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Abstract 

 

Deep behavioral covariates (DBCs) introduced in this perspective form a new class of covariates that have the 

potential to enhance the performance of predictive models and improve analytics in clinical decision support 

applications. DBCs can measure how engaged a patient tends to be and how he or she tends to respond to events, 

and they may be highly predictive of the patient’s outcomes for a planned treatment. DBCs may potentially 

serve as a standard to measure patient engagement and activation and may form highly efficient mechanisms for 

improving patient outcomes. 
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I. BEYOND MACHINE LEARNING 

Machine learning is a group of techniques that allows computers to not only process data faster than 

humans but also to process it more intelligently. Machine learning allows a computer to observe large 

collections of data elements and provide accurate predictions on the occurrence of future events [e.g., 

Obermeyer and Emanuel, 2016; Kartoun et al., 2017(a); Kartoun, 2017(b)]. Existing methodologies to improve 

accuracy in prediction tasks often focus on which algorithm to apply [e.g., Beam and Kohane, 2018; Xiao et al., 

2018]. The literature, however, barely emphasizes the importance of constructing a wider range of more 

advanced covariates that may capture the patient’s condition better. Covariates capable of dynamically 

capturing patient behavior may enhance the performance of the most sophisticated computational algorithms 

[e.g., LeCun et al., 2015; Hinton, 2018] as well as of simple brute-force mechanisms [e.g., Kartoun, 2017 (c)]. 

 

II. PREDICTIVE MODELING IN HEALTH CARE 

Remarkable hardware-based advances in health care include medicinal contact lenses [Ciolino et al., 

2016], tooth sensors [Tseng et al., 2018], and ingestible sensors [Kalantar-Zadeh et al., 2018]. Other astonishing 

advances include pharmaceutical-related mechanisms such as synthesized antibiotics [Parmar et al., 2016] and 

cancer vaccines [Sagiv-Barfi et al., 2018]. To advance health care further, predictive modeling, a domain that 

combines computer science and statistics, has received significant increased attention, yielding highly valuable 

scientific publications and applications. This rapid growth may be explained by factors such as the greater 

accessibility of medical records enabled by the ever-improving software and hardware security mechanisms, the 

development of friendlier online collaborative methods, and increased speeds of data storage and transfer. 

One of the most intriguing challenges in applying predictive modeling to health care is the ability to 

identify individuals at high risk for a future undesirable medical outcome [e.g., Cheng et al., 2016; Devinsky et 

al., 2016; Ng et al., 2016; Sulieman et al, 2016; Gottlieb et al., 2017; Wang et al., 2017]. When a high-risk 

individual is identified, the clinical teams are better positioned to allocate resources more accurately and can 

attempt to prevent or delay undesirable outcomes. Another challenge is the ability to accurately identify the 

most informative set of covariates associated with a patient and thereby the most effective means of predicting 
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the outcome [e.g., Kartoun, 2018(a)]. Accessible covariates in EMRs typically include demographic details, 

laboratory observations, comorbidities, and features extracted from clinical narrative notes. Typically, hundreds 

of such covariates are available at the patient level to develop a predictive model. 

Many publications describe predictive models for a variety of patient situations, such as readmission, the 

development of new diseases, monitoring the progression of a patient’s current disease, and mortality. 

Predicting patient outcomes may include forecasting whether a patient’s condition will improve or decline and 

the magnitude of such changes. Predictions are achieved by applying a computational algorithm capable of 

calculating the probability for each possible outcome given a set of selected covariates. For example, within a 

defined follow-up time window, the algorithm could estimate the extent to which a patient will recover, 

partially or fully. 

Frequently, patient records include both structured and unstructured data. Structured data are organized 

in tables and include elements such as date of birth, gender, laboratory measurements, and International 

Classification of Diseases codes (standard disease classifications defined and published by the World Health 

Organization). At a higher level of heterogeneity, unstructured data contain elements such as a patient’s natural 

language description of his or her symptoms or a physician’s or nurse’s clinical narrative about diagnoses, 

treatment options, and laboratory results. A patient’s EMR can be parsed using one or more natural language 

processing (NLP) techniques to identify and extract a wide variety of covariates that may help predict patient 

outcomes. Processing notes can identify covariates capable of indicating whether the patient is adherent for diet 

or medications. Moreover, more complex covariates such as the frequency of appointments with health care 

professionals (or trends or changes in the frequency) or trends or changes in laboratory measurements can also 

be extracted and used to better predict patient outcomes. Covariates extracted from patient health care data can 

serve as useful predictors to trigger decision-making, such as to advise a physician on various treatments. 

Covariates representing attributes such as smoking status and alcohol use have proven indicative of how likely a 

treatment is to be successful in mitigating or controlling a medical disorder. Current methods identify a 

relatively limited and rigid set of covariates that may help predict outcomes. 
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III. TRADITIONAL COVARIATES USED IN PREDICTIVE MODELING 

The variety of covariate types could be categorized into classes, ranked by their level of ease in 

collection and construction. Covariates collected by looking at the patient, such as gender or race, are the easiest 

to capture because they require neither any interaction with the patient nor any measurements or calculations. 

Covariates such as age, marital status, mood status, pain level, alcohol use, and tobacco use require only 

minimal interaction with the patient. Capturing covariates such as weight, height, and blood pressure can be 

accomplished within a few minutes because they require the use of easily accessible equipment available in any 

physician’s office, including the use of EMR data management systems that can quickly provide details 

regarding the patient’s current and past comorbidities. At an intermediate level of complexity are the patient’s 

laboratory test results (such as creatinine, hemoglobin, and glucose)—such covariates require analysis of urine 

or blood samples by an external laboratory with more advanced measurement devices than those found in a 

standard outpatient setting. Processing measurements stored in the EMR can be challenging given the 

heterogeneity of measurement units and reference values that are often unique to a certain measurement. Of a 

higher complexity are covariates representing the genetic profile of the patient, often requiring an external 

specialized laboratory and associated with high costs to process. 

Another set of covariates commonly used to classify and predict patient outcomes include those 

extracted from clinical narrative notes (such as progress notes, operation notes, and discharge summaries)—

such covariates require the use of advanced NLP and machine leaning algorithms and often require time-

consuming manual chart reviews, typically performed by physicians and nurses. Additional covariates rely on 

the use of wearable devices that are often integrated with the patient’s EMR [Kartoun et al., 2017(d)]—such 

covariates require the application of advanced time series classification techniques on the collected data that 

represent large collections of continuous and often noisy values. 

 

IV. CHARATERISTICS OF DEEP BEHAVIORAL COVARIATES 

At a significantly higher complexity than the covariate classes specified above comes a new class of 

covariates, referred to exclusively in the current manuscript as “deep behavioral covariates” (DBCs). Such 
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covariates are composed of behavior-related data elements captured over several points of time throughout the 

patient’s longitudinal horizon and can assess the patient’s behavioral dynamics throughout his or her interaction 

with one or more care systems. An example for a class of DBCs is the association between stimuli and 

responses [Kartoun et al., 2018(b)]. Such DBCs may be composed of sub-data elements, such as completion 

status, associated with traditional data elements such as encounter type, laboratory value, or procedure. DBCs 

may also be composed of multiple data elements distinguished by type and time, such as an abnormal laboratory 

value followed by an increased number of office visits. Furthermore, such covariates may be extracted from 

multiple encounter types, such as online messages, telephone calls, and in-person appointments, as well as from 

patient portals, such as heart rate data uploaded by a patient to an online portal. These covariates may also 

depend in part on data captured via wearable and ingestible sensors. 

An event may refer to anything that occurs at one or more points in time in the patient’s medical history. 

Examples of events may include receiving a referral; the completion of a visit or appointment; failing to attend a 

visit or appointment; canceling or rescheduling an appointment; ordering or requesting health maintenance; 

completing or failing to complete health maintenance by a set date; ordering, requesting, or scheduling a 

laboratory measurement or a procedure; and completing, rescheduling, canceling, or missing a scheduled 

laboratory report or procedure. Similarly, an event may include receiving, recording, or providing a biometric 

reading or finding such as blood pressure, heart rate, glucose level, or any other physical measurements related 

to health maintenance, laboratory reports, or procedures, as well as receiving a diagnosis or reviewing a 

laboratory report or other item in person or through an online portal. 

A stimulus-response association can be determined within a single event in the patient data. An 

appointment, procedure, or a laboratory test may be identified in the EMR, along with a corresponding status 

label indicating the completion status of each event. A data mining algorithm may identify a stimulus event of 

scheduling an appointment, procedure, or test and determine the response event based on the status label. Each 

event may have a label such as “completed,” “canceled,” “deferred,” “not done,” “declined,” “ordered,” 

“pending,” “active,” and the like. If the event is a procedure and the status is “completed,” the data mining 

algorithm may identify a response event indicating that the procedure was completed. Similarly, if the status 
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indicates that it was “canceled,” “declined,” “not done,” or similar, the data mining algorithm may create a link 

indicating that the appointment was not completed. In this way, a variety of DBCs will be formed, such as the 

percentage of scheduled appointments completed, using a single identified event in the patient data and the 

corresponding label. 

The event type (stimulus, response, or independent) and the links between events are identified based on 

a set of predefined rules corresponding to DBCs. A health care provider or a professional may define a DBC as 

the ratio between scheduled appointments and completed appointments. Generally, any relationship between 

stimulus events and response events can be used to create the DBC. Each such covariate generally relates to a 

certain behavior or behavioral patterns of the patient and helps determine how the patient tends to respond to a 

particular stimulus. A stimulus event is an event in the patient’s medical history that may trigger some sort of 

response by the patient. Receiving a medical diagnosis might be classified as a stimulus event because the 

patient may want to schedule a follow-up visit, fill a prescription, or change a habit. A stimulus event may be 

initiated or completed by the patient (e.g., recording high blood pressure at home), or it may be caused or 

initiated without action by the patient (e.g., receiving a diagnosis from a physician). A response event 

corresponds to the patient’s response to a stimulus. For example, picking up a prescription from a pharmacy 

may be classified as a response event in response to the stimulus event of receiving the prescription from a 

health care provider. The events then are extracted to identify stimulus events and response events, as well as to 

determine the associations or links between these events. 

Response events include only actions taken by the patient, such as scheduling an appointment, and do 

not include things that happen to the patient, such as receiving a diagnosis. Notably, each response event is 

associated with at least one stimulus event, but a stimulus event may be associated with any number of response 

events, including none. Additionally, a single event may be identified as a stimulus event, response event, or 

independent event depending on various factors, including the context of the event. An event corresponding to 

scheduling an appointment with a specialist may be a stimulus event (with a corresponding response event upon 

attending, canceling, or rescheduling the appointment) or a response event (in response to a stimulus event 

corresponding to receiving a diagnosis or referral). 
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A single event may be both a stimulus event and a response event. For instance, recording or uploading 

a blood pressure reading may be a response to instructions from a doctor to periodically record blood pressure, 

as well as a stimulus to schedule an appointment (e.g., if the reading is abnormal or outside the preferred range). 

Additional examples of stimulus-response associations may include receiving a physician referral and 

scheduling or completing the referral visit; having health maintenance ordered by a provider and completing or 

failing to complete the maintenance; ordering, requesting, or scheduling a laboratory or procedure and 

completing, rescheduling, or canceling the laboratory or procedure; scheduling an appointment and completing 

the appointment; receiving a medical reading or a diagnosis and opening or reviewing the results; and recording 

an abnormal reading and continuing to record or upload results (at the same rate or an increased or decreased 

rate). 

Deep behavioral associations may be identified between events that appear to be clinically unrelated, 

such as receiving the first diagnosis of a disorder and scheduling or completing an unrelated appointment or 

procedure. For example, a patient may receive a diabetes diagnosis and subsequently schedule or complete a 

colonoscopy. While these two events are seemingly unrelated, they may in fact constitute a stimulus-response 

pair because they demonstrate the patient’s continuing interest in his or her general health, despite (or perhaps 

because of) the recent adverse diagnosis. Thus, an association between two clinically unrelated events (events 

that pertain to different, unrelated medical disorders) is identified based on determining that a stimulus event is 

the patient measuring or receiving some abnormal value or adverse result (e.g., from a procedure, diagnosis, or 

laboratory test). In such a scenario, one or more corresponding response events may be the scheduling or 

completion of any health care event, such as an appointment or a procedure. This association is identified 

because it may indicate that the patient remains engaged and active in maintaining his or her health, even upon 

receiving bad news. When an adverse event occurs, one or more corresponding responses that involve 

preemptive or preventative care may be identified, such as scheduling a colonoscopy or checkup, when no 

apparent symptoms of sickness correspond to the appointment. 

 

V. EXPECTED BENEFITS TO ENHANCE FUTURE RESEARCH AND APPLICATIONS 
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After the DBCs are computed, they may also be integrated to determine patient outcomes. A data mining 

process then can analyze longitudinal data to identify points in time when a physician can provide decisions 

regarding a patient’s disorder. For instance, the process can identify all office encounters associated with 

abnormal blood pressure values for a population of patients suffering from hypertension. The process can then 

extract a large collection of covariates, including traditional ones as well as DBCs. Further, the model may 

identify an outcome for each patient in the population. A binary outcome is one in which a measurement such as 

blood pressure is either under control or abnormal within a given follow-up window. A complex outcome could 

be a set of new symptoms. The process then uses a feature selection algorithm to identify the most informative 

covariates capable of predicting the outcome [e.g., Kartoun et al., 2018(a)]. When a patient is seen by a 

physician, that patient’s covariates (including his or her DBCs) are used to query a predictive model to help the 

physician choose the potentially most efficient treatment. Such models are data structures that combine 

associations between past patients, covariates, and outcomes. A patient’s covariate representing appointment 

completion rate may indicate how likely he or she is to keep up with treatments and appointments in the future, 

which may influence which treatment plan the physician follows. Thus, a treatment plan requiring frequent 

check-ins with a physician may be more suitable for a patient with a history of attending appointments as 

planned, which will lead to a higher probability that the disorder will be managed if this treatment plan is 

selected. 

DBCs form a new class of covariates that have the potential to enhance the performance of predictive 

models and improve analytics in clinical decision support applications. DBCs can measure how engaged a 

patient tends to be and how he or she tends to respond to events, and they may be highly predictive of the 

patient’s outcomes for a planned treatment. DBCs may potentially serve as a standard to measure patient 

engagement and activation and may form highly efficient mechanisms for improving patient outcomes. 
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