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Abstract: China is not only short of fresh water resources per capita, but also faces a serious problem of
water pollution in recent years, with 190 million people suffering from excessive levels of harmful
substances in their drinking water. Such as arsenic poisoning and fluorosis and other endemic water
diseases high incidence. As a series of water pollution prevention plan of action by the Chinese
government announced that, this paper uses the modified Undesirable Dynamic Network model empirical
analysis of China's 31 provincial administrative region economic growth, wastewater treatment, and water
disease control efficiency between 2013 and 2017. The results show that the efficiency of water pollution
disease in all four regions of China and the total efficiency in the three regions of east, west and central
China all show a decreasing trend, and the efficiency scores and rankings of all provinces and cities within
the region fluctuate greatly. The eastern region with the most developed economy has the best overall
performance, with higher efficiency in Water consumption and Water disease control. However, the
efficiency of wastewater treatment in northeast China is stable and better. Given the high level of economic
development in China and the results of the above mentioned efficiency in water pollution and water
diseases, improving the efficiency and quality of wastewater treatment in China is regarded as an
important factor in achieving the strategic goal of green growth.
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1. Introduction

Water is the basic requirement for maintaining life and health, and although 70.8% of the earth is
covered by water, fresh water resources are still extremely limited. In the face of increasing demand, water
issues are a top priority to resolve for any country targeting economic growth. At present, China’s social
and economic development ranks at the forefront of the world, but its water shortage problem is very
serious. At the end of 2018, the country had total water resources of 2,796 billion cubic meters or 2,004 cubic
meters per person, taking up one quarter of the world’s average. China is one of 13 water-poor countries in
the United Nations, especially in the north and parts of the east where per capita water resources are
seriously low. However, with the continuous development of its economy and the increasing living
standard of residents, water consumption continues to be very high, with the total water consumption of
611 billion cubic meters in 2018.

Another situation that is more mismatched than water shortages is the serious problem of water
pollution in China. In 2017, China’s total wastewater discharge was 69.97 billion tons: industrial
wastewater discharge at 18.16 billion tons, or 26.0% of total emissions, and urban domestic sewage
discharge at 51.78 billion tons, or 74.0% of total discharge. The proportion of urban domestic sewage is
increasing year by year and is the main source of sewage. In 2017, the “Bulletin on the Circumferential
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Situation of Ecology in China” reported 940 surface water quality sections that the proportion of inferior V
water quality is 8.3% (V-type water: The quality of V-type water is suitable for agricultural water area and
general landscape water area. Inferior V-type water: The quality of inferior V-type water is worse than V-
type water quality.), and among the 5100 groundwater quality monitoring points the proportion of poorer
and lower points is 66.6%. Two-thirds of China’s cities are already facing water shortages, and the already
limited clear water resources are being destroyed by discharged sewage, further exacerbating water
scarcity.

As water pollution worsens, human health also faces a serious threat. More than 300 million people in
China still have unsafe drinking water, of which about 63 million people drink high-fluorine water, 2 million
people drink high-arsenic water, 38 million people drink brackish water, and 190 million people drink water
with excessive harmful substances. Drinking water contaminated with harmful chemicals can cause
corresponding infectious diseases or acute and chronic poisoning. Drinking arsenic, chromium, nickel,
strontium, and polycyclic aromated hydrocarbons or halogenated hydrocarbons for a long time can cause
damage to the skin and nervous system, generate cardiovascular and cerebrovascular diseases, and cause
carcinogenic effects.

The China government has attached great importance to the predicament of water pollution. In 2011,
2015, and 2017, it respectively formulated the National Groundwater Pollution Prevention and Control Plan
(2011-2020), the Water Pollution Prevention Action Plan, and the Key Basin Water Pollution Prevention and
Control Plan (2016-2020). It has also put forward the development concept of prioritizing saving water,
strengthening water resources management, and controlling water pollution to the greatest extent.
Therefore, this research contributes to water pollution control and water disease prevention in China.

The present literature on water pollution, wastewater treatment, and water diseases mainly presents
the following types: 1) Economic and feasibility study on wastewater treatment; [3-8] 2) Research on
wastewater treatment and health; [9-15] and 3) Research on wastewater using DEA (Data Envelopment
Analysis). [16-24] However, there is little discussion from the perspectives of the economy, water pollution,
and health. Although some studies use regression or DEA methods for efficiency assessment, most of them
are based on static analysis, cannot understand the sustainable development of an economy and
environment, and fail to consider regional differences and health factors. Therefore, in order to solve the
shortcomings of static analysis, regional differences, and health factors, our research proposes a modified
undesirable dynamic Network model to explore economic, wastewater treatment, and human health
efficiencies of 31 provincial-level administrative regions in China.

The main contributions of this paper are twofold. First, we study economic, wastewater discharge, and
wastewater pollution efficiencies, explore the government wastewater treatment input and water disease
efficiency, and comprehensively investigate and sort out the inherent relationship between the economy,
environmental pollution, and health. Second, the modified undesirable dynamic network model can avoid
the shortcomings and problems of static analysis. In this study the production stage is Stagel and the health
stage is Stage 2. The inputs of Stage 1 are production stage labor and water consumption, the outputs of
Stage 1 are GDP and wastewater. The variable that links the production stage and health stage is Chemical
Oxygen Demand (COD). The input of Stage 2 is Wastewater treatment expense, the outputs of Stage 2 are
Wastewater treatment capacity and Number of water diseases, and the carry-over variable is Fixed Assets.
The remainder of this paper is organized as follows: II. Literature Review; III. Research Method; IV.
Empirical Results and Discussion; and V. Conclusion.

2. Literature Review

As early as 1999, Wu et al. [1] pointed out that the process of urbanization and industrialization in
China had brought about tremendous pollution, coupled with inadequate investment in basic water supply
and treatment infrastructure, resulting in extensive wastewater pollution. The extreme waste of water
resources poses a challenge to sustainable development, depleting energy reserves and destroying humans’
water security and ecosystem health. Current research on wastewater is mainly concentrated in: 1)
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Economic and feasibility studies on wastewater treatment; 2) Research on wastewater treatment and health;
and 3) Research on wastewater using DEA (data envelopment analysis).

Among economic and feasibility studies of wastewater treatment and wastewater treatment plants,
Lim et al. [2] used LCA and LCC research methods to evaluate the environmental and economic feasibility
of a complete wastewater treatment network system, including distributed and terminal wastewater
treatment plants. Molinos-Senante et al. [3] quantified the environmental benefits of wastewater treatment
using the concept of shadow prices to estimate environmental benefits and developed a corresponding cost-
benefit analysis (CBA) for each wastewater treatment plant. Hernandez-Sancho et al. [4] pioneered the
estimation of shadow prices based on the removal of contaminants during processing and expressed the
environmental benefits associated with undischarged pollution, comparing the benefits to the internal
clearing process. Molinos-Senante et al. [5] combined a cost-benefit analysis tool-based approach with a vast
body of knowledge on processing technologies included in the environmental decision support system and
applied it to nine scenarios containing different wastewater characteristics and reuse options, obtaining
useful economic feasibility indicators such as internal and external costs. Castellet and Molinos-Senante [6]
used the non-radial DEA model to incorporate the environmental impacts of each pollutant removed from
wastewater treatment plants into the assessment. Sampling efficiency was evaluated and environmental
issues were combined with the technical and economic efficiencies of traditional wastewater treatment
plants.

The second related research covers wastewater treatment and health. The rapid urbanization and
industrialization in the 19t century led to an unhealthy environment and a wide range of epidemics, with
research and development of relevant health technologies carried out in response. Akpor and Muchie [7]
reviewed the environmental and health effects of untreated or improperly treated wastewater. Estrada et
al. [8] found that the social benefits of reducing odor are related to the reduction of nuisances in nearby
populations and the improvement of occupational health in sewage treatment plants. Naik and Stenstrom
[9] collected samples from 39 different countries, using health, economy, and the environment as research
indicators, and concluded that improving the availability of wastewater treatment can reduce disease
mortality. He [10] found that surface water pollution has a significant non-linear effect on infant mortality,
and water pollution has a significant and negative impact on all elderly people (60 years of age or older)
with cancer. Massaquoi et al. [11] collected data to compare the mortality and morbidity of residents living
in a wastewater environment and a clean water environment in Shijiazhuang, Hebei province from 2007 to
2011 and suggested limiting or stopping the use of wastewater. Wang and Yang [12] used the random effects
model and the random effect logit model to study the relationship between health and water pollution and
employed the medium model to evaluate the impact of health through water pollution intensity.

There are also studies on people’s health from gases emitted by the scholars from the wastewater
treatment process. Guan and Chen [13] combined DEA and weighted grey correlation to evaluate the
ecosystem of Beijing from 2003 to 2010. The results showed that Beijing has experienced fluctuations in its
ecosystem coordination index. The health of employees in wastewater treatment plants has also been
studied by scholars. Thorn and Kerekes [14] retrieved articles on wastewater and health in the form of a
literature review and how such employees have reported gastrointestinal problems, respiratory symptoms,
fatigue, headache, and a higher risk of cancer such as stomach, laryngeal, and pancreas. Masclaux et al. [15]
studied the presence and concentration of viruses in the air of wastewater treatment plants and concluded
that the potential concentration of viral particles in the air cannot be ignored, which can be used to explain
the reasons why employees of this department often report gastrointestinal diseases.

The third is the use of DEA method in wastewater research. Herndndez-Sancho [16] employed the non-
radial DEA method to calculate the energy efficiency index of a Spanish wastewater treatment plant and
the energy efficiency of the wastewater treatment plant was found to be very low. Molinos-Senante [17]
utilized DEA to estimate environmental performance indicators (EPI) and incorporated environmental
impacts into wastewater treatment plants to assess the efficiency of pure environmental performance
indicators (PEPI) and mixed environmental performance indicators (MEPI) for 60 (Spanish wastewater
treatment plants’) samples. Bian [18] decomposed the efficiency of the system on the basis of DEA into the
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efficiency of water conservancy institutes and the efficiency of wastewater purification, which were then
used to analyze the efficiency of urban water and wastewater purification systems in China.

Huang [19] used the non-radial network DEA method to measure the performance of environmental
protection systems in 20 cities in Taiwan. The system consists of three stages: administration, execution,
and protection effectiveness. In addition to evaluating efficiency, the impacts of internal and external factors
on performance were further discussed. Guerrini [20] used two-stage DEA to analyze Denmark’s water
sector and investigated the scale, scope, and density economy of the wastewater sector. The results showed
that its water sector is characterized by economies of scope and density. Zhang et al. [21] employed the
dynamic network SBM model to evaluate the production and health efficiency of Chinese cities. The results
showed that the productivity score of Chinese cities is slightly higher than that of health efficiency, and that
the two-stage efficiency score of most cities fluctuates significantly.

Hu et al. [22] combined bi-level planning (BLP) and DEA with feedback variables to demonstrate the
applicability and effectiveness of case studies in 10 cities along the Lancang River Basin. Each DMU was
sorted using super-efficient DEA, and the results showed that the proposed model is more discriminative.
Lorenzo-Toja et al. [23] studied 113 wastewater treatment plants in Spain using a combination of life cycle
assessment (LCA) and data envelopment analysis (DEA). At the same time, in order to verify the eco-
efficiency criteria, the environmental benefits associated with the reduced input suggested by the DEA
model for each unit were calculated. D’Inverno et al. [24] studied the environmental efficiencies of 96 Tuscan
(Italy) wastewater treatment plants using a new integrated Analytic Hierarchy Process/Non-radial
Directional Distance Function (AHP/NDDF), in which the treated water, which was treated with residual
nitrogen, was an undesirable output. The random output means that the capacity of the facility, the
percentage of wastewater discharged from industrial and agricultural activities, and the threshold for
pollutant concentration have a large impact on processing efficiency.

At present, the commonly used comprehensive index evaluation methods mainly include analytic
hierarchy process (AHP), principal component analysis (PCA), Fuzzy comprehensive evaluation method
(FCE), Topsis and so on. DEA is a kind of evaluation method which can consider many input-output indexes
at the same time. Its advantage is that it can compare multiple decision making units, and can select the
input-output index flexibly according to the characteristics of the evaluation object, so as to establish the
evaluation index system more in line with the analysis needs. The dynamic two-stage DEA method used in
this paper, combined with the logical progression of time series and two-stage events, can better see the
correlation between water pollution and water disease as well as the change of efficiency. Most current
studies have not been discussed together from the economic, water pollution, and health aspects, and the
DEA methods are mostly static and do not combine wastewater discharge and COD as unexpected output
with a dynamic DEA model. Our study makes up for the shortcomings in this area, in order to call for and
bring attention to water pollution and water diseases and put forward corresponding effective suggestions
and measures.

3. Method and Model

3.1. SBM dynamic network DEA

Following Fare et al. [25], Tone and Tsutsui [26] set up the weighted SBM (weighted slack-based
measures) network data envelopment analysis model. A linkage among departments of decision-making
units was used as the analysis basis of the network DEA model, and each department was regarded as a
sub-DMU. The SBM model was then used to find the optimal solution. The Network DEA model improves
the part of traditional DEA that fails to analyze the performance of each department. If a DMU operates
over multiple periods, then one can use the Dynamic DEA model to analyze the performance of each DMU.
Tone and Tsutsui [27] extended the model to slack-based measurement dynamic analysis. Tone and Tsutsui
(2010) proposed a weighted SBM (weighted slack-based measures) dynamic DEA model that uses carry-
over activities as a link and uses the SBM model to find the optimal solution. Traditional DEA fails to
analyze the efficiency of individual departments, but Network DEA improves this problem. At the same
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time, because a company’s operation spans many periods, we use the Dynamic DEA model, and if we need
to evaluate departments and time at the same time, then we can combine Network DEA and Dynamic DEA.

Tone and Tsutsui (2013) put forward the weighted SBM (weighted slack-based measures) Dynamic
Network DEA data envelopment analysis model, based on the analysis of the network DEA model of
linkages between different departments of decision-making units and regarded each department as a sub-
DMU and carry-over activities as linkages (1). As a form of linkage, the carry-over activities can be divided
into four categories: (1) desirable, (2) undesirable, (3) discretionary, and (4) non-discretionary.

3.2. The modified undesirable dynamic network model

This study utilizes panel data collected from 31 provincial administrative regions in China. Labor input
and water consumption are set as input indicators, while GDP and Wastewater are the output indicators to
analyze wastewater efficiency and economic efficiency in the first stage of each province. Water pollutant
COD is a link indicator, wastewater treatment expense is an input indicator, and wastewater treatment
capacity and number of water diseases are output indicators in the second stage. Carry-over variable assets
are fixed assets to help evaluate the efficiency of government wastewater input in each province. Since this
study considers undesirable output in the dynamic network SBM model, we modify Tone and Tsutsui’s
(2013) dynamic network model to be the undesirable dynamic network model and set it up as follows.

Modified undesirable dynamic network model

Suppose there are n DMUs (j =1,...,n), with each having k divisions (k=1,...,K) and T time periods (¢ =
1,...,T). Each DMU has an input and output at time period t and a carryover (link) to the next t+1 time

period. We set M and I as the input and output in each division K, with (k,h)i representing
divisions K to h, and Lhk is the K and h division set. The input and output, links, and
carryover definitions are outlined in the following.

Inputs and outputs

itjk eR, (i :1,...,mk;j =1..,mK=1.,Kt=1...T) . refers to input | at time period 1 for
DMUJ division K .
y:,-k € R+ (r :1’---;rk ;J =1...mK=1.,K;t :1;---,T): refers to output r in time period t for DMUJ

division K ;if part of the output is not ideal, then it is considered an input for the division.

Links

j(kht € R+ (] :11---1 nal :1,--, Lhk't :1,---;T)0: refers to the period t links from DMUJ division
k todivision h, with Lhk being the number of K to h links, and Zfxny: ER«(j=1,...,n;1=1,...,Lix;
t=1,...,7).
Carryovers

Zj(illprl) € R+ (J =1,...,n;| :ln--, Lk;k :11---k,t =1,...,T _1): refers to the carryover of t tothe t+1

period from DMU j division K to division h, with Lk being the number of carryover items in
division K.
The following is the non-oriented model.

(a) Objective function
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Overall efficiency:
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(b) Period and division efficiencies

Period and division efficiencies are as follows:

(b1) Period efficiency:
linki St
K \ark inkin, 9o (kh),in
W ( |ok | )
X Zk:l mk + ||nk|nk Z| =l t Z(kh Z ok in
d, =min '
0 st t- ngood, ¢ (tt+l)

K k 1 fik “rokgood B S kbad Sok good
Zk:lW 1+ (Zrl t +Zr1 rto : + Z t:t+l) )

(
r.1k + er + ngOOdk yrokgood yrokbad k Zok|good

(b2) Division efficiency:
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t=1 r +r r=1,,t r=1,,t
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(b3) Division period efficiency:

ninput, (tt+1)

Z okhnpminput )
(t,t+1)

_ t
1 m S linkin,  So(kh, in
(Zi— ¢ T Z(kh)|:1

- . . . =1 t
,D* — min m, +|mkmk "‘nmpUtk Xiok Zo(kh)|in k Zok,input
0~ t+ t—
1+ 1 (Zrlk Srokgood +Zr2k Srokbad +)
r. +r r=1 yt r=1 yt
1k 2k rokgood rokbad

3.3. Labor, Water consumption, Wastewater treatment expense, GDP, Wastewater treatment capacity, Wastewater,
COD and Water diseases

There are eight key features of this present study: Labor efficiency, Water consumption efficiency,
Wastewater treatment expense efficiency, GDP efficiency, Wastewater treatment capacity efficiency,
lltll

Wastewater efficiency, COD efficiency, and Water diseases. In our study, “I” represents area and

represents time. The eight efficiency models are defined in the following.
Target labor input (i,t)

Labor efficiency =
° Y Actual labor input (i,t)

Target water input (i,t)

Water consumption efficiency = -—=———— pe—

Target expense input (i,t)

Wastewater treatment expense efficiency = - -
Actual expense input (i,t)

Actual GDP desirable output (i,t)
Target GDP desirable output (i,t)

GDP efficiency =

Actual capacity desirable output (i,t)

Wastewater treatment capacity efficiency = Target capacity desirable output (1)

Target Wastewater Undesirable output (i,t)

Wastewater efficiency =
y Actual Wastewater Undesirable output (i,t)

Target COD Undesirable output (i,t)
Actual COD Undesirable output (i,t)

COD efficiency =

Target diseases Undesirable output (i,t)

Water diseases =
€ Seases Actual diseases Undesirable output (i,t)

If the target labor, Water consumption, and Wastewater treatment expense inputs equal the actual
inputs, then the labor, Water consumption and Wastewater treatment expense efficiencies equal 1,
indicating overall efficiency. If the target inputs are less than the actual inputs, then the labor, Water
consumption and Wastewater treatment expense efficiencies are less than 1, indicating overall inefficiency.

If the target Wastewater, COD, and Water diseases undesirable outputs equal the actual undesirable
outputs, then Wastewater, COD, and Water diseases efficiencies equal 1, indicating overall efficiency. If the
target undesirable outputs are less than the actual undesirable outputs, then the Wastewater, COD, and
Water diseases efficiencies are less than 1, indicating overall inefficiency.

If the target GDP and Wastewater treatment capacity desirable output are equal to the actual GDP and
Wastewater treatment capacity desirable outputs, then the GDP and Wastewater treatment capacity
efficiencies equal 1, indicating overall efficiency. If the actual desirable outputs are less than the target
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desirable outputs, then the GDP and Wastewater treatment capacity efficiencies are less than 1, indicating
overall inefficiency.

4. Empirical Study

4.1. Data sources and description

This paper collects data of 31 provincial administrative regions in China from 2013 to 2017. The division
of the eastern, central, western, and northeastern regions refers to the regional division standards published
on the website of the National Bureau of Statistics of China. The eastern region includes Beijing, Tianjin,
Hebei, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, Guangdong, and Hainan (10 provinces (cities)); the
central region includes Shanxi, Anhui, Jiangxi, Henan, Hubei, and Hunan (6 provinces); the western region
includes Inner Mongolia, Guangxi, Chongqging, Sichuan, Guizhou, Yunnan, Shaanxi, Gansu, Qinghai,
Ningxia, Xinjiang, and Tibet (12 provinces (municipalities and autonomous regions)); and the northeast
region includes Liaoning, Jilin, and Heilongjiang (3 provinces). The data were extracted from the Statistical
Yearbook of China, the Demographics and Employment Statistical Yearbook of China, the Environmental
Yearbook of China, and the Health Statistics Yearbook of China. Figure 1 reveals the framework of the
Dynamic Network Model of inter-temporal efficiency measurement and variables.

stage 1:

carry-over t: "
A Production
Fixed assets
Period Period Stase
t t+1

nputad ‘ Input t+1
1.Water consumption - -
2 Labor 1.Water consumption
: 2.Labor
Output t Output t+1
1.GDP 1.GDP
2.Wastewater 2.Wastewater
stage 2:
Health stage
Output t
e
Input t Wastewater treatment Input t+1 Qupnsesf
- " = Watewater treatment
‘Wastewater capacity Wastewater B
e capacity

treatment expense Number of water treatment expense

diseases

Number of water diseases

Figure 1. Dynamic Network Model.

Table 1 shows all the input and output variables of the two stages. There are three inputs, four outputs,
one link and one carry-over variables.

Table 1. Input and output variables.

Input variable Output variable Link Carry-over
Labor GDP
Stage 1 Wat ti Wastewat
ater consumption astewater
P COD Fixed assets
Wastewater treatment Wastewater treatment
Stage 2

expense capacity;
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Number of water
diseases

Stage 1: Production Stage

Input variables:

Labor: This study takes the numbers of employees in each region by the end of each year. Unit: 10,000
persons.

Water consumption: Gross amount of water taken by various water users, including loss of water delivery.
Unit: 100 million tons.

Fixed assets: The total amount of work done by the whole society in building and purchasing fixed assets
and related expenses. Unit: 100 million RMB.

Output variables:

Desirable output (GDP): Refers to the final result of production activities of all resident units in a region
calculated by market price in a year. Unit: 100 million RMB.

Undesirable output (Wastewater): It is the sum of industrial wastewater discharge and domestic sewage
discharge. Unit: 10,000 tons.

Link Production Stage and health stage variables:

COD: The sum of chemical oxygen demand (COD) emissions from industrial wastewater and domestic
wastewater. It refers to the amount of oxygen required to oxidize organic pollutants in water analyzed by
chemical oxidizers.

Stage 2: Health Stage

Input variable:

Wastewater treatment expense: The annual investment amount of each district’s wastewater treatment
project. Unit: 10,000 RMB.

Output variables:

Desirable output (Wastewater treatment capacity): The amount of wastewater actually treated by various
water treatment facilities. Unit: 10,000 tons.

Undesirable output (Number of water diseases): The number of water diseases caused by drinking
polluted water and mainly includes fluorosis and arsenic poisoning. Water fluorosis and arsenic poisoning
are two typical water poisoning diseases in China!. Unlike water diseases caused by common bacterial
infections, they are chronic and regionally widespread. Unit: persons.

4.2. Statistical analysis of input-output indicators

2,500.00 1000
2,000.00
1,500.00 500 II I
1,000.00
o HNREN R | ] |
500.00 II I )
0.00 — ] Average  Max Min St.Dev
Average  Max Min St.Dev
m 2013Water consumption
m 2013Labor = 2014Labor 2015L abor = 2014\Water consumption
2015Water consumption
2016Labor = 2017Labor 2016Water consumption

1. From document No. 2004375 of the State Council of China, national key endemic disease prevention and control
program (2004-2010).


https://doi.org/10.20944/preprints201911.0160.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 November 2019 d0i:10.20944/preprints201911.0160.v1

1,000,000.00 200,000.00
180,000.00
800,000.00 160,000.00
140,000.00
600,000.00 120,000.00
100,000.00
400,000.00 80,000.00
60,000.00
200,000.00 II I “ I 40,000.00
20,000.00 II II
0.00 0.00 I I
Average Min  St.Dev Average  Max Min  St.Dev
m 2013Wastewater m 2014Wastewater m 2013treatment expense ® 2014treatment expense
2015Wastewater 2016Wastewater 2015treatment expense = 2016treatment expense
m 2017Wastewater m 2017treatment expense
200 6,000,000.00
180 5,000,000.00
160 4,000,000.00
140 3,000,000.00
120 2,000,000.00 I
100 1,000,000.00
60 Average ax St.Dev
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Figure 2. Statistical Analysis of Labor, Water Consumption, Wastewater Production, Wastewater Treatment
Expense, COD, and Number of Water Diseases, 2013-2017.

Figure 2 shows the changes of input-output indicators. From 2013 to 2017, the maximum and minimum
values of labor input increased slowly, and the average value decreased slightly. This is mainly due to the
disappearance of China’s demographic dividend and the slowdown of its population growth. At the same
time, the number of working-age population gradually declined.

The average and maximum values of wastewater discharge fluctuated distinctly. After peaking in 2015,
the average declined again in 2016-2017. The maximum value continued to rise over 2013-2016, and after
peaking in 2016, there was a significant decline in 2017. The standard deviation also showed a trend of rising
first and then falling, which indicates that regional differences are narrowing.

The maximum input of wastewater treatment expense has decreased significantly since 2014. The trend
of average decline was also obvious. It showed that the investment cost of wastewater treatment in various
provinces and municipalities in China was decreasing year by year.

As the most important indicator of water pollution, COD has declined significantly after 2015, which
means that the China government’'s promulgation and implementation of the new "Environmental
Protection Law" and "Water Pollution Prevention and Control Action Plan" in 2015 had remarkable results.
However, it is noteworthy that the maximum COD in 2017 rebounded to upward trend compared with
2016, which means that water pollution in individual provinces and cities was aggravated again.

The average number of water pollution diseases showed a slow downward trend, but the maximum
value decreased significantly between 2016 and 2017, denoting that there are obvious regional differences
in water pollution diseases. The areas with high incidences of water pollution diseases need more careful
control, and the situation of prevention and control of water pollution diseases in China is still serious.
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4.3. Analysis of the total efficiency of the provinces from 2013 to 2017

Figure 3 shows that the total efficiency scores of provinces, municipalities, and autonomous regions
fluctuate greatly from 2013 to 2017. The provinces, municipalities, and autonomous regions with a total
efficiency score of 1 in 2017 include Beijing, Guangdong, Shanghai, and Chongqing. Chonggqing is in the
western region, while the others are in the eastern region. Some provinces, municipalities, and autonomous
regions presented a steep increase in 2016, whose total efficiency score increased significantly, such as
compared with the previous year, Beijing increased by 35.7% and Guangdong by 40.15%. In 2014, the
average score of total efficiency in Northeast China rose from 0.3603 in 2013 to 0.6576. In 2015, Some
provinces increased significantly. For example, compared with 2014, Gansu increased by 201.47% and
Qinghai by 164.55%. However, these provinces generally fell sharply in the year after their sharp rise, which
led to a downward trend in the eastern, central, and western regions, except for the average level of total
efficiency in the northeast region. Although the average score of total efficiency in the eastern region
decreased from 0.7031 to 0.6502, it remains the best among the four regions.
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Figure 3. Total Efficiency Scores of Provinces, Municipalities, and Autonomous Regions from 2013 to
2017.

From the total efficiency ranking, the ranking of most cities fluctuates greatly, and the provinces with
higher ranking are Beijing, Shanghai, Jiangsu, Shandong, and Tianjin in the eastern region. With great
fluctuation, the northeastern region has all been on the rise. From this we can see that the rankings of most
provinces and cities in the central and eastern regions declined, while the rankings of provinces and cities
in the northeast and western regions increased significantly.

Table 2 shows that the provinces, municipalities, and autonomous regions with a total efficiency of 1
for five consecutive years are Beijing, Guangdong, Inner Mongolia, Shanghai, Tianjin, and Tibet. In the
eastern, western, and northeastern regions, the average level of total efficiency scores in the first stage has
been rising. In Stagel, the total efficiency scores of most cities in China also showed an upward trend, with
Chongging and Qinghai showing the greatest increase. The average level of the total efficiency score in
Stagel of the eastern region was relatively stable and the best among the four regions. The average water
fluctuation of the first stage efficiency score in the central region was not significant, but overall declined.
The average levels of Stagel in the western and northeastern regions made remarkable progress.

The total efficiency score of Stage2 was quite different from that of Stagel. For example, in 2017 the
efficiency score of Tianjin in Stagel was 1, and that in Stage 2 was only 0.4976. In 2013, their total efficiency
scores in Stage2 were all DEA effective, and in 2017 these provinces all dropped to below 0.5.
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AVE
DMU 2031 2013@ P Rank 2014 2014 ¥ Rank 2050 2050 ¥ Rank 20160 2066@ % Rank  207) 200@ Y Rank 2013
score score score 2017
Beijing 1 02871 0.6436 15 1 03494 0.6747 9 1 04739 07369 14 1 1 1 1 1 1 1 1
Fujian 04835 07017 05926 16 06203 06646  0.6425 13 0626 0496  0.5613 20 05186 02285  0.3735 20 0545 02381  0.3916 16
Guangdong 1 1 1 1 1 06453 0.8226 6 1 0427 07135 15 1 1 1 1 1 1 1 1
Hainan 03612 04612 04112 23 0815 1 0.9075 3 04201 0231 03256 26 04097 01696  0.2896 28 04213 02046 03129 25
Eastern Hebei 1 1 1 1 0.9029 1 0.9514 1 0.9451 1 09725 3 05861 02642  0.4252 14 08697 01747 05222 9
region Jiangsu 04391 04095  0.4243 21 05582 04002  0.4792 19 06008 03401 04705 23 0616 01791 03975 16 0669 01608  0.4149 14
Shandong 05504 02688  0.4141 2 06449 02716 04583 21 0653 01855 04192 25 06686 02058  0.4372 13 06878 0174  0.4309 13
Shanghai 1 1 1 1 1 03407  0.6704 10 1 09894 09947 2 1 1 1 1 1 1 1 1
Tianjin 1 04678 07339 10 1 0301  0.6505 12 1 03384  0.6692 16 1 05766  0.7883 6 1 04976  0.7488 5
Zhejiang 0.6236 1 0.8118 5 0.6964 1 0.8482 4 0.6865 1 0.8433 4 07959 04886  0.6423 9 07943 05673  0.6808 7
AVE 0.7467  0.6596  0.7031 08238 05973 0.7105 07931 05482  0.6707 07595 05112 0.6354 07987 05017  0.6502 0.674
Anhui 03566 0506 04313 20 04067 0344 03753 2 04328 02174 03251 27 04151 01005 02578 30 04393 01035 02714 29
Henan 03338 02216 02777 28 04306 01919 03112 28 04255 01337 0279 31 0427 01987 03128 2 04396 02423 0341 21
Contral Hubei 0.5717 1 0.7858 6 05308 05579  0.5443 15 0.6856 1 0.8428 6 04783 02356 0357 21 04936 01984 0346 19
! Hunan 0.7351 1 0.8676 4 0.8538 1 0.9269 2 1 1 1 1 06595 04462  0.5529 12 06348 03246  0.4797 10
region Jiangxi 0457 09139  0.6854 12 0461 04775  0.4693 20 0.5983 1 0.7992 9 04067 02295 03181 2 05228 01781  0.3504 18
Shanxi 05884 05541  0.5712 17 04178 02427 0.3302 26 04215 01715  0.2965 29 04008 013  0.2654 29 04341 01088 02715 28
AVE 05071  0.6993  0.6032 05168 04690  0.4929 05930 05871 05905 04646 02234 0.3440 04940 01926 03433 0.4748
Inner Mongolia 1 03692 0.6846 14 1 0439  0.7198 3 1 03049 06525 17 1 01657  0.5828 11 1 0.1498 05749 8
Xinjiang 0259 02553 02574 30 0421 01463  0.2836 30 0.5404 1 0.7702 10 03695 01401  0.2548 31 05400 01254 03331 2
Yunnan 0.4943 1 0.7472 8 05056 04632  0.4844 18 07778 07551  0.7664 11 1 1 1 1 04807 02024 03416 20
Ningxia 03878 02204 03041 26 04678 01283  0.298 29 063 06245 06273 18 06679  0.0995  0.3837 18 0546 00856  0.3158 24
Qinghai 03906 03958 03932 24 04461 01909  0.3185 27 0.6857 1 0.8429 5 04827 01072 0295 27 08024 01158  0.4591 1
Western Shaanxi 04258 01695 02977 27 04719 02215  0.3467 25 04573  0.1498 03035 28 04637 0231 03473 2 04811 01444 03127 26
region Sichuan 05857 07876  0.6866 11 04734 02778 03756 23 05496 03553 04524 24 04519 03197  0.3858 17 04739 01651 03195 23
Chongging 0.5432 1 0.7716 7 0.6834 1 0.8417 5 0732 07598  0.7459 13 07812 0394 05876 10 1 1 1 1
Gansu 02745 01377  0.2061 31 0402 01208  0.2659 31 0.6032 1 0.8016 8 06411 01106  0.3758 19 04391 01497 02944 27
Guangxi 0471 1 0.7355 9 05032 03744  0.4388 2 06071 09217  0.7644 1 04169 01789  0.2979 26 03938 01312 02625 30
Guizhou 0467 0903  0.685 13 04743 05264  0.5004 17 0.6053 1 0.8027 7 04542 03746  0.4144 15 04168 00984 02576 31
Tibet 1 0089786 0544893 18 1 0086604 0543302 16 1 0207483 0603741 19 1 1 1 1 1 0472495 0736247 6
AVE 05351 05887 05619 05831 03902  0.4866 06990 07199  0.7095 06282 03426  0.4854 06237 02388 04313 0.5349
Jilin 04652 02895 03773 25 07567 05744  0.6655 11 0844 01657 05048 2 07493 0.6306  0.6899 8 04775 02549  0.3662 17
Northeast  Heilongjiang 03295 02163 02729 29 08138 06443 07291 7 04963  0.0908  0.2935 30 04633 01537  0.3085 25 06595 01685 0414 15
ern region Liaoning 04981 04174 04578 19 05605 05957 05781 14 07302 03832 05567 21 1 05179 0759 7 07021 02385  0.4703 11
AVE 04309 03078  0.3693 07103 0.6048  0.6576 06901 02132 04517 07375 04341 05858 06130 02206  0.4168 0.4962
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9 Figures 4a-4c reflect the efficiency changes of water consumption, labor force, and wastewater

10 treatment cost.
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11 Water consumption efficiency has fluctuated with a decrease in Fujian, Guizhou, Hainan, Hebei,
12 Hubei, Hunan, Jiangxi, Ningxia, Shanxi, Sichuan, Xinjiang, and Guangxi. From 2013 to 2017, the water
13 consumption efficiency in the eastern region maintained a stable level, with no significant increase. In the
14  past five years, water consumption efficiency in the central region has gradually decreased, rising only in
15 2017, but still at the low efficiency level of 0.265. Water consumption efficiency in the western region
16 fluctuated from 0.4755 in 2013 to 0.4075 in 2014 to 0.5555 in 2015, but decreased year by year after 2015 to
17 0.4855in 2017. Water consumption efficiency of the northeastern region was the same as that of west China,
18  but the efficiency of water consumption in the northeastern region increased greatly in 2014, from 0.195 in
19 2013 to 0.602 in 2014.

20 From the perspective of labor efficiency, the eastern, central, western, and northeastern regions are in
21  a stable state. However, labor efficiency in the eastern region is still higher than that in the other three
22 regions at about 0.9, versus the central region at about 0.7, the western region at about 0.7, and the
23 northeastern region at about 0.8. The efficiency of labor in different regions is similar, and the space for
24  improvement is limited.

25 According to the input efficiency scores of wastewater treatment cost, the average level of the four
26  regions has been declining, and the central region has the greatest decline. By 2017, the central region had
27  become the region with the lowest input efficiency of wastewater treatment. Although the eastern region
28  hasdeclined, it is still the best of the four regions. The situation in the northeast is similar to that in the west.
29  Most cities have dropped to a lower level.

30 In the eastern region, only Beijing and Shanghai have maintained DEA validity in the past three years.
31  The scores of other non-DEA-effective regions have fluctuated greatly in five years with a big gap between
32 them. The province with the greatest decline was Hubei, whose input efficiency score of wastewater
33  treatment cost was 1 in 2013 and 0.0658 in 2017.

34 Table 3 lists the average efficiency values of wastewater and COD in four regions from 2013 to 2017.
35  The wastewater discharge efficiency of the eastern region is better than that of the other three regions, and
36  the wastewater discharge efficiency of the central region is the lowest among the four regions.

37 The average COD efficiency scores on the whole in northeast China rose the most and made the most
38  obvious progress. However, the average level was still not high and fluctuated significantly. The average
39 scores of COD efficiency in the eastern, central, and western regions decreased, especially in the central
40  region. In 2016, the average score of COD efficiency in the central region was only 0.3799. The average score
41  in the eastern region fell slightly, but was still the best of the four regions, followed by the west, with the
42 central region as the worst.

43 Table 3 presents the output efficiency score of Stage2 water diseases and water treatment capacity in
44  2013-2017. The efficiencies of water diseases in all four regions are on the decline. The efficiency of the
45  easternregion generally dropped and reached its lowest level in 2016, with an efficiency of only around 0.4.
46  The efficiency of water pollution in the central region also generally fell. From 2013 to 2014, its efficiency
47  declined the fastest, from 0.78 to 0.40 and then reached the lowest in 2017 at only 0.38. The western region
48  rose from 0.46 to 0.88 between 2014 and 2015, which was the best efficiency among the four regions for the
49  five years of statistics. In the northeastern region, the efficiency was basically stable in the first two years,
50  butit fluctuated greatly in the next three years, from 0.34 in 2014 to 0.84 in 2015. However, in 2016 and 2017,
51  the efficiency was only 0.03 and 0.06, which was greatly different from that before.

52 From the viewpoint of wastewater treatment efficiency, the eastern region has been in a stable state as
53  a whole, with efficiency sustained at around 0.8. The efficiency of the central region in 2013 and 2014 was
54  DEA-efficient, but there had been a slight decline since then. The western region as a whole was in a
55  trending decline, from the original level of 0.85 in 2013 to 0.50 in 2017. The overall efficiency of the northeast
56  region looks to be the best in all regions. The efficiencies of the first four years were DEA-efficient, but then
57  fell to 0.74 in 2017.
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Table 3 The average scores of input and output variables in Stagel and Stage2 from 2013-2017

. AVE AVE AVE AVE AVE AVE AVE AVE
input Year Eastern Central Western Northeastern output Year Eastern Central Western Northeastern

2013 0.6602 0.4953 0.4755 0.1952 2013 0.8538 0.7588 0.7634 0.2740

2014 0.7517 0.3102 0.4075 0.6017 2014 0.9249 0.4972 0.6117 0.6246

Water 2015 0.6675 0.4536 0.5555 0.4370 COD 2015 0.8561 0.7124 0.8602 0.5203

consumption .

(stage 1) 2016 0.6224 0.2219 0.5400 0.5637 (link) 2016 0.7475 0.3799 0.6535 0.7704

2017 0.6878 0.2652 0.4855 0.3344 2017 0.7702 0.4088 0.6484 0.5885

AVE 0.6779 0.3492 0.4928 0.4264 AVE 0.8305 0.5514 0.7074 0.5556

2013 0.9271 0.7264 0.7227 0.8420 2013 0.7192 0.5607 0.6742 0.6916

2014 0.9063 0.7718 0.7415 0.8501 2014 0.8361 0.5696 0.6628 0.8165

Labor 2015 0.9080 0.7431 0.8035 0.8620 Wastewater 2015 0.8286 0.662 0.8343 0.8147

(stagel) 2016 0.8968 0.7174 0.7760 0.8078 (stagel) 2016 0.8021 0.5572 0.7374 0.8653

2017 0.9064 0.7226 0.7687 0.7951 2017 0.8431 0.6272 0.7783 0.7684

AVE 0.9089 0.7363 0.7625 0.8314 AVE 0.8058 0.5953 0.7374 0.7913

2013 0.7041 0.7071 0.5337 0.5301 2013 0.9214 1.0000 0.8511 1.0000

2014 0.6574 0.6272 0.3719 0.9848 Water 2014 0.7925 1.0000 0.7299 1.0000

Treatment 2015 0.5073 0.5302 0.6999 0.2018 treatment 2015 0.7888 0.9640 0.8281 0.6594

?:tz;;j 2016 0.4759 0.2059 0.3560 0.5200 (csztlfac;t)y 2016 0.8961 0.8444 0.6736 1.0000

2017 0.4730 0.1193 0.2568 0.2593 8¢ 2017 0.8063 0.8233 0.5043 0.7406

AVE 0.5635 0.4379 0.4437 0.4992 AVE 0.8410 0.9263 0.7174 0.8800

2013 0.6655 0.7802 0.5710 0.3381

Number 2014 0.6261 0.4043 0.4644 0.3378

Wzier 2015 0.7677 0.6246 0.8832 0.8390

diseases 2016 0.4435 0.3995 0.3833 0.0296

(stage 2) 2017 0.5054 0.3834 0.3410 0.0584

AVE 0.6016 0.5184 0.5286 0.3206
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Figure 5a. Input variables radar map from 2013 to 2017
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Figure 5b. Output variables radar map from 2013 to 2017
Figure 5a-5b shows the input and output variables radar map from 2013 to 2017. From Figure 5a, the
efficiency scores of the three input variables in the eastern region are better than those in the other three
regions, and the differences score of the variables in the eastern region are different. However, the efficiency

O 00 g O\ Ul

10 of input variables in the central, western and northeastern regions is great unbalanced. Among the three
11  input variables, the scores of labor efficiency are better than that of water consumption and treatment
12 expense.

13 From Figure 5b, the efficiency score of water treatment capacity of the four output variables is generally
14 better than the other three output variables and the four regions are all at a higher efficiency level. From a
15  regional perspective, there is strong correlation between COD efficiency score and water diseases, and the
16  efficiency of water diseases is relatively high in areas with high COD efficiency. Except for water treatment
17 capacity, the output variable efficiency in the eastern region is generally better than the other three regions.
18  There is still room for improvement in the central and northeastern regions.

19 In order to clearly describe the correlation between COD and water diseases, Figure 6 was drawn to
20  analyze the specific values and changes of these two variables during 2013-2017. The efficiency values of
21  COD and water diseases showed basically the same fluctuation trend. Taking the central region as an
22 example, the efficiency of COD decreased from 0.7588 in 2013 to 0.4927 in 2014, and the efficiency of water
23 diseases also decreased from 0.7802 in 2013 to 0.4043 in 2014. Then the efficiency of COD increased from
24 0.4972 to 0.7124 from 2014 to 2015, correspondingly, the efficiency of water diseases also increased from
25  0.4043 in 2014 to 0.6246 in 2015.
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27 Figure 6. COD and WD (water diseases) line charts from 2013 to 2017.

28 5. Conclusions and recommendations

29 5.1 Conclusion

30 From the perspective of total efficiency indicators, we offer the following conclusions.

31 (1) In addition to the increase in the average efficiency level in the northeastern region, the eastern,
32  western, and central regions showed a downward trend. The eastern region performed best overall.

33 (2) The cost-benefit of wastewater treatment investment in four regions has declined, and the central

34  region has the largest decline. The situation in Northeast China is similar to that in West China, and the
35  efficiency in most areas is further reduced.

36 (3) Wastewater discharge efficiency in the central region is at the lowest level in the past five years.
37  COD output fluctuates significantly, although the efficiency of the eastern region has declined, the efficiency
38  isstill optimal.

39 (4) The efficiency of wastewater treatment is basically stable, and the efficiency of wastewater
40  treatment in Northeast China is the best. But the scores of the occurrence efficiency of water disasters in the
41  northeast region is the worst.

42 (5) The efficiency of prevention and control of water diseases in all four regions are declining. There is
43 aclose relationship between COD and water diseases efficiency. In the central and western regions, there is
44  apositive correlation between the two scores. But the effect of COD efficiency on water health efficiency in
45  the eastern and northeastern regions is limited.

46 In summary, the overall situation in the eastern region is better than that in the central, western, and
47  northeastern regions. China has a vast amount of territory, a clear regional gap, a large economic gap, and
48  large differences in economic and social development.

49 5.2 Recommendations for the future.

50 According to the characteristics of each region, measures should be taken to suit local conditions, which
51  we present as follows.
52 1. Eastern region
53 From the comparison of the efficiencies of COD and water pollution diseases, it can be seen that the

54  former can improve the latter. Therefore, the eastern region should pay more attention to the control of
55  COD content and improve the requirements of corresponding indicators, so as to reduce the number of
56  water pollution diseases and achieve the goal of improving the overall efficiency. At the same time, due to
57  the limited natural purification capacity of the water resources, the eastern region should further adjust its
58  industrial structure and adopt measures such as shutting down, mergers and acquisitions, or
59  transformation for enterprises with large water consumption, heavy pollution, and high cost of pollution
60  control. Through a reasonable industrial layout to make full use of the ability of the natural environment,
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61  the vicious circle can become a virtuous circle and thus play a role in developing the economy and
62  controlling pollution.

63 2. Central region

64 Since water efficiency in the central region is the lowest among the four regions, attention should be
65  paid to improving relevant technical policies and standards to improve water consumption efficiency. The
66  government should encourage enterprises to carry out technological transformation, promote clean
67  production, reduce water consumption per unit of product, and strengthen water reuse. In order to control
68  the development of water pollution, a more complete urban sewage treatment system needs to be
69  established, such as guiding industrial enterprises to actively control water pollution, especially the
70  separate disposal of toxic pollutants or pre-treatment. The centralized treatment of urban sewage can be
71  gradually realized through industrial layout, adjustments to urban layout and construction, and
72 improvements in urban sewer pipe networks, thus combining urban sewage treatment with industrial
73  wastewater treatment.

74 3. Western and Northeastern regions

75 The efficiency of wastewater treatment in the western and northeastern regions needs to be improved.
76  Therefore, the local governments should broaden the investment channels of urban wastewater
77  construction projects, apply for state-specific subsidies, and establish special wastewater treatment funds.
78  Wastewater treatment efficiency should be improved through effective and accurate wastewater treatment
79  inputs. Timely updated wastewater treatment systems and installations can also improve wastewater
80 utilization efficiency, enhance wastewater reusability, encourage reuse of wastewater, and reduce direct
81  and indirect discharges of wastewater. At the same time, the relevant authorities must pay attention to the
82  safety of wastewater reuse and avoid unnecessary harm to public health.

83 In the aspect of COD reduction and prevention and control of water diseases, the following measures
84  should be actively carried out.
85 (1) Strengthen water quality monitoring of upstream water sources and conduct regular water source

86  pollution surveys. Because of the strong correlation between COD and water pollution, water quality testing
87  and pollution control measures should be strengthened. Upstream monitoring can focus on and select
88  projects that have an impact on water quality. The sensory properties of water such as turbidity and odor,
89  organic matter pollution, eutrophication, and microbial indicators of bacterial contamination should be
90  targeted. At the same time, according to the type of water pollution, a regular survey can be conducted. The
91  water samples of sewage discharge ports must be entrusted to health and epidemic prevention or
92  environmental protection departments for analysis, and the survey results can then be compiled into
93  written materials to predict the trend of pollution development.
94 (2) Reduce and eliminate the amount of wastewater exceeding the standard of pollutants. First, a
95  reform process can be used to reduce or even eliminate wastewater or to decrease the toxicity of wastewater.
96  Second, wastewater must be reused and repeated water and circulating water systems must be utilized as
97  much as possible to minimize wastewater discharge or to recycle the production wastewater after proper
98  treatment. At the same time, the government should establish a scientific charging mechanism for urban
99  water and wastewater treatment and use pricing policies to jointly adjust the demand for drainage and to
100  reduce the amount of sewage.
101 (3) Govern pollution sources according to law. The prevention and control of water pollution highly
102 correlate to the health of residents, have far-reaching effects, and must be regulated and guaranteed through
103 laws. Polluting entities that have affected the quality of water resources must be treated according to laws
104  that rely on closely coordinated management among central and local governments, environmental
105  protection, and health departments. At the same time, related organizations can strengthen media publicity
106  and guidance, enhance public water source protection and wastewater reuse awareness, and pay attention
107 to the health problems and their root causes brought about by wastewater discharge.
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