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Abstract: China is not only short of fresh water resources per capita, but also faces a serious problem of 

water pollution in recent years, with 190 million people suffering from excessive levels of harmful 

substances in their drinking water. Such as arsenic poisoning and fluorosis and other endemic water 

diseases high incidence. As a series of water pollution prevention plan of action by the Chinese 

government announced that, this paper uses the modified Undesirable Dynamic Network model empirical 

analysis of China's 31 provincial administrative region economic growth, wastewater treatment, and water 

disease control efficiency between 2013 and 2017. The results show that the efficiency of water pollution 

disease in all four regions of China and the total efficiency in the three regions of east, west and central 

China all show a decreasing trend, and the efficiency scores and rankings of all provinces and cities within 

the region fluctuate greatly. The eastern region with the most developed economy has the best overall 

performance, with higher efficiency in Water consumption and Water disease control. However, the 

efficiency of wastewater treatment in northeast China is stable and better. Given the high level of economic 

development in China and the results of the above mentioned efficiency in water pollution and water 

diseases, improving the efficiency and quality of wastewater treatment in China is regarded as an 

important factor in achieving the strategic goal of green growth. 
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1. Introduction 

Water is the basic requirement for maintaining life and health, and although 70.8% of the earth is 

covered by water, fresh water resources are still extremely limited. In the face of increasing demand, water 

issues are a top priority to resolve for any country targeting economic growth. At present, China’s social 

and economic development ranks at the forefront of the world, but its water shortage problem is very 

serious. At the end of 2018, the country had total water resources of 2,796 billion cubic meters or 2,004 cubic 

meters per person, taking up one quarter of the world’s average. China is one of 13 water-poor countries in 

the United Nations, especially in the north and parts of the east where per capita water resources are 

seriously low. However, with the continuous development of its economy and the increasing living 

standard of residents, water consumption continues to be very high, with the total water consumption of 

611 billion cubic meters in 2018. 

Another situation that is more mismatched than water shortages is the serious problem of water 

pollution in China. In 2017, China’s total wastewater discharge was 69.97 billion tons:  industrial 

wastewater discharge at 18.16 billion tons, or 26.0% of total emissions, and urban domestic sewage 

discharge at 51.78 billion tons, or 74.0% of total discharge. The proportion of urban domestic sewage is 

increasing year by year and is the main source of sewage. In 2017, the “Bulletin on the Circumferential 
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Situation of Ecology in China” reported 940 surface water quality sections that the proportion of inferior V 

water quality is 8.3% (V-type water: The quality of V-type water is suitable for agricultural water area and 

general landscape water area. Inferior V-type water: The quality of inferior V-type water is worse than V-

type water quality.), and among the 5100 groundwater quality monitoring points the proportion of poorer 

and lower points is 66.6%. Two-thirds of China’s cities are already facing water shortages, and the already 

limited clear water resources are being destroyed by discharged sewage, further exacerbating water 

scarcity. 

As water pollution worsens, human health also faces a serious threat. More than 300 million people in 

China still have unsafe drinking water, of which about 63 million people drink high-fluorine water, 2 million 

people drink high-arsenic water, 38 million people drink brackish water, and 190 million people drink water 

with excessive harmful substances. Drinking water contaminated with harmful chemicals can cause 

corresponding infectious diseases or acute and chronic poisoning. Drinking arsenic, chromium, nickel, 

strontium, and polycyclic aromated hydrocarbons or halogenated hydrocarbons for a long time can cause 

damage to the skin and nervous system, generate cardiovascular and cerebrovascular diseases, and cause 

carcinogenic effects. 

The China government has attached great importance to the predicament of water pollution. In 2011, 

2015, and 2017, it respectively formulated the National Groundwater Pollution Prevention and Control Plan 

(2011-2020), the Water Pollution Prevention Action Plan, and the Key Basin Water Pollution Prevention and 

Control Plan (2016-2020). It has also put forward the development concept of prioritizing saving water, 

strengthening water resources management, and controlling water pollution to the greatest extent. 

Therefore, this research contributes to water pollution control and water disease prevention in China. 

The present literature on water pollution, wastewater treatment, and water diseases mainly presents 

the following types: 1) Economic and feasibility study on wastewater treatment; [3-8] 2) Research on 

wastewater treatment and health; [9-15] and 3) Research on wastewater using DEA (Data Envelopment 

Analysis). [16-24] However, there is little discussion from the perspectives of the economy, water pollution, 

and health. Although some studies use regression or DEA methods for efficiency assessment, most of them 

are based on static analysis, cannot understand the sustainable development of an economy and 

environment, and fail to consider regional differences and health factors. Therefore, in order to solve the 

shortcomings of static analysis, regional differences, and health factors, our research proposes a modified 

undesirable dynamic Network model to explore economic, wastewater treatment, and human health 

efficiencies of 31 provincial-level administrative regions in China.  

The main contributions of this paper are twofold. First, we study economic, wastewater discharge, and 

wastewater pollution efficiencies, explore the government wastewater treatment input and water disease 

efficiency, and comprehensively investigate and sort out the inherent relationship between the economy, 

environmental pollution, and health. Second, the modified undesirable dynamic network model can avoid 

the shortcomings and problems of static analysis. In this study the production stage is Stage1 and the health 

stage is Stage 2. The inputs of Stage 1 are production stage labor and water consumption, the outputs of 

Stage 1 are GDP and wastewater. The variable that links the production stage and health stage is Chemical 

Oxygen Demand (COD). The input of Stage 2 is Wastewater treatment expense, the outputs of Stage 2 are 

Wastewater treatment capacity and Number of water diseases, and the carry-over variable is Fixed Assets. 

The remainder of this paper is organized as follows:  II. Literature Review; III. Research Method; IV. 

Empirical Results and Discussion; and V. Conclusion. 

2. Literature Review 

As early as 1999, Wu et al. [1] pointed out that the process of urbanization and industrialization in 

China had brought about tremendous pollution, coupled with inadequate investment in basic water supply 

and treatment infrastructure, resulting in extensive wastewater pollution. The extreme waste of water 

resources poses a challenge to sustainable development, depleting energy reserves and destroying humans’ 

water security and ecosystem health. Current research on wastewater is mainly concentrated in: 1) 
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Economic and feasibility studies on wastewater treatment; 2) Research on wastewater treatment and health; 

and 3) Research on wastewater using DEA (data envelopment analysis). 

Among economic and feasibility studies of wastewater treatment and wastewater treatment plants, 

Lim et al. [2] used LCA and LCC research methods to evaluate the environmental and economic feasibility 

of a complete wastewater treatment network system, including distributed and terminal wastewater 

treatment plants. Molinos-Senante et al. [3] quantified the environmental benefits of wastewater treatment 

using the concept of shadow prices to estimate environmental benefits and developed a corresponding cost-

benefit analysis (CBA) for each wastewater treatment plant. Hernández-Sancho et al. [4] pioneered the 

estimation of shadow prices based on the removal of contaminants during processing and expressed the 

environmental benefits associated with undischarged pollution, comparing the benefits to the internal 

clearing process. Molinos-Senante et al. [5] combined a cost-benefit analysis tool-based approach with a vast 

body of knowledge on processing technologies included in the environmental decision support system and 

applied it to nine scenarios containing different wastewater characteristics and reuse options, obtaining 

useful economic feasibility indicators such as internal and external costs. Castellet and Molinos-Senante [6] 

used the non-radial DEA model to incorporate the environmental impacts of each pollutant removed from 

wastewater treatment plants into the assessment. Sampling efficiency was evaluated and environmental 

issues were combined with the technical and economic efficiencies of traditional wastewater treatment 

plants. 

The second related research covers wastewater treatment and health. The rapid urbanization and 

industrialization in the 19th century led to an unhealthy environment and a wide range of epidemics, with 

research and development of relevant health technologies carried out in response. Akpor and Muchie [7] 

reviewed the environmental and health effects of untreated or improperly treated wastewater. Estrada et 

al. [8] found that the social benefits of reducing odor are related to the reduction of nuisances in nearby 

populations and the improvement of occupational health in sewage treatment plants. Naik and Stenstrom 

[9] collected samples from 39 different countries, using health, economy, and the environment as research 

indicators, and concluded that improving the availability of wastewater treatment can reduce disease 

mortality. He [10] found that surface water pollution has a significant non-linear effect on infant mortality, 

and water pollution has a significant and negative impact on all elderly people (60 years of age or older) 

with cancer. Massaquoi et al. [11] collected data to compare the mortality and morbidity of residents living 

in a wastewater environment and a clean water environment in Shijiazhuang, Hebei province from 2007 to 

2011 and suggested limiting or stopping the use of wastewater. Wang and Yang [12] used the random effects 

model and the random effect logit model to study the relationship between health and water pollution and 

employed the medium model to evaluate the impact of health through water pollution intensity.  

There are also studies on people’s health from gases emitted by the scholars from the wastewater 

treatment process. Guan and Chen [13] combined DEA and weighted grey correlation to evaluate the 

ecosystem of Beijing from 2003 to 2010. The results showed that Beijing has experienced fluctuations in its 

ecosystem coordination index. The health of employees in wastewater treatment plants has also been 

studied by scholars. Thorn and Kerekes [14] retrieved articles on wastewater and health in the form of a 

literature review and how such employees have reported gastrointestinal problems, respiratory symptoms, 

fatigue, headache, and a higher risk of cancer such as stomach, laryngeal, and pancreas. Masclaux et al. [15] 

studied the presence and concentration of viruses in the air of wastewater treatment plants and concluded 

that the potential concentration of viral particles in the air cannot be ignored, which can be used to explain 

the reasons why employees of this department often report gastrointestinal diseases. 

The third is the use of DEA method in wastewater research. Hernández-Sancho [16] employed the non-

radial DEA method to calculate the energy efficiency index of a Spanish wastewater treatment plant and 

the energy efficiency of the wastewater treatment plant was found to be very low. Molinos-Senante [17] 

utilized DEA to estimate environmental performance indicators (EPI) and incorporated environmental 

impacts into wastewater treatment plants to assess the efficiency of pure environmental performance 

indicators (PEPI) and mixed environmental performance indicators (MEPI) for 60 (Spanish wastewater 

treatment plants’) samples. Bian [18] decomposed the efficiency of the system on the basis of DEA into the 
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efficiency of water conservancy institutes and the efficiency of wastewater purification, which were then 

used to analyze the efficiency of urban water and wastewater purification systems in China.  

Huang [19] used the non-radial network DEA method to measure the performance of environmental 

protection systems in 20 cities in Taiwan. The system consists of three stages:  administration, execution, 

and protection effectiveness. In addition to evaluating efficiency, the impacts of internal and external factors 

on performance were further discussed. Guerrini [20] used two-stage DEA to analyze Denmark’s water 

sector and investigated the scale, scope, and density economy of the wastewater sector. The results showed 

that its water sector is characterized by economies of scope and density. Zhang et al. [21] employed the 

dynamic network SBM model to evaluate the production and health efficiency of Chinese cities. The results 

showed that the productivity score of Chinese cities is slightly higher than that of health efficiency, and that 

the two-stage efficiency score of most cities fluctuates significantly.  

Hu et al. [22] combined bi-level planning (BLP) and DEA with feedback variables to demonstrate the 

applicability and effectiveness of case studies in 10 cities along the Lancang River Basin. Each DMU was 

sorted using super-efficient DEA, and the results showed that the proposed model is more discriminative. 

Lorenzo-Toja et al. [23] studied 113 wastewater treatment plants in Spain using a combination of life cycle 

assessment (LCA) and data envelopment analysis (DEA). At the same time, in order to verify the eco-

efficiency criteria, the environmental benefits associated with the reduced input suggested by the DEA 

model for each unit were calculated. D’Inverno et al. [24] studied the environmental efficiencies of 96 Tuscan 

(Italy) wastewater treatment plants using a new integrated Analytic Hierarchy Process/Non-radial 

Directional Distance Function (AHP/NDDF), in which the treated water, which was treated with residual 

nitrogen, was an undesirable output. The random output means that the capacity of the facility, the 

percentage of wastewater discharged from industrial and agricultural activities, and the threshold for 

pollutant concentration have a large impact on processing efficiency.  

 At present, the commonly used comprehensive index evaluation methods mainly include analytic 

hierarchy process (AHP), principal component analysis (PCA), Fuzzy comprehensive evaluation method 

(FCE), Topsis and so on. DEA is a kind of evaluation method which can consider many input-output indexes 

at the same time. Its advantage is that it can compare multiple decision making units, and can select the 

input-output index flexibly according to the characteristics of the evaluation object, so as to establish the 

evaluation index system more in line with the analysis needs. The dynamic two-stage DEA method used in 

this paper, combined with the logical progression of time series and two-stage events, can better see the 

correlation between water pollution and water disease as well as the change of efficiency. Most current 

studies have not been discussed together from the economic, water pollution, and health aspects, and the 

DEA methods are mostly static and do not combine wastewater discharge and COD as unexpected output 

with a dynamic DEA model. Our study makes up for the shortcomings in this area, in order to call for and 

bring attention to water pollution and water diseases and put forward corresponding effective suggestions 

and measures. 

3. Method and Model 

3.1. SBM dynamic network DEA 

Following Färe et al. [25], Tone and Tsutsui [26] set up the weighted SBM (weighted slack-based 

measures) network data envelopment analysis model. A linkage among departments of decision-making 

units was used as the analysis basis of the network DEA model, and each department was regarded as a 

sub-DMU. The SBM model was then used to find the optimal solution. The Network DEA model improves 

the part of traditional DEA that fails to analyze the performance of each department. If a DMU operates 

over multiple periods, then one can use the Dynamic DEA model to analyze the performance of each DMU. 

Tone and Tsutsui [27] extended the model to slack-based measurement dynamic analysis. Tone and Tsutsui 

(2010) proposed a weighted SBM (weighted slack-based measures) dynamic DEA model that uses carry-

over activities as a link and uses the SBM model to find the optimal solution. Traditional DEA fails to 

analyze the efficiency of individual departments, but Network DEA improves this problem. At the same 
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time, because a company’s operation spans many periods, we use the Dynamic DEA model, and if we need 

to evaluate departments and time at the same time, then we can combine Network DEA and Dynamic DEA. 

Tone and Tsutsui (2013) put forward the weighted SBM (weighted slack-based measures) Dynamic 

Network DEA data envelopment analysis model, based on the analysis of the network DEA model of 

linkages between different departments of decision-making units and regarded each department as a sub-

DMU and carry-over activities as linkages (l). As a form of linkage, the carry-over activities can be divided 

into four categories: (1) desirable, (2) undesirable, (3) discretionary, and (4) non-discretionary.  

3.2. The modified undesirable dynamic network model 

This study utilizes panel data collected from 31 provincial administrative regions in China. Labor input 

and water consumption are set as input indicators, while GDP and Wastewater are the output indicators to 

analyze wastewater efficiency and economic efficiency in the first stage of each province. Water pollutant 

COD is a link indicator, wastewater treatment expense is an input indicator, and wastewater treatment 

capacity and number of water diseases are output indicators in the second stage. Carry-over variable assets 

are fixed assets to help evaluate the efficiency of government wastewater input in each province. Since this 

study considers undesirable output in the dynamic network SBM model, we modify Tone and Tsutsui’s 

(2013) dynamic network model to be the undesirable dynamic network model and set it up as follows. 

Modified undesirable dynamic network model 

Suppose there are n DMUs (j = 1,…,n), with each having k divisions (k = 1,…,K) and T time periods (t = 

1,…,T). Each DMU has an input and output at time period t and a carryover (link) to the next t+1 time 

period. We set km  and kr  as the input and output in each division K , with ( )ihk,  representing 

divisions k  to h , and hkL  is the k  and h  division set. The input and output, links, and 

carryover definitions are outlined in the following. 

Inputs and outputs 

+RX t

ijk ),...,1;...,1;,...,1;,...,1( TtKKnjmi k ==== :  refers to input i  at time period t  for 

jDMU  division k .  

+Ry t

rjk ),...,1;...,1;,...,1;,...,1( TtKKnjrr k ==== :  refers to output r in time period t for jDMU  

division k ; if part of the output is not ideal, then it is considered an input for the division. 

Links 

+RZ t

tkhj )( 0);...;1;;..;1;;...;1( TtLlnj hk === :  refers to the period t links from jDMU  division 

k  to division h , with hkL  being the number of k  to h  links, and Ztj(kh)t ∈R+(j =1,…,n; l = 1,…,Lkh; 

t = 1,…,T). 

Carryovers 

+

+ RZ tt

jkl

)1,( )1,...,1,,...1;,..,1;,...,1( −==== TtkkLlnj k :  refers to the carryover of t  to the 1+t  

period from jDMU  division k  to division h , with kL  being the number of carryover items in 

division k . 

The following is the non-oriented model. 

(a) Objective function 
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(b) Period and division efficiencies 

Period and division efficiencies are as follows: 

(b1) Period efficiency: 
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(b2) Division efficiency: 
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(b3) Division period efficiency:  
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3.3. Labor, Water consumption, Wastewater treatment expense, GDP, Wastewater treatment capacity, Wastewater, 

COD and Water diseases  

There are eight key features of this present study:  Labor efficiency, Water consumption efficiency, 

Wastewater treatment expense efficiency, GDP efficiency, Wastewater treatment capacity efficiency, 

Wastewater efficiency, COD efficiency, and Water diseases. In our study, “I” represents area and “t” 

represents time. The eight efficiency models are defined in the following. 

Labor efficiency = 
Target labor input (i,t)

Actual  labor input (i,t)
 

Water consumption efficiency = 
Target water input (i,t)

Actual water input (i,t)
 

Wastewater treatment expense efficiency = 
Target expense  input (i,t)

Actual expense  input (i,t)
 

GDP efficiency = 
Actual GDP desirable output (i,t)

Target GDP desirable output (i,t)
 

Wastewater treatment capacity efficiency = 
Actual capacity desirable output (i,t)

Target capacitydesirable output (i,t)
 

Wastewater efficiency = 
Target Wastewater Undesirable output (i,t)

Actual Wastewater Undesirable output (i,t)
 

COD efficiency = 
Target COD Undesirable output (i,t)

Actual COD Undesirable output (i,t)
 

Water diseases = 
Target diseases Undesirable output (i,t)

Actual diseases Undesirable output (i,t)
 

If the target labor, Water consumption, and Wastewater treatment expense inputs equal the actual 

inputs, then the labor, Water consumption and Wastewater treatment expense efficiencies equal 1, 

indicating overall efficiency. If the target inputs are less than the actual inputs, then the labor, Water 

consumption and Wastewater treatment expense efficiencies are less than 1, indicating overall inefficiency.  

If the target Wastewater, COD, and Water diseases undesirable outputs equal the actual undesirable 

outputs, then Wastewater, COD, and Water diseases efficiencies equal 1, indicating overall efficiency. If the 

target undesirable outputs are less than the actual undesirable outputs, then the Wastewater, COD, and 

Water diseases efficiencies are less than 1, indicating overall inefficiency. 

If the target GDP and Wastewater treatment capacity desirable output are equal to the actual GDP and 

Wastewater treatment capacity desirable outputs, then the GDP and Wastewater treatment capacity 

efficiencies equal 1, indicating overall efficiency. If the actual desirable outputs are less than the target 
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desirable outputs, then the GDP and Wastewater treatment capacity efficiencies are less than 1, indicating 

overall inefficiency. 

4. Empirical Study 

4.1. Data sources and description 

This paper collects data of 31 provincial administrative regions in China from 2013 to 2017. The division 

of the eastern, central, western, and northeastern regions refers to the regional division standards published 

on the website of the National Bureau of Statistics of China. The eastern region includes Beijing, Tianjin, 

Hebei, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, Guangdong, and Hainan (10 provinces (cities)); the 

central region includes Shanxi, Anhui, Jiangxi, Henan, Hubei, and Hunan (6 provinces); the western region 

includes Inner Mongolia, Guangxi, Chongqing, Sichuan, Guizhou, Yunnan, Shaanxi, Gansu, Qinghai, 

Ningxia, Xinjiang, and Tibet (12 provinces (municipalities and autonomous regions)); and the northeast 

region includes Liaoning, Jilin, and Heilongjiang (3 provinces). The data were extracted from the Statistical 

Yearbook of China, the Demographics and Employment Statistical Yearbook of China, the Environmental 

Yearbook of China, and the Health Statistics Yearbook of China. Figure 1 reveals the framework of the 

Dynamic Network Model of inter-temporal efficiency measurement and variables. 

 

Figure 1. Dynamic Network Model. 

Table 1 shows all the input and output variables of the two stages. There are three inputs, four outputs, 

one link and one carry-over variables. 

 

Table 1. Input and output variables. 

 Input variable Output variable Link Carry-over 

Stage 1 
Labor GDP 

COD Fixed assets 
Water consumption Wastewater 

Stage 2 
Wastewater treatment 

expense 

Wastewater treatment 

capacity; 
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Number of water 

diseases 

Stage 1: Production Stage 

Input variables: 

Labor: This study takes the numbers of employees in each region by the end of each year. Unit:  10,000 

persons. 

Water consumption: Gross amount of water taken by various water users, including loss of water delivery. 

Unit: 100 million tons. 

Fixed assets: The total amount of work done by the whole society in building and purchasing fixed assets 

and related expenses. Unit: 100 million RMB.  

Output variables:  

Desirable output (GDP): Refers to the final result of production activities of all resident units in a region 

calculated by market price in a year. Unit: 100 million RMB. 

Undesirable output (Wastewater): It is the sum of industrial wastewater discharge and domestic sewage 

discharge. Unit: 10,000 tons. 

 

Link Production Stage and health stage variables:  

COD: The sum of chemical oxygen demand (COD) emissions from industrial wastewater and domestic 

wastewater. It refers to the amount of oxygen required to oxidize organic pollutants in water analyzed by 

chemical oxidizers. 

 

Stage 2: Health Stage 

Input variable:  

Wastewater treatment expense: The annual investment amount of each district’s wastewater treatment 

project. Unit: 10,000 RMB. 

Output variables:  

Desirable output (Wastewater treatment capacity): The amount of wastewater actually treated by various 

water treatment facilities. Unit: 10,000 tons. 

Undesirable output (Number of water diseases): The number of water diseases caused by drinking 

polluted water and mainly includes fluorosis and arsenic poisoning. Water fluorosis and arsenic poisoning 

are two typical water poisoning diseases in China1. Unlike water diseases caused by common bacterial 

infections, they are chronic and regionally widespread. Unit: persons. 

4.2. Statistical analysis of input-output indicators 

 

 

1. From document No. 2004375 of the State Council of China, national key endemic disease prevention and control 

program (2004-2010). 
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Figure 2. Statistical Analysis of Labor, Water Consumption, Wastewater Production, Wastewater Treatment 

Expense, COD, and Number of Water Diseases, 2013-2017. 

Figure 2 shows the changes of input-output indicators. From 2013 to 2017, the maximum and minimum 

values of labor input increased slowly, and the average value decreased slightly. This is mainly due to the 

disappearance of China’s demographic dividend and the slowdown of its population growth. At the same 

time, the number of working-age population gradually declined. 
The average and maximum values of wastewater discharge fluctuated distinctly. After peaking in 2015, 

the average declined again in 2016-2017. The maximum value continued to rise over 2013-2016, and after 

peaking in 2016, there was a significant decline in 2017. The standard deviation also showed a trend of rising 

first and then falling, which indicates that regional differences are narrowing. 

The maximum input of wastewater treatment expense has decreased significantly since 2014. The trend 

of average decline was also obvious. It showed that the investment cost of wastewater treatment in various 

provinces and municipalities in China was decreasing year by year. 

As the most important indicator of water pollution, COD has declined significantly after 2015, which 

means that the China government’s promulgation and implementation of the new "Environmental 

Protection Law" and "Water Pollution Prevention and Control Action Plan" in 2015 had remarkable results. 

However, it is noteworthy that the maximum COD in 2017 rebounded to upward trend compared with 

2016, which means that water pollution in individual provinces and cities was aggravated again. 

The average number of water pollution diseases showed a slow downward trend, but the maximum 

value decreased significantly between 2016 and 2017, denoting that there are obvious regional differences 

in water pollution diseases. The areas with high incidences of water pollution diseases need more careful 

control, and the situation of prevention and control of water pollution diseases in China is still serious. 
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4.3. Analysis of the total efficiency of the provinces from 2013 to 2017 

Figure 3 shows that the total efficiency scores of provinces, municipalities, and autonomous regions 

fluctuate greatly from 2013 to 2017. The provinces, municipalities, and autonomous regions with a total 

efficiency score of 1 in 2017 include Beijing, Guangdong, Shanghai, and Chongqing. Chongqing is in the 

western region, while the others are in the eastern region. Some provinces, municipalities, and autonomous 

regions presented a steep increase in 2016, whose total efficiency score increased significantly, such as 

compared with the previous year, Beijing increased by 35.7% and Guangdong by 40.15%. In 2014, the 

average score of total efficiency in Northeast China rose from 0.3603 in 2013 to 0.6576. In 2015, Some 

provinces increased significantly. For example, compared with 2014, Gansu increased by 201.47% and 

Qinghai by 164.55%. However, these provinces generally fell sharply in the year after their sharp rise, which 

led to a downward trend in the eastern, central, and western regions, except for the average level of total 

efficiency in the northeast region. Although the average score of total efficiency in the eastern region 

decreased from 0.7031 to 0.6502, it remains the best among the four regions. 

 
Figure 3. Total Efficiency Scores of Provinces, Municipalities, and Autonomous Regions from 2013 to 

2017. 

 

From the total efficiency ranking, the ranking of most cities fluctuates greatly, and the provinces with 

higher ranking are Beijing, Shanghai, Jiangsu, Shandong, and Tianjin in the eastern region. With great 

fluctuation, the northeastern region has all been on the rise. From this we can see that the rankings of most 

provinces and cities in the central and eastern regions declined, while the rankings of provinces and cities 

in the northeast and western regions increased significantly. 

Table 2 shows that the provinces, municipalities, and autonomous regions with a total efficiency of 1 

for five consecutive years are Beijing, Guangdong, Inner Mongolia, Shanghai, Tianjin, and Tibet. In the 

eastern, western, and northeastern regions, the average level of total efficiency scores in the first stage has 

been rising. In Stage1, the total efficiency scores of most cities in China also showed an upward trend, with 

Chongqing and Qinghai showing the greatest increase. The average level of the total efficiency score in 

Stage1 of the eastern region was relatively stable and the best among the four regions. The average water 

fluctuation of the first stage efficiency score in the central region was not significant, but overall declined. 

The average levels of Stage1 in the western and northeastern regions made remarkable progress. 

The total efficiency score of Stage2 was quite different from that of Stage1. For example, in 2017 the 

efficiency score of Tianjin in Stage1 was 1, and that in Stage 2 was only 0.4976. In 2013, their total efficiency 

scores in Stage2 were all DEA effective, and in 2017 these provinces all dropped to below 0.5.  
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Table 2 Total Efficiency Scores and ranks of Provinces, Municipalities, and Autonomous Regions from 2013 to 2017. 

DMU 2013 (1) 2013 (2) 
2013 

score 
Rank 2014 (1) 2014 (2) 

2014 

score 
Rank 2015 (1) 2015 (2) 

2015 

score 
Rank 2016 (1) 2016 (2) 

2016 

score 
Rank 2017 (1) 2017 (2) 

2017 

score 
Rank 

AVE 

2013-

2017 

Eastern 

region 

Beijing 1 0.2871 0.6436 15 1 0.3494 0.6747 9 1 0.4739 0.7369 14 1 1 1 1 1 1 1 1  

Fujian 0.4835 0.7017 0.5926 16 0.6203 0.6646 0.6425 13 0.626 0.4966 0.5613 20 0.5186 0.2285 0.3735 20 0.545 0.2381 0.3916 16  

Guangdong 1 1 1 1 1 0.6453 0.8226 6 1 0.427 0.7135 15 1 1 1 1 1 1 1 1  

Hainan 0.3612 0.4612 0.4112 23 0.815 1 0.9075 3 0.4201 0.231 0.3256 26 0.4097 0.1696 0.2896 28 0.4213 0.2046 0.3129 25  

Hebei 1 1 1 1 0.9029 1 0.9514 1 0.9451 1 0.9725 3 0.5861 0.2642 0.4252 14 0.8697 0.1747 0.5222 9  

Jiangsu 0.4391 0.4095 0.4243 21 0.5582 0.4002 0.4792 19 0.6008 0.3401 0.4705 23 0.616 0.1791 0.3975 16 0.669 0.1608 0.4149 14  

Shandong 0.5594 0.2688 0.4141 22 0.6449 0.2716 0.4583 21 0.653 0.1855 0.4192 25 0.6686 0.2058 0.4372 13 0.6878 0.174 0.4309 13  

Shanghai 1 1 1 1 1 0.3407 0.6704 10 1 0.9894 0.9947 2 1 1 1 1 1 1 1 1  

Tianjin 1 0.4678 0.7339 10 1 0.301 0.6505 12 1 0.3384 0.6692 16 1 0.5766 0.7883 6 1 0.4976 0.7488 5  

Zhejiang 0.6236 1 0.8118 5 0.6964 1 0.8482 4 0.6865 1 0.8433 4 0.7959 0.4886 0.6423 9 0.7943 0.5673 0.6808 7   

AVE 0.7467  0.6596  0.7031    0.8238  0.5973  0.7105    0.7931  0.5482  0.6707    0.7595  0.5112  0.6354    0.7987  0.5017  0.6502    0.674  

Central 

region 

Anhui 0.3566 0.506 0.4313 20 0.4067 0.344 0.3753 24 0.4328 0.2174 0.3251 27 0.4151 0.1005 0.2578 30 0.4393 0.1035 0.2714 29  

Henan 0.3338 0.2216 0.2777 28 0.4306 0.1919 0.3112 28 0.4255 0.1337 0.2796 31 0.427 0.1987 0.3128 24 0.4396 0.2423 0.341 21  

Hubei 0.5717 1 0.7858 6 0.5308 0.5579 0.5443 15 0.6856 1 0.8428 6 0.4783 0.2356 0.357 21 0.4936 0.1984 0.346 19  

Hunan 0.7351 1 0.8676 4 0.8538 1 0.9269 2 1 1 1 1 0.6595 0.4462 0.5529 12 0.6348 0.3246 0.4797 10  

Jiangxi 0.457 0.9139 0.6854 12 0.461 0.4775 0.4693 20 0.5983 1 0.7992 9 0.4067 0.2295 0.3181 23 0.5228 0.1781 0.3504 18  

Shanxi 0.5884 0.5541 0.5712 17 0.4178 0.2427 0.3302 26 0.4215 0.1715 0.2965 29 0.4008 0.13 0.2654 29 0.4341 0.1088 0.2715 28   

AVE 0.5071  0.6993  0.6032    0.5168  0.4690  0.4929    0.5939  0.5871  0.5905    0.4646  0.2234  0.3440    0.4940  0.1926  0.3433    0.4748  

Western 

region 

Inner Mongolia 1 0.3692 0.6846 14 1 0.4396 0.7198 8 1 0.3049 0.6525 17 1 0.1657 0.5828 11 1 0.1498 0.5749 8  

Xinjiang 0.2596 0.2553 0.2574 30 0.421 0.1463 0.2836 30 0.5404 1 0.7702 10 0.3695 0.1401 0.2548 31 0.5409 0.1254 0.3331 22  

Yunnan 0.4943 1 0.7472 8 0.5056 0.4632 0.4844 18 0.7778 0.7551 0.7664 11 1 1 1 1 0.4807 0.2024 0.3416 20  

Ningxia 0.3878 0.2204 0.3041 26 0.4678 0.1283 0.298 29 0.63 0.6245 0.6273 18 0.6679 0.0995 0.3837 18 0.546 0.0856 0.3158 24  

Qinghai 0.3906 0.3958 0.3932 24 0.4461 0.1909 0.3185 27 0.6857 1 0.8429 5 0.4827 0.1072 0.295 27 0.8024 0.1158 0.4591 12  

Shaanxi 0.4258 0.1695 0.2977 27 0.4719 0.2215 0.3467 25 0.4573 0.1498 0.3035 28 0.4637 0.231 0.3473 22 0.4811 0.1444 0.3127 26  

Sichuan 0.5857 0.7876 0.6866 11 0.4734 0.2778 0.3756 23 0.5496 0.3553 0.4524 24 0.4519 0.3197 0.3858 17 0.4739 0.1651 0.3195 23  

Chongqing 0.5432 1 0.7716 7 0.6834 1 0.8417 5 0.732 0.7598 0.7459 13 0.7812 0.394 0.5876 10 1 1 1 1  

Gansu 0.2745 0.1377 0.2061 31 0.402 0.1298 0.2659 31 0.6032 1 0.8016 8 0.6411 0.1106 0.3758 19 0.4391 0.1497 0.2944 27  

Guangxi 0.471 1 0.7355 9 0.5032 0.3744 0.4388 22 0.6071 0.9217 0.7644 12 0.4169 0.1789 0.2979 26 0.3938 0.1312 0.2625 30  

Guizhou 0.467 0.903 0.685 13 0.4743 0.5264 0.5004 17 0.6053 1 0.8027 7 0.4542 0.3746 0.4144 15 0.4168 0.0984 0.2576 31  

Tibet 1 0.089786 0.544893 18 1 0.086604 0.543302 16 1 0.207483 0.603741 19 1 1 1 1 1 0.472495 0.736247 6   

AVE 0.5351  0.5887  0.5619    0.5831  0.3902  0.4866    0.6990  0.7199  0.7095    0.6282  0.3426  0.4854    0.6237  0.2388  0.4313    0.5349  

Northeast

ern region 

Jilin 0.4652 0.2895 0.3773 25 0.7567 0.5744 0.6655 11 0.844 0.1657 0.5048 22 0.7493 0.6306 0.6899 8 0.4775 0.2549 0.3662 17   

Heilongjiang 0.3295 0.2163 0.2729 29 0.8138 0.6443 0.7291 7 0.4963 0.0908 0.2935 30 0.4633 0.1537 0.3085 25 0.6595 0.1685 0.414 15  

Liaoning 0.4981 0.4174 0.4578 19 0.5605 0.5957 0.5781 14 0.7302 0.3832 0.5567 21 1 0.5179 0.759 7 0.7021 0.2385 0.4703 11   

AVE 0.4309  0.3078  0.3693    0.7103  0.6048  0.6576    0.6901  0.2132  0.4517    0.7375  0.4341  0.5858    0.6130  0.2206  0.4168    0.4962  
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 1 

Figure 4a. Water Consumption Efficiency in Provinces, Municipalities, and Autonomous Regions from 2013 2 

to 2017. 3 

 4 

Figure 4b. Labor Efficiency of Provinces, Municipalities, and Autonomous Regions from 2013 to 2017. 5 

 6 

Figure 4c. Wastewater Treatment Cost and Efficiency in Provinces, Municipalities, and Autonomous Regions 7 

from 2013 to 2017. 8 

Figures 4a-4c reflect the efficiency changes of water consumption, labor force, and wastewater 9 

treatment cost.  10 
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Water consumption efficiency has fluctuated with a decrease in Fujian, Guizhou, Hainan, Hebei, 11 

Hubei, Hunan, Jiangxi, Ningxia, Shanxi, Sichuan, Xinjiang, and Guangxi. From 2013 to 2017, the water 12 

consumption efficiency in the eastern region maintained a stable level, with no significant increase. In the 13 

past five years, water consumption efficiency in the central region has gradually decreased, rising only in 14 

2017, but still at the low efficiency level of 0.265. Water consumption efficiency in the western region 15 

fluctuated from 0.4755 in 2013 to 0.4075 in 2014 to 0.5555 in 2015, but decreased year by year after 2015 to 16 

0.4855 in 2017. Water consumption efficiency of the northeastern region was the same as that of west China, 17 

but the efficiency of water consumption in the northeastern region increased greatly in 2014, from 0.195 in 18 

2013 to 0.602 in 2014. 19 

From the perspective of labor efficiency, the eastern, central, western, and northeastern regions are in 20 

a stable state. However, labor efficiency in the eastern region is still higher than that in the other three 21 

regions at about 0.9, versus the central region at about 0.7, the western region at about 0.7, and the 22 

northeastern region at about 0.8. The efficiency of labor in different regions is similar, and the space for 23 

improvement is limited.  24 

According to the input efficiency scores of wastewater treatment cost, the average level of the four 25 

regions has been declining, and the central region has the greatest decline. By 2017, the central region had 26 

become the region with the lowest input efficiency of wastewater treatment. Although the eastern region 27 

has declined, it is still the best of the four regions. The situation in the northeast is similar to that in the west. 28 

Most cities have dropped to a lower level. 29 

In the eastern region, only Beijing and Shanghai have maintained DEA validity in the past three years. 30 

The scores of other non-DEA-effective regions have fluctuated greatly in five years with a big gap between 31 

them. The province with the greatest decline was Hubei, whose input efficiency score of wastewater 32 

treatment cost was 1 in 2013 and 0.0658 in 2017. 33 

Table 3 lists the average efficiency values of wastewater and COD in four regions from 2013 to 2017. 34 

The wastewater discharge efficiency of the eastern region is better than that of the other three regions, and 35 

the wastewater discharge efficiency of the central region is the lowest among the four regions.  36 

The average COD efficiency scores on the whole in northeast China rose the most and made the most 37 

obvious progress. However, the average level was still not high and fluctuated significantly. The average 38 

scores of COD efficiency in the eastern, central, and western regions decreased, especially in the central 39 

region. In 2016, the average score of COD efficiency in the central region was only 0.3799. The average score 40 

in the eastern region fell slightly, but was still the best of the four regions, followed by the west, with the 41 

central region as the worst. 42 

Table 3 presents the output efficiency score of Stage2 water diseases and water treatment capacity in 43 

2013-2017. The efficiencies of water diseases in all four regions are on the decline. The efficiency of the 44 

eastern region generally dropped and reached its lowest level in 2016, with an efficiency of only around 0.4. 45 

The efficiency of water pollution in the central region also generally fell. From 2013 to 2014, its efficiency 46 

declined the fastest, from 0.78 to 0.40 and then reached the lowest in 2017 at only 0.38. The western region 47 

rose from 0.46 to 0.88 between 2014 and 2015, which was the best efficiency among the four regions for the 48 

five years of statistics. In the northeastern region, the efficiency was basically stable in the first two years, 49 

but it fluctuated greatly in the next three years, from 0.34 in 2014 to 0.84 in 2015. However, in 2016 and 2017, 50 

the efficiency was only 0.03 and 0.06, which was greatly different from that before.  51 

From the viewpoint of wastewater treatment efficiency, the eastern region has been in a stable state as 52 

a whole, with efficiency sustained at around 0.8. The efficiency of the central region in 2013 and 2014 was 53 

DEA-efficient, but there had been a slight decline since then. The western region as a whole was in a 54 

trending decline, from the original level of 0.85 in 2013 to 0.50 in 2017. The overall efficiency of the northeast 55 

region looks to be the best in all regions. The efficiencies of the first four years were DEA-efficient, but then 56 

fell to 0.74 in 2017.  57 
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Table 3 The average scores of input and output variables in Stage1 and Stage2 from 2013-2017 

input Year 
AVE          

Eastern 

AVE 

Central  

AVE 

Western 

AVE 

Northeastern  
output Year 

AVE 

Eastern 

AVE 

Central  

AVE 

Western 

AVE 

Northeastern  

Water 

consumption

（stage 1） 

2013 0.6602  0.4953  0.4755  0.1952  

COD        

(link) 

2013 0.8538  0.7588  0.7634  0.2740  

2014 0.7517  0.3102  0.4075  0.6017  2014 0.9249  0.4972  0.6117  0.6246  

2015 0.6675  0.4536  0.5555  0.4370  2015 0.8561  0.7124  0.8602  0.5203  

2016 0.6224  0.2219  0.5400  0.5637  2016 0.7475  0.3799  0.6535  0.7704  

2017 0.6878  0.2652  0.4855  0.3344  2017 0.7702  0.4088  0.6484  0.5885  

AVE 0.6779  0.3492  0.4928  0.4264  AVE 0.8305  0.5514  0.7074  0.5556  

Labor               

(stage1) 

2013 0.9271  0.7264  0.7227  0.8420  

Wastewater 

(stage1) 

2013 0.7192 0.5607 0.6742 0.6916 

2014 0.9063  0.7718  0.7415  0.8501  2014 0.8361 0.5696 0.6628 0.8165 

2015 0.9080  0.7431  0.8035  0.8620  2015 0.8286 0.662 0.8343 0.8147 

2016 0.8968  0.7174  0.7760  0.8078  2016 0.8021 0.5572 0.7374 0.8653 

2017 0.9064  0.7226  0.7687  0.7951  2017 0.8431 0.6272 0.7783 0.7684 

AVE 0.9089  0.7363  0.7625  0.8314  AVE 0.8058  0.5953  0.7374  0.7913  

Treatment 

expense       

(stage2)   

2013 0.7041  0.7071  0.5337  0.5301  

Water  

treatment 

capacity   

(stage2） 

2013 0.9214  1.0000  0.8511  1.0000  

2014 0.6574  0.6272  0.3719  0.9848  2014 0.7925  1.0000  0.7299  1.0000  

2015 0.5073  0.5302  0.6999  0.2018  2015 0.7888  0.9640  0.8281  0.6594  

2016 0.4759  0.2059  0.3560  0.5200  2016 0.8961  0.8444  0.6736  1.0000  

2017 0.4730  0.1193  0.2568  0.2593  2017 0.8063  0.8233  0.5043  0.7406  

AVE 0.5635  0.4379  0.4437  0.4992  AVE 0.8410  0.9263  0.7174  0.8800  

 

Number 

of 

Water 

diseases   

(stage 2) 

2013 0.6655  0.7802  0.5710  0.3381  

2014 0.6261  0.4043  0.4644  0.3378  

2015 0.7677  0.6246  0.8832  0.8390  

2016 0.4435  0.3995  0.3833  0.0296  

2017 0.5054  0.3834  0.3410  0.0584  

AVE 0.6016  0.5184  0.5286  0.3206  
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 1 

 2 
Figure 5a. Input variables radar map from 2013 to 2017 3 

 4 

 5 
    Figure 5b. Output variables radar map from 2013 to 2017 6 

Figure 5a-5b shows the input and output variables radar map from 2013 to 2017. From Figure 5a, the 7 

efficiency scores of the three input variables in the eastern region are better than those in the other three 8 

regions, and the differences score of the variables in the eastern region are different. However, the efficiency 9 

of input variables in the central, western and northeastern regions is great unbalanced. Among the three 10 

input variables, the scores of labor efficiency are better than that of water consumption and treatment 11 

expense. 12 

From Figure 5b, the efficiency score of water treatment capacity of the four output variables is generally 13 

better than the other three output variables and the four regions are all at a higher efficiency level. From a 14 

regional perspective, there is strong correlation between COD efficiency score and water diseases, and the 15 

efficiency of water diseases is relatively high in areas with high COD efficiency. Except for water treatment 16 

capacity, the output variable efficiency in the eastern region is generally better than the other three regions. 17 

There is still room for improvement in the central and northeastern regions. 18 

In order to clearly describe the correlation between COD and water diseases, Figure 6 was drawn to 19 

analyze the specific values and changes of these two variables during 2013-2017. The efficiency values of 20 

COD and water diseases showed basically the same fluctuation trend. Taking the central region as an 21 

example, the efficiency of COD decreased from 0.7588 in 2013 to 0.4927 in 2014, and the efficiency of water 22 

diseases also decreased from 0.7802 in 2013 to 0.4043 in 2014. Then the efficiency of COD increased from 23 

0.4972 to 0.7124 from 2014 to 2015, correspondingly, the efficiency of water diseases also increased from 24 

0.4043 in 2014 to 0.6246 in 2015. 25 
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 26 

Figure 6. COD and WD (water diseases) line charts from 2013 to 2017. 27 

5. Conclusions and recommendations 28 

5.1 Conclusion 29 

From the perspective of total efficiency indicators, we offer the following conclusions. 30 

(1) In addition to the increase in the average efficiency level in the northeastern region, the eastern, 31 

western, and central regions showed a downward trend. The eastern region performed best overall. 32 

(2) The cost-benefit of wastewater treatment investment in four regions has declined, and the central 33 

region has the largest decline. The situation in Northeast China is similar to that in West China, and the 34 

efficiency in most areas is further reduced.  35 

(3) Wastewater discharge efficiency in the central region is at the lowest level in the past five years. 36 

COD output fluctuates significantly, although the efficiency of the eastern region has declined, the efficiency 37 

is still optimal.  38 

(4) The efficiency of wastewater treatment is basically stable, and the efficiency of wastewater 39 

treatment in Northeast China is the best. But the scores of the occurrence efficiency of water disasters in the 40 

northeast region is the worst. 41 

(5) The efficiency of prevention and control of water diseases in all four regions are declining. There is 42 

a close relationship between COD and water diseases efficiency. In the central and western regions, there is 43 

a positive correlation between the two scores. But the effect of COD efficiency on water health efficiency in 44 

the eastern and northeastern regions is limited.  45 

In summary, the overall situation in the eastern region is better than that in the central, western, and 46 

northeastern regions. China has a vast amount of territory, a clear regional gap, a large economic gap, and 47 

large differences in economic and social development. 48 

5.2 Recommendations for the future.  49 

According to the characteristics of each region, measures should be taken to suit local conditions, which 50 

we present as follows. 51 

1. Eastern region 52 

From the comparison of the efficiencies of COD and water pollution diseases, it can be seen that the 53 

former can improve the latter. Therefore, the eastern region should pay more attention to the control of 54 

COD content and improve the requirements of corresponding indicators, so as to reduce the number of 55 

water pollution diseases and achieve the goal of improving the overall efficiency. At the same time, due to 56 

the limited natural purification capacity of the water resources, the eastern region should further adjust its 57 

industrial structure and adopt measures such as shutting down, mergers and acquisitions, or 58 

transformation for enterprises with large water consumption, heavy pollution, and high cost of pollution 59 

control. Through a reasonable industrial layout to make full use of the ability of the natural environment, 60 
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the vicious circle can become a virtuous circle and thus play a role in developing the economy and 61 

controlling pollution. 62 

2. Central region 63 

Since water efficiency in the central region is the lowest among the four regions, attention should be 64 

paid to improving relevant technical policies and standards to improve water consumption efficiency. The 65 

government should encourage enterprises to carry out technological transformation, promote clean 66 

production, reduce water consumption per unit of product, and strengthen water reuse. In order to control 67 

the development of water pollution, a more complete urban sewage treatment system needs to be 68 

established, such as guiding industrial enterprises to actively control water pollution, especially the 69 

separate disposal of toxic pollutants or pre-treatment. The centralized treatment of urban sewage can be 70 

gradually realized through industrial layout, adjustments to urban layout and construction, and 71 

improvements in urban sewer pipe networks, thus combining urban sewage treatment with industrial 72 

wastewater treatment. 73 

3. Western and Northeastern regions 74 

The efficiency of wastewater treatment in the western and northeastern regions needs to be improved. 75 

Therefore, the local governments should broaden the investment channels of urban wastewater 76 

construction projects, apply for state-specific subsidies, and establish special wastewater treatment funds. 77 

Wastewater treatment efficiency should be improved through effective and accurate wastewater treatment 78 

inputs. Timely updated wastewater treatment systems and installations can also improve wastewater 79 

utilization efficiency, enhance wastewater reusability, encourage reuse of wastewater, and reduce direct 80 

and indirect discharges of wastewater. At the same time, the relevant authorities must pay attention to the 81 

safety of wastewater reuse and avoid unnecessary harm to public health. 82 

In the aspect of COD reduction and prevention and control of water diseases, the following measures 83 

should be actively carried out. 84 

(1) Strengthen water quality monitoring of upstream water sources and conduct regular water source 85 

pollution surveys. Because of the strong correlation between COD and water pollution, water quality testing 86 

and pollution control measures should be strengthened. Upstream monitoring can focus on and select 87 

projects that have an impact on water quality. The sensory properties of water such as turbidity and odor, 88 

organic matter pollution, eutrophication, and microbial indicators of bacterial contamination should be 89 

targeted. At the same time, according to the type of water pollution, a regular survey can be conducted. The 90 

water samples of sewage discharge ports must be entrusted to health and epidemic prevention or 91 

environmental protection departments for analysis, and the survey results can then be compiled into 92 

written materials to predict the trend of pollution development. 93 

(2) Reduce and eliminate the amount of wastewater exceeding the standard of pollutants. First, a 94 

reform process can be used to reduce or even eliminate wastewater or to decrease the toxicity of wastewater. 95 

Second, wastewater must be reused and repeated water and circulating water systems must be utilized as 96 

much as possible to minimize wastewater discharge or to recycle the production wastewater after proper 97 

treatment. At the same time, the government should establish a scientific charging mechanism for urban 98 

water and wastewater treatment and use pricing policies to jointly adjust the demand for drainage and to 99 

reduce the amount of sewage. 100 

(3) Govern pollution sources according to law. The prevention and control of water pollution highly 101 

correlate to the health of residents, have far-reaching effects, and must be regulated and guaranteed through 102 

laws. Polluting entities that have affected the quality of water resources must be treated according to laws 103 

that rely on closely coordinated management among central and local governments, environmental 104 

protection, and health departments. At the same time, related organizations can strengthen media publicity 105 

and guidance, enhance public water source protection and wastewater reuse awareness, and pay attention 106 

to the health problems and their root causes brought about by wastewater discharge. 107 
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