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Abstract: A relationship between the functional Schrödinger representation and the precanonical 
quantization of a nonlinear scalar field theory is extended to arbitrary curved space-times. The 
canonical functional derivative Schrödinger equation is derived from the manifestly covariant
precanonical Schrödinger equation in a singular limiting case when the ultraviolet parameter κ 
introduced by precanonical quantization is identified with the invariant delta-function at equal 
spatial points. In the same limiting case, the Schrödinger wave functional is expressed as the trace 
of the multidimensional product integral of Clifford-algebra-valued precanonical wave functions 
restricted to a certain field configuration. Thus the standard QFT in curved space-time in functional 
Schrödinger representation emerges from the precanonical formulation of quantum fields as a 
singular limiting case.
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1. Introduction14

Since the theoretical discovery of the Hawking radiation of black holes, quantum field theory15

in curved space-time [1] often has been considered as an opportunity to study an interplay between16

gravitation, space-time and quantum theory in order to gain insights and intuitions into the quantum17

geometry of space-time and the quantum theory of gravity. The consideration of quantum fields18

on curved backgrounds also allows us to understand what concepts and mathematical structures19

are important in quantum field theory beyond the simplifying framework of the Poincaré-invariant20

Minkowski spacetime.21

Recently we have put forward an approach to quantization of fields called precanonical22

quantization [2–5] which is based on mathematical structures of the De Donder-Weyl (DW)23

Hamiltonian theory known in the calculus of variations [6]. This Hamiltonian-like formulation24

does not require a space-time decomposition and treats all space-time variables on equal footing. In25

this sense it is an intermediate description of classical fields between the Lagrangian one and the26

canonical Hamiltonian one (hence the name "precanonical") which allows us to avoid the necessity27

of treating fields as infinite-dimensional Hamiltonian systems at least on the level of formulating the28

corresponding quantum theory of fields and hence circumvent technical difficulties the canonical29

quantization of fields brings in.30
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In DW Hamiltonian theory a proper generalization of Poisson brackets is defined on the dynamical31

variables represented by differential forms rather than functionals. The brackets are defined by the32

structure we called polysymplectic and they lead to the structure of Poisson-Gerstenhaber algebra33

[5,7,8] (see also [9–14] for further generalizations). The latter generalizes the Poisson algebra in the34

canonical Hamiltonian formalism, which underlines canonical quantization and hence underlines a35

different procedure of quantization of fields which we call precanonical quantization.36

The DW Hamiltonian formulation is related to a generalization of the Hamilton-Jacobi (HJ)37

theory which is formulated in terms of partial derivative rather than functional derivative equations38

[6]. Precanonical quantization clarifies the question as to which formulation of quantum theory39

of fields reproduces the DWHJ equation in the classical limit [3,4]. We found that quantization40

of a small Heisenberg-like subalgebra of the aforementioned Poisson-Gerstenhaber algebra leads41

to a hypercomplex generalization of the formalism of quantum theory where both operators and42

wave functions are Clifford-algebra-valued. The precanonical analogue of the Schrödinger equation43

is formulated using the Dirac operator on the space-time which appears as a multidimensional44

generalization of the time derivative in the left side of the standard Schrödinger equation [2–5].45

One of the features of precanonical formulation of quantized fields is that it allows us to reproduce46

the classical field equations in DW Hamiltonian form as the equations for expectation values of47

operators defined by precanonical quantization and evolving according to the precanonical Schrödinger48

equation [15,16]. By treating the space-time variables on equal footing it also leads to a formulation of49

quantum theory of fields on a finite-dimensional space of field and space-time variables thus providing50

a new framework for the quantum gauge theory [31,34] and the theory of quantum gravity [33,35]51

which looks more promising both conceptually and from the point of view of a posibility of rigorous52

mathematical treatment.53

An important aspect of realization of the potential of precanonical quantization is understanding54

of how it could be related to more familiar and already working concepts of standard QFT. In this55

paper, we extend our previous results on the relationship between precanonical quantization and the56

functional Schrödinger picture in QFT [27–32] to scalar field theory on arbitrary curved space-times.57

We proceed as follows. In Section 2 we first remind the results of canonical quantization of58

scalar field theory on curved space-time in the functional Schrödinger representation and precanonical59

quantization of the same system, and then we discuss drastic differences between them. Section 2 also60

serves to introduce the notations used throughout the paper. The connection between the functional61

Schrödinger representation and the results of precanonical quantization in curved space-time is62

established in Section 3 which consists of several subsections reflecting the multi-step nature of63

the argument. Namely, we first outline a general idea which allows us to anticipate a connection64

between the Schrödinger wave functional and precanonical wave function based on the respective65

probabilistic interpretation of both objects. Second, in sub-section 3.1, we present a restriction of66

precanonical Schödinger equation to the section of the bundle of field coordinates over space-time,67

which represents a field configuration the Schrödinger wave functional is a functional of. The restriction68

of precanonical Schrödinger equation is formulated in terms of the total covariant derivative introduced69

in sub-section 3.1.1 and it allows us to write in sub-section 3.2 the equation for the time evolution of70

the wave functional composed from precanonical wave functions. To proceed with the derivation of71

the Schödinger equation for the wave functional from the restriction of the precanonical Schrödinger72

equation to a field configuration, in sub-section 3.3 we evaluate the functional derivatives of the73

functional composed from precanonical wave function with respect to the field variables. Then, in74

Section 4, we analyze different terms in the equation presented in sub-section 3.2 and show how75

they can be expressed in terms of the functional derivatives of the composed functional or cancelled76

in a certain limiting case. The result of this section is the derivation of the functional derivative77

Schrödinger equation from the restricted precanonical Schrödinger equation up to an additional term78

which involves the commutator of the zeroth component of the spin connection matrix with the79

precanonical wave function, see eq. (37). In Section 4 we consider static space-times with the vanishing80
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zeroth component of the spin connection and obtain the expression of the Schrödinger wave functional81

as the trace of the continual product or product integral of precanonical wave functions restricted82

to a field configuration. A more general case of non-static space-times with non-vanishing zeroth83

component of the spin connection is considered in Section 5 where we show that the extraneous term84

in (37) with the commutator of the zeroth component of spin connection with precanonical wave85

function disappears if the wave functional is expressed in terms of transformed precanonical wave86

functions with the transformation given by the time-ordered exponential of the zeroth component87

of spin connection. This observation allows us to extend the results from the static space-times to88

nonstatic ones. In Section 6 we present our conclusions and highlight the main steps of the derivation89

of the functional Schrödinger equation from precanonical Schödinger equation and the expression90

of the Schrödinger wave functional as a product integral of precanonical wave functions or their91

transforms. We also discuss the physical meaning of the ultra-violet parameter κ whose infinite value92

corresponds to the limiting case in which it is shown to be possible to derive the standard functional93

Schrödinger representation of QFT from precanonical quantization.94

2. Quantum scalar field on a curved space-time: the canonical and precanonical descriptions95

Let us recall that the conventional canonical quantization of scalar field theory in curved
space-time can be formulated in the functional Schrödinger representation of QFT [24,25]. It leads
[17–23]) to the description of the corresponding quantum field in terms of the Schrödinger wave
functional Ψ([φ(x)], t) satisfying the Schrödinger equation

ih̄∂tΨ =
∫

dx
√

g

(
h̄2

2
g00

g
δ2

δφ(x)2 −
1
2

gij∂iφ(x)∂jφ(x) + V(φ)

)
Ψ, (1)

where the right hand side is the canonical Hamiltonian operator formulated in terms of functional96

derivative operators, xµ = (t, x) = (t, xi) are space-time coordinates, gµν is the space-time metric97

tensor whose components depend on xµ, g = |det(gµν)|. In (1) one uses the space-time coordinates98

adapted to the space-like foliation such as the induced metric on the space-like leaves of the foliation is99

gij, the lapse N =
√

g00 and the shift functions Ni = g0i = 0.100

The precanonical quantization of a scalar field φ(x) on a curved space-time background given by
the metric tensor gµν(x) (cf. [15,16]) gives rise to the description in terms of a wave function Ψ(φ, xµ)

on the finite-dimensional bundle with the coordinates (φ, xµ) which takes values in the complexified
space-time Clifford algebra, i.e.

Ψ = ψ + ψµγµ +
1
2!

ψµ1µ2 γµ1µ2 + ... +
1
n!

ψµ1...µn γµ1...µn ,

and satisfies the partial derivative precanonical Schrödinger equation (pSE)

ih̄γµ(x)∇µΨ =

(
−1

2
h̄2κ ∂2

∂φ2 +
1
κV(φ)

)
Ψ =:

1
κ ĤΨ , (2)

where γµ(x) are the curved space-time Dirac matrices such that

γµ(x)γν(x) + γν(x)γµ(x) = 2gµν(x), (3)

γµ1...µp are the antisymmetrized products of p Dirac matrices,

∇µ := ∂µ + ωµ(x) (4)
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is the covariant derivative with the spin-connection matrices ωµ(x) = 1
4 ωµ AB(x)γAB (see e.g. [26])

acting on Clifford-algebra-valued wave functions by the commutator product [32], and γA are the
constant Dirac matrices which factorize the Minkowski metric ηAB of the tangent space 1:

γAγB + γBγA = 2ηAB. (5)

The operator Ĥ in (2) is the De Donder-Weyl (DW) Hamiltonian operator constructed according101

to the procedure of precanonical quantization [3,4,15,16]. In the expression of Ĥ there appears an102

ultraviolet parameter κ of the dimension of the inverse spatial volume. This parameter typically103

appears in the representations of precanonical quantum operators [2–4,15]. For the scalar fields on104

curved background the DW Hamiltonian operator Ĥ coincides with its couterpart in flat space-time (cf.105

[2–4,15]). Correspondingly, the curved space-time manifests itself only through the curved space-time106

Dirac matrices (3) and the spin-connection in the left-hand side of (2).107

As we have seen, the description of quantum fields obtained from precanonical quantization is108

very different from a familiar description of quantum fields derived from the canonical quantization.109

In particular, while in the description using the functional Schrödinger picture the role of space110

variables x is different from the role the time variable t, the precanonical description is entirely111

space-time symmetric, manifestly covariant and independent of the assumption of global hyperbolicity112

of space-time. One can also wonder how the description in terms of precanonical wave function113

on a finite-dimensional space and the corresponding partial derivative precanonical Schrödinger114

equation can match the description in terms of functionals on an infinite-dimensional space of field115

configurations at a fixed time and the corresponding functional derivative Schrödinger equation, or116

how the multiparticle states and multi-point correlation functions of standard QFT could be related to117

the natural objects within the precanonical description such as the Green function of the precanonical118

Schrödinger equation (2).119

However, one can reduce the perceived gap between those two descriptions by noticing that120

already on the classical level the solutions of field equations can be equally well treated using both121

the language of partial derivative equation on a finite dimensional space (in the Lagrangian, DW122

Hamiltonian and DWHJ descriptions) and the language of functional derivative equations (in the123

canonical Hamiltonian and Hamilton-Jacobi description). Moreover, one can derive the canonical124

Hamiltonian and HJ equations from the DW Hamiltonian and DWHJ equations, respectively (see125

e.g. [27,30]). In the next section, we will show how those relationships between the canonical and126

precanonical are extended to the quantum level in curved space-times.127

3. Relating the precanonical wave function and the Schrödinger wave functional128

Our preceding work has established a relationship between the functional Schrödinger129

representation and precanonical quantization of scalar and Yang-Mills in flat space-time [29–31]. The130

familiar QFT in functional Schrödinger representation was derived from the precanonical quantization131

as the limiting case when the combination γ0κ is replaced by δ(0), a regularized value of Dirac delta132

function δ(x− x′) at coinciding spatial points, which can be understood as the cutoff of the momentum133

space volume introduced by a regularization. Here we intend to extend this relationship to curved134

space-time using the example of a quantum scalar field.135

The Schrödinger wave functional Ψ([φ(x)], t) is interpreted as the probability amplitude of
finding a field configuration φ(x) at some moment of time t. The precanonical wave function

1 We chose the signature +−−− .... Note that in this paper we depart from our notation in [16] where the flat Dirac matrices
were denoted γ̄A. This notation can be confusing when the Dirac conjugate matrix has to be denoted as γ̄A. As for the rest,
throughout this paper we mostly follow the notation and conventions used in [15,16,29,30]. In particular, the plane capital
Greek letters like Ψ and Φ denote wave functions on a finite dimensional space of φ and xµ and the boldface capital Greek
letters like Ψ and Φ denote functionals of field configurations φ(x).
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Φ(φ, x) is the probability amplitude of observing the field value φ at the space-time point x. Then
the time-dependent complex functional probability amplitude Ψ([φ(x)], t) can be expected to be a
composition of space-time dependent Clifford-valued probability amplitudes given by the precanonical
wave function Ψ(φ, x). It means that the Schrödinger wave functional Ψ([φ(x)], t) is a functional of
precanonical wave functions Ψ(φ, x) restricted to a specific field configuration which is represented by
a section Σ in the total space of the bundle with the coordinates (φ, x), which is defined by the equation
Σ : φ = φ(x) at time t. Thus by denoting the restriction of precanonical wave function Ψ(φ, x) to Σ as

ΨΣ(x, t) := Ψ(φ = φ(x), x, t)

we assume that
Ψ([φ(x)], t) = Ψ([ΨΣ(x, t), φ(x)]), (6)

so that the time dependence of the wave functional Ψ is totally controlled by the time dependence
of precanonical wave function restricted to Σ. Then the chain rule differentiation yields the time
derivative of Ψ

i∂tΨ = Tr
∫

dx

{
δΨ

δΨT
Σ(x, t)

i∂tΨΣ(x, t)

}
, (7)

where ΨT denotes the transpose of the matrix Ψ. In the following we will be avoiding unnecessarily136

cumbersome notation by denoting ΨΣ(x, t) also as ΨΣ(x) or even ΨΣ.137

3.1. Restriction of precanonical Schrödinger equation to Σ138

The time derivative of ΨΣ is determined by the restriction of pSE (2) rewritten in space+time split
form to Σ:

i∂tΨΣ = −iγ0γi
(

d
dxi − ∂iφ(x)

∂

∂φ

)
ΨΣ − iγ0γi[ωi, ΨΣ]− i[ω0, ΨΣ] +

γ0

κ ĤΣΨΣ, (8)

where d
dxi is the total derivative along Σ,

d
dxi := ∂i + ∂iφ(x)

∂

∂φ
+ ∂iφ,k(x)

∂

∂φ,k
+ ... . (9)

In (9) φ,k denote the fiber coordinates of the first-jet bundle of the bundle of field varibles φ over
space-time (cf. [40,41]) and ĤΣ is the restriction of the DW Hamiltonian operator Ĥ to Σ. Since Ĥ
contains no space-time derivatives, ĤΣ = Ĥ and

1
κ Ĥ = −κ

2
∂2

∂φ2 +
1
κV(φ). (10)

3.1.1. Total covariant derivative139

Let us introduce the notion of the total covariant derivative acting on Clifford-algebra-valued
tensors, particularly on those restricted to Σ. The derivative will be called "total" in the sense that (i)
when acting on a Clifford-valued tensor function Tµ1µ2...

ν1ν2... it includes both the spin-connection matrix
ωµ and the Christoffel symbols Γα

βγ (c.f. [36]) and (ii) when a tensor quantity with the components
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depending both on x and φ is restricted to Σ, its derivative with respect to x-s is understood in the
sense of the total derivative (9):

∇tot
α Tµ1µ2...

ν1ν2... :=
d

dxα
Tµ1µ2...

ν1ν2... + [ωα, Tµ1µ2...
ν1ν2... ]

+ Γµ1
αβTβµ2...

ν1ν2... + Γµ2
αβTµ1β...

ν1ν2... + ....

− Γβ
αν1 Tµ1µ2...

βν2... − Γβ
αν2 Tµ1µ2...

ν1β... − ...

(11)

The commutator in the second term guarantees that the total covariant derivative of the Clifford
product of two Clifford-valued tensor quantities fulfills the Leibniz rule. The Christoffel symbols
appear in the covariant derivative of non-scalar Clifford quantities, e.g. in the condition of metric
compatibility

∇tot
α γµ = 0, (12)

where only the first partial derivative term in (9) is non-vanishing when acting on x-dependent140

γ-matrices.141

Now, in terms of the total covariant derivative ∇tot acting on ΨΣ eq. (8) takes the form

i∂tΨΣ = −iγ0γi∇tot
i ΨΣ − i[ω0, ΨΣ] + iγ0γi∂iφ(x)∂φΨΣ +

1
κγ0ĤΣΨΣ. (13)

3.2. Time evolution of the Schrödinger wave functional from pSE142

From (7), (8) and (10) the equation of the time evolution of the wave functional (6) constructed
from precanonical wave functions takes the form

i∂tΨ = Tr
∫

dx
{

δΨ

δΨT
Σ(x, t)

[
−iγ0γi d

dxi ΨΣ(x)︸ ︷︷ ︸
I

+ iγ0γi∂iφ(x)∂φΨΣ(x)︸ ︷︷ ︸
I I

− i
4

γ0γi[ωi, ΨΣ(x)]︸ ︷︷ ︸
I I Ia

− i
4
[ω0, ΨΣ]︸ ︷︷ ︸
I I Ib

−κ
2

γ0∂φφΨΣ(x)︸ ︷︷ ︸
IV

+
1
κγ0V(φ(x))ΨΣ(x)︸ ︷︷ ︸

V

]}
.

(14)

In order to derive from this equation the functional derivative Schrödinger equation (1) we need to try143

to express the terms in the right hand side of (14) in terms of the functional derivatives f the composite144

functional Ψ in (6) with respect to φ(x). Those are calculated in the following section.145

3.3. Functional derivatives of Ψ146

By using the chain rule for the functional differentiation and introducing the notations

Φ(x) :=
δΨ

δΨT
Σ(x)

(15)

and
∂φΨΣ(x) := (∂Ψ/∂φ)|Σ(x), ∂φφΨΣ(x) := (∂2Ψ/∂φ2)|Σ(x), (16)
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we obtain

δΨ

δφ(x)
= Tr

{
Φ(x)∂φΨΣ(x)

}
+

δ̄Ψ

δ̄φ(x)
, (17)

δ2Ψ

δφ(x)2 = Tr
{

δ(0)Φ(x)∂φφΨΣ(x) + 2
δ̄Φ(x)
δ̄φ(x)

∂φΨΣ(x)
}

+ Tr Tr

{
δ2Ψ

δΨT
Σ(x)⊗ δΨT

Σ(x)
∂φΨΣ(x)⊗ ∂φΨΣ(x)

}
+

δ̄2Ψ

δ̄φ(x)2 .

(18)

where δ̄ denotes the partial functional derivative with respect to φ(x), as opposite to the total functional147

derivative δ, and δ(0) is a regularized value of δΨΣ(x)/δΨT
Σ(x
′) at x = x′ which can be defined using a148

point splitting or lattice regularization to make sense of (n− 1)-dimensional delta function δ(x− x′) at149

equal points. This is the simplest regularization one may use to make sense of the second functional150

derivative at equal points which appears in the functional derivative Schrödinger equation (1).151

3.4. The correspondence between terms I −V in Eq. (14) and the canonical Hamiltonian operator in (1)152

3.4.1. The potential term V153

Our starting observation will be that the term V in (14) has to reproduce the last term in the
functional derivative Schrödinger equation (1). This means that there exists a mapping 7→ such that

∫
dx Tr

{
Φ(x)

1
κγ0V(φ(x))ΨΣ(x))

}
7→
∫

dx
√

g V(φ(x)) Ψ. (19)

The existence of the map in (19) implies that the following relation should be fulfilled at any spatial
point x:

Tr
{

Φ(x)
1
κγ0ΨΣ(x)

}
7→ √g Ψ. (20)

Then the functional differentiation of both sides of (20) with respect to ΨT
Σ(x) yields

Tr

{
δ2Ψ

δΨT
Σ(x)⊗ δΨT

Σ(x)
1
κγ0ΨΣ(x)

}
+ Φ(x)

1
κγ0δ(0) 7→ √g Φ(x), (21)

where again, δ(0) = δΨΣ(x)/δΨT
Σ(x). This type of relation is possible if

δ2Ψ

δΨT
Σ(x)⊗ δΨT

Σ(x)
= 0 (22)

and
1
κγ0(x)δ(0)−√g(x) 7→ 0. (23)

The latter relation can be understood as the condition

γ0√gκ 7→ δ(0). (24)

By taking into account that
√

g =
√

g00h, where h := |det(gij)|, and γ0√g00 = γ0 is the time-like
tangent Minkowski space Dirac matrix, eq. (24) can be rewritten as

γ0κ 7→ δ(0)/
√

h = δinv(0), (25)
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where δinv(x) is the invariant (n − 1)-dimensional delta function defined by the property154 ∫
dx
√

h(x)δinv(x) = 1. This formula generalizes to curved space-times the limiting map γ0κ 7→ δ(0)155

already found in flat space-time [29,30], with the (n− 1)-dimensional delta function replaced by the156

invariant one.157

3.4.2. The second variational derivative term158

Our next observation is that the term IV in (14) is able to reproduce the first term in the right-hand
side of (18) in the limiting case (24)

IV : −κ
2

γ0∂φφΨΣ 7→ −
1
√

g
g00δ(0)∂φφΨΣ. (26)

A comparison with (18) shows that the term IV in (14) leads to the following expression in functional
derivatives of Ψ:

IV : Tr
{

1
2

Φ(x)κγ0∂φφΨΣ(x)
}
7→ 1

2
g00√

g

(
δ2Ψ

δφ(x)2 − 2 Tr
{

δ̄Φ(x)
δ̄φ(x)

∂φΨΣ(x)
}
− δ̄2Ψ

δ̄φ(x)2

)
. (27)

The first term in the right-hand side of (27) correctly reproduces the first term in the functional159

derivative Schrödinger equation (1). However, the second and the third term need further investigation.160

3.4.3. The non-ultralocality term and the wave functional Ψ in terms of precanonical ΨΣ161

Since the right hand side of (14) is expected to lead to a functional derivative operator acting on
the wave functional Ψ, as in the right hand side of the functional Schrödinger equation (1), the second
term in (27) with ∂φΨΣ has to be cancelled by the term I I in (14) which also contains ∂φΨΣ. Therefore,
it is required that

I I + 2nd term of (27) : iΦ(x)γ0γi∂iφ(x) +
g00√

g
δ̄Φ(x)
δ̄φ(x)

7→ 0, (28)

where the sign 7→ stresses the fact that it is sufficient that the left hand side vanishes under the condition
(24) rather than as an equality. In fact, by functionally differentiating both sides of (28) with respect to
φ(x′) we can see that (28) with 7→ replaced by the equality is not an integrable equation in functional
derivatives. Nevertheless, by bearing in mind that (28) has to be valid only under the condition (24),
the solution for Φ(x) can be written in the form

Φ(x) = Ξ([ΨΣ]; x̌)e−iφ(x)γi∂iφ(x)/κ , (29)

where the "integration constant" Ξ([ΨΣ]; x̌) is a functional of ΨΣ(x′) on the punctured space with the
removed point x such that that x′ 6= x. By construction, this functional satisfies the identity

δ̄Ξ([ΨΣ]; x̌)
δ̄φ(x)

≡ 0.

Indeed, by differentiating (29) with respect to φ(x), replacing κ according to the limiting map (24),
and taking into account that γ0(x)γ0(x) =: g00(x) and ∂iδ(0) = 0 (that restricts the admissible class of
regularizatons of delta-function δ(x)) we conclude that (29) solves (28) under the condition (24). Note
also that (29) by construction fulfills

δΦ(x)
δΨT

Σ(x)
=

δ2Ψ

δΨT
Σ(x)⊗ δΨT

Σ(x)
≡ 0, (30)
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which is consistent with (22). Thus the required cancellation of the terms with ∂φΨΣ(x) (under the
condition (24)) fixes the form of the functional Φ(x) introduced in (15). This allows us to express the
wave functional Ψ in the form

Ψ ∼ Tr
{

Ξ([ΨΣ]; x̌) e−iφ(x)γi∂iφ(x)/κ γ0√
gκΨΣ(x)

}
|κ 7−→γ0δ(0)/

√
g

, (31)

valid at any point x. Here the equality up to a normalization factor which will depend on κ and
√

g is162

denoted as ∼. The notation {...}|κ 7−→γ0δ(0)/
√

g
indicates that every appearance of κ in the expression163

inside braces is replaced by γ0δ(0)/
√

g as prescribed by the limiting map (24).164

Using (31) we can now evaluate the last term in (27) in the limit (24):

3-rd term of (27):
1
2

g00√
g

δ̄2Ψ

δ̄φ(x)2 7→ −
1
2
√

ggij∂iφ(x)∂jφ(x)Ψ. (32)

The right hand side of (32) correctly reproduces the second term in the functional derivative165

Schrödinger equation (1), thus correctly accounting for the inherent non-ultralocality of quantum166

relativistic scalar field theory (cf. [42]) in curved space-time.167

Thus, all terms in the functional derivative Schrödinger equation (1) are now derived from pSE
restricted to Σ, eq. (8). However, there are still unaccounted for terms I, I I Ia and I I Ib in (14)

I + I I Ia + I I Ib : −i
∫

dx Tr
{

Φ(x)γ0γi∇tot
i ΨΣ + Φ(x)[ω0, ΨΣ]

}
. (33)

In flat space-time [29–31], those terms are reduced to the term I with with the total derivative168

dΨΣ(x)/dxi which does not contribute to the equation for the functional Ψ if ΨΣ(x) vanishes at169

the spatial infinity. Let us see if or how this property extends to curved space-times.170

3.4.4. The vanishing contribution from the terms I and I I Ia171

At first we consider the first term in (33). Using the covariant Stokes theorem we obtain

I + I I Ia : −i
∫

dx Tr
{

Φ(x)γ0γi∇tot
i ΨΣ

}
= −i

∫
dx
√

h
(

Tr
{ 1√

h
Φ(x)γ0γi∇tot

i ΨΣ

})
=− i

∫
dx
√

hTr
{
∇tot

i

( 1√
h

Φ(x)γ0γiΨΣ

)}
+ i

∫
dx
(√

hTr
{
∇tot

i

( 1√
h

Φ(x)γ0γi
)

ΨΣ

})
=− i

∮
∂Σ

dxiTr
{

Φγ0γiΨΣ

}
+ i

∫
dx Tr

{
Φ
(
∇tot

i (γ0γi)
)
ΨΣ

}
+ i

∫
dx

(
−∇i
√

h√
h

Tr
{

Φγ0γiΨΣ

}
+ Tr

{(
∇tot

i Φ(x)
)

γ0γiΨΣ

}) (34)

where dxi = dn−2x|∂Σni(x) is the measure of (n− 2)-dimensional integration over the boundary ∂Σ172

with the normal vector ni(x) tangent to Σ. In the right hand side of (34),173

(i) the first boundary term is the result of the covariant Stokes theorem and it vanishes if ΨΣ vanishes174

on the boundary ∂Σ;175

(ii) the following three terms follow from the Leibniz rule for the total covariant derivative∇tot
i with176

respect to the Clifford products of tensor Clifford-algebra-valued functions;177

(iii) in the second term, ∇tot
i (γ0γi) = 0 due to the covariant constancy of Dirac matrices (12);178

(iv) in the third term, the metric compatibility yields ∇i
√

h = 0;179

(v) in the fourth term, the explicit formula for Φ(x) in (29) yields

∇tot
i Φ(x) =

−i
κ Φ(x)

(
∂iφγl∂lφ + φγl∂ilφ + φ(∇tot

i γl)∂lφ
)

. (35)
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By noticing that the last term in (35) vanishes due to (12) and substituting (35) into the last term
in (34), using the covariant Stokes theorem and the assumption that the field configurations φ(x)
vanish at the spatial infinity, we obtain∫

dx Tr
{

Φ(x)
1
κγ0ΨΣ(x)

(
gil∂iφ∂lφ + φgil∂ilφ

)}
= Ψ

∫
dx
√

g
(

gil∂iφ∂lφ + φgil∂ilφ
)

= −Ψ

∫
dx
√

h∇i
(√

g00gil)1
2

∂lφ
2 = 0,

(36)

where we use in the first equality the fact that Tr
{

Φ(x) 1
κ√g γ0ΨΣ(x)

}
= Ψ (c.f. (20)) and the180

covariant Stokes theorem in the second equality. The result is that the right-hand side of (36)181

vanishes because of the metricity of space-time: ∇αgµν = 0.182

Therefore, it is demonstrated that in the limiting case (24) all four terms in the right-hand side of183

(34) vanish, so that the terms I and I I Ia in (14) do not contribute to the equation for the functional Ψ.184

By combining the above considerations we obtain from (14) the following equation for the
functional Ψ:

ih̄∂tΨ =
∫

dx
√

g

(
h̄2

2
g00

g
δ2

δφ(x)2 −
1
2

gij∂iφ(x)∂jφ(x) + V(φ)

)
Ψ− i

4
Tr
{

Φ(x)[ω0, ΨΣ]
}

. (37)

We see that the first three terms in the right hand side reproduce the canonical Hamiltonian operator185

in the functional derivative Schrödinger equation (1). However, the last term, which does not vanish186

in arbitrary non-static space-times where ω0 6= 0, still can not be expressed in terms of Ψ alone. For187

this reason, we will treat static space-times with ω0 = 0 and non-static ones with ω0 6= 0 separately.188

4. Static space-times with ω0 = 0189

In static space-times, when ω0 = 0, equation (37) coincides with the canonical functional
derivative Schrödinger equation (1). Thus the latter is derived from the precanonical Schrödinger
equation as the limiting case corresponding to (24). In this case, we can also specify the functional
Ξ([ΨΣ(x)], x̌) in (31) by combining the observations presented above together and noticing that the
relation (31) is valid at any given point x. This is possible only if the functional Ψ is the continual
product of identical terms at all points x, namely,

Ψ ∼ Tr
{

∏
x

e−iφ(x)γi∂iφ(x)/κγ0ΨΣ(φ(x), x, t)
}
|κ 7→γ0δ(0)/

√
g

, (38)

where ∼means an equality up to a normalization factor which includes κ and
√

h.190

The formal continual product expression in (38) can be understood as the multidimensional
product integral [37,38]

Ψ ∼ Tr
{
P
x

e−iφ(x)γi(x)∂iφ(x)/κγ0ΨΣ(φ(x), x, t)
}
| 1
κ γ0 7→

√
hdx

, (39)

where the notation of the product integral of matrix-valued functions F(x) as proposed by R. Gill [39]
(and implemented in the LATEX package prodint) is used

P
x

eF(x)dx = P
x

(
1 + F(x)dx

)
. (40)

The expression in (39) generalizes a similar result obtained in flat space-time earlier [30]. The only191

difference is that in curved space-time the spatial integration measure dx is replaced by the invariant192

one
√

hdx and the Dirac matrices are x-dependent.193
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In (1 + 1)-dimensional space-time, the product integral above is given by the well known
path-ordered exponential, or the Peano-Baker series (also known as the Dyson series in the context
of perturbative QFT and the path-ordered phase related to the Wilson loop in gauge theory), cf. eq.
(53) below. A multidimensional generalization is briefly discussed in the books [37,38] and probably
needs further refinement. However, in our case, instead of defining the product integral of arbitrary
non-commutative matrices, we need only the trace of the product integral of Clifford-algebra valued
functions. This significantly simplifies the task of defining the expression (39) mathematically. For
example, in the one-dimensional case, the taking of the trace of each of the terms in the series expansion
of the ordered exponential in (53)) implies that the matrices under the integrals in the series expansion
of the trace of product integral are multiplied in the cycling permuted way, which can be generalized
to the multidimensional case, rather than a time-ordered one, which implies a one-parameter ordering
whose multidimensional generalization is problematic. Then, if the corresponding limit exists,

Tr P
x∈V

eF(x)dx := lim
N→∞

1
N!

Tr ∑
P(N)

eF(x1)∆x1 eF(x2)∆x2 ...eF(xN)∆xN , (41)

where P(N) denotes all permutations of (1, 2, ..., N), the volume of integration V 3 x is partitioned into194

N small sub-volumes ∆x1, ..., ∆xN whose volumes are taken to zero as N → ∞, and F(xi) denotes the195

matrix F at a point xi ∈ ∆xi. The existence of the limit in (41) and its independence on the partitioning196

of V into N → ∞ sub-volumes ∆xi and the choice of points xi within the subvolumes ∆xi imply a197

certain continuity of the dependence of the matrix elements of F of x, similarly to the definition of the198

Riemann integral of functions.199

Now, by taking into account the fact that some of the terms in (34) are proven to not contribute to200

the time evolution of Ψ we can write the effective equation which governs the time evolution of ΨΣ201

which does contribute to the time evolution of the wave functional Ψ:202

i∂tΨΣ = γ0

(
−κ

2 ∂φφ + iγi∂iφ(x)∂φ + 1
κV(φ)

)
ΨΣ =: γ0ÊΨΣ. (42)

By substituting ΨΣ in the form
ΨΣ = e+

i
κ φ(x)γi∂iφ(x)ΦΣ, (43)

we obtain
i∂tΨΣ = e+

i
κ φ(x)γi∂iφ(x)i∂tΦΣ (44)

in the left hand side of (42) and

γ0e+
i
κ φ(x)γi∂iφ(x)

(
−κ

2
∂φφ −

1
2κ gij(x)∂iφ(x)∂jφ(x) +

1
κV(φ)

)
ΦΣ (45)

in the right hand side. Hence, ΦΣ obeys

i∂tΦΣ = γ̃0(x)
(
−κ

2
∂φφ −

1
2κ gij(x)∂iφ(x)∂jφ(x) +

1
κV(φ)

)
ΦΣ, (46)

where
γ̃0(x) := e−

i
κ φ(x)γi∂iφ(x)γ0(x)e+

i
κ φ(x)γi∂iφ(x). (47)

Obviously, γ̃0(x) γ̃0(x) = γ0(x)γ0(x) = g00(x), hence the transformation in (47) is a Clifford algebra203

isomorphism.204

From (46) one can conclude that ΦΣ can be written in the form

ΦΣ = (1 + γ0)Φ×Σ , (48)
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where Φ×Σ is a scalar function such that

i∂tΦ×Σ =
√

g00

(
−κ

2
∂φφ −

1
2κ gij(x)∂iφ(x)∂jφ(x) +

1
κV(φ)

)
Φ×Σ . (49)

In terms of scalar function Φ×Σ eq. (39) takes the form

Ψ ∼ Tr
{
P
x

(
1 + γ0

)
Φ×Σ (φ(x), x, t)

}
| 1
κ γ0 7→

√
hdx
∼P

x
Φ×Σ (φ(x), x, t)| 1

κ 7→
√

hdx
, (50)

where we use the projector property of the matrix
(

1 + γ0

)
. Obviously, the multidimensional product205

integral of the scalar function Φ×Σ is defined without any complications related to the definition of the206

product integral of non-commutative matrix functions.207

5. Non-static space-times with ω0 6= 0208

In non-static space-times, when ω0 6= 0, the last term in (37) does not allow us to obtain a close
equation for the functional Ψ. In order to find a way out, let us write the effective equation similar to
(42) which governs the time evolution of ΨΣ, with the term I and the spatial part of the term I I Ia in
(14), which are proven in (34) to have no contribution to ∂tΨ, removed:

i∂tΨΣ = γ0

(
−κ

2
∂φφ + iγi∂iφ(x)∂φ +

1
κV(φ))

)
ΨΣ − i[ω0, ΨΣ] =: Ĥ0 − i[ω0, ΨΣ]. (51)

We first note that by transforming ΨΣ as follows:

ΨΣ := UΨ′ΣU−1, (52)

where

U(x, t) = T e−
∫ t

0 ds ω0(x,s) =

tP
t=0

(1−ω0(x, s)) ds

:= 1−
∫ t

0
dt1 ω0(x, t1) +

∫ t

0
dt1

∫ t1

0
dt2 ω0(x, t1)ω0(x, t2)

−
∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3 ω0(x, t1)ω0(x, t2)ω0(x, t3) + ...

(53)

is the tranformation determined by the time-ordered exponential, we obtain

i∂tΨ = −i[ω0, Ψ] + Ui∂tΨ′ΣU−1. (54)

Then
i∂tΨ′Σ = U−1Ĥ0ΨΣU = Ĥ′0Ψ′, (55)

where
Ψ′ := U−1ΨΣU, Ĥ′0 := U−1Ĥ0U. (56)

As the transformation U affects only the terms with γµ-s,

Ĥ0
′ = γ′0

(
−κ

2
∂φφ + iγ′ i∂iφ(x)∂φ +

1
κV(φ))

)
, (57)

where
γ′µ(x, t) := U−1(x, t)γµ(x)U(x, t). (58)
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It is easy to check that
γ′µγ′ν + γ′νγ′µ = 2U−1gµνU = 2gµν. (59)

Hence the U-transformation is just a local automorphism of the Clifford algebra of space-time.209

Using (55) one can write

i∂tΨ = Tr
∫

dx
δΨ

δΨ′TΣ(x)
i∂tΨ′Σ (60)

= Tr
∫

dx
δΨ

δΨ′TΣ(x)
Ĥ′0Ψ′Σ. (61)

By comparing it with (7) and (8) we conclude that the results in static space-times with ω0 = 0 are210

generalized to non-static space-times with ω0 6= 0 using the dictionary:211

γµ → γ′µ = U−1γµU, (62)

ΨΣ → Ψ′Σ = U−1ΨΣU, (63)

Ĥ0Σ → Ĥ′0Σ = U−1H0ΣU (64)

with U given by the path-ordered exponential in (53). Then, the wave functional (39) rewritten in
terms of the primed objects:

Ψ ∼ Tr
{
P
x

e−iφ(x)γ′ i(x,t)∂iφ(x)/κγ0Ψ′Σ(φ(x), x, t)
}
|γ0

1
κ 7→
√

hdx
(65)

represents, up to a normalization factor, the Schrödinger wave functional in terms of precanonical wave
functions in an arbitrary curved space-time and it satisfies (37) without the last term, i.e. the functional
derivative Schrödinger equation (1). Using the same steps as in the static case, this complicated
expression can be transformed to the product integral of the scalar function Φ×Σ ,

Ψ ∼P
x

Φ×Σ (φ(x), x, t)| 1
κ 7→
√

hdx
, (66)

the only difference being the metric tensor components in eq. (49) defining Φ×Σ can now be also212

time-dependent.213

In summary, we have demonstrated that in curved space-times the canonical functional derivative214

Schrödinger equation (1) and the explicit product integral formula (39) relating the Schrödinger wave215

functional with the Clifford-valued precanonical wave function can be derived from the precanonical216

Schrödinger equation (2) in the singular limiting case when γ0κ is replaced by δ(0)/
√

h, a regularized217

invariant delta-function at coinciding spatial points. A natural interpretation of the latter is that it218

represents the UV cutoff of the total volume of the momentum space which one has to introduce219

in order to make sense of the second variational derivative at coincinding points in (1). As in the220

previously considered case of quantum fields in flat space-time [29–31], the standard unregularized221

formulation of QFT in curved space-time in functional Schrödinger representation thus emerges from222

the precanonical description as a singular limiting case.223

6. Conclusion224

We explored a connection between the description of an interacting quantum scalar field in curved225

space-time derived from precanonical quantization and the standard description in the functional226

Schrödinger picture resulting from the canonical quantization.227

We have demonstrated that the functional derivative Schrödinger equation (1) can be derived228

from the partial derivative precanonical Schrödinger equation (2) in the limiting case (24). Namely, the229

restriction of the precanonical Schrödinger equation to the subspace Σ representing a field configuration230
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at time t, eq. (8), governs the time evolution of the wave functional according to (7) and (14). Then, in231

the limiting case (24),232

(i) the potential term V in (14) reproduces the potential term in (1);233

(ii) the term IV in (14) reproduces the second functional derivative term in (1) up to some additional234

terms which have no obvious counterpart in (1);235

(iii) by noticing that one of those additional terms can be cancelled by the term I I in (14) we obtain236

an expression of the Schrödinger wave functional as a trace of the continuous product of the237

precanonical wave functions (38) which we suggested to interpret as a multidimensional analogue238

of the product integral, eq. (39);239

(iv) using the expression of the wave functional in terms of pre3canonical wave functions in the other240

additional term mentioned in (ii) we reproduce the second term in the right-hand side of (1);241

(v) this explicit expression also allows us to show that for the fields φ(x) and ΨΣ(φ(x), x, t) vanishing242

at the spatial infinity the remaining terms I and I I Ia do not contribute to the functional243

Schrödinger equation (1);244

(vi) in static space-times when ω0 = 0 the remaining term I I Ib vanishes and the functional245

Schrödinger equation (1) emerges from the precanonical Schrödinger equation (2) and the246

Schrödinger wave functional is expressed in terms of precanonical wave functions;247

(vii) in non-static space-times with ω0 6= 0, we argue that the transformation (53) absorbs the248

contribution of the term I I Ib in (14) thus allowing us to obtain the functional Schrödinger249

equation (1) from the precanonical Schrödinger equation (2) and to express the Schrödinger wave250

functional in terms of transformed precanonical wave functions, eq. (66);251

(viii) both in static and non-static space-times the Schrödinger wave functional can be represented as252

the product integral of a scalar wave function derived from the precanonical wave function by a253

series of transformations and satisfying equation (49).254

These results generalize to arbitrary curved space-times (whose metric is represented in Gaussian255

coordinates with g0i = 0) the statement from [29–31] that the standard functional Schrödinger256

representation of QFT is a certain (symbolic) limiting case of the theory of quantum fields obtained by257

precanonical quantization.258

The symbolic or singular nature of the limiting transition from precanonical quantization to the259

standard formulation of QFT in functional Schrödinger representation is related to the fact that the260

latter, due to the presence of the second functional derivative at coinciding points, is not a well-defined261

theory unless a regularization is introduced. The regularization typically introduces a UV cutoff scale262

as an additional element of the theory removed by a subsequent renormalization. In precanonical263

quantization, the ultraviolet scale κ appears as an inherent element quantization, which, unlike264

other theories introducing an ultraviolet fundamental length or cutoff, does not alter the relativistic265

space-time at smaller scales.266

Whether κ is a fundamental scale or an auxiliary element of precanonical quantization of fields267

remains an open question so far. On the one hand, one can show that in free scalar theory κ disappears268

from the observable characteristics of a quantum field because the spectrum of DW Hamiltonian269

operator is proportional to κ. In interacting scalar theory, powers of κ enter in the perturbative270

corrections to the spectrum of DW Hamiltonian Ĥ thus suggesting that κ can be renormalized away271

by absorbing the expressions with the bare mass and κ in the "observed mass". On the other hand,272

an estimation of the mass gap in the quantum pure SU(2) gauge theory [34] derived by precanonical273

quantization and a naive estimation of the cosmological constant based on the precanonically quantized274

pure Einstein gravity [35] seem to consistently point to the estimation of the scale of κ at roughly275

∼ 102MeV. We hope to clarify the nature of κ in our forthcoming work.276
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