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Abstract - Modularity is arguably one of the most influential theses guiding research on 
brain and cognitive function since phrenology. This paper considers the following question: 
is modularity entailed by recent Bayesian models of brain and cognitive function, especially 
the predictive processing framework? It starts by considering three of the most well-
articulated arguments for the view that modularity and predictive processing work well 
together. It argues that all three kinds of arguments for modularity come up short, albeit for 
different reasons. The analysis in this paper, although formulated in the context of predictive 
processing, speaks to broader issues with how to understand the relationship between 
functional segregation and integration and the reciprocal architecture of the predictive brain. 
These conclusions have implications for how to study brain and cognitive function. 
Specifically, when cognitive neuroscience works within an acyclic Markov decision scheme, 
adopted by most Bayesian models of brain and cognitive function, it may very well be 
methodologically misguided. This speaks to an increasing tendency within the cognitive 
neurosciences to emphasise recurrent and reciprocal neuronal processing captured within 
newly emerging dynamical causal modelling frameworks. The conclusions also suggest that 
functional integration is an organising principle of brain and cognitive function. 
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1. Introduction 

The question that will concern us is: do some of the latest and most exciting Bayesian 
approaches to brain and cognitive function, most notably predictive processing, support the 
notion that brain and cognitive function is modular? Modularity has had a lot of importance 
and influence in both neuroscience and philosophy of mind: with implications for our 
understanding of brain and cognitive function; the relation between different cognitive 
functions; and for the development of methodologies by which to conduct research in 
philosophy of mind and neuroscience.  
 
Since the early anatomical theories of Gall & Surzheim (1809/2001), the notion of modularity 
has been a central research imperative in cognitive neuroscience, seeking to identify specific 
brain regions with particular cognitive functions. This has been called neural localisationism 
(Hohwy 2007; cf. Friston 2002). Modularity of this kind implies that the brain should be 
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understood as segregated into many different parts, each realising a specialised cognitive 
function. Neural localisationism was motivated by phrenology in the 19th Century (Gall & 
Surzheim 1809/2001). It has seen something of a renaissance with the advent of functional 
imaging techniques such as functional magnetic resonance imaging, lending support to the 
notion that particular regions of the brain realise specific cognitive functions - e.g., speech 
comprehension in the Wernicke area in the left temporal lobe. Evidence for anatomical or 
neural localisationism appears overwhelming. Yet appearances can be misleading. For 
example, Uttal (2001) makes the observation that there is still disagreement about the 
specific location of Broca’s area - associated with language production. Evidence from lesion 
studies is equally problematic, if used as support for neural localisationism. Visual neglect, 
for instance, has been found to be associated with lesions in very different parts of the 
brain.  
 
Evidence for neural localisationism is difficult to find. For this reason, modularity of this type 
is no longer well-supported by findings in cognitive neuroscience. This has led researchers 
in the field to develop and endorse functional and informational approaches to modularity, as 
opposed to strict neural localisationism.  
 
In philosophy, the most celebrated notion of modularity is presented in Fodor’s (1983) The 
Modularity of Mind. Fodorian modularity provides a general characterisation of modularity, 
such that a system counts modular if it has several features associated with modularity, to a 
reasonable degree (Fodor 1983, p. 37). Fodorian modularity can be cast as a combination of 
functional and informational modularity. On the one hand, it states that low-level perceptual 
and language processing is modular, whilst central processing involved in reasoning and 
belief-formation is non-modular. This implies functional modularity given the presence of 
functional segregation between modules and general processing, with modules operating in 
a domain-specific fashion. On the other hand, Fodorian modularity states that modules are 
informationally encapsulated, which implies that a module can do its work and undergo 
changes without affecting or being affected by other modules or higher cognitive levels of 
processing.  
 
Fodorian modularity suggests that cognitive architectures consist of some modules. In this 
sense, it stands in contrast with neural localisationalism. It should also be distinguished from 
a functional analogue of neural localisationalism; namely, massive modularity (Carruthers 
2006). This is the view that brain and cognitive function is wholly modular: from (low-level) 
perception to (high-level) thinking, planning and decision-making. One sees this view in the 
evolutionary psychology paradigm (Cosmides & Tooby 2002). At the opposite extreme, one 
finds holistic theories such as Lashley’s (1950) equipotentiality hypothesis, which states that 
the brain is an undifferentiated mass. This would imply that all of the brain is involved in all 
kinds of cognitive functions and processing. Of course, no one is eager to defend this form 
of implausible holism (Prinz 2006).  
 
In contemporary neuroscience, especially cognitive and systems neuroscience, the focus on 
functional specialisation, i.e., modularity, is still very much alive. Functional neuroimaging 
has been very successful in establishing functional segregation as a principle of organisation 
in the human brain (Büchel & Friston 1997). Crucially, however, is the additional observation 
that in these fields of brain research, functional specialisation is understood as an “extrinsic 
property of cortical processing that depends essentially on functionally integrated, causal 
relations between pairs of areas.” (Hohwy 2007, p. 327) In this sense, recent advances 
show that functional specialisation depends on functional connectivity. As Hohwy says: 
“these kinds of proposals hold enough explanatory promise to go beyond blob-ology [neural 
localisationalism] without just proposing a bland connectionism [holism].” (2007, p. 327) 
Some of this recent work on functional segregation and integration has been addressed 
within Bayesian models of brain and cognitive function; specifically, the predictive 
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processing (or Bayesian brain) framework, where several authors are arguing that predictive 
processing supports a unique mix of functional and informational modularity. 
Our ultimate aim in this paper is to assess what we identify to be the three most well-
articulated arguments in favour of modularity premised on predictive processing. We do not 
consider the massive modularity framework any further in this paper. Predictive processing, 
if correct, rules out this view of brain and cognitive function. Not only does it seek to provide 
a unified theory of perception, cognition and action (cf. Clark 2013). It also shows how there 
is functional integration across cognitive domains sometimes portrayed as functionally 
segregated (cf. Hohwy 2007). For example, attention is central to both perception and 
action; perception is inherently related to active sampling of the environment; and episodic 
memory is integrated with processes involved in planning and decision-making.  
 
The three arguments in favour of modularity premised on predictive processing are: (a) the 
epistemic (Bayesian) courtroom argument; (b) the intransitivity argument; and (c) the Markov 
blanket argument. We briefly introduce these arguments now.  
 
The first argument is ‘the epistemic (Bayesian) courtroom argument’ (Hohwy 2013). This 
argument motivates functional and informational modularity in the Fodorian sense. It asserts 
that perceptual inference exhibits canonical features of modularity; specifically, functional 
segregation and informational encapsulation. It proceeds by way of analogy to a courtroom, 
arguing that "[r]eality testing is somewhat like engaging an epistemic courtroom" (Hohwy, 
2013, p. 152). The idea motivating the analogy is that exteroception (vision, hearing, etc.) 
functions akin to isolated witnesses delivering fine-grained information to perceptual 
inference (the judge and jury) vis-a-vis a specific event in question. The more sensory 
independent witnesses are (and the way each one independently taps into different aspects 
of the same event), the more efficient the process of Bayesian model optimisation is.  
 
The second and third arguments for modularity we call ‘formal arguments,’ given their 
grounding in formalisms from machine learning and probability theory. We identify two 
arguments. The first – the intransitivity argument – aims to establish that causal influence 
across hierarchical levels in probabilistic models do not exhibit intransitivity (Drayson 2017). 
In this sense, the intransitivity argument underpins notions of functional and informational 
modularity given considerations about causal chains in Bayesian networks. The second 
argument turns to the Markov blanket formalism in machine learning. It relies on the notion 
of a Markov blanket to ground the idea that predictive processing exhibits modularity given 
the conditional independence and functional segregation between different hierarchical 
levels induced by the presence of a Markov blanket, or multiplicity of Markov blankets 
(Hohwy 2016). We thus call this the Markov blanket argument for modularity.  
Each argument for modularity has its own unique and compelling features. Yet we ultimately 
argue they come up short, albeit for different reasons. If this is on the right track, the result 
is important because dominating theories of brain and cognitive function speak against what 
many take to be an established truth; namely, that modularity is at the explanatory basis of 
our best understanding of brain and cognitive function. Positively put, the results arrived at in 
this paper present hierarchical message passing in the brain as integrated and recurrent 
over multiple spatial-temporal scales. From systems neuroscience, we now know that global 
network dynamics arise from local dynamics, where global dynamics constrain local activity 
such that the entire brain becomes a self-organising system (Deco et al. 2012). Showing that 
there are no grounds for thinking that predictive processing yields a modular view of brain 
and cognitive function provides support for the hypothesis that global network dynamics 
enslaves activity at lower scales of brain activity. Furthermore, our results highlight that 
when models of brain and cognitive function is premised on an acyclic Markov decision 
scheme, utilised by most Bayesian models of brain and cognitive function, it is 
methodologically misguided. This lends once again support to the notion that the brain is a 
directed cyclic network, where brain and cognitive function is essentially tied to functional 
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integration. So, while we do not aim to revolutionise the brain and cognitive sciences in this 
paper, we aim to clarify what we deem to be problematic about assuming modularity in this 
area of research.  
 
2. The Epistemic (Bayesian) Courtroom Argument 
  
In this section we consider the courtroom argument (in short) for modularity. This particular 
argument has the notion of conditional independence at its base. An example will help clarify 
this notion. Intuitively, the observation that the room is cold could be explained either by a 
window having been left open; or, given that the air conditioning system having been left on 
some excessively high value. If you were to make the further observation that the air 
conditioning system in on high, then the observation that it is cold now carries no information 
about whether the window is open. This example shows that the coldness in the room and 
the window being open are conditionally independent, given that the air conditioning is on 
high assuming that the two events (open window, air conditioning system on high) can be 
treated as statistically independent. We can note, more formally, that for any variable A, A is 
conditionally independent of B, given another variable C if and only if the probability of A 
given C and the probability of B given C can be written as p(A|C) and p(B|C). In other words, 
A (it being cold) is conditionally independent of B (the window being open) given C (high air 
conditioning) if, when C is known, knowing A would provide no additional information about 
B (Beal 2003).  
 
Conditional independence within the brain can be captured by appeal to the brain’s “organic 
structure preventing information flow across processing streams in lower parts of the cortical 
hierarchy” (Hohwy 2013, p. 252). In neuroscience, this property of the brain is also known as 
functional segregation. Crucially, according to Hohwy, the chief architect of the courtroom 
argument, this “is not too dissimilar from the courtroom where witnesses might be kept in 
separate rooms, and be prevented from phoning each other.” (2013, p. 252) Hence, the 
courtroom argument, if correct, implies that brain and cognitive function can be captured in 
terms of functional (segregation) modularity and informational modularity given the presence 
of conditional independencies between lower and higher levels with the predictive structure 
of the central nervous system. This conclusion is reached by appeal to the assumption that 
predictive processing – i.e. prediction error minimisation routines – can be understood by 
analogy to how a verdict is reached in court.   

 
The motivating premise of predictive processing is that the brain is able to keep its states 
within a limited and bounded set of states, under the assumption that the brain is a locally 
ergodic system. In other words, it can on average and over time avoid states with high 
surprise (i.e., prediction error) by having a good or close to optimal model of its own states 
and its wider environment. First, the environment is cast as having a true hidden variable or 
state, s, which generates outcomes (i.e., observable sensory states), o. In this sense, 
outcomes are elicited by hidden states in the world, and these states can be further 
influenced by the action policies an agent pursues (Parr & Friston 2017). Crucially, hidden 
states are ‘hidden’ because the information an agent has access to is contained wholly and 
exhaustively in observable sensory states. The relationship between hidden states and 
outcomes is usefully captured by the notion of a generative process. Note that it is not 
feasible to determine the hidden states resulting in outcomes solely on the basis of the 
information contained in the outcomes. This has been shown to be computationally 
intractable (Murphy 2012), given that the relation between s and o is non-linear. Second, 
predictive processing solves this problem by appeal to the idea that the brain has a 
generative model of the generative process. That is, brains are able to approximate the true 
hidden probabilistic state causing its sensory observations by inferring the probability of 
different hidden states given some observation, P(s|o), by leveraging its generative model, 
which is formally defined as a joint probability distribution between a prior belief, P(s), and a 
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likelihood function, P(o|s). If successful, the brain will encounter no or only minimal 
prediction error signals, i.e., deviations between its predictions about the causes of 
outcomes and the actual outcomes it has access to. Third, and finally, the accuracy and 
credibility of inferring the true hidden cause of a specific observation can be helped 
significantly by keeping different sensory modalities and higher-level predictions isolated 
from one another. The same, so Hohwy (2013) argues, is the case in a courtroom, where a 
“defendant’s claim is being interrogated in the light of supporting or contradicting witnesses” 
(p. 152). Accordingly, to ensure the accuracy and credibility of a verdict, witnesses, 
prosecutor and defence, should be segregated from one another. To illustrate this, we quote 
Hohwy at length: 
 

It is essential for a trial that different witnesses are independent. This is why the 
witnesses should not be allowed to chat about the case in the corridor or meet with the 
defendant before being let in to testify. If the witnesses are not independent with 
respect to the case in question, then we cannot trust their evidence. Similarly, the 
judge needs to be impartial and the jury needs to be independent too. For example, 
the jury members should not be bigots and should not have had access to copious 
media reports before the trial begins; and the judge is not allowed to influence any 
testimony. If the judge and jury are not independent in this sense then we cannot trust 
them to evaluate and weigh the evidence in a fair way. This imposes a kind of 
evidential architecture on the legal system: checks and balances are in place to ensure 
independence. Fairness is violated when this fails. (2013, p. 152) 

 
The suggestion is that Bayesian inference over neural states maps onto an evidential 
architecture akin to that of the courtroom. Likewise, different “sources of evidence need to 
be independent witnesses with respect to the event in question, and higher-level expectation 
needs to evaluate evidence from lower levels in a balanced way.” (2013, p. 152) The reason 
being that if evidence is influenced by multiple sensory modalities at the same time, this 
lowers the credibility of making use of it as a means to testing one’s predictions up and 
against the world (Hohwy 2013, p. 152).  
 
Translate this into the language of modularity and you get the following picture. Processes of 
Bayesian model optimisation (i.e., updating the generative model in light of new evidence) 
entail functional segregation and informational encapsulation in the specific sense of 
Fodorian modularity. Hohwy is explicit about this as he says: “different parts of the system 
specialize in different tasks and seem relatively unimpeded by other processes (this relates 
to Fodor’s (1983) notion of informationally encapsulated cognitive modules).” (2013, p. 152) 
Lower and higher levels of the Bayesian hierarchy are taken to be functionally segregated 
from each other, on the one hand, and informationally encapsulated given the presence of 
conditional independence between levels, on the other. Hohwy (2013) calls to this ‘horizontal 
insulation’. He treats the relationship between sensory modalities in a similar fashion, which 
he refers to as ‘vertical insulation’ (Hohwy 2013).  
 
Returning to courtroom analogy. Sensory states (witnesses) act as channels for testimonial 
evidence, which are arguably horizontally segregated (i.e., epistemically and functionally 
segregated) from higher-level cognitive states. Higher-level states, like any good judge 
sitting at the top of the hierarchy, should be impartial and carefully consider incoming 
information. Further substantiation for horizontal insulation comes from the idea that 
Bayesian model optimisation can be cast as a form of inference to the best explanation. In 
inference to the best explanation, when a hypothesis hi best accounts for — i.e. explains 
away — some occurring evidence ei, the latter becomes evidence for the former in so far as 
hi accounts for ei. In this sense, hi becomes self-evidencing. As Hohwy puts it:  
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When hi is self-evidencing, there is an explanatory-evidentiary circle (EE-circle) where 
hi explains ei and ei in turn is evidence for hi. In Bayesian terms, generative models — 
when inverted — generate predictions (hypotheses) that explain away prediction error 
(the sensory evidence), thus maximizing its evidence.” (2016, p. 263).  

 
The presence of EE-circles is argued to induce a form of epistemic seclusion conditioned on 
conditional independence between different levels across the evidentiary (Bayesian) 
architecture, implying vertical insulation of sensory modalities, on the one hand, and 
horizontal insulation between sensory modalities and higher-level operations (i.e., the 
judge), on the other.  
 
The question to be considered now is: how well does the courtroom analogy work? In what 
follows, we consider examples raising doubts about both horizontal and vertical insulation, 
thereby questioning the entailment relation from predictive processing to both functional and 
informational modularity. In sub-section 2.1., we target cross-modal predictive processing, 
focusing on vertical insulation between exteroception, interoception and proprioception. In 
sub-section 2.2, we rely on recent work on so-called embodied predictive processing that 
runs counter to the idea of horizontal insulation in the domain of the classical exteroceptive 
senses.  
 
2.1. Cross-modal predictive processing: against vertical insulation  
 
The first item of Hohwy’s prediction-driven account of modularity is vertical insulation, i.e., 
functional and informational modularity between exteroceptive sensory modalities. The 
courtroom argument states that exteroceptive sensory modalities are informationally 
encapsulated from one another. Evidence for this might seem easy to come by. We do not 
hear with our noses, after all. This might make vertical insulation appear almost inevitable. 
There is however evidence for vertical insulation being difficult to come by. Here we draw on 
empirical work from the literature on brain connectivity and multisensory integration to press 
on the results of the courtroom argument.  
 
Multisensory integration is the view that sight, sound, smell, taste, and touch are integrated 
to influence perception and action (Stein et al., 2009; Stein, 2012). It refers to the neural 
processes by which unisensory signals are combined to enhance disambiguation. Findings 
show that exteroceptive sensory modalities modulate each other during different but 
overlapping stages of neural activity (Ball et al. 2018; Ferraro et al. 2019). If coherent, this 
raises doubt about the vertical insulation between exteroceptive sensory modalities. Atilgan 
et al. (2018), for example, show that visual stimuli shape how auditory cortical neurons 
respond to sound mixtures, by eliciting changes in the phase of the local field potential in 
auditory cortex (see Fig. 1).  
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Figure 1 Temporal coherence between auditory and visual stimuli shapes the sound scene in 
auditory cortex. The auditory cortex is identified as a site of multisensory binding, with inputs from 
visual cortex underpinning these effects (Atilgan et al. 2018).  
 
This makes it hard to support informational encapsulation in exteroception. Indeed, Atilgan 
et al. (2018) observed that vision effects are lost when the auditory cortex is reversibly 
deactivated. This means that sensory signals not only affect one another but that activation 
of one sensory modality depends on the activation of another sensory modality (Schroeder & 
Foxe 2004). Findings like these make the courtroom argument hard to defend.  

 
The classic (exteroceptive) five senses are of course only part of the story about how agents 
sense their world and themselves. Under predictive processing, interoception (internal states 
of the body) and proprioception (the location of the body and its potential for action) play key 
roles in the overall process of prediction error minimisation. For example, motor governed 
actions such as plucking an apple from a tree comprise not only exteroceptive sight and 
touch but also proprioceptive sensations of location and trajectories of bodily parts. 
Proprioception influences exteroception as visual sensing interacts with eye and head 
movement (Parr and Friston 2018). Interoceptive sensations such as hunger influence 
exteroception, given that these kinds of internal sensations motivate action and make salient 
things in the environment for sight and touch, say. To see this a little more clearly, consider 
that your hunger would hardly be satisfied by the accuracy and credibility of an exteroceptive 
verdict. Motor-system governed biomechanical action requires perception, in the sense that 
interoception is what motivates the action in the first place (hunger). However, it also 
requires proprioception given that action is part of what enables organisms to minimise 
prediction error - e.g., via eye movement and touch (Linson et al. 2018). As Linson et al. put 
it: “we must recognize the continuous interactions between interoception and the other 
modalities … [given that] the generative model embodies continuous relationships between 
extero-, proprio-, and interoception” (2018, p. 3). All modalities – exteroception, interoception 
to proprioception – mutually influence one another in the overall quest to minimise prediction 
error.  

 
2.2. Cross-modal predictive processing: against horizontal insulation 
  
Evidence of cross-modal predictive processing is being extended under the notion of 
embodied predictive processing (Allen et al. 2019; Allen and Friston 2018; Allen et al. 2016; 
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Limanowski and Blankenburg 2013; Wilkinson et al. 2019). The idea is that sensory 
evidence in hierarchical predictive processing is dependent on and influenced by bodily 
processes. This is motivated by empirical evidence suggesting the presence of coupling and 
modulation between bodily cycles (biorhythms) and neuronal oscillations and behaviour 
(Herrero et al., 2017; Tort et al., 2018), which brings into question horizontal insulation. 
  
Allen et al., (2019) provide a proof of principle of this via computer simulations. They focus 
on the coupling between interoception and exteroception – what they call multimodal 
integration – mapping interoceptive cardiac cycles to exteroceptive stimuli. They do so by 
simulating a cardiac arousal response to threatening stimuli (seeing a vicious looking spider) 
in comparison to non-arousing stimuli (seeing flowers) within a Markov decision process 
(MDP) scheme. An MDP determines the transitions between states in generative models of 
the dynamics of the (hidden) variables, constituted by hidden states and actions or policies. 
Generative models embody the combinations between these variables. An observation is 
generated from the hidden states. States are generated by a time transition, depending on 
the state at the previous time, and on the policy (Fig. 2). 
 

 
 
Figure 2 This schematic illustrates how hidden states cause each other and sensory outcomes in the 
interoceptive and exteroceptive domain. The upper row describes the probability transitions among 
hidden states (seeing a flower or seeing a spider), while the lower row specifies the outcomes that 
would be generated by combinations of hidden states that are inferred on the basis of outcomes. 
(Allen et al., 2019, p. 8). 

  
Outcomes are generated according to preferences (green box) that couple exteroception 
(flower; spider) with interoception (diastolic state; systolic state). Outcomes depend upon the 
multimodal integration of the policies (i.e., being relaxed conditioned on seeing a flower; 
conversely, being aroused given spider observations). Probabilistically, if the subject is 
aroused (hidden states on the top row) the likelihood of seeing a spider is high (outcomes on 
the bottom row). This means that it is the interoceptive state that ensures the precision on 
the mapping from hidden states to outcomes. 
 
Though interoceptive and exteroceptive outcomes are portrayed separately, they causally 
influence one another. According to preferences, a spider causes diastole, and diastole 
indicates that a spider was seen, in which case, arousal is the proper response (i.e., the one 
affording the least expected prediction error). Conversely, a flower causes systole and 
systole indicate that a flower was seen, in which case relaxing is the appropriate effect.  
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This means that sensory outcomes in the interoceptive and exteroceptive domain are 
caused by the combination of these hidden states. The result of the simulations is that 
exteroception is dependent, in a probabilistic sense, on interoception. In other words, one 
appraisal or prediction about the world (vicious spider, beautiful flower) turns on inferring 
hidden states (arousal, relaxed) via interoceptive processing. The generative model maps 
the probability over hidden states, outcomes, and policies for multimodal integration of 
intero- and exteroception. 
 
This runs counter to the claim about horizontal insulation made in the courtroom argument, 
as interoception and exteroception are coupled to one another in a hierarchical sense, from 
the body to brain, and back again. Of course, those sympathetic to the courtroom argument 
might try to press the following point: namely, that not all information is relevant to the judge; 
and by extension, not all information is relevant to the brain. In this sense, modularity follows 
given that the brain is informationally selective. There is no problem with making this specific 
observation. It is correct to say that not all kinds of information are relevant at any given 
point to neural processing. Yet this observation does not warrant any further claims about 
informational encapsulation, which the courtroom argument relies on. Hence, the courtroom 
argument is guilty of this kind of fallacious interference: from informational selectivity to 
informational encapsulation.  
 
3. The Intransitivity Argument   
 
This argument starts from the observation that prediction error minimisation unfolds across a 
cortical hierarchy. On this view, priors at each level in the hierarchy are provided by the level 
above and prediction errors from the level below. That is, in hierarchical message passing 
schemes such as predictive processing, prediction error signals are influenced by states at 
the same level and by states at the level above. Conversely, predictions are influenced by 
states at the same level and by states at the level below. Under Bayesian model 
optimisation, to invert a generative model (i.e., to approximate the posterior probability of a 
prediction in light of new evidence) requires input from the level below in the form of a 
prediction error signal (Friston 2009). This means that hierarchical message passing “drive 
expectations … towards better predictions to explain away prediction error.” (Friston 2009, p. 
297) Crucially, hierarchical message passing implies that connections between predictions 
and prediction errors are mutual or reciprocal. Or, put differently, the only activities linking 
different hierarchical levels are forward prediction errors and backward mediating 
predictions. This speaks to why hierarchical predictive processing supports the idea that 
forward and backward connectivity is pervasive in brain and cognitive function (Friston 2009; 
Hohwy 2007).  
 
The intransitivity argument is intended to block this conclusion; to show that this species of 
large-scale mutual influence is not the case in the predictive architecture of the brain. The 
argument is due to Drayson (2017), and can be given the following form. Premise one: If 
predictive processing is non-modular, then activity across different hierarchical levels 
causally influence one another. Credibility for premise one comes from the principle of 
transitivity. In particular, if "Level A + 1 influences Level A, and Level A influences Level A - 
1, then Level A +1 influences Level A - 1." (Drayson 2017, p. 8) Premise two: activity across 
different hierarchical levels do not causally influence one another. Conclusion, predictive 
processing is modular. Drayson (2017) states that Bayesian networks such as predictive 
processing implement a form of non-transitive computation. They exhibit or instantiate 
“mechanisms that implement causal Bayesian networks.” (Drayson 2017, p. 9) Crucially, 
according to Drayson, probabilistic causal models are not models where causal influence is 
likely to be preserved over long causal chains. She takes this to suggest that the “further 
apart the levels in the [predictive] hierarchy are, the less likely there is to be causal influence 
from the higher level to the lower level.” (2017, p. 9)  
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The intransitivity argument is developed within the formalism of Bayesian networks. Yet it is 
an argument that ultimately pitches the causal architecture of predictive processing in terms 
of ‘directed acyclic graphs’ (DAGs), as opposed to ‘directed cyclic graphs or models (DCMs). 
A DAG is a form of structural causal modelling that picks out conditional independence 
between nodes in a network. For example, in figure 3, X3  is statistically independent of X1 
given X2. This means it is possible to understand the properties and dynamics of 
X3  independent of X1 . DCMs, on the other hand, capture causal influence between nodes 
standing in reciprocal relations in a network.  
 

 
 
Figure 3 Schematic highlighting the distinction between structural causal modelling in the form of a 
directed acyclic graph and dynamic causal modelling in the form of a directed cyclic model (Friston 
2011, p. 25) 
 
The argument we shall present turns on the distinction between DAGs and DCMs. We shall 
argue that the intransitivity argument is based on Bayesian (causal) computation understood 
in terms of DAGs. We start by motivating why the intransitivity argument is formulated in 
terms of DAGs. This will involve some degree of formality. Yet the formalities are important, 
as they show why the argument under consideration concludes as it does. We then go on to 
highlight two limitations with using DAGs to discover causal connectivity in Bayesian 
networks such as the brain. We conclude that DCMs, having none of the limitations of 
DAGs, are consistent with predictive processing and do not imply modularity. In fact, DCMs 
capture the importance of functional and effective connectivity to understand brain and 
cognitive function in cognitive neuroscience.  
 
To foreshadow the structure of our argument: DAGs are often used in computational 
neuroscience to model dependencies between states; yet this way of modelling the brain is 
a methodological simplification; it is not intended to show that state dependencies are in fact 
acyclic. Moreover, claiming that a particular system was in a specific state at a particular 
point in time, is actually to say that the average of the system’s states was in that particular 
state during that period of time. As Spivey has pointed out: “This kind of coarse averaging 
measurement is often a practical necessity in science, but should not be mistaken as 
genuine evidence for the system actually resting in a discrete stable state.” 2007, pp. 30-31). 
Crucially, the intransitivity argument conflates a way of modelling the brain with what is 
actually the case about neural-based state dependencies. This is the key problem for the 
intransitivity argument: it conflates models with the actual thing we want to understand. We 
spell this out in further detail below.  
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A DAG is also known as a Bayesian network (Pearl 1988). Bayesian networks are 
sometimes referred to as causal networks. The intransitivity argument helps itself to this 
notion. Yet there is nothing inherently causal about directed graphical models, of which a 
DAG is an example (Murphy 2012). The key property that merits attention is that a DAG has 
a particular topological ordering. This ordering implies that the nodes comprising a DAG can 
be ordered such that parents come prior to children, which over the course of time become 
parents, and so on. This ordering is also known as an ordered Markov property. Crucially, 
for any network, if that network has an ordered Markov property, then a node only depends 
on its immediate parents, and consequently not on all other parents in the topology of the 
network. A DAG is thus an acyclic graph without any directed cycles between nodes. For 
this reason, DAGs are sometimes said to be ‘memoryless’ or ‘ahistorical’, given that 
dependence between states of a DAG is restricted to a chain of successive influences with 
no reciprocal influences or loops.  
 
This maps onto the notion of a Bayesian network assumed in the intransitivity argument. To 
see this in more detail, consider next that DAGs highlight one widespread way of casting 
decision-making and action selection in terms of a Markov decision process (MDP). Under 
predictive processing, MDPs are refined and augmented in order to deal with the only partial 
observability of hidden (external) causes of sensory observations. Decision-making and 
action selection in predictive processing are therefore more commonly approached through 
the lens of partially observed Markov decision processes (POMDPs). This is an important 
distinction in machine learning. It is however not important for present purposes, given that 
both MDPs and POMDPs turn on the Markov assumption that nodes stand in a relation of 
unidirectional conditional dependence, i.e., any given node in an MDP is governed wholly 
and exhaustively by its immediately preceding states (its parent). Modelling causal pathways 
in predictive processing via DAGs therefore fits snugly with the intransitivity argument, as it 
breaks with the idea of large-scale causal connectivity between multiple nodes in a 
network.   
 
All of this is standard machine learning textbook. Nevertheless, there are two problems with 
utilising DAGs to argue for functional and informational modularity in Bayesian models such 
as predictive processing. The first is that it restricts conditional independence between 
nodes in a network to the strict and linear topological ordering of a Markov property. As 
Friston has noted, this “is problematic because the brain is a directed cyclic graph [or 
model]. Every brain region is connected reciprocally (at least polysyntactically), and every 
computational theory of brain function rests on some form of reciprocal or reentrant 
message passing.” (2011, p. 25) Put differently, a DAG is just a special case of a system 
with a Markov topology, implying that the particular properties of a DAG do not generalise to 
all systems with an ordered Markov property. Biological systems such as the brain can be 
cast with a Markov topology even if functional segregation in the brain rests on integration. 
The second is that DAGs ignore time; or, more accurately, it treats time as discrete, whereas 
time at the scale of brain dynamics is continuous.  
 
Dynamical causal modelling (DCM), by contrast, is a generic Bayesian framework for 
inferring hidden (neuronal) states from brain activity (Stephan et al. 2010). Unlike DAGs, 
DCMs capture (1) how a particular state of some population of neuronal dynamics cause 
changes in other populations via synaptic connections, and (2) how these interactions 
change and shift given influence of external causes (e.g., endogenous brain activity). This 
speaks to the idea that DCM describes how distinct dynamics and regions are coupled to 
one another, endowing “the system with memory such that future states are influenced by 
current states” (Stephan et al. 2010, p. 3099). This is important for a couple of reasons. The 
first is that DCMs underpin a central tenet of predictive processing; namely, that the brain is 
a locally ergodic system. That is, the recurrent dynamics of DCM captures the notion that the 
states that an agent (i.e., nervous system) occupies are bounded and limited, and that the 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 November 2019                   doi:10.20944/preprints201911.0111.v1

https://doi.org/10.20944/preprints201911.0111.v1


dynamics operate so as to enable the agent to keep frequenting those states, again and 
again, given that it is this limited distribution of states that define the agent as the kind of 
organism that it is. The second is that DCMs avoids being ‘memoryless’ and ‘ahistorical’ - 
something DAGs are vulnerable to. Neural dynamics are self-organising and adaptive, and 
therefore regulate their changes with respect to certain viability constraints. DAGs capture 
this by constraining the temporal extension of such processes such that state changes in a 
system always unfold at a particular point in time as a result of current dynamics. DCMs 
however illustrate how past changes inform future states given the current state of the 
system in question. This allows DCMs to capture how memory is essential to cognitive 
functions such as planning and decision-making. Finally, DAGs represent state transitions in 
discrete time. Natural systems such as brains however function in continuous time. Real or 
continuous time “does not function like a digital computer's clock. It does not move forward 
and then stop to be counted, and then move forward again only to stop again.” (Spivey 
2007, p. 31) DCM thus provides a more ‘natural’ way of modelling state transitioning in 
hierarchical predictive processing.  
 
More specifically, DCMs allow for the representation of hierarchical message passing in the 
brain that takes the form of a directed cyclic graph (Fig. 4).  
 

 
 
Figure 4 Schematic of neurobiological instantiation of perceptual inference in predictive processing 
(Parr & Friston 2018, p. 6) 

 
This figure is a general model of the neurobiological instantiation of perceptual inference in 
which perceptual inference takes the form of hierarchical message passing, represented as 
a directed cyclic graph. Unlike a DAG, a directed cyclic graph defines a series of nodes with 
recurrent and reciprocal connections in a network or system, which nevertheless respects 
the Markov topology crucial to modelling state transitions in terms of POMPDs. In figure 4, 
layer IV represents nodes (spiny stellate cells) influenced by lower-level nodes (relay nuclei) 
of the thalamus, and from lower cortical levels (e.g., the lateral geniculate nucleus). Layer IV 
nodes signal predictions errors, reflecting a mismatch between layer V/VI predictions and 
sensory input received via the thalamic relays. If this is sound, it suggests that perceptual 
inference is best cast in the form of hierarchical message passing represented by a directed 
cyclic graph; not a DAG. This is important, for it speaks against the conclusion of the 
intransitivity argument. The intransitivity argument states that there are no large-scale 
reciprocal causal connections across the inferential or predictive hierarchy. DCM informed 
analyses of perceptual inference suggest otherwise. Crucially, although figure 4 only 
represents reciprocal message passing across a limited number of levels, this pattern could 
be recursively extended to any arbitrary number of levels. Specifically, in their discussion of 
figure 4, Parr & Friston (2018) go on to conclude that perceptual inference rests on 
anatomical and functional interconnectivity over long causal chains. Crucially, our argument 
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does not jeopardise the notion that state transitions within DCM schemes exhibit an ordered 
Markov topology; it undercuts the idea that the brain and its transitions can be understood as 
intransitive across levels of organisation.  
 
We wish to finish this section by considering a possible objection; namely, that while it might 
be true that modelling hierarchical message passing in terms of directed cyclic graphs 
preserves transitivity across levels, a treatment of the same issue in the form of DAGs still 
supports the intransitivity argument. Here is the problem should one pursue this kind of 
response. It makes the argument for modularity model relative. This is not an outcome an 
argument for modularity should (even implicitly) accommodate, for the notion of modularity is 
only really informative if it gets at the actual architecture of brain and cognitive function. Let 
us therefore look at a different line of support for modularity in predictive processing.  
 
4. The Markov Blanket Argument  
 
Previously we considered the role of conditional independence in the courtroom argument 
for modularity, and found it wanting. A different and more applicable route from formalism to 
biology, when aiming to secure the functional segregation claim, is likely to come from the 
Markov blanket formalism, and how it works in hierarchical message passing. We call this 
the Markov blanket argument for modularity. It elaborates on the notion that different levels 
in the perceptual hierarchy stand in a relation of conditional independence. The Markov 
blanket argument makes this a centrepiece in an argument for modularity in predictive 
processing. So, we now turn to conditional independence in the context of Markov blankets. 
Like the intransitivity argument, the Markov blanket argument focuses on the notion of 
horizontal insulation between lower and higher levels in perceptual inference. Before we 
consider the Markov blanket argument, we start by motivating the notion of a Markov 
blanket.  
 
Pearl (1998) introduced the Markov blanket into machine learning and probability theory. In 
his treatment, it was used to denote a set of properties specific to Bayesian networks (like 
DAGs and DCMs). Figure 5 provides a general schematic of the Markov blanket for a node.  
 

 
Figure 5 Schematic depiction of a Markov blanket with full conditionals (Hohwy 2017, p. 3). 
 
The Markov blanket is a statistical boundary, comprised of parents, children and parents of 
children. It renders internal states, green node, conditionally independent from external 
states, black nodes. This means that if one is trying to predict the behaviour of a state with a 
Markov blanket, then knowing the states comprising the Markov blanket, red nodes, will be 
sufficient. This implies that external states are rendered uninformative with respect to 
predicting the values of Markov blanketed states. It is this kind of statistical blanket for the 
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green node in figure 5 that is referred to as a Markov blanket. Technically, a Markov blanket 
can then be defined as the parents (u), the children (a), and the parents of the children (). 
 
In biology, more specifically, the notion of a Markov blanket allows one to define any system 
in a way that delineates it from the environment in which it exists. In this sense, the Markov 
blanket is best understood as a boundary (Schrödinger 1943). Markov blanket boundaries 
can be found at many different scales of life, from macromolecules to organelles, organs and 
humans (Clark 2017; Hipólito 2019; Kirchhoff et al. 2018; Kirchhoff & Kiverstein 2019; 
Palacios et al. 2017; Ramstead et al. 2017). A key aspect of a Markov blanket is that it yields 
a formal way by which to define what it means for internal and external states to be 
conditionally independent of one another given a third set of states: active and sensory 
states. Specifically, the partitioning rule of a Markov blanket states that internal states can 
only influence external states via active states, while external states can only influence 
internal states via sensory states. Thus, the partitioning rule of the Markov blanket formalism 
precludes direct coupling between internal and external states. Crucially, the delineation 
between states only arises given coupling. As a cell, for example, separates itself from its 
extracellular milieu, it remains statistically coupled to it given the states that define its 
Markov blanket (Fig. 6). 
 

 
 
Figure 6 Illustration of the partitioning rule governing Markov blankets (Kirchhoff & Kiverstein, 2019) 
This figure highlights the conditional independencies induced by the presence of a Markov blanket. 
On the one hand, external states, E, cause sensory states, S, which influence, but are not also 
influenced by, internal states, I. On the other hand, internal states cause active states, A, which 
influence, but are not themselves influenced by, external states (Friston et al. 2015; Kirchhoff et al. 
2018; Palacios et al. 2017).  
 
The question we now turn to is: how does the Markov blanket play a role in making a case 
for modularity in predictive processing, and is it justified? We shall argue that even the 
appeal to the Markov blanket formalism comes up short in an argument for modularity; in 
particular, in an argument for horizontal insulation. Before we present our argument, let us 
first present the Markov blanket argument for modularity.  
 
The argument is due to Hohwy (2013). The form of the argument can be cast as follows. 
Premise one: given the presence of a Markov blanket (aka EE-circle), it becomes possible to 
draw a principled distinction between internal causes as they are inferred by a model (i.e., 
predictions) and external causes, outside of the Markov blanket. Crucially, this holds over 
the entire predictive hierarchy given that it is possible to distinguish between higher-level 
predictions, lower-level input and intermediate error signals. On this view, then, any level in 
the predictive hierarchy has its own Markov blanket, i.e., sensory and active states. This 
means that internal states (the generative model) can influence the immediate level below 
via top-down predictions, and external states at a lower level can influence higher levels via 
sensory signals (prediction errors). Hence, strictly speaking, for any level in hierarchical 
message passing this division between states holds. Premise two: the statistical division of 
states induced by a Markov blanket is sufficient for evidential insulation. As Hohwy says:  
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The perceptual hierarchy, and the iterations of prediction error minimization 
mechanisms implemented at each of its levels, seem apt to deliver evidential insulation 
between horizontal levels. Each overlapping pair of levels forms a functional unit 
where the lower level passes prediction errors to the higher level, and the higher level 
passes predictions to the lower level … In this sense the upper level in each pair of 
levels only “knows” its own expectations and is only told how these expectations are 
wrong, and is never told directly what the level below “knows” … For this reason the 
right kind of horizontal insulation comes naturally with the hierarchy. (2013, p. 153) 

 
The conclusion is that brain and cognitive function exhibit horizontal insulation. This is the 
Markov blanket argument for modularity. A few remarks about this argument before moving 
on to develop an alternative to modularity premised on the Markov blanket formalism. It is 
formulated epistemically, in terms of what higher and lower levels ‘know’ and ‘do not know’. 
This epistemological formulation need not be the right formulation. Others are possible 
(Bruineberg et al. 2018). Regardless, it signals the evidential seclusion needed to arrive at a 
conclusion about horizontal insulation. It does this by utilising the idea that a Markov blanket 
around a node or level shields such a level (epistemically, statistically, or some other 
variation) from any other node or level, and vice-versa. So, the argument for modularity is 
formulated with an eye to conditional independence between nodes (or states at different 
levels of hierarchical organisation).  
 
We now develop a reason for resisting the conclusion of the Markov blanket argument, yet 
without resisting the Markov blanket formalism. One can start to develop an answer to why 
Markov blankets do not imply modularity by taking into consideration initially that the 
statistical structure of the Markov blanket formalism is scale-free. That it is scale-free implies 
that it allows for the formation of Markov blankets at recursively larger and larger scales of 
organisation. It is not restricted to any particular scale of systemic organisation. This means 
that at any level of the predictive hierarchy one can define a Markov blanket consisting of 
active and sensory states that separate higher and lower levels, resulting in a view of 
Markov blankets comprised of multiple other Markov blankets (Fig. 7).  
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Figure 7 Schematic depiction of Markov blankets. The top figure depicts a single Markov blanket. The 
middle figure represents a multiscale and nested organisation of Markov blankets. The final figure 
suggests that cultural practices can envelope a multiplicity of individuals given its nested structure. 
Thus figure 7 represents the Markov blanket organisation all the way down to individual cells and all 
the way up to complex organisms like human beings (Kirchhoff et al. 2018; cf. Clark 2017).  

 
To see how this scale-free organisation of Markov blankets speaks against the notion of 
horizontal insulation in predictive processing, we need to consider the reciprocal or circular 
causal interactions that occur across the hierarchy of Markov blankets. First, it is a common 
observation that low levels of the hierarchy predict causal regularities unfolding at very fast, 
millisecond, time-scales, whereas more complex regularities unfold at higher levels and over 
much slower time-scales. This suggests that prediction errors are minimised over the entire 
hierarchy at any given time. Second, Hobson & Friston (2014) have argued that macroscale 
dynamics constrain microscale dynamics in hierarchical predictive processing. A different 
way of putting this would be in terms of multilayered Markov blankets such that Markov 
blankets at the microscale give rise to Markov blankets at the macroscale, while Markov 
blankets at the level of the ensemble constrain the activities of Markov blankets nodes at 
lower and lower levels in the predictive hierarchy. This is entirely consistent with the idea of 
slower unfolding dynamics at higher levels and faster evolving dynamics at lower levels in 
the hierarchy. This division of timescales between the micro- and macro-scale in dynamical 
systems such as the brain is a signature feature of the slaving principle in statistical physics 
and synergetics (Haken 1983; Hobson & Friston 2014). The slaving principle shows how 
activities at the microscale are constrained by activities at the macroscale such that activities 
at the microscale no longer behave independently of activities at the macroscale but are 
“sucked into an ordered coordinated pattern.” (Kelso 1995, p. 8) This is entirely consistent 
with work in the cognitive neuroscience focus on global brain dynamics. As Deco et al. 
(2012) put it:  
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Global network dynamics over distributed brain areas emerge from the local dynamics 
of each brain area. Conversely, global dynamics constrain local activity such that the 
whole system becomes self-organizing. The implicit coupling between local and global 
scales induces a form of circular causality that is characteristic of complex, coupled 
systems that show self-organization, like the brain. (2012, p. 18)  

 
Palacios et al. (2017) have developed a proof of concept of this idea via computer 
simulations, showing the self-organisation of an ensemble Markov blanket, comprised of 
fifteen Markov blankets within it, with the Markov blanket at the global level constraining the 
dynamics of every Markov blanket at the local level (see Palacios et al. 2017 for detailed 
discussion). 
 
So here is the real problem with using the Markov blanket formalism to run an argument for 
horizontal insulation. If the Markov blanket formalism does not imply insulation of this kind, it 
cannot be used in support of modularity. It does not follow from this that the presence of a 
scale-free and multilayered Markov blanket organisation does away entirely with the notion 
of functional segregation. For lower and higher levels in the hierarchy differ in their 
processing style, at least with respect to the timescales over which they unfold. Modularity 
however does not come for free, even once this much is acknowledged. The reason for this 
is that functional segregation, given the Markov blanket formalism, can only be understood 
in the context of functional integration (Friston 2011). This is because the segregation 
between states induced by Markov blankets only arise given the presence of integration or 
coupling. Or, put differently, a state or node differentiates itself from another state or node, 
yet remains statistically coupled to it. This follows because two states or more are 
conditionally independent not merely due to spatial distance or separation, but given the 
states comprising the Markov blanket: active and sensory states.  
 
There may be one way for a defender of modularity in predictive processing to attempt to 
save modularity. It is easy enough to imagine that defenders of the intransitivity argument 
and the Markov blanket argument might take this route. They may wish to give up on the 
philosophically substantial notion of modularity from Fodor (1983), adopting instead a much 
weaker notion. Integrative modularity provides a weakening of Fodorian modularity. It picks 
out the idea of functional segregation, at least to a certain extent. There are two problems 
with opting for a weak notion of modularity. The first we have already stated: in hierarchical 
message passing, functional segregation is premised on functional integration. This is not 
likely to be a satisfying result for the proponent of modularity. The second turns on value in 
the context of explanation. Choosing to adopt a weak notion of modularity has a price; it 
threatens to render the notion itself explanatorily vacuous. Specifically, if the notion ceases 
to exhibit any of its robust properties, enabling it to make a difference to description or 
explanation, then what is the value of keeping it? It is not evident that there is any value.  

 
5. Conclusion  
 
This paper has considered arguments for modularity in the context of predictive processing 
and active inference. Three kinds of arguments for modularity were reviewed: (a) the 
Bayesian courtroom argument; (b) the intransitivity argument; and (c), the Markov blanket 
argument. We argued that each of these pro-modularity arguments has its own compelling 
features, although all three of them come up short in showing that predictive processing 
entails modularity in the context of brain and cognitive function. More importantly, our 
conclusions present hierarchical message passing in the brain as integrated and recurrent 
over multiple spatial-temporal scales. Furthermore, we argued that when models of brain 
and cognitive function is premised on an acyclic Markov decision scheme, they will tend to 
be misguided. We showed how this supports the idea that the brain is a directed cyclic 
network, where brain and cognitive function is essentially tied to functional integration. Our 
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conclusions therefore speak to how to understand brain and cognitive function in the 
absence of taking modularity for granted.  
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