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ABSTRACT: In our recently proposed theory of quantum gravity, a black hole arises from the 
spontaneous localisation of an entangled state of a large number of atoms of space-time-
matter [STM]. Prior to localisation, the non-commutative curvature of an STM atom is 

described by the spectral action of non-commutative geometry. By using the techniques of 
statistical thermo-dynamics from trace dynamics, we show that the gravitational entropy of a 

Schwarzschild black hole results from the microstates of the entangled STM atoms and is 
given (subject to certain assumptions) by the classical Euclidean gravitational action. This 
action, in turn, equals the Bekenstein-Hawking entropy (Area/4LP 

2) of the black hole. We 
argue that spon-taneous localisation is related to black-hole evaporation through the 

fluctuation-dissipation theorem.

Keywords: black hole entropy; quantum gravity; non-commutative geometry; spontaneous 

localisation; trace dynamics

This paper proposes a new derivation of black hole entropy, based on our recent papers 

which propose a new quantum theory of gravity [1–3]. These papers will be hereafter referred 

to as I, II and III respectively. We will also frequently refer to Adler’s book Quantum theory 

as an emergent phenomenon [4], hereafter referred to as QTEP.

In I, we have introduced the concept of an atom of space-time-matter [STM], which is 

described by the spectral action of non-commutative geometry. The spectral action, in the 

presence of a Riemannian manifold, is equal to the Einstein-Hilbert action of classical general 

relativity, after a heat kernel expansion of square of Dirac operator is carried out, and 

truncated at the second order in an expansion in Lp
−2. We also introduced there the four levels 

of gravitational dynamics. In II, we used the Connes time parameter, along with the spectral 

action, to incorporate gravity into trace dynamics. We then derived the
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spectral equation of motion for the gravity part of the STM atom, which turns out to be

the Dirac equation on a non-commutative space. In III, we proposed how to include the

matter (fermionic) part and gave a simple action principle for the STM atom. This leads to

the equations for a quantum theory of gravity, and also to an explanation for the origin of

spontaneous localisation from quantum gravity. We used spontaneous localisation to arrive

at the action for classical general relativity [including matter sources] from the action for

STM atoms. See Fig. 1 below for the four layers of gravitational dynamics, first introduced

in paper I. In the present paper we use the results of III to derive the Bekenstein-Hawking

entropy for a Schwarzschild black hole, from the entangled microstates of the STM atoms.

I. CLASSICAL GENERAL RELATIVITY FROM SPONTANEOUS LOCALISA-

TION IN NON-COMMUTATIVE MATTER-GRAVITY

In III, we have proposed the following action principle for the STM atom described by the

operator q = qB +qF , evolving in a Hilbert space with respect to the Connes time-parameter

τ :
LP

c

S

C0

=
1

2

∫
dτ Tr

[
L2
P

L2c2
(q̇B + β1q̇F ) (q̇B + β2q̇F )

]
(1)

Here β1 and β2 are two constant fermionic matrices. This trace Lagrangian can be expanded

and written as

LP

c

S

C0

=
a

2

∫
dτ Tr

[
q̇2B + q̇Bβ2q̇F + β1q̇F q̇B + β1q̇Fβ2q̇F

]
(2)

where we have denoted a ≡ L2
P/L

2c2. The first term inside the trace Lagrangian has the

familiar structure of a kinetic energy, and in any case is what gives rise to the Einstein-Hilbert

action in the heat kernel expansion of D2
B, where as in III, DB ≡ dqB/Lc dτ .

There are three universal constants in the theory: Planck length LP and Planck time

τPl = LP/c, where the speed of light c should be thought of as the ratio Lp/τPl. The third

universal constant C0 has dimensions of action, and at Level I it is identified with Planck’s

constant h̄ (up to a numerical factor). Newton’s gravitational constant G and Planck mass

mPl are emergent only at Level I in the four layers of gravitational dynamics [1]. In fact the

concepts of mass and spin themselves emerge only at Level I, and are not present at Level

0. We associate only a length scale (more precisely an area L2) with the STM atom, but
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not mass nor spin, at Level 0.

FIG. 1. The four levels of gravitational dynamics. In this bottom-up theory, the fundamental

Level 0 describes the ‘classical’ matrix dynamics of atoms of space-time-matter (STM). This level

operates at the Planck scale. Statistical thermodynamics of these atoms brings us below Planck

scale, to Level I: the emergent equilibrium theory is quantum gravity. Far from equilibrium, rapid

spontaneous localisation results in Level III: emergence of classical space-time, obeying classical

general relativity with matter sources. Level II is a hybrid level built by taking classical space-time

from Level III and quantum matter fields from Level I, while neglecting the quantum gravitation

of Level I. Strictly speaking, all quantum field dynamics takes place at Level I, but we approximate

that to Level II.

In III, we have discussed the Lagrangian and Hamiltonian dynamics of the STM atom,

based on the above action principle. We also discussed the adjointness properties of the

conserved Adler-Millard charge. Next, in the spirit of trace dynamics, one assumes that the

Hilbert space is populated by a large collection of STM atoms, whose dynamics is described

in the operator phase space. For a discussion of the statistical mechanics of the underlying

matrix dynamics, see Chapter 4 of QTEP [4]. We assume that we are examining the system
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over time-scales much larger than Planck time, and that the system has no memory of its

initial conditions, and that an equilibrium state has been reached in the operator phase space.

The system is described, as in statistical mechanics, by a phase space density distribution

ρ, and the equilibrium state is obtained by maximising the entropy

SE

kB
= −

∫
dµ ρ ln ρ (3)

with dµ being the measure defined in operator phase space [4]. As shown in QTEP, the

emergent theory at equilibrium, upon performing the statistical thermodynamics of the

underlying matrices, is quantum field theory on a Minkowski space-time background. (Trace

dynamics, as described in QTEP, deals with matter fields, on a flat space-time. Gravity is

not included). We showed in III, how to use non-commutative geometry to include gravity

in trace dynamics. Thus, in our case the statistical mechanics of the underlying STM atoms

yields a quantum theory of gravity, at equilibrium, and under suitable approximations this

quantum theory of gravity reduces to the trace dynamics (flat classical space-time) discussed

in QTEP. Also, in III, following the philosophy of QTEP, we argued that large statistical

fluctuations away from equilibrium give rise to classical space-time and classical matter,

via the mechanism of spontaneous localisation. In fact, as argued in III, the action for a

large collection of STM atoms, reduces by way of spontaneous localisation, to the action for

classical general relativity with point sources. To write this down explicitly, we first write,

using (2) above, the total action for a large collection of STM actions as the sum of their

individual actions:

Stot =
∑
i

Si =
∑
i

acC0

2Lp

∫
dτ Tr

[
q̇2B + q̇Bβ2q̇F + β1q̇F q̇B + β1q̇Fβ2q̇F

]
i

(4)

≡ C0

τPl

∫
dτ
∑
i

TrL2
PD

2
i (5)

The result about the emergence of classical general relativity from this action, upon

spontaneous localisation, is that

Stot =
C0

τPl

∫
dτ
∑
i

TrL2
PD

2
i −→ 1

τPl

∫
dτ

∫
d4x
√
g

[
c4

16πG
R+ c2

∑
i

miδ
3(x−x0)

]
(6)

For an explanation on how this result comes about, see III. The expression on the right
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hand side of the above arrow should be compared with Eqn. (62) of III. Compared to that

equation, we have pulled out a c factor from the space-time volume element, and restored the

correct numerical factor of 1/16πG in the Einstein-Hilbert action (the exact numerical factor

was not relevant in III). This correct numerical factor comes from the universal constant C0

which upon the emergence of Level I is set proportional to Planck’s constant h̄.

The origin of this emergence can be traced back to the remarkable result about the

spectral action for gravity, in the context of non-commutative geometry. Given the Dirac

operator DB on a Riemannian manifold, the Einstein-Hilbert action can to related to the

eigenvalues of DB:

Tr[L2
pD

2
B] ∝

∫
d4x
√
g

1

L2
p

R (7)

The significance being that the left hand side is spectral, and hence provides a definition of

curvature even if the Riemannian manifold is replaced by a non-commutative space-time.

This becomes highly relevant for us because we have argued that the Riemannian manifold

and its overlying Einstein-Hilbert action arises only after spontaneous localisation of (the

fermionic part) of a large number of STM atoms, with one atom localising to one eigenvalue

of DB (see III). Thus for us, the correct interpretation of the above equation is

∑
i

Tr[L2
pD

2
Bi] −→

∫
d4x
√
g

1

L2
p

R (8)

where the arrow represents spontaneous localisation. That is, it is not as if the spectral

action of just one STM atom equals the classical Einstein-Hilbert action. Rather, each of a

large collection of STM atoms localises to one or the other eigenvalue of DB, and the net

contribution of all the atoms to the trace adds up to the Einstein-Hilbert action. Thus,

∑
i

Tr[L2
pD

2
Bi] −→ Tr[L2

pD
2
B] ∝

∫
d4x
√
g

1

L2
p

R (9)

with the arrow again denoting spontaneous localisation.

II. A DERIVATION OF BLACK HOLE ENTROPY

We have a precise description of the microstates of STM atoms, because we have a well-

defined action principle for them, from which their matrix dynamics can be obtained. Thus,
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in principle, the eigenstates and eigenvalues of the Hamiltonian are known, as in III.

The mathematical structure of our theory provides evidence that these microstates can

yield the correct black hole entropy. First and foremost, both quantum theory as well as

classical general relativity emerge as thermodynamic approximations to the (deterministic)

underlying matrix dynamics. Also, the gravitational part of the trace Lagrangian / Hamilto-

nian of the STM atoms is given by the sum of the squared eigenvalues of the Dirac operator,

which in the presence of a Riemannian manifold equals the Einstein-Hilbert action. This

same Hamiltonian occurs in the partition function (for a canonical ensemble of the STM

atoms) from which the entropy is calculated. Such suggestive evidence motivates us to the

following estimate of the black hole entropy, subject to a few assumptions, which we hope

to justify rigorously in future work.

A Schwarzschild black hole, say of mass M much greater than Planck mass, results from

the spontaneous localisation of the entangled state of a very large number of STM atoms,

each of which has a mass mi much smaller than Planck mass. Entanglement is essential, so

as to speed up the rate of spontaneous collapse (same effect as amplification of spontaneous

collapse in collapse models). For instance, if ψA1,2,3,...N and ψB1,2,3,...N are two eigenstates of

the quantum gravitational system Hamiltonian at equilibrium (Level I), then the entangled

state ψA1,2,3,...N + ψB1,2,3,...N is also an allowed state, but because N is extremely large, the

superposition is rapidly lost, and one gets a macroscopic state. Because of entanglement,

collapse of any one STM atom collapses them all. In particular, the Schwarzschild black

hole of mass M results from one such process, where all the entangled atoms collapse to the

centre of the black hole, as described by Eqn. (6) above, and the sum of the masses of the

atoms is M . We recall that an STM atom is nothing but an elementary particle (fermionic)

which at Level 0 is inseparable from its non-commutative geometry (bosonic). Spontaneous

localisation at Level I separates the fermionic part (which collapses to the centre of the black

hole) from its bosonic part, which does not collapse, thus becoming the gravitational field

of the black hole at Level III.

The entropy of the black hole results from the microstates of the STM atoms. The

calculation follows the methods of standard statistical mechanics (Chapter 4 of QTEP)

to compute the entropy given by Eqn. (3) above, at equilibrium. As shown in QTEP,

the equilibrium phase space distribution is obtained by maximising the entropy, subject to

the constraints that ρ is normalised, and the canonically averaged trace Hamiltonian H,
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the averaged Adler-Millard charge C̃, and the averaged trace fermion number N are all

conserved. These constraints are implemented by introducing the Lagrange multipliers τ̃

for H, the matrix λ̃ for C̃, and η for N. Our τ̃ is the same as the τ in QTEP; we have

already used up the symbol τ for Connes time. The Lagrange multiplier τ̃ has dimensions

of (1/Energy), and is the analog of inverse temperature, β = 1/kBT , in ordinary statistical

mechanics. η is the analog of the chemical potential, whereas λ̃ has no analog in conventional

statistical mechanics. As we will justify below, we will set τ̃ to the Planck energy scale; the

other two Lagrange multipliers will not concern us in the present paper, and the question

of their relevance for the calculation of black hole entropy is left for a future investigation.

In III, we have computed the trace Hamiltonian for our fundamental action for the STM

atom. Since the Lagrangian does not depend explicitly on q, it coincides with the Hamilto-

nian. As shown in III, the trace Hamiltonian for a single STM atom is

H = Tr[pF q̇F ] + Tr[pB q̇B]− Tr L (10)

which becomes, after substituting for momenta and the Lagrangian,

H = Tr

[
a

2
(q̇B + β1q̇F )(q̇B + β2q̇F )

]
(11)

and in terms of the momenta

H = Tr
2

a

[
(pBβ1 − pF )(β2 − β1)−1(pBβ2 − pF )(β1 − β2)−1

]
(12)

For many atoms, we simply sum over the corresponding Hamiltonians of the above form,

one for each atom. It is clear that upon spontaneous localisation of a large number of

STM atoms, their net trace Hamiltonian will reach the same classical limit as the trace

Lagrangian; the latter limit having been shown in Eqn. (6) above. Thus we conclude the

important result that, upon spontaneous localisation,

H −→ 1

τPl

∫
d4x
√
g

[
c4

16πG
R + c2

∑
i

miδ
3(x− x0)

]
(13)

which will be crucial below.
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The equilibrium phase space density distribution is given, as in QTEP, by

ρ = Z−1 exp (−Trλ̃C̃ − τ̃H− ηN) (14)

Z =

∫
dµ exp (−Trλ̃C̃ − τ̃H− ηN) (15)

λ̃ is a traceless operator parameter, and when C̃ has a self-adjoint part, as is true in our

case, Trλ̃C̃ in the above equation is modified as

Trλ̃C̃ → Trλ̃saC̃ sa + Trλ̃asaC̃ asa (16)

with the superscripts ”sa” and ”asa” denoting self-adjoint and anti-self adjoint parts respec-

tively. The partition function should be dimensionless; so we divide it by a fiducial volume

element ∆V N in phase space:

Z =
1

∆V N

∫
dµ exp (−Trλ̃C̃ − τ̃H− ηN) (17)

The entropy SE is given by

SE

kB
= logZ − Trλ̃

∂ logZ

∂λ̃
− τ̃ ∂ logZ

∂τ̃
− η∂ logZ

∂η
(18)

(We will suppress kB in subsequent expressions). We will now estimate the partition function

for a large number N of STM atoms which constitute the spontaneously collapsed black

hole of mass M . As we have argued in III, spontaneous localisation of the (fermionic

part of) an STM atom occurs to one or the other eigenvalues of DB; equivalently one

or the other eigenvalues of the Hamiltonian for the atom. This allows us to express the

form of Z, by labelling various contributing terms by the corresponding eigenvalue of the

Hamiltonian. Assuming the eigenvalues to be discrete (this assumption is not compulsory; it

only makes representation simpler), and ignoring for now the contributions from the Adler-

Millard charge and from the trace fermion number, we assume that the partition function

for the n-th atom can be written as

Zn =
∑
i

exp(−τ̃Hni) (19)
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where Hni is the contribution from the i-th eigenvalue of the n-th atom. The transition

from (17) to this form of Zn above involves a transition from Grassmann integration to an

ordinary sum. How this comes about, remains to be proved. The full partition function is

the product of the partition functions of the individual STM atoms:

Z = Z1×Z2×.....×Zn =

[∑
i

exp(−τ̃H1i)

]
×
[∑

i

exp(−τ̃H2i)

]
×.....×

[∑
i

exp(−τ̃HNi)

]
(20)

This expression for the partition function can in principle now be used in Eqn. (18); again

retaining only the first and third terms in (18), to get

SE = logZ − τ̃ ∂ logZ

∂τ̃
(21)

with Z given as above.

It suffices to consider first the contribution to entropy from Zn of the n-th atom, and

then multiply by the total number of atoms, to get the net entropy of the black hole. The

dominant contribution comes from the term

−τ̃ ∂ logZn

∂τ̃
= τ̃ Z−1

∑
i

Hni exp(−τ̃Hni) (22)

We now note that the underlying matrix dynamics of the STM atoms at Level 0 takes

place at the Planck scale. Moreover, the emergence of quantum theory at Level I takes place

only on time scales much larger than Planck time. This is confirmed also in QTEP, where

in Section. 5.1 Adler writes, and we quote: ”We identify the time-scale τ and mass τ−1

with the ”fast” or ”high” physical scale given by the Planck scale, and we assume that the

underlying theory develops a mass hierarchy, so that observed physics corresponds to ”slow”

components ....that are very slowly varying in comparison to time τ”. Thus, analogously,

in our case too, we set τ̃ = τPl. Since the Hni are much smaller than 1/τ̃Pl the exponent

above can be set to unity to a very good approximation, and we get the contribution to the

9

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 November 2019                   doi:10.20944/preprints201911.0096.v1

https://doi.org/10.20944/preprints201911.0096.v1


entropy from the n-th atom to be, with N0 being the number of states,

SEn = τPlN
−1
0

∑
i

Hni = τPlN
−1
0 ×

h̄

τ̃Pl

TrL2
pD

2
n

=
1

N0

∫
d4x
√
g

[
c4

16πG
R + c2

∑
i

miδ
3(x− x0)

]
(23)

The net entropy is NSEn, with N being the number of STM atoms, and if we assume that

N equals N0 to a very high accuracy, the black hole entropy is then given by

SE =

∫
d4x
√
g

[
c4

16πG
R + c2

∑
i

miδ
3(x− x0)

]
(24)

Next, we recall that we are working in a Euclidean 4-d space-time. Now, in this case, it

is known from the literature that for a Schwarzschild black hole sourced by a point mass

source at the centre, the Euclidean gravitational action is precisely equal to one-fourth the

black-hole area: see Eqn. (2.7) in [5]

∫
d4x
√
g

[
c4

16πG
R

]
=

Area

4L2
P

(25)

In writing this relation it has been assumed that the Euclidean time tE has been compactified

along a circle and is related to the Hawking temperature of the black hole as 2πtE =

h̄/kBTH = 8πGM/c3. This immediately implies that the gravitational contribution to the

entropy is the same as in the Bekenstein-Hawking formula.

Strictly speaking, we should be able to derive the time-temperature relation in our theory,

as well as prove the existence of Hawking radiation, without having to appeal to Level II

physics - i.e. quantum field theory in curved space-time. In fact, we can infer Hawking

radiation in our approach, on the basis of the fluctuation-dissipation theorem. The formation

of a black hole of mass M from a large number of entangled STM atoms, is a dissipative

process (drag) which takes the atoms away from equilibrium, via spontaneous localisation.

Hawking radiation (fluctuation) is the opposite of spontaneous localisation, and it takes the

STM atoms back towards equilibrium, via black hole evaporation. Assuming that the black

hole emits black-body radiation at a temperature T , we can heuristically relate T to M
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through the Einstein-Smoluchowski relation:

D = µkBT (26)

with D being the (quantum) diffusion constant, and the mobility µ is the ratio of the

particle’s terminal drift velocity to an applied force. Naively, a Newtonian estimate of the

force on a test particle of unit mass would be GM/R2 = c4/4GM which as is known, is

also the surface gravity of the black hole. Assuming that the terminal drift speed is c, and

assuming that the diffusion constant per unit mass is h̄, we get the Hawking temperature of

the black hole to be h̄c3/4GM which matches with the correct result up to a factor of 2π.

There is an instructive analogy between the fluctuation-dissipation theorem when applied

to the Brownian motion of a particle in a fluid, and when applied to a black hole resulting

from spontaneous collapse of STM atoms. The STM atoms are like the molecules of the fluid.

The black hole is like the particle. Molecules move around in physical space, and interact

via collisions. STM atoms evolve in Hilbert space and interact via entanglement. When the

particle moves through the fluid, it experiences a drag, because of the dissipative frictional

force caused by its collision with the molecules. A quantitative measure of the drag is the

mobility µ. When a highly entangled state of many STM atoms evolves unitarily in Hilbert

space, it experiences a non-unitary stochastic noise (see III) which causes it to spontaneously

collapse to a black hole. This non-unitary noise is the drag / dissipation whose strength (in

collapse models) is measured by the collapse rate Mγ, where γ is the spontaneous collapse

rate per unit mass. In the case of the fluid, the particle, if initially at rest, experiences

Brownian motion (fluctuation) because of random collisions with the molecules. Thus the

dissipation and fluctuation have the same origin - collision with molecules of the fluid -

and are hence related to each other. Correspondingly, in the case of matrix dynamics, the

highly entangled state (i.e. the black hole), if not changing with Connes time (i.e. at rest)

in Hilbert space, experiences the self-adjoint part of the stochastic noise (see III), which

is then possibly the cause of black hole evaporation. Thus, both Hawking radiation and

spontaneous collapse have the same origin - the stochastic (real + imaginary) noise which

results from the STM atoms deviating from equilibrium - and hence the two are related.
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III. CONCLUDING REMARKS

Spontaneous localisation was originally proposed as an ad hoc but falsifiable mechanism

for explaining the puzzling absence of position superpositions in the macroscopic world, and

to understand the quantum-to-classical transition. In order to overcome the phenomenologi-

cal nature of the proposal, the theory of trace dynamics derives quantum field theory, as well

as spontaneous localisation, as the statistical thermodynamics of an underlying classical ma-

trix dynamics. However, trace dynamics is formulated on a classical Minkowski space-time

and does not include gravity. We have exploited the spectral action in non-commutative

geometry, as well as the absolute Connes time parameter, to incorporate gravity into trace

dynamics. This has led us to the present quantum theory of gravity, in which spontaneous

localisation is an inevitable consequence of the underlying non-commutative gravity. Black

holes arise from spontaneous localisation of many entangled STM atoms, and in the present

paper we have attempted to estimate black hole entropy from the microstates of the STM

atoms. This has involved certain assumptions, which we hope to address rigorously in future

work.

Another line of reasoning also suggests that spontaneous localisation is an inevitable

consequence of quantum gravity. The absence of macroscopic position superpositions of

material bodies is a pre-requisite for the existence of classical space-time (manifold as well as

geometry, this being a consequence of the Einstein hole argument). If we assume space-time

to be emergent from quantum gravity, then the latter must also explain why macroscopic

bodies do not exhibit position superpositions. This is a challenging task for theories of

quantum gravity which are arrived at by quantizing classical gravity (unless one invokes the

many-worlds interpretation). That essentially leaves spontaneous localisation as the only

option for achieving a classical universe from quantum gravity. The same process which

solves the quantum measurement problem, also explains the emergence of classical space-

time. We can say that the quantum measurement problem is solved by quantum gravity.

The subject of quantum foundations is not disconnected from quantum gravity; rather the

two are directly related.
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