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Abstract: The importance of genome organization at the supranucleosomal scale in the control of 

gene expression is increasingly recognized today. In mammals, Topologically Associating Domains 

(TADs) and the active / inactive chromosomal compartments are two of the main nuclear structures 

that contribute to this organization level. However, recent works reviewed here indicate that, at 

specific loci, chromatin interactions with nuclear bodies could also be crucial to regulate genome 

functions, in particular transcription. They moreover suggest that these nuclear bodies are 

membrane-less organelles dynamically self-assembled and disassembled through mechanisms of 

phase separation. We have recently developed a novel genome-wide experimental method, 

High-salt Recovered Sequences sequencing (HRS-seq), which allows the identification of 

chromatin regions associated with large ribonucleoprotein (RNP) complexes and nuclear bodies. 

We argue that the physical nature of such RNP complexes and nuclear bodies appears to be central 

in their ability to promote efficient interactions between distant genomic regions. The development 

of novel experimental approaches, including our HRS-seq method, is opening new avenues to 

understand how self-assembly of phase separated nuclear bodies possibly contributes to 

mammalian genome organization and gene expression.  
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Abbreviations: 3D: three-dimensional, HLB: histone locus body; HRS: High-salt Recovered 

Sequences; IDR: intrinsically disordered region; LLPS: liquid-liquid phase separation; PPPS: 
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1. Introduction 

Several physical properties of nuclear organization are critical for regulating mammalian gene 

expression. In interphase, the genome is highly compacted to fit into the limited space of the cell 

nucleus while, at the same time, it remains fully accessible to multiple interactions involving cis- and 

trans-acting genomic elements and RNA/protein factors. Such a paradoxical achievement of a 

compact but dynamic genome is solved not only by packaging the genome into the chromatin 

nucleofilament, but also through a complex compartmentalization of the nucleus that contributes to 

the functional genome organization at the supranucleosomal scale (i.e. encompassing few tenths of 
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kb to few Mb of DNA). The functional role of 3D genome organization has thus become an 

important component in the study of mammalian gene expression [1]. 

Another paradigm has been recently re-examined and developed: biomolecular condensates, 

grounded in the classical physical notion of phase separation [2]. While the use of this concept in a 

biological context dates back the old notion of coacervate, its relevance has been recently renewed by 

technological advances allowing in-vivo observations and mechanistic investigations [3].  

Phase separation describes the spontaneous formation of a two-phase system. From a physical 

point of view, it covers not only the demixing of oil and water, but also the spatial segregation that 

can arise in aqueous solutions, when the attraction between the solute molecules is energetically 

favored compared to the interaction between these molecules and the aqueous solvent. The balance 

between interaction energies and thermal motion or the ensuing diffusion, described by the free 

energy of the system, can lead in appropriate conditions to the spatial segregation of two phases of 

different concentrations [4]. This phenomenon is known as liquid-liquid phase separation (LLPS). 

Indeed, self-separated droplets display several features of a liquid phase: they are dense (as opposed 

to gases), display no rigid order (as opposed to crystals or liquid crystals), and their molecules 

remain mobile (as opposed to solids and gels), with permanent exchange between the two phases. 

These droplets display fluid-like behaviour, as the fusion of adjacent droplets into larger ones and a 

shape determined by surface tension. However, their composition, particularly under biological 

constraints, make them far more complicated than a mere liquid. Experimental strategies are thus 

developed to assess the presence and specificity of phase separation inside the cell [5]. Noticeably, 

“condensate” is the term used for molecular assemblies that form through phase separation while 

“hub”, is a general term covering molecules that cluster together through unknown mechanisms. 

Phase separation has been first recognized in the cytoplasm, as a mechanism of formation of 

stress granules and P-bodies [4]. It has been more recently invoked in the nucleus, for instance for 

the formation of membrane-less organelles also known as nuclear bodies. Much work is now 

devoted to identifying the hallmarks of in-vivo phase separation and devising suitable protocols to 

study it [6]. In this review, we will first examine the proposal that nuclear compartments are 

phase-separated and could influence transcriptional regulation through their association with 

specific genomic sequences [7,8]. We will then present a novel experimental approach, HRS-seq, to 

test this working hypothesis.  

2. Compartmentalization of chromatin interactions  

In the past decade, the advent of sophisticated imaging techniques and molecular biology 

approaches based on proximity ligation assays (3C/Hi-C) has revealed that beyond the compaction 

achieved by packaging the DNA molecule at the nucleosomal level, chromatin is also organized 

within the three-dimensional (3D) space of the nucleus [9,10]. This 3D chromatin folding displays 

nested features, the most acknowledged being chromatin loops and topologically associating 

domains (TADs) where preferential cis-long-range contacts are observed [11]. A higher-order 

organization level also exists that partly covers the classic distinction between euchromatin and 

heterochromatin: the active (A) and inactive (B) chromosomal compartments [12]. While cohesin and 

CTCF proteins are required for TAD organization, these factors are dispensable for the maintenance 

of chromosomal compartments, which rely on different organization principle [13-15]. Furthermore, 

while TADs are essential for cell-specific genome organization and function [1], they appear to be 

quite stable between cell types, and even between organisms along evolution [16,17]. In striking 

contrast, chromatin loops and chromosomal compartments appear to vary during cell differentiation 

[18] and therefore they presumably play a central role for establishing specific gene expression 

profiles that determine cell identities. Several recent works started to decipher some crucial aspects 

of compartment regulation during mammalian spermatogenesis [19-22], in oocyte or early 

embryonic development [23-25], during cell differentiation [18,26] or reprograming [27] (for a recent 

review see [28]). However, to fully understand how 3D genome organization controls mammalian 

gene expression, it is critical to focus not only on long-range cis-interactions occurring at specific loci 
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within TADs but also on trans-associations occurring between TADs within chromosomal 

compartments.  

3. Nuclear body assembly by phase separation 

Nuclear bodies are large membrane-less ribonucleoprotein (RNP) complexes known to be 

involved in several nuclear functions. For example, the synthesis of ribosomal RNAs (rRNAs) takes 

place in the nucleolus, the maturation of small nuclear RNAs (snRNAs) occurs in the Cajal bodies, 

and the histone messenger RNAs (mRNAs) are transcribed and matured in the histone-locus bodies 

(HLBs) (Table 1). One important aspect of functional nuclear compartmentalization is thus related to 

nuclear bodies. Some of them, like the HLBs, are known to gather loci that are dispersed in TADs 

located on distinct chromosomes, thus favoring coordinated gene transcription and efficient 

pre-mRNA maturation [29]. Similarly, the Cajal bodies have also been shown to contain inter-TAD 

interactions [30]. Transcription factories and active chromatin hubs are also large RNP complexes 

that have been proposed to coordinate gene expression by maintaining specific genes into a 

restricted 3D space of the nucleus [31]. Large RNP complexes, including some nuclear bodies, thus 

appear important for supranucleosomal genome organization in mammals. Indeed, their 

involvement in regulating transcription of specific genes suggests that they might be critical for the 

establishment and the maintenance of the active chromosomal compartment. However, the 

demonstration of such a role has so far been impeded by the lack of a genome-wide method that 

would allow unbiased profiling of genomic sequences associated with nuclear bodies. In our view, 

this is due to a continued misunderstanding of the physical nature of nuclear bodies in vivo.  

Table 1. Classic nuclear bodies: main characteristics and components. 

Compartment  

name 

Count / 

nucleus 

Diameter 

(µm) 

Main  

component 

Main associated 

function 
Ref. 

Transcription factory 100 - RNA Pol.II mRNA transcription [31] 

Nucleolus 1 - 4 2 - 5 RNA Pol.I/Nucleolin rRNA transcription [32] 

Cajal Body 10 0.5 - 1 Coilin, SMN Splicing [33] 

Gem 10 0.5 - 1 SMN1 SMN sequestration [34] 

Histone Locus Body 2 - 4 0.5 - 1 Coilin, NPAT Histone gene expression [29] 

Polycomb body 10 - 20 0.2 - 1.5 PRC1 / PRC2 Histone PTMs 1 [35] 

PML body 10 - 20 0.1 - 1 PML Apoptosis, viral defense [36] 

Nuclear speckle 20 - 50 2 - 3 CPSF, RNA Pol.II Splicing [37,38] 

Paraspeckle 10 - 20 0.5 - 1 NEAT1 lncRNA Transcription [39,40] 
1 PTM = Post-Translational Modifications. 

It has been thought for a long time [41] that nuclear bodies are self-organized around nucleation 

sites, e.g. the Nucleolar Organizing Regions -NORs- for the nucleolus or the histone H3-H4 promoter 

region for Drosophila HLBs [42-44]. As a precedent, several cytoplasmic components, like the C. 

elegans P-granules [45] and centrosomes [46], have been discovered to behave in vivo like 

self-organized liquid-like droplets. More recently, based on in-vitro experiments, other cytoplasmic 

structures, like the glycolytic bodies [47] or the RNA granules [48], have been proposed to form by 

phase separation processes. However, experimental evidence supporting self-organization or 

self-assembly remained very scarce for nuclear bodies (for reviews see [4,49]). A step forward has 

been the proposal, based on in-vitro reconstitution experiments, that the phase separation of 

liquid-like RNP phases could control nucleolus size and assembly [50,51], as well as account for their 

sub-compartmentalized organization [52]. The demonstration that the Intrinsically Disordered 

Region (IDR) of Ddx4 protein (a critical component of the mammalian analogue to P-granules) can 

form phase-separated organelles, both in live cells and in vitro [53], led to the more precise 

hypothesis that phase separation of IDR-containing proteins could be a general mechanism for 

forming and regulating membrane-less organelles. These pioneering findings paved the way to a 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 December 2019                   doi:10.20944/preprints201911.0076.v3

Peer-reviewed version available at Genes 2019, 10, 1049; doi:10.3390/genes10121049

https://doi.org/10.20944/preprints201911.0076.v3
https://doi.org/10.3390/genes10121049


 4 of 15 

 

number of studies aimed at deciphering whether phase separation is involved in the organization of 

other nuclear compartments or bodies.  

One can distinguish two phase separation processes: liquid-liquid phase separation (LLPS) and 

polymer-polymer phase separation (PPPS). While LLPS occurs through demixing of two 

liquid/liquid-like phases, PPPS involves strong interactions between bridging factors leading to a 

chromatin collapse (i.e. a change in chromatin shape accompanied with an increase of its local 

density) [54]. Beyond the intrinsic nature of the interacting molecules responsible for phase 

separation (bridging factors for PPPS vs weak multivalent binders for LLPS), the main differences 

between these two phase-separation processes lie in the role of the underlying polymer, i.e. the 

chromatin nucleofilament. In PPPS, the polymer is required not only to nucleate phase separation 

but also to maintain it [55]. On the contrary, the polymer is only required for nucleation of LLPS, 

being dispensable to maintain phase separation once a given saturating concentration of the 

self-associating multivalent chromatin binder has been reached [54].  

Noticeably, phase separation was proposed to be involved in constitutive heterochromatin 

domain formation, based on the observation that a major component of the heterochromatin, the 

heterochromatin 1 α (HP1α) protein, can form liquid droplets both in vitro and in vivo [56,57]. HP1 

self-oligomerization driven by phosphorylation is sufficient to induce HP1 phase separation in vitro 

[56]. However, since HP1α compartments can incorporate chromatin [56], the formation of 

heterochromatin domains in vivo, could actually be more complex [58] and rely not only on LLPS 

and weak multivalent chromatin binders [56,57], but also on PPPS, where a bridging factors, like the 

the HP1 proteins themselves[59], could also induces a partial collapse of the chromatin [54,58].  

4. Phase-separation models for transcription control 

Following these discoveries, Phillip Sharp and colleagues proposed a phase-separation model 

for transcription control, in which a transcriptional multi-molecular assembly (i.e. a transcriptional 

condensate) would form by phase separation at a given locus following the formation of large RNP 

complexes induced by the binding of transcription factors at both enhancers and gene promoters 

[60]. This model was recently reinforced by studies showing that: i) transcriptional coactivators, like 

BRD4 and the Mediator complex at active super-enhancers, together with the RNA polymerase II at 

promoters, can form transcriptional condensates in vitro [61,62], and ii) domains driving gene 

activation in vivo are also required for phase separation in vitro [63]. Such transcriptional hubs, 

however, are relatively small compared to nuclear bodies. Therefore, it is not yet clear if their 

formation in vivo truly relies on phase separation and, if so, whether it is based on the demixing of 

two liquid-like phases similar to the LLPS observed for larger nuclear compartments like the 

nucleolus, or whether it reflects a hybrid situation also involving a polymer collapse process and 

PPPS as suspected in the case of heterochromatin domains. In all instances, we should remain 

careful before considering any transcriptional hub as a condensate formed by phase separation. 

Indeed, on the one hand RNA polymerase II was shown to form clusters or hubs at active genes 

through electrostatic interactions between its carboxy-terminal domain (CTD), a prominent IDR, and 

transcriptional coactivators, suggesting that compartmentalization may occur here through a LLPS 

process [7]. On the other hand, the transient unspecific binding of RNA polymerase II to the largely 

nucleosome free genome of the Herpes Simplex Virus type 1 (HSV1) leads to a DNA-mediated 

nuclear compartmentalization through a mechanism that is clearly distinct from LLPS [55]. Given 

the relatively small size of these transcriptional hubs, the physical properties that usually 

characterize the liquid state of the matter (like surface tension) may well make no real physical and 

biological sense [58,64]; that is precisely why the terms “hub” and “liquid-like phase separation” are 

often preferred to “condensate” and LLPS respectively [64]. However, liquid-like phase separation is 

also based on multiple weak interactions (hydrophobic interactions or electrostatic bonds), in 

contrast to PPPS involving bridging factors. The difference between a liquid and other states of the 

matter (like crystal, amorphous solid, liquid crystal or gel) lies in the mobility of the molecules, their 

ordered or disordered arrangement and the response to a stress (elastic versus viscous). Indeed a 

whole range of intermediary behaviors are possible (e.g. the visco-elastic response of a gel). At the 
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molecular scale, the liquid state is best characterized by the mobility of the molecules which is 

essentially depending on diffusion. Experimentally, FRAP experiments are used to quantitatively 

assess this mobility [50,57,63]. However, several caveats have been raised [5,6], the main one being 

that there are many physical models that can be fitted to the same fluorescence recovery curves [64]. 

Indeed, the rate of fluorescence recovery is not always due to freely diffusing molecules in solution, 

but could also depend on the local binding to others molecules. One critical point is thus to find 

experimental controls that could demonstrate that, independently of the models, the recovery rate is 

truly dominated by diffusion rather than binding. It has been proposed that this could be achieved, 

for example, by showing a dependence of the recovery rate on the size of the bleach spot [65].  

In parallel, another work indicates that various IDR-containing proteins form molecular hubs 

that could selectively associate in vivo with some chromatin regions by physically retaining targeted 

genomic loci while excluding non-targeted regions [66]. This chromatin filtering model suggests that 

such molecular hubs could bring distal genomic loci together. However, these experiments use a 

novel CRISPR-Cas9-based technology (CasDrop) to artificially target chimeric IDR-containing 

proteins to chosen genomic sequences. It remains to be seen whether endogenous IDR-containing 

proteins act in a similar way on their natural targets. Additional work has shown the potential 

involvement of RNA-binding proteins [67].   

In Figure 1, we provide an integrated model presenting the current working hypothesis, where 

we combine the concepts proposed in [60,63,66] for phase-separated transcriptional condensates 

involving long-range cis-interactions and extend these concepts to the probable involvement of 

nuclear bodies favoring inter-TADs trans-associations of co-regulated genes, like those observed for 

HLBs and Cajal bodies [30]. 
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Figure 1. An integrated phase-separation model for self-assembly of transcriptional condensates 

controlling mammalian gene expression. (a) Transcription factors containing motifs prone to phase 

separation (e.g. IDR) form liquid-like droplets (shaded in blue) by phase separation. (b) Their DNA 

binding motifs target specific genomic loci that are specifically incorporated into the droplets thus 

forming transcriptional condensates (hybrid liquid-like/polymer-polymer phase separation). 

Alternatively, phase separation could occurs after binding of transcription factors (PPPS) on their 

target genomic sites in which case the corresponding DNA sequences act as nucleation sites. (c) 

Supplemented with the action of RNA processing factors containing motifs prone to multivalent 

interactions [67], they bring enhancers, promoters and/or nascent RNA transcripts in close vicinity, 

thus stabilizing long-range cis-interactions and promoting transcription. (d) In some instances, 

transcriptional condensates containing similar/compatible phase separation-prone motifs could 

finally merge into larger nuclear sub-organelles, leading to the formation of nuclear bodies like the 

Histone Locus Bodies (HLBs). The latter process brings together loci with similar transcriptional 

regulation but located on distinct TADs/chromosomes (orange/red lines and arrowheads), thus 

favoring the coordinated expression of the corresponding genes. 

Our present knowledge, as synthesized in the integrated model (Figure 1), has two logical 

consequences: First, studying the physical principles and factors underlying the assembly of 

phase-separated nuclear bodies should differentiate at least two main classes of genes, those that are 

contacting phase-separated transcriptional condensates and those that are not, with as many 

sub-classes as types of condensates that interact with chromatin. Second, there should be at least two 
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classes of membrane-less nuclear compartments, those that are depending (in vivo) on 

polymer-polymer phase separation (PPPS) and those that are depending on liquid-liquid or 

liquid-like phase separation (LLPS). 

5. HRS-seq: a novel method to explore nuclear bodies-associated sequences 

Further exploration of the role of nuclear bodies in genome organization requires, as previously 

mentioned, an unbiased genome-wide sequencing of nuclear bodies-associated sequences. So far, 

these sequences have been difficult to analyse because no efficient and reliable method was available 

to purify nuclear bodies, presumably due to their membrane-less phase-separated nature.  

It is known that performing high-salt treatments of transcriptionally active nuclei makes large 

RNP complexes, including nuclear bodies, insoluble [68]. More recently, we have shown that a 2M 

NaCl treatment traps the genomic DNA associated with these RNP complexes into the insoluble 

material which is easily purified on a filtration unit [69]. The trapped DNA fragments, that we 

named the “High-salt Recovered Sequences” (HRS), can then be separated from the rest of the 

genome by performing a simple restriction digestion and washing out the soluble material (Figure 

2). The HRS thus remain on the filter unlike the rest of the genomic DNA. High-throughput 

sequencing of the HRS (HRS-seq) is then performed to obtain a global profiling of sequences 

associated with high-salt insoluble large RNP complexes, including nuclear bodies [70].  

Most existing methods such as FAIRE-seq [71], ATAC-seq [72] or MNase-seq [73-75] aim at 

investigating accessibility of the chromatin nucleofilament at the nucleosomal scale. So far, only few 

approaches, like the HRS-seq, have been developed to investigate higher-order chromatin 

architecture at the supranucleosomal scale. Those include DamID mapping [76], 3C-derived 

methods like the Hi-C [12], MAR-seq [77] and TSA-seq [78]. Unlike all of these methods, the HRS-seq 

is avoiding delicate chemical crosslinking procedures or the use of specific antibodies that may 

restrict retention of some genomic sequences. Furthermore, it generally displays a better genomic 

resolution (few kb vs few hundred kb) and is much straightforward and cheaper than existing 

approaches. However, in its present form, the HRS-seq method has several important limitations, 

the first of which is the fact that many large RNP complexes are extracted jointly in the insoluble 

material. A second limitation is that, contrary to 3C-derived approaches, it does not provide any 

indication on the physical proximity of the recovered sequences in vivo. Therefore, there is a clear 

need for improvements that would allow to identify sequences present simultaneously within 

specific subnuclear compartments. While assessing physical proximity will require to adapt a 

proximity-ligation assay to the HRS approach, the first limitation can already be addressed 

indirectly without modifying the existing HRS-seq protocol. Indeed, the inactivation of specific 

nuclear bodies by CRISPR/Cas9 technologies targeting critical components in relevant cellular 

models, combined with the present HRS-seq approach comparing wild-type and mutated cells, 

should soon allow extensive genomic profiling of sequences associated with specific nuclear bodies. 

This should lead to a much deeper understanding of how nuclear body-associated sequences and 

linked gene expression are dynamically affected during embryonic development and cellular 

differentiation, as well as in pathological situations where nuclear body formation is altered. For 

instance, in Spinal Muscular Atrophy (SMA), mutations of the survival of motor neuron 1 (SMN1) gene 

affect Cajal bodies formation and lead to motor neuron death [79]. HRS-seq experiments on heathy 

or SMA-patient motor neurons should thus provide new insights on altered genomic organization 

and gene expression in the context of defective Cajal bodies.  
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Figure 2. Principle of the HRS-seq method allowing the high-throughput identification of genomic 

sequences significantly associated with large RNP complexes and nuclear bodies (adapted from 

[69]). 

The two logical consequences presented in the previous section can thus now be tested in vivo 

using the HRS-seq method or quantitative PCR analyses of HRS assays (HRS-qPCR) in appropriate 

cellular models. Indeed, our recent work in mouse embryonic stem cells showed that HRS include 

sequences associated with nuclear bodies (like the Cajal bodies, the HLBs, the speckles and 

paraspeckles). Moreover, transcriptional hubs formed around super-enhancers are also retained in 

our assay [69]. In full agreement with the first consequence mentioned above, we found that two 

classes of genes can be defined according to the criterion of their association (or lack thereof) with 

large high-salt insoluble RNP complexes [69]. Our work showed that HRS-located genes are highly 

expressed and associated with the active chromosomal compartment and active super-enhancers in 

a cell-type specific manner, while genes that do not lie in HRS are moderately or weakly expressed.  

Testing the second consequence will require experimental differentiation of PPPS from LLPS. 

As explained above, these two modalities of phase separation differ by the nature of the interacting 

molecules and the role played by the DNA/chromatin nucleofilament. Therefore, LLPS and 

liquid-like phase separation should be sensitive to compounds that disturb weak hydrophobic 

interactions, like moderate 1,6 hexanediol treatments [80], unlike PPPS that relies on stronger 

interactions. So far, sensitivity to 1,6 hexanediol has provided the best experimental evidence in 

favour of the involvement of liquid-like phase-separation processes in the assembly of 

transcriptional condensates in vivo [61,62], as well as for other classical nuclear bodies like the 

paraspeckles [81]. Therefore, combining 1,6 hexanediol treatments with HRS-seq could identify the 

genomic content of phase-separated condensates formed by LLPS driven by hydrophobic 

interactions. In contrast, molecular condensates formed by PPPS or those, still speculative in vivo, 

relying on LLPS purely driven by electrostatic interactions (i.e. interactions between charged 

molecules, that are not disrupted by 1,6 hexanediol) are expected to be unaffected by 1,6 hexanediol 

treatment.  

 

6. Discussion 

The assembly of membrane-less compartments by phase separation appears to be a powerful 

mechanism for nuclear compartmentalization that could drive inter-TADs interactions between 

distant specific genomic loci. Such a compartmentalization could be essential to coordinate complex 

genomic functions, in particular transcription. At the molecular scale, thermal motion involved in 

phase-separation processes implies a continuous exchange of molecules between the dense and the 

dilute phases. Phase separation depends on the local concentration within the nucleus (or a region of 

the nucleus) of critical components, like IDR-containing proteins, and can thus be controlled by 

regulating their availability. This could be achieved by simple post-translational modifications that 

affect the protein’s ability to establish multivalent interactions, like phosphorylation [82]. 

Supporting this, PRKACB (catalytic subunit of PKA cAMP-dependent protein kinase) and HIP 
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kinases are required for the in-vivo assembly of the Cajal and PML bodies, respectively [83]. 

However, little is known about nuclear body homeostasis, which certainly constitutes a promising 

topic for future investigations.  

Liquid-liquid phase separation is not a feature involving an isolated molecular species but is 

depending on the properties of both this species and the solvent. In the case of nuclear bodies, the 

solvent corresponds to the complex nuclear environment in which the molecular species of interest 

is considered. A modification of the contents of this environment would thus affect phase 

separation. Obviously, a structural or chemical modification of the phase separation-prone 

molecular species would also affect spatial structuration. Various means of tuning the physical 

process of phase separation are thus possible within a living cell. While in-vitro experiments usually 

monitor physical parameters controlling phase separation (like temperature or pH), in vivo a specific 

adaptation of the relative strength of the molecular interactions, through some post-translational 

modification of the phase separation-prone protein, would offer a more precise control of the 

process. 

The current thermodynamic description of phase separation processes is only valid on a large 

scale (i.e. involving large enough number of molecules). The direct effects of the intrinsic 

stochasticity prevailing at molecular scales are random binding/unbinding of interacting molecules, 

diffusion and ensuing concentration fluctuations. They are included only in an average way in the 

large-scale thermodynamic description. In case of small systems with a finite number of molecules, 

(e.g. a region of the nucleus), discrepancies may arise, among which a modification of the stability 

regions in the parameter space, loss of correlations in cooperative assembly, or various 

diffusion-limited behaviors. Thus, the robustness with respect to molecular noise of a 

thermodynamically predicted phase separation needs to be investigated. In the spirit of studies 

quantifying the stochasticity of transcription [84], the analysis of imaging data or measurements 

obtained from a large number of single cells observed in the same conditions would assess the 

variability of the phase separation phenomenon. On the theoretical side, the thermodynamic 

approach could be supplemented with stochastic dynamical equations including a noise term [85] 

and the simulation of their solutions [60,86]. 

Finally, to date, investigations have relied on the description of phase separation in the 

framework of thermodynamic equilibrium. Nevertheless, active processes are possibly at work in 

vivo. An example is the observation of droplet fission [87] that is not accounted for in the current 

thermodynamic models of phase separation. Investigating active features of intracellular dynamic 

organization thus opens a fascinating research field not only for biologists but also for theoretical 

physicists. Phase separation is actually a special instance of the more general concept of 

self-organization, in which a long-range spatial structuring emerges from short-range interactions 

and breaks the symmetry of the homogenous state. The mechanisms underlying self-organization 

range from self-assembly of equilibrium complexes to out-of-equilibrium formation of dissipative 

structures [88,89]. It is thus plausible that a variety of different mechanisms could be involved inside 

the cell. 

7. Conclusion 

The physical notion of phase separation opens novel research avenues in the field of 

transcriptional gene regulation by suggesting a possible interplay between assembly of nuclear 

bodies and recruitment of specific genomic sequences. However, it remains to be determined to 

what extent such interplay is dependent on phase separation, or on more complex active and/or 

specific processes. Here, HRS-seq, combined with other approaches, can be instrumental for 

dissecting the relationship between 3D chromatin organization and nuclear bodies, and its 

implication for both cis- and trans- co-regulation of gene expression. Understanding the relevance of 

phase separation in a biological context will require theoretical studies devising microscopic 

descriptions accounting for the intrinsic fluctuations present at the intracellular scale, as well as 

experimental studies investigating the possible involvement of active mechanisms.  
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