, homo duplex and
349 the sources of moral action. *British Journal of Sociology* **1998**, pp. 193–209.

350 23. Jackson, J.C.; Jong, J.; Bilkey, D.; Whitehouse, H.; Zollmann, S.; McNaughton, C.; Halberstadt, J. Synchrony
351 and physiological arousal increase cohesion and cooperation in large naturalistic groups. *Scientific reports*
352 **2018**, *8*, 127.

353 24. Kacerguis, M.A.; Adams, G.R. Erikson stage resolution: The relationship between identity and intimacy.
354 *Journal of Youth and Adolescence* **1980**, *9*, 117–126.

355 25. Scarpa, A.; Ashley, R.A.; Waldron, J.C.; Zhou, Y.; Swain, D.M.; Dunsmore, J.C.; Bell, M.A. Side by side:
356 Modeling dyadic physiological linkage in strangers. *Emotion* **2018**, *18*, 615.

357 26. Timmons, A.C.; Margolin, G.; Saxbe, D.E. Physiological linkage in couples and its implications for
358 individual and interpersonal functioning: A literature review. *Journal of Family Psychology* **2015**, *29*, 720.

359 27. Butler, E.A. Temporal interpersonal emotion systems: The “TIES” that form relationships. *Personality and
360 Social Psychology Review* **2011**, *15*, 367–393.

361 28. Diamond, L.M.; Hicks, A.M.; Otter-Henderson, K.D. Every time you go away: Changes in affect, behavior,
362 and physiology associated with travel-related separations from romantic partners. *Journal of Personality
363 and Social Psychology* **2008**, *95*, 385.

364 29. Coan, J.A.; Schaefer, H.S.; Davidson, R.J. Lending a hand: Social regulation of the neural response to threat.
365 *Psychological science* **2006**, *17*, 1032–1039.

366 30. Gallotti, M.; Frith, C.D. Social cognition in the we-mode. *Trends in cognitive sciences* **2013**, *17*, 160–165.

367 31. Atmaca, S.; Sebanz, N.; Prinz, W.; Knoblich, G. Action co-representation: the joint SNARC effect. *Social
368 neuroscience* **2008**, *3*, 410–420.

369 32. Sebanz, N.; Knoblich, G.; Prinz, W. Representing others' actions: just like one's own? *Cognition* **2003**,
370 *88*, B11–B21.

371 33. Levenson, R.W.; Gottman, J.M. Physiological and affective predictors of change in relationship satisfaction.
372 *Journal of personality and social psychology* **1985**, *49*, 85.

373 34. Lazaridès, A.; Bélanger, C.; Sabourin, S. Personality as moderator of the relationship between
374 communication and couple stability. *Europe's Journal of Psychology* **2010**, *6*, 11–31.

375 35. Schreiber, T.; Schmitz, A. Surrogate time series. *Physica D: Nonlinear Phenomena* **2000**, *142*, 346–382.

376 36. Golland, Y.; Keissar, K.; Levit-Binnun, N. Studying the dynamics of autonomic activity during emotional
377 experience. *Psychophysiology* **2014**, *51*, 1101–1111.

378 37. Bizzego, A.; Battisti, A.; Gabrieli, G.; Esposito, G.; Furlanello, C. pyphysio: A physiological signal
379 processing library for data science approaches in physiology. *SoftwareX* **2019**, *10*, 100287.