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Abstract

The PIBK/AKT pathway is a key target in oncology where most efforts are focussed
on phenotypes such as cell proliferation and survival. Comparatively little attention has been
paid to PI3K in stemness regulation, despite the emerging link between acquisition of stem
cell-like features and therapeutic failure in cancer. The aim of this review is to summarise
current known and unknowns of PI3K-dependent stemness regulation, by integrating
knowledge from the fields of developmental, signalling and cancer biology. Particular attention
is given to the role of the PI3K pathway in pluripotent stem cells (PSCs) and the emerging
parallels to dedifferentiated cancer cells with stem cell-like features. Compelling evidence
suggests that PI3K/AKT signalling forms part of a ‘core molecular stemness programme’ in
both mouse and human PSCs. In cancer, the oncogenic PIK3CAM%™R variant causes
constitutive activation of the PI3K pathway and has recently been linked to increased stemness
in a dose-dependent manner, similar to observations in mouse PSCs with heterozygous versus
homozygous Pten loss. There is also evidence that the stemness phenotype may become
‘locked’ and thus independent of the original PI3K activation, posing limitations for the success
of PI3K monotherapy in cancer.Ongoing therapeutic developments for PI3K-associated
cancers may therefore benefit from a better understanding of the pathway’s two-layered and
highly context-dependent regulation of cell growth versus stemness.
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An Unsolved Puzzle

Development and cancer can be described as two sides of the same coin, with cancer
cells progressively co-opting and corrupting embryonic processes to support tumour growth
and metastasis. The class IA phosphoinositide 3-kinase (PI3K) pathway is among the best
studied in human biology, and its pathological hyperactivation is considered a ‘driver’ in
numerous cancers as well as benign, developmental overgrowth [1]. The last two decades have
provided a detailed mechanistic understanding of how this pathway regulates fundamental
cellular processes such as survival, proliferation, migration and metabolism [2] (Figure 1).
Accumulating evidence also suggests an important role for PI3K signalling in regulation of
stemness, yet the underlying mechanisms remain largely enigmatic.

Given the emerging link between cancer stemness and disease progression, a better
mechanistic understanding of how the PI3K pathway impinges on critical developmental
processes — either in forward (normal development) or reverse (cancer) mode — will be
important for continued therapeutic development for PI3K-associated cancers. Collaterally,
such research may also improve our understanding of key embryonic processes operating at
early stages of developmental PI3K-related overgrowth disorders. Finally, insight into PI13K-
dependent stemness regulation is likely to inform continued efforts to establish improved stem
cell culture protocols in developmental biology and regenerative medicine.

The aim of this review is to provide an overview of PI3K’s signalling in stemness
regulation, with a focus on pluripotent stem cells (PSCs) and emerging parallels to cancer cells
with stem cell-like properties. The need for a better mechanistic understanding of context-
dependent PI3K-mediated stemness is highlighted, alongside the potential for systems biology
and interdisciplinary approaches to gain insight into these important questions.

PI3K Signalling: The Pathway That Seems to Do It All

Class IA P13Ks are heterodimers of a regulatory (p85) and a catalytic (p110) subunit,
with the resulting complexes referred to as PI3Ka, PI3K and PI3K3 based on the identity of
the catalytic subunit (Figure 1). Among these, the ubiquitously expressed PI3Ka is essential
for organismal growth and survival, with pleiotropic functions ranging from control of tissue
patterning, angiogenesis and insulin-dependent metabolic regulation. Activating mutations in
PIK3CA, the gene encoding the catalytic p110a subunit of PI3Ka, are also considered disease-
drivers in human cancers as well as developmental overgrowth disorders known as PROS
(PIK3CA-related overgrowth spectrum) [3].

Irrespective of the exact enzymatic complex, the primary output of PI3K activation is
the production of the second messenger phosphatidylinositol 3,4,5-trisphosphate (PIP3) and its
degradation product PI(3,4)P.. Among their key effectors are the three serine/threonine kinase
AKT isoforms, which control the activity of major cellular proteins, including the glycogen
synthase kinase 3 isoforms (GSK3a/pB), forkhead box O (FOXO) transcription factors and
mechanistic target of rapamycin complex 1 (mTORC1) [4]. PI3K activity also regulates
multiple AKT-independent nodes, including those involved in membrane ruffling and cell
migration through modulation of the actin cytoskeleton [5] (Figure 1). Given this ability to
impinge on critical cellular processes, the PI3K pathway is subject to exquisite control,
including multiple negative feedback loops [1,4] and direct inactivation by several lipid
phosphatases, most notably the tumour suppressor phosphatase and tensin homologue (PTEN)
which 3-dephosphorylates both PIPz and PI(3,4)P2[6,7].

While PI3K signalling might be seen as capable of regulating most major cellular
processes (Figure 1), its output is usually rather specific and highly context-dependent —
governed by cell-specific gene expression programmes, signalling thresholds and
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environmental context [8]. Considering PI3K signalling as a ‘pathway’ is itself a simplification
used to conceptualise a complicated network of signalling components. In reality, PI3K
signalling components crosstalk with effectors of other major pathways, including those of
RAS/MAPK [9,10], WNT/B-catenin [11,12], NF-xB [13] and TGFp [14-17]. The resulting
complexity presents a significant challenge for conventional reductionist approaches and,
consequently, remains poorly understood, with most studies focussing on isolated PI3K
signalling effects.

Cancer: ‘Reverse’ Development

There are numerous mechanisms through which normal cells may acquire malignant
features [18]. A common feature, however, is the convergence on a phenotypic programme
with aberrant access to cellular functions with key roles in embryogenesis and tissue self-
renewal [19]. Characteristics such as replicative immorality, lineage plasticity and the ability
to undergo epithelial-to-mesenchymal transition (EMT) are shared between cancer cells and
the pluripotent stem cells that orchestrate early embryonic development [20,21]. Accordingly,
embryonic markers such as NANOG, OCT3/4 and SOX2 are re-expressed across different
human cancers and have been linked to poor clinical outcome [22]. Furthermore, a recent
system-level analysis of 17 major cancer types identified upregulation of cell growth genes and
the downregulation of differentiation genes as a general pattern associated with shorter patient
survival [23].

There is also ample evidence for a link between the acquisition of stemness properties
and therapeutic resistance in cancer [24,25]. Stemness features in tumours are attributed to the
presence of a subpopulation of cancer stem cells (CSCs), characterised by high self-renewal
capacity and the ability to regenerate the heterogeneity of the primary tumour [25].
Understanding the molecular mechanisms that stabilise the CSC state, and that set it apart from
the bulk of the remaining tumour cells, is therefore critical for effective therapeutic targeting
[24].

PI3K Signalling in Cancer Stemness

The PI3K pathway is frequently hyperactivated across multiple human cancers, either
due to direct genetic and/or epigenetic dysregulation of pathway effectors or indirectly, due to
aberrant signalling inputs (e.g. hyperactivation of upstream receptors, loss of negative feedback
regulation). In particular, activating mutations in PIK3CA, the gene encoding the catalytic
subunit of PI3Ka., are among the most common across multiple human cancer types and are
also the cause of benign yet highly debilitating developmental overgrowth disorders [3].

Expression of the most frequently occurring PIK3CA cancer hotspot variant, HL1047R,
has been linked with increased dedifferentiation and stemness in mouse models of breast [26—
28], lung [29] and colorectal [30] cancers. A similar phenotype has been observed upon wild-
type PIK3CA overexpression in a murine head and neck cancer model [31]. Nevertheless, the
exact molecular mechanism(s), including an often-reported requirement for additional
oncogenic hits, have remained elusive. It is noteworthy that heterozygous PIK3CA™%47R on jts
own rarely suffices to induce cancer in mice [32], consistent with the benign overgrowth in
individuals with PIK3CA-related overgrowth [3]. Interestingly, vascular malformations
represent one of the most common and debilitating phenotypes in the PIK3CA-related
overgrowth spectrum (PROS), and when modelled in mice, these lesions exhibit loss of
arteriovenous identity markers, suggesting lineage identity loss and dedifferentiation even in
some benign disease settings [33].

Oncogenic PI3Ka activation has also been linked with induction of EMT [28,30,34—
36] — a process that is itself characterised by enormous plasticity and multiple intermediate
states [24,37]. The connection between cancer stemness and EMT is suggested to hinge upon
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induction of autocrine signalling loops, including those involving the pro-tumorigenic action
of the TGFp pathway [24,38]. Given compelling evidence for a link between TGFf and PI3K
signalling in regulation of stemness in cancer-relevant cell models [31,35,39], as well as the
involvement of both pathways in developmental stemness (see below), it will be important for
future studies to determine whether cancer cells co-opt the developmental functions of the two
pathways to acquire stemness properties that are associated with therapeutic resistance.

Such studies are inherently difficult to perform because CSCs are thought to represent
rare cell populations in most tumours [25]. They may be enriched for using in vitro cancer
spheroid models [40], but will still fall short of capturing the evolution of the stemness
phenotype upon induction of oncogenic PI3K signalling in otherwise normal cells. While adult
stem cells may represent an alternative option, hyperactivation of PI3K signalling in these cells
is often associated with stem cell exhaustion and terminal differentiation (see section “A note
on context”). For instance, homozygous Pten loss leads to depletion of haematopoietic stem
cells (HSCs), but promotes the generation of their transformed counterparts — leukemic stem
cells [41]. This suggests that studies of PI3K-dependent stemness regulation in the context of
cancer progression will benefit from availability of non-transformed cell lines that are
nevertheless capable of unlimited self-renewal in the face of oncogenic pathway activation.
Normal PSCs are characterised by a diploid genome and lack of oncogenic mutations, yet are
naturally immortal and exhibit many phenotypic parallels to cancer cells [20,21]. This provides
an opportunity to use PSCs as model system to study PI3K pathway-dependent regulation of
stemness, with subsequent testing of relevant findings in bona fide CSCs.

PI3K Signalling in Developmental Stemness

Pluripotent stem cell (PSC) primer: the importance of species and developmental stage

Pluripotent stem cells (PSCs) such as mouse and human embryonic stem cells (MESCs
and hESCs, respectively), or the corresponding induced pluripotent stem cells (iPSCs), are
capable of multilineage differentiation and can theoretically give rise to any cell type in the
adult organism (Box 1).

Comparisons of mouse and human PSCs have revealed critical differences, including
the timing of transcriptional activation of the embryonic genome, distinct mechanisms to
achieve X-chromosome dosage compensation in female lines, as well as differences in the
configuration of signalling networks (reviewed in Ref. [42-45]). In addition to species
divergence, these differences reflect the in vitro stabilisation of two distinct developmental
states — the nawe pre-implantation state for mESCs and the primed post-implantation state for
human PSCs (hPSCs) [43,46].

Differences between mouse and hPSCs are particularly important to consider when it
comes to extrapolation of mechanistic insights from one system to the other. The core
pluripotency gene regulatory network is a pertinent example. While coordinated by the same
highly conserved transcription factors — NANOG, SOX2, OC3/4 — in both mouse and hPSCs,
downstream target gene regulation is poorly conserved [43,47,48]. More generally, this
illustrates a recurrent point in this review — the notion that the same set of signalling effectors
can be plugged into different regulatory layers in different cell types.

PI3K-induced stemness in mouse and human PSCs

Although several of the major cell signalling pathways, including MAPK/ERK and
WNT, have opposing effects on mouse versus hPSCs [49,50], both cell systems exhibit a
consistent reliance on PI3K signalling not only for survival but also for sustained stemness.
This suggests that the PI3K pathway forms part of a ‘core molecular stemness programme’ in
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PSCs [51], with the underlying signalling network undergoing substantial remodelling in
response to differentiation signals [52].

The strongest evidence for PI3K-induced stemness comes from genetic perturbations
that result in constitutive activation of the pathway. This was initially achieved through Pten
ablation in mESCs, resulting in their impaired differentiation both in vitro and in vivo [53]. The
effect of Pten loss is allele dose-dependent, with Pten” mESCs giving rise to large,
undifferentiated tumours in vivo, whereas their heterozygous counterparts generate well-
differentiated tumours composed of tissues from all three embryonic germ layers [53]. Such
tumours are known as teratomas and the capacity to form them is used to test for pluripotency.
Therefore, homozygous but not heterozygous Pten” mESCs exhibit sustained stemness
alongside impaired pluripotency. Although a subsequent study using a different mouse strain
did not observe alternations in differentiation capacity between Pten” mESCs and wild-type
counterparts, once differentiated, a subset of Pten-null mESC derivatives failed to
downregulate Nanog and Oct3/4 expression, resulting in greater capacity for tumour formation
[54]. These results are consistent with residual stemness and impaired pluripotency in a subset
of Pten”- mESCs. Similar to mESCs, hESCs with PTEN knock-down exhibit increased self-
renewal and upregulated expression of NANOG and OCT3/4, in conjunction with activation of
canonical PI3K/AKT signalling and resistance to multilineage differentiation in three-
dimensional (3D) embryoid body (EB) assays in vitro [55].

Given that PTEN can have PI3K-independent effects [56], other studies have
investigated the link between PI3K pathway activation and stemness more directly by
modulating key pathway effectors. In mMESCs and primate PSCs, overexpression or constitutive
activation of AKT results in self-sustained stemness, characterised by persistent expression of
PSC markers and impaired differentiation in vitro [57]. More recently, an allelic series of
isogenic hPSCs with endogenous heterozygous or homozygous expression of the PI3Ka-
activating cancer-driver mutation PIK3CA™%47R were shown to exhibit a striking allele dose-
dependent stemness phenotype [58] — similar to the aforementioned findings with heterozygous
versus homozygous loss of Pten in mESCs. Thus, homozygous but not heterozygous
PIK3CAM%R mutants were characterised by self-sustained stemness both in vitro and in vivo,
accompanied by graded activation of the PI3K pathway, partial loss of epithelial morphology
and widespread transcriptional remodelling with upregulated expression of multiple PSC
markers, including NANOG and OCT3/4 [58]. The stemness phenotype of PIK3CAM047RH1047R
hPSCs is also similar to previous observations in mESCs with enhanced AKT activation
[57,59] or GSK3a/p double knock-out [60], as well as to mouse and monkey PSCs expressing
membrane-targeted and thus constitutively active PDK1 or AKT [57,61]. Combined, these
studies suggest that above a certain threshold, constitutive PI3K activation leads to AKT-
dependent self-sustained renewal of PSCs.

A different question is whether baseline or tonic levels of PI3K activation are required
for continuous maintenance of PSCs. Work in this area has primarily been carried out in
mESCs, and caution is warranted before extrapolating the proposed mechanisms to hPSCs (see
section “Pluripotent stem cell (PSC) primer: the importance of species and developmental
stage”). Such limitations notwithstanding, genetic and pharmacological studies by the Welham
group have demonstrated that PI3K signalling is required for maintenance of the
undifferentiated state in mESCs [62-64]. Conversely, knock-down of Akt leads to loss of
MESC self-renewal [65,66]. Pharmacological PI3K inhibition in hPSCs has also been linked
to increased differentiation [67—71], yet the evidence is mainly based on the use of the pan-
PI3K inhibitors, LY294002 and wortmannin, which are known to be promiscuous towards
multiple other kinases — including mTOR — at the applied concentrations [72—76]. The use of
these inhibitors is strongly discouraged by experts in the PI3K signalling field [4].
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Mechanistic Insights: The Known Unknowns

Despite substantial evidence that PI3K signalling promotes stemness in PSCs, the
underlying mechanisms have yet to be defined [77]. From receptor activation to the specific
PI3K isoform(s) and its downstream effectors, the exact sequence of events and their
contribution to PSC phenotypes warrant more systematic studies. The following is an attempt
to summarise the known unknowns and thus facilitate the generation of novel hypotheses for
future studies in this area.

Receptor-mediated PI3K activation

Advances in regenerative medicine have long called for more defined culture
conditions for hPSCs, including coating substrate and growth medium. At present, the most
widely used media solutions in the field are the commercially available mMTESR1 and Essential
8/ES8, with the latter allowing cells to be cultured in DMEM/F12 supplemented with only eight
components [78]. Three of these eight components — insulin, FGF2 and TGFp (or its
alternative, NODAL) — represent growth factors/cytokines that are critical for hPSC survival
and continued self-renewal (Figure 2) [78-86]. Insulin is well known to act in a PI3K-
dependent manner, but is also able to induce activation of the mitogenic MAPK/ERK pathway
[87]. FGF2 is a potent inducer of MAPK/ERK and can also activate PI3K. Further complexity
emerges from the context-dependent crosstalk between the two pathways [88], either directly
or indirectly. It is, however, unclear to what extent each growth factor leads to activation of
one pathway over the other, and whether a specific balance needs to be attained for continuous
PSC self-renewal — as observed in HSCs [89]. Beyond FGF2 and insulin, whether TGFf
pathway activation promotes PI3K signalling in hPSCs — as reported in other contexts
[14,17,90-92] — requires further and more systematic investigation. The available evidence
remains inconclusive and may reflect differences in culture conditions and signalling time
points [69,93].

Additional inputs into the PI3K pathway are also known to arise from autocrine and
paracrine signals such as the endogenously secreted peptide ELABELA [94]. Finally,
mechanotransduction is closely intertwined with both PI3K and MAPK/ERK signalling [95],
and it is conceivable that differences in coating substrate may alter the dependencies on one or
several of the aforementioned growth factors when it comes to PI3K activation. PI3K pathway
activation is itself linked to altered expression of extracellular matrix components, at least in
mESCs and their derivatives [96,97].

The specific PI3K isoform

At the level of the PI3K heterodimer itself, very few studies have attempted to
determine the identity of the main PI13K catalytic isoform(s) responsible for pathway activation
in PSCs. Treatment of hPSCs with a relatively low-dose (100 nM) of the PI3Ka-specific
inhibitor BYL719 reduces AKT phosphorylation both at baseline and in response to different
growth factors, whereas treatment with TGX221 at a dose (500 nM) that would inhibit both
PI3KB and PI3Kd has no effect [58,98,99]. These findings agree with the identification of
PIK3CA as an essential gene in a recent knock-out CRISPR screen in haploid hPSCs [100]. In
contrast to findings in mMESCs [64], however, PI3Ka and not PI3Kp so far appears to be the
main isoform responsible not only for promoting survival but also stemness in hPSCs
[58,98,99].

Downstream effectors

The exact signalling mechanisms whereby activation of PI3K signalling leads to
increased expression of stemness markers are the least well understood, particularly when it
comes to hPSCs (for an mESC-focussed review on PI3K signalling, see Ref. [101]). Well-
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studied AKT-dependent PI3K pathway effectors with known roles in stemness include GSK3
and MYC. MYC represents a central hub in stemness regulation via its pleiotropic roles on the
transcriptome and epigenome of PSCs [102], and is also one of the four Yamanaka factors used
to reprogramme somatic cells to iPSCs [103]. GSK3-mediated phosphorylation of MYC
primes this transcription factor for degradation [104], thus AKT-dependent inhibition of GSK3
downstream of PI3K activation would be expected to have the opposite effect. While this
mechanism appears to operate in mESCs [105], its importance in hPSCs has been disputed
[93,106]. PI3K signalling can also lead to increased MYC levels through a translational
mechanism that relies on mTORCL1 activation [107], but this has yet to be studied in a stem
cell context.

P13K-dependent GSK3 inhibition may also lead to direct stabilisation of p-catenin,
although the extent of this cross-talk remains subject to debate and may reflect indirect
transcriptional changes through MY C or other effectors, as opposed to rapid post-translational
regulation [108]. Among its many transcriptional targets, 3-catenin — a downstream effector of
canonical WNT signalling — promotes NODAL expression and thus TGFf signalling, with both
WNT and TGFB pathways known to function in a dose- and time-dependent manner in
developmental biology. It remains to be determined whether the recent discovery of dose-
dependent stemness regulation downstream of oncogenic PI3K activation in hPSCs features an
initial B-catenin-driven enhancement of NODAL expression and subsequent induction of self-
sustained stemness, in a manner that is strictly dependent on a particular threshold of PI3K
pathway activation (Box 2).

Others have suggested an alternative model linking PI13K, GSK3 and TGFf signalling
to explain the stemness-promoting ability of the PI3K pathway in hPSCs [93]. According to
this model, PI3K activation indirectly promotes GSK3 activity and thus inhibits WNT/3-
catenin signalling, which serves to keep TGFf signalling below the activity threshold required
for mesendodermal differentiation [93]. This indirect mechanism relies on PI3K-dependent
inhibition of ERK, thus relieving ERK’s inhibitory phosphorylation of GSK3 on the same
Serine residue that is also known to be phosphorylated by AKT [93]. However, the supporting
evidence is based on the use of the relatively non-specific inhibitors, LY294002 and PI-103,
thus warranting additional confirmation. Arguing against this mechanism, GSK3
phosphorylation is ablated in response to PI3Ka-specific inhibition in wild-type as well as
PIK3CAM04/R hPSCs, irrespective of the elevated ERK phosphorylation seen in PIK3CA
mutant cells [99].

Another potential mechanism whereby PI3K signalling may promote stemness
involves alteration of cellular metabolism and ‘knock-on’ effects on epigenetic regulation. The
cancer field has contributed tremendous insight into how PI3K pathway activation alters major
metabolic fluxes, most notably those associated with glycolysis and the citric acid cycle. This
is closely linked with altered levels of key metabolites acting as substrates for chromatin- and
DNA-modifying enzymes [109]. One well-studied example is the AKT-dependent increase in
Acetyl-CoA levels in cells with hyperactive PI3K signalling, which in turn results in enhanced
histone acetylation [110]. Conversely, a recent study demonstrated that Acetyl-CoA and the
associated increase in histone acetylation sustains the stemness phenotype of hPSCs [111].
Moreover, MYC has been suggested to orchestrate the metabolic phenotype of hPSCs [112],
although this has not been studied specifically in the context of PI3K activation and epigenetic
changes. Thus, future studies are warranted to determine to what extent PI3K-induced stemness
reflects metabolic regulation of the epigenome.
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A note on context

An important point about the aforementioned AKT-regulated PI3K pathway effectors
is that they are all subject to regulation by other components beyond those involved in PI3K
signalling. The relative contribution of individual inputs is likely dependent on the exact
cellular state. In the case of mTOR, additional complexity arises from its incorporation into
two different complexes (MTORC1 and mTORC?2) and their involvement in an array of cellular
signalling pathways [113]. Moreover, mTORC1 and its effector ribosomal S6 kinase comprise
a negative feedback loop that limits upstream PI3K activity [113], thus resulting in a non-linear
relationship between PI3K and mTORC1 activation. Currently, knowledge about the effect of
MTOR activity on stemness in hPSCs remains unclear [114,115], though recent data suggest
the existence of dose-dependent regulation [116].

While PI3K pathway activation seems to promote stemness in PSCs, this ability is not
universal when it comes to adult stem cells, reflecting not only different stem cell niches and
developmental timings, but also differences in differentiation stage among stem cells residing
within the same niche. Given multiple reports of adult stem cell exhaustion or differentiation
in response to oncogenic activation of the PI3K pathway [41,117-121], and in particular
mTORC1 activation (reviewed in Ref. [122]), it will be important for future studies to
determine the exact factors that allow the same set of pathway components to promote stemness
in one setting but not in another. Similarly, continued studies of PSCs and their derivatives
may also help explain the apparent lineage skewing and relative lack of increased cancer risk
in overgrowth patients with embryonic acquisition of otherwise highly oncogenic PIK3CA
mutations [3].

Future Directions

The medieval proverb “All roads lead to Rome” can conveniently be superimposed
on to the current picture of PI3K-dependent stemness regulation. While the puzzle remains
unsolved, efforts are made to approach it from multiple, perhaps even diametrically opposite,
ways. This, in turn, can result in confusion and give the impression of inconsistent findings.
Although true inconsistencies do occur — often owing to the use of non-specific approaches
(e.g. the widespread application of non-specific PI3K inhibitors in the PSC field) — the vast
majority are likely to reflect the true complexity of the phenomenon under study and the limited
ability of conventional approaches to capture the cellular system in its entirety.

Recent technological advances in high content imaging and -omics technologies are
offering novel ways in which future studies may address the complexity of PI3K-mediated
stemness, through a combination of conventional mechanistic studies and emerging systems
biology strategies applied successfully in other areas [123-126]. To succeed in providing a
unifying picture of PI3K-mediated stemness in development and cancer, such systems biology
approaches will necessitate better interdisciplinary ‘crosstalk’ to combine the multifaceted
mechanistic data on this pathway already available into comprehensive computational models.
The power of these models lies in their ability to handle the complexity of temporal parameters,
signalling thresholds and combinatorial pathway interactions. This, in turn, allows for
generation of mechanistic predictions for otherwise poorly understood signalling phenomena.
These predictions can subsequently undergo formal testing by conventional approaches and the
results used to refine and improve the original models in what may be considered a cycle of
continuous reiteration.

A mathematical model of PI3K signalling in hPSCs has been developed and used to
study the pathway’s information transmission principles in this particular context [127,128].
This model may serve as a starting point for further refinement based on prior and future data,
potentially enabling previously intractable questions to be addressed: How are different doses
and patterns of PI3K activation sensed and decoded by hPSCs as a function of genetic
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background and environmental context? Are similar decoding principles shared by CSCs,
thereby allowing hPSCs to be used as a valid in vitro model system for an otherwise rare
subpopulation of therapeutically-relevant cancer cells? Are there selective vulnerabilities
whereby inhibition of PI3K-induced stemness can be achieved without knock-on effects on
essential functions such as metabolic regulation?

Answering these fundamental questions is valuable in its own right and may also
inform further therapeutic development for PI3K-associated disorders. Undoubtedly, solving
the ‘PI3K-stemness puzzle’ will be an investment with many returns.

Perspectives

e Given the link between cancer stemness and therapeutic relapse, understanding the
PI3K pathway’s two-layered regulation of growth versus stemness is an important task
for the future. Beyond its direct translational value, this understanding may further
efforts to develop improved pluripotent stem cell culturing protocols in developmental
biology and regenerative medicine.

e Oncogenic PI3K pathway activation has been linked to enhanced stemness in both
cancer models and pluripotent stem cells. At least in some contexts, this link appears to
be exquisitely dependent on the dose of oncogenic PI3K signalling, yet the underlying
mechanisms remain obscure.

e Solving the ‘PI3K-stemness puzzle’ will hinge upon adoption of emerging systems
biology approaches, including computational models capable of handling the context-
dependent regulation of the phenomenon under study. For such approaches to succeed,
there is a need for greater crosstalk between the fields of cancer, signalling and
developmental biology.
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BOX 1: The many faces of stemness

‘Stemness’ is used to describe lack of differentiation or partial dedifferentiation and
is typically applied in studies of stem cells, yet the definition of a stem cell is itself dependent
on the particular context under study. Mammalian development starts with a fully
undifferentiated single cell known as the totipotent zygote (see Figure below). This ultimate
state of stemness is transient and quickly gives rise to the two cell lineages that define the
developing blastocyst — the inner cell mass and the trophectoderm. The inner cell mass
consolidates into the pluripotent epiblast from which all future embryonic lineages develop
[129]. While short-lived in vivo, pluripotent stem cells can be isolated and propagated
indefinitely under the right conditions in vitro, thus forming the basis for the so-called human
embryonic stem cells (hESCs). In this context, ‘stemness’ refers to the indefinite self-renewal
of the undifferentiated cells, while pluripotency denotes their ability to differentiate to
derivatives of the three embryonic germ layers (ectoderm, mesoderm, endoderm) [130].

At the other end of the spectrum, fully differentiated cells can acquire ‘stemness’
properties through the process of partial or complete dedifferentiation as seen in cancer or
during the process of artificial reprogramming of somatic cells into induced pluripotent stem
cells (iPSCs). Somewhere in between these two lie multipotent, bipotent and unipotent adult
stem cells which are relatively differentiated yet capable of self-renewal and additional
specification into tissue-specific cell types (Figure below). Neural stem cells (NSCs),
mesenchymal stem cells (MSCs) and haematopoietic stem cells (HSCs) are examples of
multipotent stem cell types, whereas more tissue-specific stem cells such as mammary stem
cells or intestinal stem cells are more limited in their differentiation capacity.
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BOX 2: PIK3CAH047R dose-dependent effects on stemness

Mainly performed in mouse ESCs treated with LY294002 or expressing dominant-
negative PI3K regulators, some early studies linked PI3K activity to increased Nanog
expression through a PI3Kp-dependent but AKT-independent mechanism [64,131,132]. More
recently, specific perturbation of PI3Ka by both genetic and pharmacological means revealed
a previously unknown link between activation of this enzyme and acute dose- as well as time-
dependent regulation of NODAL expression, prior to any changes in NANOG [58,99] — a well-
known transcriptional target of TGFB/NODAL signalling [133]. Furthermore, homozygous
PIK3CAR7R hPSCs no longer require continuous PI3K pathway activation to sustain the
enhanced stemness gene signature, consistent with their autocrine activation of TGFB/NODAL
signalling [99]. Evidence from bona fide cancer models of oncogenic PI3K pathway activation
also suggests that the stemness phenotype can become uncoupled from the original trigger and
thus no longer reversible simply through PI13K inhibition [99,134,135].

Exactly how the PI3K pathway controls NODAL expression in a dose-dependent
manner remains unknown. One candidate worthy of further investigation is 3-catenin due to
its ability to activate transcription of NODAL, with NODAL subsequently sustaining its own
expression through an autoregulatory positive feedback loop [136]. There is some evidence for
an interaction between WNT/(-catenin and oncogenic PI3K pathway activation in promoting
intestinal [30], mammary [137] and leukemic [134] stem cell maintenance, yet further studies
will be required to determine the nature of this crosstalk and whether it operates in response to
PIK3CAM%4R expression in hPSCs.

Investigation of a potential link to the MYC oncogene is also warranted given its
prominent role as a hub gene in computational network analyses of homozygous PIK3CAH04R
hPSCs [99]. Conditional MYC activation in mESCs has been shown to establish a self-
sustained stemness phenotype which ultimately becomes independent of the presence of MYC
activation [138], similar to the inability of PI3Ka inhibition to reverse the self-sustained
stemness phenotype in homozygous PIK3CAH%4/R hPSCs [99]. It is also noteworthy that
MY C’s biological effects have been linked to distinct thresholds of abundance [139]. Finally,
PIK3CAM%R was recently shown to cooperate with oncogenic KRAS in promoting MYC
activity and tumorigenesis in mammary breast epithelial cells [140], a cellular system in which
a link between oncogenic PI3K signalling and stemness has been demonstrated [35,141].
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Figure 1. An overview of class IA PI3K signalling. The PI3K heterodimer is comprised of
one of three different catalytic subunits (p110c/p/d) and one of five different regulatory
subunits (p85a/B, pS5ay, pS0ay). Its activation involves recruitment to the plasma membrane
where it’s substrate, the phosphoinositide P1(4,5)P> is located. A common mechanism of
activation involves binding of the regulatory p85 subunit to phosphotyrosine residues on
receptor tyrosine kinases (RTKSs) or their associated adaptor proteins. The catalytic subunits of
PI3Ka and PI3K3 can also interact and be activated by RAS. This is not the case for PI3K]
which instead can be activated by small GTPases downstream of G protein-coupled receptors
(GPCRs). The immediate output of class 1A PI3K activation is the generation of the second
messenger PI1(3,4,5)P3 and its derivative PI(3,4)P.. These are detected by proteins with
specialised phosphoinositide-binding domains, with AKT representing one of the most studied
examples. Through AKT-dependent and -independent effectors, the PI3K pathway orchestrates
an array of diverse phenotypic modules whose execution is highly context-dependent [8].
Negative feedback loops and crosstalk with other pathways are omitted for clarity. For
comprehensive signalling reviews, the reader is referred to Ref. [1,2,4,113].
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Figure 2. Core signalling pathways maintaining human pluripotent stem cells (hPSCs).
The pluripotent state is inherently unstable and minor perturbations disrupting the balance
within the signalling network may lead to initiation of differentiation to either one of the three
germ layers or to extraembryonic derivatives. As a consequence, the shown pathways may act
both to promote stemness in setting and differentiation in another, all depending on
microenvironmental context, the subcellular localisation and signalling dynamics of individual
pathway components. Note that several of the displayed effectors exist in multiple isoforms
and are currently omitted for clarity, although there are cases in which the two isoforms may
have different or even opposing effects on hPSC biology, shown recently for GSK3a (promotes
neural differentiation) and GSK3p (promotes hPSC self-renewal) [142]. The red question mark
is used to denote existing uncertainty about the ability of PI3K and WNT signalling to access
the same GSK3 pool. Dashed lines are used to indicate indirect regulatory relationships.
Positive regulation is shown in green and negative regulation in black.
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