Comparative health-related fatty acid profiles, atherogenicity and desaturase indices of marula seed cake products from South Africa and Eswatini

Doctor M.N. Mthiyane¹,*, Arno Hugo²

¹ Department of Animal Science, School of Agricultural Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, 2735, South Africa; Doc.Mthiyane@nwu.ac.za

² Department of Microbial, Biochemical and Food Biotechnology, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9300, South Africa; HugoA@ufs.ac.za

*Correspondence: kakade2000@gmail.com; Tel.: +27 67 33 289 33 (mobile)

Abstract

Marula seed cake (MSC) is a nutritionally-rich natural feed resource that can enhance the healthiness of animal-derived foods (ADFs) for human consumption. This study compared the health-related fatty acid (FA) profiles of MSC products from South Africa and Eswatini. Composite samples monthly collected from both countries were analysed for FAs. MSC products from both countries were found to be dominated by oleic acid (>70%), followed by palmitic, linoleic and stearic acids. Consequently, both products had their FA totals dominated by ΣMUFA followed by ΣSFA, ΣPUFA, Σn-6 PUFA and Σn-3 PUFA. Both oleic and stearic...
acids were higher (P < 0.01) whilst linoleic (P < 0.001), α-linolenic (P < 0.05), margaric (P < 0.05), palmitoleic (P < 0.05) and eicosatrienoic (P < 0.05) acids were lower in South African in comparison to Eswatini MSC. Consequently, South African MSC had higher ΣMUFA (P < 0.01) but lower ΣPUFA (P < 0.001), Σn-6 PUFA (P < 0.001) and Σn-3 PUFA (P < 0.05). Also, Eswatini MSC had higher n-6 : n-3 PUFA, PUFA : SFA (P = 0.001) and PUFA : MUFA (P < 0.05) ratios. Further, MSC products from both countries had similarly (P > 0.05) low atherogenicity and high desaturase indices. In conclusion, both country products are rich particularly in oleic acid and their incorporation into farm animal diets would increase content of the MUFA in ADFs and, consequently, improve health benefits to human consumers.

Keywords: marula, seed (kernel) cake, fatty acids, fatty acid totals, fatty acid ratios, atherogenicity and desaturase indices

1. Introduction

One major challenge facing the world particularly in Africa is massive human population growth at a rate that surpasses the capacity to produce sufficient food to nourish the growing masses. The global human population is forecast to surpass 9 billion by 2050, necessitating >50% increase in food productivity [1]. Apart from plants (crops), animal-derived foods (ADFs) represent the major source of nutrition to the ever growing human populations and constitute a significant portion of current national diets in Africa and globally [2, 3]. For example, from 2003 to 2015 the South African per capita consumption of total meats (including beef, pork, veal, lamb, poultry, fish, and shellfish) and milk increased by 54.4% to 66.83 kg/year [4].

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 November 2019
However, the healthiness and nutritional quality of ADFs is compromised by the feedstuffs that are fed to animals on farms. In an attempt to enhance animal productivity, reduce feed costs and increase profits, industrialized livestock and poultry producers incorporate in their animal diets a myriad of unnatural and sometimes ethically questionable feedstuffs that raise concerns for public health. These include rendered animal products, animal wastes such as chicken (broiler) litter and manure, rumen contents, hormones, antibiotics, organo-arsenicals and others [5 – 7]. Incorporation of these ingredients into animal feeds can result in the presence of a range of biological, chemical, and other etiologic agents in feed that can affect the quality and safety of ADFs and pose potential risks to human health [8, 9]. Indeed, a growing body of evidence shows that the use of such unnatural feed resources as animal feed is detrimental to the health and wellbeing of human consumers [6, 10, 11] and may underlie the rapid proliferation of the so-called lifestyle diseases of Western civilization such as cardiovascular disease (CVD), diabetes, cancer, stroke and others [12, 13]. This may explain the significant decline in the demand for certain traditional types of meat such as beef and mutton over the last few decades, as perceived health concerns surrounding red meat consumption increase [14, 15].

In contrast, use of natural plant-based feedstuffs and oils results in production of ADFs that are healthy for human consumption. Many studies have demonstrated that use of such natural feed resources enhances the healthiness of ADFs by altering their fatty acid (FA) composition away from the saturated (SFA) towards the unsaturated –MUFA and PUFA – profile and lower n-6 : n-3 PUFA ratios [16 – 19]. Also, supplementation of beef cattle diets with the leaf meal of *Melia azedarach* in replacement of broiler litter, *inter alia*, increased beef kidney fat α-linoleic acid (n-3), conjugated linoleic acid (CLA) and Σn-3 PUFA whilst it decreased the n-6 : n-3 PUFA ratio [20]. Meat with high levels of n-3 PUFAs and CLA, as well as a low n-6 : n-3 PUFA ratio (optimal values ≤ 4), is said to decrease the risk of cardiovascular disease and other
chronic disorders [21]. There is therefore a need for a paradigm shift in the way farm animals are fed towards use of natural feedstuffs that are not only healthy to them but to human consumers as well [22].

The MSC is a by-product of oil extraction from the kernels (nuts) of the ripe fruit seeds of marula (Sclerocarya birrea A. Rich.), an indigenous fruit tree distributed throughout most of sub-Saharan Africa from 17° 15’ N in the Aïr Mountains of Niger to 31° 00’ S near Port Shepstone in South Africa [23, 24]. It is commercially produced by several small-scale firms in South Africa and Eswatini [25, 20] and is used by local people as animal feed and human food, particularly snacks. It is a novel locally available alternative protein supplement (CP: 470 g/kg DM) for beef and dairy cattle [26, 27], goats [28], sheep [25] and poultry [20, 29]. Of particular interest, MSC is naturally endowed with a highly desirable FA composition that can enormously enhance the oxidative stability and healthiness of ADFs for human consumption. In this regard, its abundant residual oil (EE: 343.5 – 411.32 g/kg DM) has an extremely high content of oleic acid (74% – 85%) [20, 30], a hypo-cholesterolemic [31, 32], anti-atherosclerotic and anti-diabetic [33 – 36] MUFA with an extremely high oxidative stability that is 10x more than that of olive oil [37 – 39]. The oil’s remarkable oxidative stability has long been exploited in Africa, especially for meat preservation [40]. Also, the oil in MSC contains some essential FAs (EFAs) linoleic and α-linolenic acids whose dietary incorporation into ADFs would help in the fight against human illnesses like rheumatoid arthritis [41] and diabetics [42]. Therefore, incorporation of MSC into animal diets in Southern African where this product is produced would not only supply much needed protein, energy and other nutrients, but would also enhance the shelf-life and health status of meat and other ADFs that would, consequently, improve health benefits to human consumers. However, in light of the high phenotypic variation in nut and kernel traits [43] as well as intra-population genetic diversity
among *S. birrea* populations [44], we hypothesized that there would also be significant differences in the FA composition and healthiness of MSC from different regions in Southern Africa. The objective of this study was therefore to compare the FA composition of MSC products produced in South Africa and Eswatini.

2. Materials and methods

Samples (1 kg) of MSC were monthly collected between March and June 2018 from Marula Oil Production (MOP) Cooperative in Bushbuckridge (Limpopo province, South Africa) and from Swazi Secrets in the Lubombo region of Eswatini (formerly Swaziland). The samples were kept in polyethylene bags pending analysis. After the last sampling in June, a composite sample was prepared for each country and submitted for FA analysis at the Lipid Chemistry Laboratory of the Department of Microbial, Biochemical and Food Biotechnology at the University of the Free State.

Total lipid from MSC was quantitatively extracted according to the method of Folch *et al.* [45], using chloroform and methanol in a ratio of 2:1. An antioxidant, butylated hydroxytoluene was added at a concentration of 0.001 % to the chloroform: methanol mixture. A rotary evaporator was used to dry the fat extracts under vacuum and the extracts were dried overnight in a vacuum oven at 50 °C, using phosphorus pentoxide as a moisture adsorbent. Total extractable MSC fat was determined gravimetrically from the extracted fat and expressed as % fat (w/w) per 100 g sample. The extracted fat was stored in a polytop (glass vial, with push-in top) under a blanket of nitrogen and frozen at −20 °C pending FA analyses.

A lipid aliquot (±30 mg) of sausage batter lipid were converted to methyl esters by base-catalysed trans-esterification in order to avoid CLA isomerisation, with sodium methoxide (0.5
M solution in anhydrous methanol) during 2 h at 30 °C, as proposed by Park et al. [46], Kramer et al. [47] and Alfaia et al. [48]. Fatty acid methyl esters (FAMEs) from sausage batter lipid were quantified using a Varian 430 flame ionization GC, with a fused silica capillary column, Chrompack CPSIL 88 (100 m length, 0.25 mm ID, 0.2 μm film thicknesses). Analysis was performed using an initial isothermic period (40 °C for 2 minutes). Thereafter, temperature was increased at a rate of 4 °C / minute to 230 °C. Finally an isothermic period of 230 °C for 10 minutes followed. FAMEs n-hexane (1μl) was injected into the column using a Varian CP 8400 Autosampler. The injection port and detector were both maintained at 250 °C. Hydrogen, at 45 psi, functioned as the carrier gas, while nitrogen was employed as the makeup gas. Galaxy Chromatography Data System Software recorded the chromatograms.

FAME samples were identified by comparing the retention times of FAME peaks from samples with those of standards obtained from Supelco (Supelco 37 Component Fame Mix 47885-U, Sigma-Aldrich Aston Manor, Pretoria, South Africa). CLA standards were obtained from Matreya Inc. (Pleasant Gap, Unites States). These standards included: cis-9, trans-11 and trans-10, cis-12-18:2 isomers.

FAs were expressed as the proportion of each individual FA to the total of all FAs present in the sample. FA data were used to calculate the following ratios of FAs: ΣSFAs, ΣMUFAs, ΣPUFAs, PUFA/SFA, Δ⁹-desaturase index (DI) (C18:1c9 / C18:0), Σn-6 PUFA, Σn-3 PUFA, and the n-6 : n-3 PUFA ratio. Atherogenicity index (AI) was calculated as: AI = (C12:0 + 4 x C14:0 + C16:0) / (MUFA + PUFA) [49].

2.1 Statistics
Results are reported as means ± standard deviation (n = 2). Non-detected FAs were considered as 0 value for statistical analysis. Normal distribution was checked for all data with the one-sample Kolmogorov–Smirnoff test and homogeneity of variances with the Levene test. Differences between pairs of means were tested using Student's t-test. In all tests used, statistical significance was accepted at P < 0.05 level of probability. All statistical analysis were carried out using the Minitab [50] package.

3. Results and Discussion

Our data showed oleic acid to be the predominant FA species in oil from MSC from both South Africa (74.4%) and Eswatini (72.0%) (Table 1). Consequently, the FA totals of oil from MSC from both countries were respectively dominated by the \(\Sigma \text{MUFA} \) (74.5% and 72.2%) (Table 2). Oleic acid was, respectively, followed by palmitic (11.3% vs. 11.7%), LA (6.7% vs. 8.7%) and stearic (6.3% vs. 6.0%) acids. Evidently due to appreciable amounts of palmitic and stearic acids, the oil in MSC products from both countries had cumulatively large amounts of \(\Sigma \text{SFA} \) (South Africa: 18.4% and Eswatini: 18.6%). These findings corroborate previous studies in South Africa [30, 51 – 53], Eswatini [20], Botswana [54], Namibia [55], Niger [38], Ethiopia [56], Sudan [57] and Zimbabwe [58], which found a preponderance of oleic acid (60 – 88%) followed by palmitic and stearic acids in marula kernel oil.

Also, the oil from both South Africa and Eswatini MSC products was found to contain smaller amounts (< 1%) of, respectively, arachidic (0.47% vs. 0.47%), \(\alpha \)-linolenic acid (0.3% vs. 0.34%), margaric (0.13% vs. 0.18%), lignoceric (0.13% vs. 0.15%), palmitoleic (0.11% vs. 0.14%), eicosatrienoic (0.10% vs. 0.12%), and other acids (Table 1). As a consequence of low amounts of linoleic acid, \(\alpha \)-linolenic acid and other PUFA, both the South African and Eswatini MSC products had oil with rather low amounts of \(\Sigma \text{PUFA} \) (7.1% and 9.2%, respectively), \(\Sigma n-
6 PUFA (6.8% and 8.9%, respectively) and Σn-3 PUFA (0.3% and 0.3%, respectively) (Table 2). Other studies found similarly low amounts of arachidic, α-linolenic acid, margaric, lignoceric, palmitoleic, eicosatrienoic, and other acids in marula seed kernel oil [59, 30].

Table 1. Fatty acid composition (FAME % of total FAs) of oil from marula seed cake from South Africa and Eswatini

<table>
<thead>
<tr>
<th>Fatty acid (%)</th>
<th>Trivial name</th>
<th>South Africa</th>
<th>Eswatini</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saturated fatty acids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4:0</td>
<td>Butyric</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C6:0</td>
<td>Caproic</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C8:0</td>
<td>Caprylic</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C10:0</td>
<td>Capric</td>
<td>0.02±0.01</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C12:0</td>
<td>Lauric</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C14:0</td>
<td>Myristic</td>
<td>0.04±0.01</td>
<td>0.04±0.01</td>
<td>P > 0.05</td>
</tr>
<tr>
<td>C18:0</td>
<td>Stearic</td>
<td>6.26±0.01</td>
<td>6.01±0.01</td>
<td>P < 0.01</td>
</tr>
<tr>
<td>C16:0</td>
<td>Palmitic</td>
<td>11.30±0.11</td>
<td>11.70±0.11</td>
<td>P > 0.05</td>
</tr>
<tr>
<td>C17:0</td>
<td>Margaric</td>
<td>0.13±0.005</td>
<td>0.18±0.005</td>
<td>P < 0.05</td>
</tr>
<tr>
<td>C20:0</td>
<td>Arachidic</td>
<td>0.47±0.01</td>
<td>0.47±0.01</td>
<td>P > 0.05</td>
</tr>
<tr>
<td>C21:0</td>
<td>Heneicosanoic</td>
<td>-</td>
<td>0.02±0.00</td>
<td>-</td>
</tr>
<tr>
<td>C19:0</td>
<td>Nonadecanoic</td>
<td>0.04±0.01</td>
<td>0.06±0.01</td>
<td>P > 0.05</td>
</tr>
<tr>
<td>C15:0</td>
<td>Pentadecyclic</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C24:0</td>
<td>Lignoceric</td>
<td>0.13±0.01</td>
<td>0.15±0.01</td>
<td>P > 0.05</td>
</tr>
</tbody>
</table>

Unsaturated fatty acids
<table>
<thead>
<tr>
<th>Fatty Acid</th>
<th>Description</th>
<th>C16:1c9</th>
<th>C18:1c9</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myristoleic</td>
<td>-</td>
<td>0.11±0.01</td>
<td>0.14±0.01</td>
<td><0.05</td>
</tr>
<tr>
<td>Elaidic</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oleic</td>
<td>74.41±0.13</td>
<td>72.02±0.13</td>
<td></td>
<td><0.01</td>
</tr>
<tr>
<td>Vaccenic</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linolelaidic</td>
<td>(n-6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linoleic</td>
<td>6.68 ± 0.04</td>
<td>8.74 ± 0.04</td>
<td></td>
<td>=0.001</td>
</tr>
<tr>
<td>α-Linolenic</td>
<td>0.30 ± 0.004</td>
<td>0.34±0.004</td>
<td></td>
<td><0.05</td>
</tr>
<tr>
<td>CLA</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eicosadienoic</td>
<td>(n-6)</td>
<td>0.03 ± 0.002</td>
<td>0.03±0.002</td>
<td>>0.05</td>
</tr>
<tr>
<td>Eicosatrienoic</td>
<td>(n-6)</td>
<td>0.10 ± 0.002</td>
<td>0.12±0.002</td>
<td><0.05</td>
</tr>
<tr>
<td>Erucic</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arachidonic</td>
<td>4 (n-6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tricosanoic</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DPA</td>
<td>16,19 (n-3)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CLA, conjugated linoleic acid; DPA, docosapentaenoic acid.
Table 2. Totals, ratios and indices of fatty acids in oil from marula seed cake from South Africa and Eswatini

<table>
<thead>
<tr>
<th>Item</th>
<th>South Africa</th>
<th>Eswatini</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΣSFA</td>
<td>18.37 ± 0.10</td>
<td>18.61± 0.10</td>
<td>P > 0.05</td>
</tr>
<tr>
<td>ΣMUFA</td>
<td>74.52 ± 0.13</td>
<td>72.17± 0.13</td>
<td>P < 0.01</td>
</tr>
<tr>
<td>ΣPUFA</td>
<td>7.11 ± 0.04</td>
<td>9.22 ± 0.04</td>
<td>P<0.001</td>
</tr>
<tr>
<td>Σn-6 PUFA</td>
<td>6.81 ± 0.04</td>
<td>8.89 ± 0.04</td>
<td>P=0.001</td>
</tr>
<tr>
<td>Σn-3 PUFA</td>
<td>0.30 ± 0.004</td>
<td>0.34± 0.004</td>
<td>P < 0.05</td>
</tr>
<tr>
<td>PUFA : SFA</td>
<td>0.39 ± 0.002</td>
<td>0.50±0.002</td>
<td>P=0.001</td>
</tr>
<tr>
<td>PUFA : MUFA</td>
<td>0.10 ± 0.004</td>
<td>0.13±0.004</td>
<td>P < 0.05</td>
</tr>
<tr>
<td>n-6 : n-3 PUFA</td>
<td>22.82 ± 0.09</td>
<td>26.55±0.09</td>
<td>P=0.001</td>
</tr>
<tr>
<td>Atherogenicity index</td>
<td>0.14 ± 0.004</td>
<td>0.15±0.004</td>
<td>P > 0.05</td>
</tr>
<tr>
<td>Desaturase index</td>
<td>11.89 ± 0.03</td>
<td>11.98±0.03</td>
<td>P > 0.05</td>
</tr>
</tbody>
</table>

Interestingly, the oil in South African MSC had higher oleic (P < 0.01) and stearic (P < 0.01) but lower linoleic (P = 0.001), α-linolenic acid (P < 0.05), margaric (P < 0.05), palmitoleic (P < 0.05) and eicosatrienoic (P < 0.05) acid contents relative to the Eswatini product (Table 1). Consequently, the South African MSC oil had higher ΣMUFA (P < 0.01) but lower ΣPUFA (P < 0.001), Σn-6 PUFA (P < 0.001) and Σn-3 PUFA (P < 0.05) (Table 2). Otherwise, all other SFAs, UFAs and ΣSFAs were similar (P > 0.05) in the oil from MSC products obtained from both countries (Tables 1 and 2). Notwithstanding the variation, the values of FAs and FA totals in the oil from South Africa and Eswatini MSC products are within the range of values obtained in previous studies [20, 30, 58]. The variation in the MSC oil FA composition and FA totals
between the two countries might be due to marula tree genetic differences or variations in soil type, soil fertility status, rainfall patterns and harvesting time. Indeed, the FA composition and oil content of marula kernels can be affected by harvesting time, with an increase (up to 63% of dry weight) in the oil content obtained at the end (June) in comparison to the start (March) of the harvesting period [39]. Also, marula trees exhibit wide genetic variations [60], with their growth rate and fruit production also marginally linked to rainfall amount [61].

Our data also showed the oil from both South Africa and Eswatini MSC products to have remarkably high n-6 : n-3 PUFA ratios (Table 2). Interestingly, this ratio was higher in the oil from Eswatini MSC than in that from the South African product ($P = 0.001$). Notwithstanding, both the South African and Eswatini MSC products had oil with exceedingly high n-6: n-3 PUFA ratios in comparison to those of modern (10:1 – 15:1) and primitive man (1:1) diets [62, 63]. This arises from the high content of linoleic acid in comparison to the Σn-3 PUFAs in the oil from both country MSC samples. A high n-6 : n-3 PUFA ratio is said to promote many non-communicable diseases such as CVD, atherogenesis, arthritis, cancer, osteoporosis and inflammatory and autoimmune diseases whereas lower ratios have suppressive effects [63 – 65]. However, despite the fact that the Eswatini MSC had a higher n-6 : n-3 PUFA ratio in comparison to the South African product, it is unlikely that consumption of either product would cause any ill health to humans or animals as both marula by-products are extremely rich in oleic acid, a n-9 MUFA with hypo-cholesterolemic [31, 66, 67], anti-diabetic [68], anti-stroke [69], anti-cancer [70, 71], anti-obesity and anti-hypertension [72, 73] properties. If anything, the Eswatini MSC would appear to be even more healthier as its oil had higher PUFA : SFA ($P = 0.001$) and PUFA : MUFA ($P < 0.05$) ratios, as well as higher Σn-3 PUFA ($P < 0.05$), in comparison to the South African product (Table 2). Increased intake of PUFAs relative to
SFAs and n-3 PUFAs relative to n-6 PUFAs is highly recommended in the modern era of chronic diseases [62, 63, 74].

Further, both the South African and Eswatini MSC products had similarly (P > 0.05) low AI and high DI (Table 2). This is the first time that these indices have been determined in MSC. Nonetheless, the observed AI values are lower than those previously found in mucuna bean (0.26; Mthiyane et al., unpublished) and meat fats (0.5 – 1.0) [75, 76]. High AI values indicate greater atherogenicity risk [77]. With low AI values, both the South African and Eswatini MSC products used in this study would therefore appear to be healthy for both human and animal consumption. On the other hand, the DI values of MSC products used in this study are noticeably higher than that (1.25) found in mucuna bean. Whilst the literature reports that a high DI is associated with obesity [78 – 80], hypertriacylglycerolaemia [81] and the metabolic syndrome [82], as well as with an increased risk to develop insulin resistance [83], cardiovascular death and total death [84], there are currently no recommended or normal values that should be expected in food/feed products.

4. Conclusion

Our data showed the FA composition of oil in both MSC products from South Africa and Eswatini to be dominated by oleic acid, followed by palmitic, linoleic and stearic acids, with smaller amounts of arachidic, α-linolenic acid, margaric, lignoceric, palmitoleic, eicosatrienoic, and other acids. Consequently, both products had their FA totals dominated by the ΣMUFA followed by the ΣSFA and low amounts of ΣPUFA, Σn-6 PUFA and Σn-3 PUFA. Both oleic and stearic acids were higher whilst linoleic, α-linolenic, margaric, palmitoleic and eicosatrienoic acids were lower in oil from South African MSC in comparison to the Eswatini product. Consequently, the South African product’s oil had higher ΣMUFA but lower ΣPUFA,
Also, whilst the oil from both the South African and Eswatini MSC products had remarkably high n-6 : n-3 PUFA ratios, the latter product’s oil was superior in this regard, as it was with respect to PUFA : SFA and PUFA : MUFA ratios. Further, both MSC products had similarly low AI and high DI. With the observed extremely high oleic acid content, incorporation of either product into livestock and poultry diets would be expected to increase the level of the MUFA in the meat, milk and eggs and, consequently, improve health benefits to human consumers.

Author Contributions: DMNM conceptualized and executed the study, analyzed the data and wrote the manuscript whilst AH analyzed the samples, reviewed and edited the manuscript. All authors have read and approved the final manuscript.

Funding: This research received no external funding.

Acknowledgements

We are grateful to Swazi Secrets (Pty) Ltd (Eswatini), Mr. Reggie Themeli and Prof. Ignatius Verla Nsahlai for the supply of MSC samples. We are equally indebted to Ms. Eileen Roodt for the laboratory analysis of fatty acids.

Conflict of Interest: The authors declare no conflicts of interest.
References

30. Malebana, I.M.M.; Nkosi, B.D.; Erlwanger, K.H.; Chivandi, E. A comparison of the proximate, fibre, mineral content, amino acid and the fatty acid profile of marula

47. Kramer, J.K.; Blackadar, C.B.; Zhou, J. Evaluation of two GC columns (60m Supelcowax 10 and 100m CP Sil 88) for analysis of milk fat with emphasis on CLA,

52. Taseski, N. Supercritical fluid extraction of *Sclerocarya birrea* kernel oil. MSc Thesis, North-West University, RSA, 2015. Available online: https://repository.nwu.ac.za/handle/10394/15903 (Accessed 20 July 2019).

