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Abstract: The most cited evidence for (nonbaryonic) dark matter has been an apparent lack of 

visible mass to gravitationally support the observed orbital velocity of matters in rotating disk 

galaxies.  Yet measurement of the mass of celestial objects cannot be straightforward, requiring 

theories derived from the known physical laws along with some empirically established 

semi-quantitative relationship.  The most reliable means for determining the mass distribution in 

rotating disk galaxies is to solve a force balance equation according to Newton’s laws from 

measured rotation curves, similar to calculating the Sun’s mass from the Earth’s orbital velocity.  

Another common method to estimate galactic mass distribution is to convert measured brightness 

from surface photometry based on empirically established mass-to-light ratio.  For convenience, 

most astronomers commonly assumed a constant mass-to-light ratio for estimation of the so-called 

“luminous” or “visible” mass, which should not be expected accurate.  The mass determined from 

rotation curve typically exhibit an exponential-like decline with galactrocentric distance, 

qualitatively consistent with observed surface brightness.  This fact scientifically suggests variable 

mass-to-light ratio of baryonic matter in galaxies without the need for dark matter.   

Keywords: Disk galaxies; Galactic rotation; Newtonian dynamics; Rotation curve; Dark matter; 

Mass-to-light ratio  

 

1. Introduction 

Based on scientific observations, many galaxies (including the Milky Way) appear to have a 

common visible shape of thin disk as shown in Figure 1.  Known as a stellar system of an ensemble 

of stars and other masses, a disk galaxy (such as the Milky Way) usually contains 105 to 1012 stars 

distributed in a flattened, roughly axisymmetric structure, rotating around a common axis in nearly 

circular orbits.  Besides stars, the galactic “disk” is also known to contain the interstellar medium 

such as gases (mostly atomic and molecular hydrogen) as well as relatively small solid “dust 

particles”.  The general behavior of stellar systems, including disk galaxies, has been believed to 

follow Newton’s laws of motion and Newton’s law of universal gravitation [1]. 

Since their discovery in the 17th century, Newton’s laws of motion have been used to 

successfully determine the relationship between a body of mass and the forces acting upon it, and its 

motion in response to those forces, for a great variety of situations and phenomena.  When 

combined with his law of gravitation, Newton [2] could show (in terms of mathematical expressions) 

that mysterious Kepler’s laws are actually consequences of his laws of motion.  To date, there is no 

direct evidence suggesting a failure of Newtonian dynamics in describing motions of celestial objects 

in stellar systems, although some relativistic effects may be present at the centers of galaxies [1].  

According to Newtonian dynamics, the mass of an object can be determined from its motion such as 

acceleration in a gravitational field.  If the mass distribution in a galaxy cannot be measured 

directly, it can be derived from the measured rotation curve, expressed in terms of distribution of 

objects’ orbital velocity as a function of galactocentric distance, which may require some 
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mathematical efforts but should be a theoretically rather straightforward exercise.  Such a derived 

mass distribution (from rotation curve according to Newtonian dynamics) should be considered 

reasonable as long as the value of mass does not appear against any physical laws, e.g., having a 

negative value or infinity, etc.     

 

 

 

 

 

Figure 1. Photographic images of circular thin-disk galaxies with small, amorphous, centrally located 

bulge. 

However, in recent decades we have been told (mostly by renowned astrophysicists) that about 

83% mass of our universe is made up by some type of mysterious “dark matter”, which cannot be 

detected by electromagnetic radiation or reaction in contrast to any known substances of properties 

determined by available scientific method.  The reason for the belief of existence of the dark matter 

with its mysterious properties is due to inference from its gravitational effects on “visible” matter, 

radiation, and large-scale structure of the universe [3].  Numerous articles have been published to 

investigate the elusive dark matter, with many books also written to describe such efforts [3–8].  Yet 

very few attempted to examine the validity and certainty of the claimed evidence for existence of the 

sol-called dark matter, based on scientific reasoning with rigorous logic [9].      

To understand the natural world, scientists acquire knowledge using the scientific method 

which involves observation, formulating hypotheses via induction, experimental testing with 

quantitative measurements, and refinement or elimination of the hypotheses based on the 

experimental findings.  If well supported by experimental measurements, a particular hypothesis 

may be further developed to a general theory.  By scientific reasoning we should inquire whether or 

not evidence is consistent with a claim or theory, or whether the evidence that render a claim could 

be invalid.  Therefore, the claimed existence of the (mysterious) dark matter should have been put 
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under rigorous scientific scrutiny, before making it sound like being well supported by 

observational evidence. Actually, deficient reasoning for dark matter in galaxies has been pointed 

out by examining the claimed evidence in the literature [9], though nonmainstream. 

It is understandable that as human beings, scientists can be tempted to tell the mystery of dark 

matter for being much more effective to attract press attention than simply describing the observed 

astronomical phenomena in terms of the well-known Newtonian dynamics.  When discussing the 

subject of dark matter, few authors bother to question whether the reasoning for dark matter might 

be invalid, whereas majority of “experts” would rather present strange models assuming the dark 

matter must be present.  Nowadays, the dark matter is so firmly believed to be present that the 

finding of “a galaxy lacking dark matter” can become quite a news-making story in the scientific 

community [10, 11].  Yet real scientists are expected to have the genuine passion in truth seeking.  

In what follows, we first examine the nature of astronomical measurements, and technical 

challenges as well as certainty or uncertainty associated with them.  The methods for determining 

mass of celestial objects are briefly reviewed next.  Then, mass distribution in a rotating disk galaxy, 

determined with the available measurements, is discussed with explanations based on scientific 

reasoning without dark matter.  Concluding remarks is presented in the final section.   

2. Astronomical Measurements 

The behavior of celestial objects, such as stars and galaxies, cannot be described without 

mentioning their mass, distance and velocity of movement.  It turns out that the distance between 

objects becomes the key for determining the mass and velocity of an object.  Once the distance of an 

object is measured, its variation within a given time interval determines the object’s velocity, and its 

relative position with respect to other objects can be determined. But the measurements of 

astronomical distance have been quite challenging with considerable uncertainties [9, 12].  In fact, a 

recent analysis has shown a significant difference between a previously indicated distance of 20 Mpc 

and presently determined 13 Mpc [13] (1 pc = 3.26 light-years = 3.08×1016 m).         

Space is huge, actually.  Astronomical objects are typically scattered in a vast space, separated 

by distances often measured in units of light-years (1 light-year = 9.46×1015 m, the distance for light to 

travel in 1 year in vacuum).  For example, the nearest star to our solar system is about 4.22 

light-years away.  The distance between the Sun and Earth is ~1.5×1011 m, taking about 8.3 minutes 

for light from the Sun to reach us.  Even our next-door neighbor, the Moon, is about 3.8×108 m 

away, a lot farther than most people would think.  Only objects within our own solar system can 

our present spacecraft reach.  For the most part, the cosmos is out of our reach, except light that 

travels throughout the universe can bring information about distant objects to us on the Earth.      

In astronomy, measurements are carried out almost exclusively by studying and analyzing the 

“light”, or more generally the electromagnetic radiation, emitted or absorbed or reflected or 

scattered or transmitted by remote objects such as stars, galaxies, and so forth [14, 15].  The 

emission and absorption line spectra can be used to determine the material composition, while the 

continuous thermal radiation spectrum can tell us the temperature of a remote object. The speed of a 

celestial object moving toward or away from us can be determined by the Doppler shift in the light 

spectral lines, which actually became the basis for measuring the rotation curve of galaxies.       

For stars, their (surface) temperature, luminosity, and mass are among the most important 

properties.  A star’s surface temperature can be obtained fairly easily from its thermal radiation 

spectrum or even simply its color, which is not influenced by its distance (theoretically).  But 

measurements of a star’s luminosity (the total amount of power it emits into space) from the 

apparent brightness (the brightness of a star as it appear to our eyes, or to a detector like a CCD) 

relies on the inverse square law for light which directly uses its distance from us.  Thus, to 

determine the distance of a star becomes the key to determine its luminosity.   

The most direct way to measure a star’s distance is by stellar parallax, which uses the angle due 

to annual shift of its position relative to distant background stars, as Earth moves from one side of its 

orbit to the other, to determine its distance.  This is why the parsec or pc (corresponding to 

PARallax of one arcSECond”)—a measure of tiny angles in the stellar sphere—becomes the 
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preferred distance unit for astronomers in professional literature.  Parallaxes may provide us 

distances to stars up to a few thousand light years away, i.e., in the solar neighborhood.  But even 

the nearest galaxies and galaxy clusters are millions of light-years away, too far for measurements by 

just using parallax.  So, a system called the cosmic distance ladder has been created based on 

overlapping methods to calculate successively farther distances [12].   

Larger distances rely on the so-called standard candle as well as a technique known as the 

main-sequence fitting to estimate, based on assumptions over assumptions [12, 14, 15].  Yet no 

astronomical object is a perfect standard candle; the challenge of finding the objects that can serve as 

the standard candles leads to the challenge of measuring large astronomical distances.  In short, 

uncertainties in astronomical distances can be significant [9], as may not even be easily quantified 

due to multiple steps of overlapping, each brings in its own uncertainties.  

The distance of an astronomical object seems to be difficult to determine, yet it plays the key 

role in calculating the object’s mass from the known physical laws.  In other words, masses of 

astronomical objects cannot be determined without knowing the relative distances among them.   

3. Mass Determined by Newtonian Dynamics—“Gravitational Mass” 

Once the relative distance and velocity of motion of objects are known from measurements, 

each object’s mass may be determined from Newton’s laws.  If we believe the forces among celestial 

objects are of gravitational nature (according to Newton’s universal law of gravitation), the 

gravitational field of an object (which is proportional to its mass) can be determined by measuring 

the acceleration of a small nearby “test object”.  Then the object’s mass can be determined from its 

gravitational field.  For example, the Sun’s mass can be determined using the Earth as a test object 

(which has a negligible mass comparing to that of the Sun) by applying the formula of Newton’s 

version of Kepler’s third law, with the measured average distance between the Earth and the Sun, a 

(≈ 1.5×1011 m) and the Earth’s orbital period, p ((≈ 3.15×107 s, i.e., 1 year) [14, 15].  In other words, 

having centripetal acceleration of the Earth,  

 

 , (1) 

 

equal to the gravitational field of the Sun, 

 

 , (2) 

 

where G (= 6.67×1011 m3 kg-1 s-2) is the gravitational constant and Msun the Sun’s mass, yields the value 

of Msun ≈ 2.0×1030 kg (= 1 solar mass M⊙). Here V denotes the Earth’s (or the test object’s) orbital 

velocity.  

By the same token, stellar masses in a binary star system—consisting of two gravitationally 

bound stars orbiting around a common center of mass—can, in principle, also be determined with 

known separation a or orbital velocity V and orbital period p based on the theory of Newtonian 

dynamics for a two-body problem.  It has been shown that the two-body problem can be treated as 

an equivalent one-body problem in which the reduced mass m = m1 m2 / (m1 + m2) is orbiting about a 

fixed mass M = m1 + m2 at a distance a = a1 + a2 where the subscripts “1” and “2” denotes the masses 

and radii of the star “1” and star “2” [16].  In fact, the value of Msun determined from an equation of 

(1) = (2) is actually reduced from the solution for two-body Kepler’s problem to an extreme case 

when m1 >> m2 such that m  0, a1  0, and M  m1 (= Msun or 1.0 M⊙).  Thus, the value of M (= m1 

+ m2) in a binary star systems can be determined.  With the known M, the values of m1 and m2 can be 

determined from the relationship of m2 / m1 = a1 / a2 = v1 / v2 (where v1 and v2 are the orbital velocities 

of the two stars) derived from the two-body problem.  In reality, the distances a1 and a2 are not easy 
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to determine accurately.  Instead, the values of v1 and v2 can be measured much more reliably based 

on the measured Doppler shifts, especially for the so-called “eclipsing binaries” with their orbit 

planes lying very close in the line of sight [14, 15]. 

In a galaxy, a large number (105 – 1012) of stars, with an interstellar medium of gas and cosmic 

dust, among others, are distributed in an extensive space such as a thin disk of radius about 10 kpc 

(or 3.09×1020 m).  Simply adding the “point mass” fields of such a distributed stellar system with 

~1011 stars is impractical to compute the gravitational field in a typical galaxy.  So, it becomes a 

common practice, for most purposes, to model the gravitational field or potential “by smoothing the 

mass density in stars on a scale that is small compared to the size of the galaxy, but large compared 

to the mean distance between stars” [1], i.e., to treat the distributed mass system as a continuum, as a 

reasonable approximation.  

Observations have shown that many astronomical systems, such as planetary systems, 

planetary rings, accretion disks, spiral galaxies, etc., appear flat (cf. Figure 1) for a basic reason of the 

state with lowest energy in a flat disk perpendicular to an axis along which a distribution of angular 

momentum is given for a system of constant mass [1]. Therefore, it may not be unreasonable to 

approximately consider a galaxy as an axisymmetric rotating thin disk, shown in Figure 2, consisting 

of distributed self-gravitating mass (as a function of the galactocentric distance r) in balance with 

distributed centrifugal force due to distributed circular orbital velocity (as a function of r).  Over 

years, various mathematical methods have been developed for deducing the mass distribution from 

the measured rotation curve with the axisymmetric thin-disk model at mechanical equilibrium [1, 

17], each with its own pros and cons.  Here a numerical method by Gallo and Feng [18—21] is 

briefly described, without loss of generality. 

 

 

 

Figure 2. Definition sketch of the rotating thin-disk galaxy model, where the mass is assumed to 

distribute axisymmetrically in the circular disk of uniform thickness h with a variable density  and 

rotation velocity V as functions of the radial distance from galactic center r (but independent of the 

polar angle ). 

At any point in a rotating axisymmetric disk galaxy with negligible disk thickness effect, the 

centripetal acceleration of (related to the centrifugal force on) a test object, 

 

 , (3) 

 

is expected to be equal to the gravitational field from the distributed mass in the entire disk, 

 

 , (4) 
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where Rg denotes the galactic radius (or the galactocentric distance of the galaxy edge), Mg the total 

mass of the galaxy, and V0 the characteristic rotation velocity.  All the variables in (3) and (4) are 

made dimensionless by measuring length in units of the galactic radius Rg , mass density  in units of 

Mg / Rg3 , and rotation velocity in units of V0 , with the disk thickness h assumed to be constant.   

It is noteworthy that equating (3) and (4) has the exactly same physical meaning as equating (1) 

and (2), as the force balance equation for determining the rotation velocity from a known 

gravitational field source—the amount of mass or mass distribution, or vice versa.  For example, the 

Sun’s mass can be determined from the known Earth’s orbital velocity as shown with equating (1) 

and (2).  Similarly, when the galactic rotation curve V(r) is available from measurements, the mass 

distribution (r) can be determined by solving the force balance equation from equating (3) and (4), 

which will involve some mathematical manipulations.    

Among many different approaches to solution of the force balance equation (3) = (4), Gallo and 

Feng [18 – 21] showed that with slight algebraic arrangements an equation can be obtained of the 

form 

 

 , (5) 

 

where K(m) and E(m) denote the complete elliptic integrals of the first kind and second kind, with  

 

 .  

 

The dimensionless parameter A in (5), called the galactic rotation parameter, is defined as  

 

 , (6) 

 

which can be determined by introducing a constraint equation for mass conservation,   

 

  . (7) 

 

Equations (5) and (7) can be discretized by dividing the problem domain 0 ≤ r ≤ 1 into a large 

number, e.g., N – 1, of small line segments called (linear) elements, leading to a linear algebraic 

problem in the matrix-vector form, for solving N nodal values of  plus A in (6) with N equations for 

individual nodes from (5) and an equation based on (7), with known V(r) [18 – 21].  Conversely, the 

same matrix-vector equation can also be used for calculating the rotation curve V(r) if the mass 

distribution (r) is known.  Some people would call solving (r) from known V(r) the inverse 

problem, because it involves inversion of the matrix, whereas solving V(r) from a known (r) the 

forward problem, as it is relatively straightforward.  The matrix-vector approach described here as 

well as the implemented computational code was validated by producing the same results as the 

known analytical solutions for the Mestel disk and Freeman disk [20].  It also yielded mass 

distribution for NGC 4736 based on measured rotation curves, comparable to that obtained using an 

iterative spectral method with Bessel functions by other authors [21].  Similar results from the 

equation of (3) = (4) were also shown with a model using lognormal mass distribution function [22]. 

By adding a spherical core at the galactic center, as can easily be implemented with this 

matrix-vector approach, mass distribution can be computed without central singular mass density 

for rotation curves with nonzero velocity at r = 0 [21].  Thus, the mass distribution (r) (actually the 
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surface mass distribution [(r) h]) can be determined for any galaxy from its measured rotation curve 

V(r), according to Newtonian dynamics.     

Since the rotation curve in a spiral galaxy can be measured with reasonable certainty [23], it has 

been accepted to provide the most reliable means for determining the distribution of gravitating 

matter therein [17].  However, a rotation curve of V(r) implies axisymmetry and zero thickness and 

is at best a piece of approximate information about the behavior of a rotating thin-disk galaxy, which 

is usually not exactly axisymmetric with detailed asymmetric structures such as spiral arms.  

Hence, the mass distribution (r) determined from a rotation curve V(r) with a thin-disk model 

provides the value only in a sense of averaging over the ring of radius r which may not be the same 

as the local mass density at a specific position on this very ring.  The galaxies, though appearing like 

a thin disk, also have “vertical” structures across the visible thickness.  Therefore, taking the 

predicted mass density with an axisymmetric thin-disk model out of context to compare some 

measured value at a specific location inside a galaxy (e.g., the solar neighborhood in the Milky Way) 

could naturally lead to substantial discrepancy.  If splitting hairs with such an expected 

discrepancy to discredit the thin-disk model, the outcomes can be confusing with technically 

immature arguments.  Only with a thorough understanding of the assumptions and approximate 

nature in using the rotation curve to determine mass distribution in a disk galaxy, can the model 

results be interpreted correctly for enhancing scientific knowledge. 

The computational results based on measured rotation curves for many galaxies of various 

types had shown more or less exponential decrease of (surface) mass density with galactocentric 

distance, i.e., the computed  verses r in a log-linear plots appear to be nearly straight lines with 

negative slopes, for most part [18 – 21].  Hence, the “gravitational mass”—determined from rotation 

curves--distributions in disk galaxies qualitatively agree with the measured radial distributions of 

surface brightness for a large number of disk galaxies [24 – 26].      

4. Mass Determined by Mass-to-Light Ratio—“Luminous Mass” 

Astronomical measurements rely on the analysis of signals carried by electromagnetic waves, 

or the “light”.  Considerably efforts have been made in correlating the light signal to characteristic 

physical properties of stars and galaxies.  Anything that may be derived from the light signal are 

taken seriously and used for describing the behavior of celestial objects.  

For example, the stellar (gravitational) mass M determined from binary stars has become the 

key component for establishing the so-called “mass-to-light” ratio M / L, by correlating the 

luminosity L of stars to their masses.  As the apparent brightness of a star is measured from a 

detector, it is expected to relate to the star’s luminosity and distance based on the inverse square law.  

With the given luminosity L and (surface) temperature T determined from its thermal radiation 

spectrum (based on Stefan-Boltzmann law and Wien’s displacement law), the surface area and size 

(i.e., the radius R) of a star may be calculated from the relationship [1, 14, 15]  

 

 , (8) 

 

where  = 5.67×1028 W m-2 K-4 is the Stefan-Boltzmann constant for black-body radiation.   

With the measured stellar properties (from nearby stars in the solar neighborhood), 

Hertzsprung and Russelll independently developed a stellar classification system by plotting 

luminosities versus surface temperatures—now called Hertzsprung-Russell (H-R) diagram or the 

color-magnitude diagram.  This kind diagram has become “the primary point of contact between 

observations and the theory of stellar structure and evolution” [1].  Most stars, including our Sun, 

fall somewhere along the streak from the upper left (high luminosity and temperature corner) to the 

lower right (low luminosity and temperature corner) on the H-R diagram; they are called the 

main-sequence stars.  There are also larger and brighter stars located above those of the main 

sequence, called giants and supergiants, whereas smaller high temperature stars, located below 

those of the main sequence, are called white dwarfs, because they appear white in color.  All stars 
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along the main sequence are fusing hydrogen into helium in their cores, like the Sun.  However, the 

main sequence stars differ in surface temperature and luminosity because the rate of hydrogen 

fusion depends strongly on the stellar mass, i.e., a star with more massive outer layer must sustain a 

higher nuclear fusion rate in order to maintain gravitational equilibrium.  When astronomers 

measured the masses of main-sequence stars in binary star systems, they found that a star’s position 

along the main sequence is very closely related to its mass [14, 15].  For stars with both mass and 

luminosity determined, the values of their stellar mass-to-light ratio M / L become known, which 

may be used for estimating the masses of similar stars either not belonging to the binary systems or 

being too remote to measure directly.  

Surface photometry—a technique to measure the surface brightness distribution of extended 

objects, such as galaxies—has shown that galaxies typically have luminosity profiles decreasing 

approximately as an exponential function of the galactocentric distance r [24 – 26].  Some authors 

simply assumed same exponential function for the surface mass density distribution, implying an 

assumption of constant M / L [24] for deriving the “luminous mass”.    

But among all the observable galaxies, individual stars can only be observed in the few closest 

ones.  A galaxy is a composite of millions and millions of stars of differing ages and masses over a 

wide spectrum.  To evaluate the overall mass-to-light ratio of a galaxy involves, its stellar 

population must be studied with stellar population synthesis modeling, etc.  Such a challenging 

sophisticated endeavor with severely limited means of direct observation and measurements is 

expected to lead to results of questionable certainties.  Nonetheless, luminous masses from 

observed brightness based on estimated mass-to-light ratios have been taken so seriously with 

overwhelming confidence that their apparent difference from the gravitational masses (determined 

from rotation curves) became the primary evidence for dark matter in galaxies [3–8].  

5. Galaxy Rotation Curves Described without Dark Matter 

Celestial objects cannot be brought to the Earth and weighed on a balance to measure their 

masses.  But their motion can be observed with movement velocity measured from the Doppler 

shift of their light spectral lines.  The motions of astronomical objects are believed as their responses 

to the gravitational interactions, according to Newtonian dynamics [1, 14, 15] (as had been tested 

and confirmed numerous times over hundreds of years).  

Newton’s laws of motion describe the relationship among force, acceleration and mass.  

Newton’s law of universal gravitation relates the gravitational force to the distribution of masses 

and relative positions of interacting objects.  Once the masses and relative positions of interacting 

celestial objects are known, the gravitational force on each of them and their motions (in terms of 

velocity, acceleration) can be determined.  Conversely, their masses can be determined from their 

relative positions and motions, if made available by measurements.   

For example, the mathematical form of Newtonian dynamics for a rotating thin disk galaxy of 

gravitationally bound objects, e.g., stars, gases, dust, etc., can be expressed (approximately by 

assuming the axisymmetry) as (3) equal to (4), relating the mass distribution (r) to measured 

rotation curve V(r).  Thus, the rotation curve V(r) can be determined if mass distribution (r) is 

known, by calculating the integral in (4); conversely, (r) in (4) can be determined from the known 

V(r) in (3), which usually takes more mathematical effort though. As a matter of fact, various 

methods for solving (r) or [(r) h] from the known V(r) have been developed by different authors, 

with pros and cons pointed out and discussed from various perspectives [1, 17 – 22]. Despite the 

apparent differences in calculation procedures among different authors, the end results should be 

the same theoretically because the solution to equation (3) = (4) is unique due to its linear nature.   

With available modern technologies, the rotation curves have been measured for many (disk) 

galaxies [23].  Using a measured rotation curve V(r), the calculated surface mass density [(r) h], 

e.g., by solving the linear algebra matrix problem based on (5) and (7), appears to decrease linearly in 

the log-linear plot excluding the small regions around the galactic center and disk edge (where the 

measured rotation curve terminates), for various galaxies [20, 21].  This indicates that the surface 

mass density in a thin-disk galaxy declines exponentially with the galactocentric distance, in general, 
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as consistent with what have been measured by surface photometry for surface brightness profiles of 

many galaxies [24—26], qualitatively at least.  Because the galactic rotation parameter A, defined in 

(6), is also determined as part of the solution to the linear algebra problem based on (5) and (7), the 

total mass of Mg can be calculated from the predicted value of A as Mg = V0 2 Rg / (G A).  For example, 

the Milky Way total mass is determined as 1.41×1011 M⊙ from predicted A = 1.6365 with V0 = 220 km/s 

and Rg = 20.55 kpc [21], very close to the Milky Way star counts of about 100 billion [1, 27].  The 

numerical approach for solving (5) and (7) can also account for the effect of a spherical bulge at 

galactic center with slight mathematical manipulation [21], with results illustrated in Figure 3 for the 

Milky Way.  It has been shown that even for a bulge of mass as large as 7.57×1010 M⊙ , the Milky 

Way total mass would only change to 1.52×1011 M⊙ (i.e., a less than 8% increase [21]).  The total mass 

of the Andromeda (NGC 224) can also be calculated as 2.76×1011 M⊙ from A = 1.6450 with V0 = 250 

km/s and Rg = 31.25 kpc [21], about twice that of the Milky Way, as commonly being anticipated.   

 

 

 

Figure 3. Profiles of the Milky Way rotation velocity V(r) and mass density (r) for the disk portion 

and bulge portion as noted with the thick line as a reference from the pure disk model without a 

bulge (taken from Figure 7 of Ref. [21]).  Noteworthy here is that the portion of mass density profile 

(shown with the thick line, as roughly a combined mass density profile from both disk and bulge) for 

r in the interval [0.1, 0.9] appears nearly linear in the semi-log plot, indicating an approximately 

exponential decline of mass density with galactocentric distance. 

 

However, if the mass distribution is assumed to follow exactly that of surface luminosity by a 

constant mass-to-light ratio, the surface mass density [(r) h] becomes known and the predicted 

rotation curve V(r) determined from the equation of (3) = (4) might not match the measured one.  

The mass converted from the mass-to-light ratio is usually found to decrease at a higher rate with 

galactocentric distance than that determined from rotation curve [20].  Such an apparent 

discrepancy has been called the “galactic rotation problem”, as a subject for various scientific 

interpretations.  Most astronomers and astrophysicists would take this as a “compelling evidence” 

for (nonbaryonic) dark matter in galaxies [3—8].  Only a few authors would want to consider 

uncertainties in mass-to-light ratio as well as generally questionable accuracy in astronomical 

measurements, as the root cause [9].  Recently, the notion of nonbaryonic dark matter has also been 

challenged from the perspective of dynamical evolution of galaxies [28].        

First of all, the values of stellar mass-to-light ratio, as determined from measurements, can vary 

substantially depending upon the nature of light emitting objects (as shown by the H-R diagram for 

stars [14, 15]).  For galaxies, Tully and Fisher [29] proposed an empirical relation between (intrinsic) 

luminosity and (maximum) rotation velocity (inferred from the “hydrogen profile width”), which 
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might be used for estimating galaxy (total) mass from measured rotation velocity with a 

mass-to-light ratio.  However, the luminosity was subsequently shown not to be a perfect predictor 

of mass, as the stellar mass-to-light ratio can vary with galaxy type and the Tully-Fisher relation can 

have different slopes depending on the luminosity bandpass [30—33]. 

Galaxies are known to contain matters other than stars.  For example, the rotation curves 

measured with the 21 cm wavelength signals emitted from atomic hydrogen (H I) extends far 

beyond the starlight in galaxies, indicating certain amount of H I exists at least as far as where the 

rotation curve can be measured.  Actually, HI may not be considered as totally dark; it is luminous 

at the 21 cm wavelength (in a different photometric bandpass from that of stars), which could be 

detected for estimating its mass.  In fact, the “column” mass density of atomic hydrogen had been 

estimated using emission in the 21-cm line in terms of integral of the brightness temperature over the 

velocity width of the line, suggesting an atomic hydrogen number density of order 1 cm-3 in the 

galactic plane [34, 35], seemingly without an independent method to check and confirm.  There are 

also hydrogen molecules (as molecular hydrogen) found in molecular clouds and in the Interstellar 

Medium (ISM), which appear to be literally dark when cold as majority of them are (e.g., around 

10-20K [36, 37]).  The amount of “dark” hydrogen molecules could only be estimated by assuming a 

constant ratio from the luminosity of carbon monoxide, with unknown uncertainties, of course.  

Therefore, estimating mass in a galaxy simply based on a constant mass-to-light ratio can be 

seriously flawed, though convenient.  

Some authors would like to use multicomponent models, composed of a bulge, a disk, and a 

(dark matter) halo extending to a very large virial radius, for estimate of galaxy mass [38, 39].  

While the central bulge and circular disk are commonly observed, visible in photographic images of 

galaxies [1], whether there should be a dark matter halo has been a debatable subject [9].  Even to 

this day, “the shape of dark matter halos remains a mystery” [7].  In fact, it was stated in a recent 

report that the Milky Way “mass estimates can vary markedly based on the types of data used, the 

techniques used, and the assumptions that go into the mass estimate …” [39].  Nevertheless, a value 

of the Milky Way (MW) mass could be derived as ~1.5×1012 M⊙ from an assumed composition of a 

nucleus, bulge, disk, and a halo of a virial radius over 200 kpc [39].  Interestingly, the mass within 

21.5 kpc (where the Gaia rotation curve terminates) was estimated about 2.1×1011 M⊙ [39], quite 

comparable to 1.52×1011 M⊙ or 1.41×1011 M⊙ with or without a central bulge as numerically 

determined from a measured rotation curve up to 20.55 kpc [21]. 

In fact, the mass in a galaxy determined from measured rotation curve, according to Newtonian 

dynamics, seems to be fairly consistent regardless of the sources of rotation curve measurement 

data, which could vary somewhat.  Further calculation shows that the predicted surface mass 

density in the solar neighborhood around 8 kpc should be ~144 M⊙ / pc2 using a pure disk model or 

~74 M⊙ / pc2 when a sizable bulge is included in the computation [21].  As a reference, the current 

textbook value of surface mass density for solar neighborhood is ~49 M⊙ / pc2 based on estimates 

from observations [1].  In view the fact that an axisymmetric disk model describes a surface mass 

density only meaningful in terms of averaging over the entire circular ring of radius ~8 kpc, while 

the local mass density is actually expected to vary significantly along the ring (as shown in the 

photographic images), shouldn’t we consider the Newtonian dynamic model to be reasonably 

accurate?  Moreover, a surface mass density of 100 M⊙ / pc2 in the Milky Way model [21] 

corresponds to equivalently ~20 hydrogen atoms per cm3 for a disk thickness of 200 pc [9], extremely 

tenuous by the terrestrial standards and well within the reported range of estimated gas density in 

the Interstellar Medium [1, 40].  If the typical density of cold molecular clouds to enable star 

formation ranges from 102 to 106 molecules per cm3 [40], it is not difficult to realize the possible 

magnitude of variations in mass density just within a ring containing the solar neighborhood.   

Thus, the measured galactic rotation curves generally coincide with exponentially declining 

mass density (distributed in thin disk) with increasing galactocentric distance, according to 

Newtonian dynamics.  The assumption of mass distribution mostly in a circular thin disk comes 

from the optical images of disk shaped galaxies, based on a belief that luminosity correlates to mass, 
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somewhat roughly if not exactly.  The total mass in a rotating disk galaxy, determined from 

measured rotation curve according to Newtonian dynamics, appears to match the star counts 

reasonably well (at least for the Milky Way).  Adding a spherical central bulge with substantial 

amount of mass to the thin-disk model may only change the total mass by a few percent, but can 

have noticeable effect on local mass density in the solar neighborhood [21].  A recent examination of 

a large number of galaxies yielded a universal fitting formula with one fit parameter—the 

“acceleration scale”—to relate observed radial (centripetal) acceleration (as determined from 

rotation curves) to that from the “baryons” (i.e., that determined from measured luminosity profile 

with an assumed constant mass-to-light ratio) [41].  While a popular interpretation of this finding 

had attributed the difference between the observed radial acceleration and that due to the baryons to 

the non-baryonic dark matter [41], it could also be much more straightforwardly explained by 

having a non-constant, variable mass-to-light ratio as function of galactocentric distance [9], possibly 

with one fit parameter.  By virtue of scientific intuition about distributed matters, it is actually 

natural to expect the mass-to-light ratio, if meaningful at all, to be a non-constant variable in 

different regions of a galaxy.  Then, the value of total mass associated with the mass distribution 

corresponding to measured rotation curve, with or without a central bulge being accounted for, 

seems also to be consistent with astronomical observations and well-established Newtonian 

dynamics.  In other words, galaxy rotation curves can be supported with reasonable amount of 

mass (consistent with star counts) according to Newtonian dynamics, without involving mysterious 

non-baryonic dark matter or modification of the known laws of Newtonian dynamics.   

6. Concluding Remarks 

Scientific method involves observation, formulating hypotheses via induction, experimental 

testing with quantitative measurements, and refinement or elimination of the hypotheses based on 

the experimental findings.  Numerous astronomical observations have shown spiral galaxies 

exhibiting the common configuration of a bright circular disk with a relatively small central bulge 

(cf. Figure 1), suggesting that mass therein would likely distribute in a similar configuration.  

Further measurements have indicated that matters in those disk galaxies are generally moving in 

circular orbits in the disk, with quantified description known as the rotation curves (with the circular 

orbital velocity given as a function of galactrocentric distance).  From well-established Newtonian 

dynamics, matters moving in circular orbits are expected to have their centripetal acceleration 

balanced by the gravitational force of distributed mass.  Then a logically induced model for 

theoretical understanding could consist of an approximate axisymmetric disk, with or without a 

central bulge, wherein the mass distribution and measured rotation curve are consistent with 

Newtonian dynamics, as that determined by solving the (3) = (4) equation.  

Astronomical measurements are generally challenging for accuracy due to limited means with 

obvious difficulties.  Most quantities cannot be measured directly, but must be inferred via 

assumptions over assumptions with raw data presented in graphs often scattering over orders of 

magnitude for an anticipated point. Although the efforts in searching for independent test of theory 

should not be discouraged, findings of quantitative discrepancies between observational data and 

theoretical prediction ought to stimulate serious interrogations of both the measurement accuracy 

and simplifying assumptions in theoretical calculations.   

In the case of galactic rotation, the surface mass density determined from measured rotation 

curve exhibits an exponential-like decline with the galactocentric distance (for the most part) similar 

to that based on observed luminosity.  The overall amount of mass consistent with the rotation 

curve matches the known star counts.  An apparent discrepancy (e.g., in regard to local mass 

density in the solar neighborhood) appears to be within a factor of two to three, while in general the 

uncertainties in astronomical measurements have not been clearly quantified and could become well 

over an order of magnitude.  On the other hand, the rotation curve itself is not error free with 

implication of axisymmetry in the galactic disk, which can only be an approximation at best.  

Therefore, the predicted mass distribution based on Newtonian dynamics using measured rotation 

curve cannot be an exact prediction, especially for the asymmetric features such as bars and spiral 
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arms, not because of any fundamental shortcomings in Newtonian dynamics but rather due to 

limited means for accurate, comprehensive measurements.  By examining the historical evidence 

with scientific logic, the so-called “galactic rotation problem” becomes very likely a consequence of 

misinterpreted measurement data with underestimated intrinsic uncertainties and misunderstood 

theoretical description, rather than an indication of mysterious dark matter.  
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