

1 Article

2 **Benefits and Trade-offs of Dairy System Changes Aimed at**
3 **Reducing Nitrate Leaching**

4 **Pierre Beukes^{1*}, Alvaro Romera¹, Kathryn Hutchinson², Tony van der**
5 **Weerden³, Cecile de Klein³, Dawn Dalley⁴, David Chapman⁴, Chris Glassey¹ and**
6 **Robyn Dynes⁵**

7 ¹ DairyNZ Ltd, Private Bag 3221, Hamilton 3240, New Zealand;
8 pierre.beukes@dairynz.co.nz (P.B.); alvaro.romera@dairynz.co.nz (A.R.);
9 chris.glassey@dairynz.co.nz (C.G.)

10 ² AgResearch, Grasslands Research Centre, Palmerston North 4410, New Zealand;
11 kathryn.hutchinson@agresearch.co.nz (K.H.)

12 ³ AgResearch, Invermay Agricultural Centre, Mosgiel 9053, New Zealand;
13 tony.vanderweerden@agresearch.co.nz (T.v.d.W.); cecile.deklein@agresearch.co.nz
14 (C.d.K.)

15 ⁴ DairyNZ Ltd, Canterbury Agriculture & Science Centre, Lincoln 7608, New
16 Zealand; dawn.dalley@dairynz.co.nz (D.D.); david.chapman@dairynz.co.nz (D.C.)

17 ⁵ AgResearch, Lincoln Research Centre, Lincoln 7674, New Zealand;
18 robyn.dynes@agresearch.co.nz (R.D.)

19 * Correspondence: pierre.beukes@dairynz.co.nz; Tel.: +64-7-8582761; Fax: +64-7-
20 8583751

21

22

23

24

25

26

27 **Simple Summary:** Reducing inputs of nitrogen fertiliser and imported feed,
28 with an associated reduction in stocking rate on pastoral dairy farms resulted in
29 less nitrate leaching. A co-benefit was a reduction in greenhouse gas emissions.
30 The exception was the implementation of a wintering barn where nitrate
31 leaching was reduced, but greenhouse gas emissions remained unchanged due to
32 greater manure storage and handling. Emission reductions in the lower-input
33 systems came at an average loss of profit of approximately NZ\$100 per tonne
34 CO₂-equivalent.

35 **Abstract:** Between 2011 and 2016 small-scale farm trials were run across three
36 dairy regions of New Zealand (Waikato, Canterbury, Otago) to compare the
37 performance of typical regional farm systems with farm systems implementing
38 a combination of mitigation options most suitable to the region. The trials ran
39 for at least three consecutive years with detailed recording of milk production
40 and input costs. Nitrate leaching per hectare of the milking platform (where
41 lactating cows are kept) was estimated using either measurements (suction
42 cups), models, or soil mineral nitrogen measurements. Post-trial, detailed farm
43 information was used in the New Zealand greenhouse gas inventory
44 methodology to calculate the emissions from all sources; dairy platform, dairy
45 support land used for wintering non-lactating cows (where applicable) and
46 replacement stock, and imported supplements. Nitrate leaching was also
47 estimated for the support land and growing of supplements imported from off-
48 farm using the same methods as for the platform. Operating profit
49 (NZ\$/ha/year), nitrate leaching (kg N/ha/year), and greenhouse gas emissions (t
50 CO₂-e/ha/year) were all expressed per hectare of milking platform to enable
51 comparisons across regions. Nitrate leaching mitigations adopted in lower-input
52 (less imported feed and N fertiliser) farm systems reduced leaching by 22 to 30
53 percent, and greenhouse gas emissions by between nine and 24 percent. The
54 exception was the wintering barn system in Otago where nitrate leaching was
55 reduced by 45 percent but greenhouse gas emissions were unchanged due to
56 greater manure storage and handling. Important drivers of a lower
57 environmental footprint are reducing nitrogen fertiliser and imported feed. Their
58 effect is to reduce nitrogen surplus and feed flow through the herd and drive
59 down both greenhouse gas emissions and nitrate leaching. Emission reductions

60 in the lower-input systems of Waikato and Canterbury came at an average loss
61 of profit of approximately NZ\$100/t CO₂-e (three to five percent of industry
62 average profit per hectare).

63 **Keywords:** greenhouse gases; operating profit; mitigations; carbon price;
64 environmental footprint

65 1. Introduction

66 An important challenge facing global dairy industries is to develop farm
67 systems that can maintain or increase production and profitability, while reducing
68 environmental impacts, including on water and climate [1-3]. Water quality issues
69 have been at the forefront of the environmental concerns in New Zealand (NZ) for a
70 number of decades. More recently, the climate impacts from greenhouse gas (GHG)
71 emissions from agriculture have gained increasing attention. Responding to the effects
72 of anthropogenic GHG emissions on climate, NZ aims to transition to a low-emission
73 economy to help meet the Paris Agreement target of limiting temperature increases to
74 well below 2 °C above pre-industrial levels [4]. New Zealand's commitments under
75 the Paris Agreement is to reduce GHG emissions by 30% below 2005 levels, by 2030
76 [5]. In 2017, agriculture was the single biggest contributor (48%) to total GHG
77 emissions in New Zealand, with the dairy sector contributing almost half (47%) of
78 these emissions [6]. The largest sources of agricultural emissions are enteric methane
79 (CH₄) from ruminant animals and nitrous oxide (N₂O) emissions from soils.

80 Although water quality was the focus of much of the environmental research in
81 NZ in recent decades, many of the management practices to improve water quality
82 were also expected to result in reductions in GHG emissions [7]. For example, the
83 Pastoral 21 (P21) research programme [8] included farmlet (small farm) studies in
84 three regions throughout NZ (Waikato, Canterbury, and Otago) that compared
85 systems typical of that region ('Current') with 'Improved' systems, in which strategic
86 changes were made to the Current system. The five key changes used to design the
87 P21 Improved farmlets were using lower nitrogen (N) fertiliser inputs; fewer, but
88 higher producing cows; lower herd replacement rate; greater use of high-energy/low-
89 N feeds; and using off-paddock facilities to reduce the time cows spend on pasture (or
90 on forage crops). In all regions, the Improved systems could reduce nutrient losses to
91 water [8-11] while GHG emissions were estimated to be reduced in most of the
92

93 Improved Systems [11]. The total annual GHG emissions were strongly related to
94 total feed eaten, and the lower feed supplies and associated lower stocking rates of the
95 Improved systems were the key drivers of lower total GHG emissions in all three
96 regions [11]. These findings align with international studies where the general trend
97 was that increased farming intensity within a system (more input and more animals)
98 may decrease the GHG intensity of milk (kg emissions/kg milk), but absolute
99 emissions (kg emissions/ha) will increase [12-14]. Few studies have considered the
100 wider issues of emissions to both air and water, impacts of mitigations on farm
101 profitability, and the potential trade-offs from achieving these often-conflicting goals.
102 The P21 farmlet studies utilised realistic grazing systems, and determined both N
103 leaching and GHG emissions as well as systems' profitability. The aim of this study
104 was, therefore, to analyse the results from these farmlet studies to assess the impact to
105 environmental, production and economic outcomes of strategies applied to reduce N
106 leaching.

107
108 **2. Materials and Methods**
109

110 *2.1. Regional farmlet trials*

111
112 The P21 programme ran small-scale farmlet studies (farmlets ranging from 13
113 to 39 ha) that included 'Current' and 'Improved' systems in three regions in New
114 Zealand (Waikato, Canterbury, and Otago; [10]). The 'Current' farmlets were
115 designed to represent a system typical of the region in which it was located. The
116 'Improved' farmlets were designed by applying a suite of strategic changes to the
117 Current for each region to reduce N leaching (Table 1). Farm, animal and feed
118 management practices for the farmlets in each region are described by Clark et al. [8]
119 for Waikato, Chapman et al. [9] for Canterbury and Van der Weerden et al. [11] for
120 Otago. A summary of the main features is given in Table 2. These farmlets were
121 monitored for production, profitability and N leaching over the following years: 2011
122 to 2016 - Waikato: 2011 to 2014 - Canterbury; 2012 to 2015 - Otago.

Table 1. System changes applied to typical regional dairy farms in developing nitrate
leaching mitigated farms as part of the Pastoral 21 farmlet trials in the Waikato,
Canterbury and Otago, New Zealand [11].

Region	Fewer, higher producing cows	Reduced N fertiliser inputs	Reduced herd replacement rate	Greater use of high energy/low N feeds	Off-paddock facilities
Waikato	✓	✓	✓	✓	✓
Canterbury	✓	✓		✓	
Otago		✓	✓		✓

123

124 **Table 2.** Key management features of control (Current) and improved systems
 125 (Improved) in the Waikato, Canterbury and Otago; opt = optimised feeding; barn =
 126 cows housed during winter and some wet days in autumn and spring. From [11].

127

Systems Features	Waikato		Canterbury		Otago		
	Current	Improved	Current	Improved	Current	Improved-opt	Improved-barn
Stocking rate (cows/ha)	3.2	2.6	5.0	3.5	3.0	2.8	2.8
Cow genetic merit (\$BW [#])	90	170	133	140	109	105	104
N fertiliser (kg N/ha/year)	137	52	311	158	109	42	73
Replacement rate (%)	22	18	23	23	23	18	18
High energy/low N feed	N/A	0.24 (Grain t DM/cow/year)	N/A	40% diverse pasture	N/A	N/A	N/A
Stand-off/housing	No	Yes	No	No	No	No	Yes
Winter feed	On platform	On platform	Fodder beet + Pasture silage	Kale + Oat silage	Kale	Kale	N/A
N fertiliser for winter forage (kg N/ha/year)	N/A	N/A	200	307	200	200	N/A

128 N/A: not applicable; # Breeding worth, \$ (May 2011)

129

130 2.2. Measuring production, nitrate leaching and greenhouse gases

131

132 Individual milk yields (kg milk/cow) were measured for all cows at each
 133 milking. Milk component concentrations (MS - milksolids = fat + protein) of both
 134 morning and afternoon composite milk samples for each cow were determined weekly
 135 for the Waikato farmlets [8] and fortnightly for Canterbury and Otago farmlets [9].
 136 Nitrate leaching from the Waikato farmlets was determined from measurements of
 137 nitrate-N concentration in the soil solution below plant rooting depth (collected in
 138 porous ceramic cup samplers at a vertical depth of 60 cm). These measurements were

139 used in conjunction with drainage volume (from on-site lysimeters) to estimate
140 leaching losses from the soil [1]. Off-farm sources of N leaching were estimated for
141 fertiliser use for producing pasture for replacement stock, N-excreta deposited by
142 replacement stock, and N fertiliser used for growing imported supplements using the
143 New Zealand Agricultural Inventory methodology (NZAI; [16]). For the Canterbury
144 farmlets nitrate leaching for the milking platform plus winter crop areas was estimated
145 using the Overseer® nutrient budgeting tool ([9]; Overseer version 6.2.2 was operated
146 using the standard industry operating protocol [15]). Nitrogen loss risk for the Otago
147 farmlets was derived as average values weighted for the respective areas (“blocks”)
148 required for the milking platform, winter and summer forage crops (if needed), young
149 stock rearing and supplement provision. Estimates of N loss risk were assigned to
150 each of the relevant blocks that made up an individual farmlet. This type of whole-
151 system assessment was based on a combination of directly measured values, proxy
152 values and literature values [10].

153 Annual average GHG emissions for each system were estimated for all the
154 monitored years using calculations based on the NZAI methodology [16], but
155 included key farmlet-specific activity data from the P21 farmlet systems as well as
156 farmlet-specific emission factor values determined from targeted regional experiments
157 (see [11] for more detail).

158
159 *2.3. Measuring system profitability*
160

161 Operating profit (OP) was determined using a calculator developed specifically
162 for research farmlet trials [17]. This involved scaling the farmlets up to more
163 representative farm sizes for each region (Waikato: 100 ha; Canterbury: 160 ha;
164 Otago: 220 ha), as many farm costs are related to farm and herd size (e.g. labour).
165 Where physical outputs and inputs were known, these were used in the calculation.
166 Where inputs could not be determined separately for each farmlet, average values
167 were used based on regional information from DairyBase ([18], a DairyNZ database
168 of farm financial and physical parameters used for benchmarking) and Glassey et al.
169 [19]. A simplified economics model was applied to the biophysical data, using mean
170 values for economically important variables, including supplementary feed prices and
171 fertiliser prices, and cost data from DairyBase [20] to estimate the profitability of the
172 farmlets. For all profitability calculations actual milk prices for the monitored years

173 were used. Average milk prices for the monitored years in NZ\$/kg MS were Waikato
 174 6.59, Canterbury 7.40, and Otago 7.16. The economic calculations included the cost
 175 of rearing replacement stock off-farm [8]. For the Waikato Improved farmlet, the base
 176 depreciation rate for capital invested in the off-paddock infrastructure was \$350/ha,
 177 with an additional \$61/ha for maintenance of the infrastructure [8].

178

179 3. Results and Discussion

180 3.1. Waikato

181 System changes in the Waikato Improved farmlet resulted in a reduction in N
 182 leaching on the milking platform of 23 kg N/ha (equivalent to a 43% reduction) [1].
 183 However, when leaching losses accrued by grazing replacement stock, growing
 184 imported supplements, and spreading loafing pad solids off-platform were accounted
 185 to the milking platform, the reduction in N leaching was 16 kg N/ha (26% reduction)
 186 (Table 3). The collateral benefit of the leaching reduction was a reduction in GHG
 187 emissions of 2.2 t carbon dioxide equivalents per hectare (CO₂-e/ha; 16% reduction).
 188 However, the trade-off for the reduced environmental footprint of the Waikato
 189 Improved farm was lower production (47 kg MS/ha; 4%) and lower profitability of
 190 \$280/ha (13%) averaged over five farming seasons (Table 3).

191

192 **Table 3.** Average performance (production, profit and environmental losses) of three
 193 regional farm system trials. All metrics are presented as per hectare of the milking
 194 platform. Numbers in brackets indicate the range for all farming seasons available. In
 195 the Canterbury region wintering of non-lactating cows can be either on kale followed
 196 by an oats catch crop (Kale), or fodder beet (FB). Greenhouse gas data from [11].

Region	Farm system	Milk production (kg MS/ha)	Operating profit (\$/ha)	Nitrogen leaching (kg N/ha)	Greenhouse gas (kg CO ₂ -e/ha)
Waikato	Current	1200 (1151 to 1232)	2086 (-244 to 3873)	62 (43 to 75)	13610
Waikato	Improved	1153 (1093 to 1207)	1807 (-834 to 3652)	46 (37 to 57)	11405
Canterbury	Current	2242 (1834 to 2428)	3893 (3596 to 4440)	Kale: 114 FB: 75	20615
Canterbury	Improved	1700 (1452 to 1808)	3535 (3283 to 3885)	Kale: 80 FB: 53	15582
Otago	Current	964 (915 to 1040)	715 (-1428 to 3226)	29 (24 to 38)	11827
Otago	Improved-barn	949 (913 to 983)	20 (-1980 to 2473)	16 (10 to 22)	11461

197	Otago	Improved-opt	931 (899 to 969)	777 (-1192 to 3040)	22 (15 to 31)	10792
198	199	200	201	202	203	204

The substantial reduction in profit compared to the relatively small reduction in production can be explained by standing cows off pasture in the Waikato Improved system. Although this mitigation has been confirmed as highly effective for N leaching [1,21,22], the trade-offs are the increase in methane emissions from manure collected in effluent ponds [23,11], and the large costs of the capital investment, depreciation and maintenance of these facilities [24,25]. The cost of the standing cows off pasture is reflected in other working expenses and overheads and resulted in a 10c/kg MS higher cost of milk production (Table 4). Production losses in the Improved system were minimised by using high genetic merit cows achieving high per-cow production, another important driver of efficiency and therefore footprint mitigation [26,27], although this target was negated to some extent by an exceptional run of dry years when the desired days in milk for the Improved system could not be achieved [8].

211 **Table 4.** Average financial results of the Pastoral 21 regional farm trials. All results are expressed per hectare of the milking platform. Numbers
 212 in brackets indicate the range for all farming seasons available.

Region	Waikato	Waikato	Canterbury	Canterbury	Otago	Otago	Otago
Farm system	Current	Improved	Current	Improved	Current	Improved-barn	Improved-opt
Dairy gross farm revenue (\$/ha)	7713 (5260 to 9702)	7363 (4670 to 9352)	15305 (15081 to 15510)	11445 (11357 to 11656)	6671 (4748 to 9216)	6430 (4710 to 8652)	6349 (4463 to 8565)
Total feed expenses (\$/ha)	965 (804 to 1179)	923 (719 to 1163)	4324 (3831 to 4657)	2208 (1995 to 2422)	1729 (1572 to 1950)	1458 (1269 to 1618)	1539 (1480 to 1629)
Total stock expenses (\$/ha)	745 (720 to 771)	632 (614 to 644)	1379 (1369 to 1387)	972 (970 to 978)	645 (606 to 666)	624 (617 to 638)	609 (600 to 617)
Total labour expenses (\$/ha)	1079 (1079 to 1079)	1026 (1026 to 1026)	1554 (1554 to 1554)	1554 (1554 to 1554)	1043 (1030 to 1052)	1036 (1034 to 1041)	1034 (1034 to 1034)
Total other working expenses (\$/ha)	1858 (1798 to 1884)	1924 (1803 to 2140)	3409 (3353 to 3446)	2479 (2468 to 2502)	1523 (1478 to 1602)	1901 (1852 to 1961)	1381 (1361 to 1412)
Total overheads (\$/ha)	980 (979 to 981)	1051 (1050 to 1052)	746 (742 to 750)	697 (695 to 699)	1014 (1002 to 1035)	1391 (1369 to 1432)	1010 (982 to 1024)
Dairy operating expenses (\$/ha)	5628 (5495 to 5829)	5556 (5457 to 5700)	11412 (10926 to 11775)	7910 (7682 to 8113)	5955 (5701 to 6175)	6411 (6179 to 6690)	5572 (5525 to 5655)
Operating expenses (\$/kg MS)	4.7 (4.5 to 4.8)	4.8 (4.6 to 5)	4.7 (4.5 to 4.9)	4.4 (4.3 to 4.6)	6.2 (5.8 to 6.6)	6.8 (6.3 to 7)	6 (5.7 to 6.3)
Dairy operating profit (\$/ha)	2086 (-244 to 3873)	1807 (-834 to 3652)	3893 (3596 to 4440)	3535 (3283 to 3885)	715 (-1428 to 3226)	20 (-1980 to 2473)	777 (-1192 to 3040)

213

214 Given the cost of installing and maintaining a stand-off pad in the Waikato, it is
215 worthwhile exploring the potential impact of the multiple system changes where the
216 stand-off approach is excluded. On average, using a stand-off pad would contribute to
217 *ca* 60% of the N leaching reduction while the ‘low input’ strategies, including higher-
218 producing cows, would contribute *ca* 40% [1]. The average reduction in N leaching in
219 the Improved system excluding a stand-off pad can therefore be estimated as 6 kg N/ha
220 (40% of 16 kg N/ha reduction). By excluding the *ca* \$400/ha cost associated with
221 standing-off, farm profitability in the Improved would be greater than for the Current
222 system. Similarly, by avoiding the increase in net GHG emissions due to the stand-off
223 approach [11], total GHG emissions will be further reduced. This suggests farmers in
224 the Waikato could increase profitability while reducing losses to air and water by
225 implementing a subset of the ‘stacked’ mitigation strategies outlined in Table 1.

226 The cost of GHG mitigation in the Waikato trial amounted to c. \$127/t CO₂-e at
227 an average milk price of \$6.59/kg MS, which can be compared with the cost of \$103
228 and \$114/t estimated by Adler et al. [25] for medium input (10-20% imported feed) and
229 high input (20-40% imported feed) Waikato systems, respectively, using a milk price of
230 \$5.50/kg MS. In another study focussing on three Waikato dairy systems (low, medium,
231 high input) Adler et al. [28] estimated the marginal abatement cost for GHG of \$96/t
232 CO₂-e with a \$5.50 milk price. In a modelling study of a Waikato dairy system,
233 Smeaton et al. [27] found a weak correlation ($R^2 = 0.43$) between GHG emissions and
234 profitability with an average abatement cost of c. \$250/t CO₂-e. Carbon prices are rising
235 [29], and about half of the global GHG emissions are now covered by carbon pricing
236 initiatives priced at over US\$10/tCO₂-e (~ NZ\$15), compared with one-quarter of
237 emissions covered in 2017. It is clear that carbon prices will have to increase
238 substantially more before it is economically worthwhile for dairy farmers to adjust their
239 system instead of offsetting emissions by buying carbon credits (note: agriculture is
240 currently not included in New Zealand Emissions Trading Scheme). However, the
241 situation may change in the not too distant future if we consider that the High-Level
242 Commission on Carbon Prices identified the carbon price to be in the range of US\$40–
243 80/tCO₂-e in 2020 and US\$50–100/tCO₂-e by 2030, which will make it consistent with
244 achieving the temperature goal of the Paris Agreement [29]. However, to shift
245 investment at scale, carbon pricing coverage must expand, and prices must be stronger.
246 Most initiatives saw increases in carbon prices in 2018 compared to price levels in

247 2017. But despite these, most initiatives in 2019 are still below the US\$40-\$80/tCO₂-e
 248 needed in 2020 [29].

249 Compared with commercial farms in the Waikato region, the Current farm
 250 performed well above average in terms of production and profit (Tables 3 and 5), and it
 251 was clearly not an average or typical farm. The reasons could be the environmental
 252 conditions and/or measurement and managerial intensity applied at the research site. In
 253 the context of “average” commercial farms, the Waikato Improved system shows a lot
 254 of potential by maintaining production, trading a relatively small amount of profit, and
 255 leaving a modest environmental footprint. However, it should be considered that the
 256 gains made on the trial farms were made by running the farms with best-management
 257 practices, smaller reductions at higher profit trade-offs may be expected from most
 258 commercial farms.

259

260 **Table 5.** Average performances of typical commercial dairy farms in the same regions
 261 as the P21 farmlet trials. Extracted for the relevant years from DairyNZ Economic
 262 Survey data (<https://www.dairynz.co.nz/publications/dairy-industry/>).

	Waikato 2011-2016	Canterbury 2011-14	Otago 2012-15
Number of herds	56	23	28
Peak cows	343	751	587
Effective hectares	120	222	209
Stocking rate (cows/ha)	2.8	3.4	2.8
Milk production (kg MS/ha)	1025	1413	1120
Milk price (\$/kg MS)	6.59	7.40	7.16
Operating expenses (\$/kg MS)	4.80	4.96	4.95
Operating profit (\$/ha)	1949	3438	2505

263

264

265 3.2. Canterbury

266 In the Canterbury region the Improved system reduced N leaching from the
 267 milking platform by 14 kg N/ha (30% reduction) compared with the Current system [9].
 268 When including N leaching losses from the winter crop, the reductions in the Improved
 269 system were 22 kg N/ha (29%) with fodder beet, and 34 kg N/ha (30%) with kale (Table
 270 3). Leaching from both these winter crops were generally high (150-200 kg N/ha crop),
 271 but the larger area required for the lower-yielding kale crop resulted in higher N
 272 leaching losses per hectare of platform area, compared with fodder beet. The co-benefit
 273 of the lower leaching in the Improved system was a reduction in GHG emissions of 5 t

274 CO₂-e/ha (24%) compared with the Current. However, trade-offs of the Improved
275 system were reductions in production (*minus* 542 kg MS/ha, 24%) and profit (*minus*
276 \$358/ha, 9%). The cost of GHG abatement was \$71/t CO₂-e, which is much lower than
277 for the Waikato, but still substantially higher than the current carbon price.

278 The operating profit for both Canterbury systems were higher than the average of
279 surrounding commercial farms, mainly driven by higher production (Tables 3 and 5).
280 Operating expenses for the trial farms (\$4.7 and \$4.4/kg MS for Current and Improved,
281 respectively) were also lower than for the commercial farms (Table 4). The evidence
282 from the Improved farmlet demonstrates that there are system options that Canterbury
283 farmers could adopt to reduce their environmental footprint. Already, the Lincoln
284 University Dairy Farm has successfully adopted the P21 Improved system at a whole
285 farm scale [30]. There will be trade-offs compared to best-practice current systems but,
286 with efficiency gains, both production and profit can be above the current averages for
287 the region. Such efficiency gains will require improved management ability and
288 processes on farm. This is important information for building farmer confidence in the
289 face of regulatory change [9].

290

291 3.3. Otago

292 Two Improved systems were tested in Otago, one with duration-controlled
293 grazing, where cows were housed in a barn for 12 hours/day on wet days in spring and
294 autumn and 24 hours/day in winter from June to mid-August to reduce urinary N
295 deposition onto wet soils (Improved-barn), and one attempting to optimise feed intake
296 by changing calving date and type of home-grown feed (Improved-opt). Both Improved
297 systems used less N fertiliser (Table 2). Leaching was reduced by 13 kg N/ha (45%) and
298 7 kg N/ha (24%) in the Improved-barn and Improved-opt systems, respectively,
299 compared with the Current system (Table 3). A collateral benefit was GHG reductions
300 of 0.3 (3%) and 1.1 (9%) t CO₂-e/ha from the barn and optimal-feeding systems,
301 respectively. The small reduction in GHG emissions from the barn system was the
302 result of an increase in the amount of manure that required active management with
303 associated GHG emissions, which largely negated the gains made by reducing urinary N
304 onto wet soils. Van der Weerden et al. [11] showed that off-paddock facilities can
305 increase emissions per cow from manure management, with the magnitude of the
306 increase depending on the extent of the facility's use. For the Otago situation, the use of

307 the barn for 24 h/day in winter and 12 h/day on wet days in autumn and spring
308 corresponded to a 35% increase in GHG emissions per cow. For both Otago Improved
309 systems trade-offs in production were small at -15 (2%) and -33 (3%) kg MS/ha for the
310 barn and optimal-feeding systems. However, profitability of the barn system was
311 significantly lower (-NZ\$700/ha). This was mainly due to extra depreciation on the
312 capital required for the barn itself, the effluent spreader, and extra silage bunker space
313 (Overheads, Table 4). Maintenance costs were also higher because of the need to deal
314 with more captured effluent and the cost of replacing the woodchip bedding for the barn
315 (other working expenses, Table 4). The average profit in the optimal-feeding system
316 was moderately higher (NZ\$62/ha) compared with the Current system, mainly because
317 of lower feed and fertiliser expenses (Table 4).

318 Compared with commercial farms in the Otago region (Table 5) the profitability
319 of all systems was considerably lower (Table 3). The main contributor to the higher
320 operating expenses/kg MS was the poor MS production/ha across all systems. Factors
321 that contributed to low MS production/ha included the below average genetic merit of
322 the herd, a third of the farm being a recent conversion from sheep farming without
323 renovating the poor-quality sheep pastures and upgrading the water supply system,
324 drainage issues on the low lying heavier soils and the geographical spread of the farm
325 resulting in increased energy expenditure and lameness from long walks on undulating
326 terrain. The complex management structure of the property meant the business was not
327 as agile at responding to climatic challenges and market signals as commercial
328 businesses in the region which impacted on the physical and financial performance of
329 the farm.

330

331 *3.4. Insights across regions*

332 Greenhouse gas reductions from lower-input, lower-stocked systems in the
333 Waikato and Canterbury regions came at an average loss of profit of approximately
334 NZ\$100/t CO₂-e. This mitigation cost needs to be viewed in the context of on-farm
335 forestry that can achieve the largest emission reductions (3-96%), depending on the
336 percentage of the land planted. However, this is an expensive option for dairy farms
337 with an implied C cost in excess of NZ\$100-600/t CO₂-e, mainly because of the large
338 opportunity cost incurred when taking land out of dairy grazing. The most viable option
339 for dairy farms would be forests planted only on marginal land and not for harvest,

340 which depend heavily on individual farm configurations and has a more limited
341 mitigation potential of up to 10% of emissions [5].

342 Analysis of the Waikato Improved system without the loafing pad pointed to a
343 profitable system that can achieve N leaching and GHG mitigations without requiring
344 extra investment in infrastructure. The potential for environmental mitigation without
345 infrastructure and without sacrificing profitability was further supported by the results
346 from the Otago Improved-opt system. This is relevant to many farm systems that are
347 starting from a low baseline where extra investment and/or lower profitability is simply
348 out of the question. These systems can benefit from gradually improving the genetic
349 merit of their herds over time.

350 The positive relationship between N leaching and GHG emissions observed in
351 Waikato and Canterbury agrees with previous works [22,27,31], and confirms the
352 potential positive by-product of N leaching regulation on GHG emissions. Two drivers
353 of the lower environmental footprint of the Waikato and Canterbury Improved systems
354 were lower N fertiliser use and lower stocking rate, which agree with the findings of
355 several studies that these are key factors in pasture-based dairy systems determining the
356 balance between production, profit and environmental footprint [25,26,27,28,32,33,34].
357

358 **4. Conclusions**

359 Important drivers of a lower environmental footprint (GHG emissions and N
360 leaching) are reducing nitrogen fertiliser and imported feed. This reduces nitrogen
361 surplus and feed flow through the herd and drives down both GHG emissions and N
362 leaching. Nitrate leaching mitigations in the P21 farmlet systems achieved leaching
363 reductions of 24 to 30 percent. In addition, these lower-input (less imported feed and N
364 fertiliser) systems also reduced GHG emissions by between 9 and 24 %. The exception
365 was the Improved-barn system in Otago, where N leaching was reduced by 45 percent
366 but GHG emissions were not reduced due to greater manure storage and handling.
367 Greenhouse gas reductions in the lower input systems of Waikato and Canterbury came
368 at an average loss of profit of approximately NZ\$100/t CO₂-e (three to five percent of
369 industry average profit per hectare). Economic impacts of Improved systems were
370 highly regional specific and highlighted the need for future systems to perform better
371 than current local systems, requiring strong management expertise, with consideration
372 for investment in infrastructure. However, for system changes that do not include

373 infrastructure investment, profitability can increase while associated losses to air and
374 water decrease.

375

376 **Author Contributions:** Conceptualisation, C.d.K. and R.D.; Methodology, P.B.,
377 C.d.K, A.R, C.G., D.D., D.C. and T.v.d.W.; Validation, P.B., C.d.K., K.H., D.D., D.C.,
378 C.G., A.R. and T.v.d.W.; Investigation, D.C., D.D., C.G., A.R. and P.B.; Data Curation,
379 P.B., D.D., A.R., C.d.K. and T.v.d.W.; Writing—Original Draft Preparation, P.B., A.R.,
380 R.D. and K.H.; Writing—Review & Editing, D.C., D.D., C.G., T.v.d.W., C.d.K., and
381 P.B.; Funding Acquisition, C.d.K. and R.D.

382

383 **Funding:** This research was funded by the New Zealand Agricultural Greenhouse Gas
384 Research Centre (<http://www.nzagrc.org.nz>) (project number 14-IFS8.2) and the
385 Sustainable Land Management and Climate Change Fund
386 ([https://www.mpi.govt.nz/funding-and-programs/farming/sustainable-land-](https://www.mpi.govt.nz/funding-and-programs/farming/sustainable-land-management-andclimatechange-research-program/)
387 [management-andclimatechange-research-program/](https://www.mpi.govt.nz/funding-and-programs/farming/sustainable-land-management-andclimatechange-research-program/)) (contract AGR131402)
388 administered by the Ministry for Primary Industries (Wellington, New Zealand).

389

390 **Acknowledgements:** We thank Dave Clark, Kevin Macdonald, Chris Roach, Grant
391 Edwards, David Stevens, and Andrew Wall for their involvement in the initial set up
392 and on-going management decision making of these farm system studies. This work
393 could not have been completed without permission to align with work conducted
394 through the Pastoral 21 Programme (C10X1117), jointly funded by the Ministry of
395 Business, Innovation and Employment (MBIE), DairyNZ Inc, Fonterra, Beef + Lamb
396 New Zealand and the Dairy Companies Association of New Zealand.

397

398 **Conflicts of Interest:** The authors declare no conflicts of interest.

399

400 **References**

- 401 1. Beukes, P.C.; Romera, A.J.; Gregorini, P.; Macdonald, K.A.; Glassey, C.B.;
402 Shepherd, M.A. The performance of an efficient dairy system using a combination
403 of nitrogen leaching mitigation strategies in a variable climate. *Sci. Total Environ.*
404 **2017**, *599-600*, 1791-1801.

405 2. O'Brien, D.; Geoghegan, A.; McNamara, K.; Shalloo, L. How can grass-based
406 dairy farmers reduce the carbon footprint of milk? *Anim. Prod. Sci.* **2016**, *56*, 495–
407 500.

408 3. Clark, D.A.; Caradus, J.R.; Monaghan, R.M.; Sharp, P.; Thorrold, B.S. Issues and
409 options for improved dairy farming in New Zealand. *N. Z. J. Agric. Res.* **2007**, *50*,
410 203–221.

411 4. United Nations. Paris Agreement. **2015**
http://unfccc.int/files/essential_background/convention/application/pdf/english_p_aris_agreement.pdf (accessed on 6 October 2019).

414 5. BERG. Report of the Biological Emissions Reference Group. **2018**. ISBN No:
415 978-1-98-857135-5, Ministry of Primary Industries, Wellington, New Zealand.

416 6. Ministry for the Environment. New Zealand's Greenhouse Gas Inventory 1990–
417 2017; Publication Number: ME 1411; Ministry for the Environment: Wellington,
418 New Zealand, **2019**; p. 481, ISSN 1179-223X (electronic). Available online:
419 <https://www.mfe.govt.nz/publications/climate-change/new-zealands-greenhouse-gas-inventory-1990-2017> (accessed on 6 October 2019).

421 7. Beukes, P.C.; Gregorini, P.; Romera, A.J. Estimating greenhouse gas emissions
422 from New Zealand dairy systems using a mechanistic farm model and inventory
423 methodology. *Anim. Feed Sci. Technol.* **2011**, *166-167*, 708–720,
424 doi:10.1016/j.anifeedsci.2011.04.050

425 8. Clark, D.A., Macdonald, K.A., Glassey, C.B., Roach, C.G., Woodward, S.L.,
426 Griffiths, W.M., Neal, M.B., Shepherd, M.A. Production and profit of current and
427 Improved dairy systems using differing nitrogen leaching mitigation methods: the
428 Pastoral 21 experience in Waikato, *N. Z. J. Agric. Res.* **2019**, doi:
429 10.1080/00288233.2019.1577276

430 9. Chapman, D.; Edwards, G.; Dalley, D.; Cameron, K.; Di, H.; Bryant, R.; Romera,
431 A.; Clement, A.; Malcolm, B.; Curtis, J. Nitrogen leaching, production and profit
432 of irrigated dairy systems using either low or high inputs of fertiliser and feed:
433 The Pastoral 21 experience in Canterbury. In *Science and policy: nutrient
434 management challenges for the next generation*. L. D. Currie; M. J. Hedley Eds.
435 Occasional Report No. 30. Fertiliser and Lime Research Centre, Massey
436 University, Palmerston North, New Zealand, **2017**,
437 <http://flrc.massey.ac.nz/publications.html>.

438 10. Shepherd, M.; Hedley, M.; MacDonald, K.; Chapman, D.; Monaghan, R.; Dalley,
439 D.; Cosgrove, G.; Houlbrooke, D.; Beukes, P. A summary of key messages
440 arising from the Pastoral 21 Research Programme. In *Science and Policy:*
441 *Nutrient Management Challenges for the Next Generation*; Currie, L.D., Hedley,
442 M.J., Eds.; Occasional Report No. 30; Fertiliser and Lime Research Centre,
443 Massey University: Palmerston North, New Zealand, **2017**.
444 <http://flrc.massey.ac.nz/publications.html>.

445 11. van der Weerden, T.; Beukes, P.; de Klein, C.; Hutchinson, K.; Farrell, L.;
446 Stormink, T.; Romera, A.; Dalley, D.; Monaghan, R.; Chapman, D.; Macdonald,
447 K.; Dynes, R. The effects of system changes in grazed dairy farmlet trials on
448 greenhouse gas emissions. *Animals* **2018**, *8*, 234. doi:10.3390/ani8120234.

449 12. Casey, J.W.; Holden, N.M. The relationship between greenhouse gas emissions
450 and the intensity of milk production in Ireland. *J. Environ. Qual.* **2005**, *34*, 429-
451 436.

452 13. Lovett, D.K.; Shalloo, L.; Dillon, P.; O'Mara, F.P. A system approach to quantify
453 greenhouse gas fluxes from pastoral dairy production as affected by management
454 regime. *Agric. Syst.* **2006**, *88*, 156-179.

455 14. Doltra, J.; Villar, A.; Moros, R.; Salcedo, G.; Hutchings, N.J.; Kristensen, I.S.
456 Forage management to improve on-farm feed production, nitrogen fluxes and
457 greenhouse gas emissions from dairy systems in a wet temperate region. *Agric.*
458 *Syst.* **2018**, *160*, 70-78.

459 15. Anon. Overseer best practice data and input standards. Version 6.2.2 May **2016**.
460 ISBN 978-0-473-31774-4.

461 16. Ministry for the Environment. New Zealand's Greenhouse Gas Inventory 1990–
462 2015; Publication Number: ME 1309; Ministry for the Environment: Wellington,
463 New Zealand, **2017**; p. 502, ISSN 1179-223X (electronic). Available online:
464 <http://www.mfe.govt.nz/node/23304/> (accessed on 15 August 2019).

465 17. Macdonald, K.A.; Beca, D.; Penno, J.W.; Lancaster, J.A.; Roche, J.R. Short
466 communication: effect of stocking rate on the economics of pasture-based dairy
467 farms. *J. Dairy Sci.* **2011**, *94*, 2581–2586.

468 18. DairyBase. **2014**. <http://www.dairynz.co.nz/farm/dairybase/about-dairybase>

469 19. Glassey, C.; Griffiths, W.; Woodward, S.; Roach, C.; Shepherd, M.; Phillips, P.;
470 McDonald, K. Development of a dairy production system in the Waikato to

471 maintain profitability and decrease nitrate leaching. *Proc. Australas. Dairy Sci.*
472 *Symp.* **2014**, *6*, 157–160.

473 20. Shadbolt, N. DairyBase: Building a Best Practice Benchmarking System.
474 Benchmarking in Food and Farming *Creating Sustainable Change* **2009**, 39–47.

475 21. Romera, A.J.; Cichota, R.; Beukes, P.C.; Gregorini, P.; Snow, V.O.; Vogeler, I.
476 Combining restricted grazing and nitrification inhibitors to reduce nitrogen
477 leaching on New Zealand dairy farms. *J. Environ. Qual.* **2017**, *46*, 72–79.

478 22. Doole, G.J.; Romera, A.J. Trade-offs between profit, production, and
479 environmental footprint on pasture-based dairy farms in the Waikato region of
480 New Zealand. *Agric. Syst.* **2015**, *141*, 14–23.

481 23. Pinares-Patiño, C.S.; Waghorn, G.C.; Hegarty, R.S.; Hoskin, S.O. Effects of
482 intensification of pastoral farming on greenhouse gas emissions in New Zealand.
483 *N. Z. Vet. J.* **2009**, *57*:5, 252–261, doi:10.1080/00480169.2009.58618

484 24. Monaghan, R.M.; de Klein, C.A.M.; Muirhead, R.W. Prioritisation of farm scale
485 remediation efforts for reducing losses of nutrients and faecal indicator organisms
486 to waterways: A case study of New Zealand dairy farming. *J. Environ. Manag.*
487 **2008**, *87*:4, 609–622. Doi:10.1016/j.jenvman.2006.07.017

488 25. Adler, A.A.; Doole, G.J.; Romera, A.J.; Beukes, P.C. Managing greenhouse gas
489 emissions in two major dairy regions of New Zealand: A system-level evaluation.
490 *Agr. Syst.* **2015**, *135*, 1–9.

491 26. Vibart, R.E.; White, T.; Smeaton, D.C.; Dennis, S.; Dynes, R.A.; Brown, M.A.
492 Increased productivity and reduced environmental footprint - are high production,
493 low GHG emission dairy farms in New Zealand possible? *Proc. Australas. Dairy*
494 *Sci. Symp.* **2012**, *5*, 207–210.

495 27. Smeaton, D.C.; Cox, T.; Kerr, S.; Dynes, R. Relationships between farm
496 productivity, profitability, N leaching and GHG emissions: a modelling approach.
497 *Proc. N. Z. Grassl. Assoc.* **2011**, *73*, 57–62.

498 28. Adler, A.A.; Doole, G.J.; Romera, A.J.; Beukes, P.C. Cost-effective mitigation of
499 greenhouse gas emissions from different dairy systems in the Waikato region of
500 New Zealand. *J. Environ. Manag.* **2013**, *131*, 33–43.

501 29. World Bank Report, **2018**. More governments taking up carbon pricing and seeing
502 big benefits in revenue. Carbon Pricing Leadership Coalition.
503 <https://www.carbonpricingleadership.org/news/2018/7/17/more-governments->

504 taking-up-carbon-pricing-and-seeing-big-benefits-in-revenues-world-bank-report.
505 (accessed on 29 September 2019).

506 30. Pellow, R., 2017. Applying Pastoral 21 Farmlet Research to a Whole Farm –
507 Results from Lincoln University Dairy Farm. In *Science and policy: nutrient*
508 *management challenges for the next generation*. L. D. Currie; M. J. Hedley Eds.
509 Occasional Report No. 30. Fertiliser and Lime Research Centre, Massey
510 University, Palmerston North, New Zealand, **2017**,
511 <http://flrc.massey.ac.nz/publications.html>.

512 31. Basset-Mens, C.; Ledgard, S.; Boyes, M. Eco-efficiency of intensification
513 scenarios for milk production in New Zealand. *Ecol. Econ.* **2009**, *68*, 1615–1625.

514 32. Romera, A.J.; Doole, G.J. Integrated analysis of profitable stocking-rate decisions
515 in pasture-based dairy systems. *Grass Forage Sci.* **2016**, *71*, 90–101.

516 33. de Klein, C.A.M.; Eckard, R.J. Targeted technologies for nitrous oxide abatement
517 from animal agriculture. *Aust. J. Exp. Agric.* **2008**, *48*, 14–20.

518 34. Dynes, R.A.; Smeaton, D.; Rhodes, A.P.; Fraser, T.J.; Brown, M.A. Modelling
519 farm management scenarios that illustrate opportunities farmers have to reduce
520 greenhouse gas emissions while maintaining profitability. *N. Z. Soc. Anim. Prod.*
521 **2011**, *71*, 167–171.

522
523