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Abstract

In 1895, Korteweg and de Vries (KdV), [8], derived their celebrated equation
describing the motion of waves of long wavelength in shallow water. In doing so they
made a number of quite reasonable assumptions, incompressibility of the water and
irrotational fluid. The resulting equation, the celebrated KdV equation, has been
shown to be a very reasonable description of real water waves. However there are
other phenomena which have an impact on the shape of the wave, that of vorticity
and viscosity. This paper examines how a constant vorticity affects the shape of
waves in electrohydrodynamics. For constant vorticity, the vertical component of the
velocity obeys a Laplace equation and also has the usual lower boundary condition. In
making the vertical component of the velocity take central stage, the Burns condition
can be thus bypassed.

1 Introduction

Water waves constitute a very classical problem in hydrodynamics [3]. However, this
problem is traditionally formulated in terms of the velocity potential to achieve some
simplifications. In other words, there has always been an implicit assumption of zero
vorticity in the flow region. In numerous recent studies this assumption started to be
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questioned. One of pioneering studies was made by Burns (1953) [2]. Later, Da Silva
and Peregrine (1988) [4] studied steep and steady waves on finite depth with constant
vorticity. A constant distribution is the next logical step after identically zero distribution.
More recently, this problem was analyzed mathematically in some two-component systems
[7]. The effect of the vorticity on travelling wave solutions (solitary and cnoidal) was
investigated in the purely hydrodynamic context in [6] using the qualitative phase space
analysis methods. A Hamiltonian formulation has been reported in [9]. However, this
problem in electrohydrodynamics seems to be still open to the best of our knowledge. The
present study should be considered as a further attempt to fill in this gap in the literature.

The current approach to examining flows with constant vorticity in two dimensions is
via the use of a stream function, 1, and it’s harmonic conjugate, the velocity potential, ¢,
sou = V+ V4. This approach is introduces two essentially unnecessary functions which
complicates the problem and has the limiting effect in being restricted to fully nonlinear
and linear computations. There has been no attempt to undertake a weakly nonlinear
analysis which is the purpose of this manuscript.

The present manuscript is organized as follows. The problem is formulated in Section 2.
The linear analysis of this problem is performed in Section 3, while the weakly nonlinear
analysis is presented in Section 4. Some numerical predictions of the weakly nonlinear
theory are presented in Section 5. Finally, the main conclusions and perspectives of this
study are outlined in section 6.

2 Formulation

A two dimensional fluid in region 1 is considered which is incompressible and inviscid. The
vorticity, w is constant as is the surface tension o. Cartesian co-ordinates are introduced
as shown in figure 1. Region 1 is defined as —h < y < n(t,z) Vo € R. The moving pressure
distribution P(¢, x) is chosen to act along the interface y = n(t,x) and P — 0 as |z| — 0.

In region 2 defined by {(z,y)|x € R,y > n(t,z)} there is an electric field, E which has
no charges and is therefore obtained by a potential E = —VV. The potential is chosen as
V(z,—h) = 0 and as the fluid is perfectly conducting this also means that V' (z,n(t, x)) = 0.
A vertical electric field is set up by imposing:

V~—Ey, y— o0 (1)
The equation for the electric potential is therefore given by:
o?vV  0*V
4 =90 2
Ox? + oy? ’ (2)
with the condition: ,
[E ’ t] =0 (3)

which is one of the general boundary conditions derivable from Maxwell’s equations. In
region 1, the Navier-Stokes equations are used with the stress tensor:

Tij = —Pdij + Xy (4)
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Figure 1: Physical problem schematic representation.
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Where:

oV oV 1 oV oV
B = 6 (82318_1'] — 3% Z oxy, axk) ’ (5)

Where ¢, is called the electric permittivity. The tensor 3J;; has various names, in the fluids
literature it is known as the Maxwell-stress tensor. It can be shown that:

0%
=0. 6
Z o, (6)
So The Navier-Stokes equations reduce to the Euler equations.

Ou 1

- Viu=—--VP —gj, 7
o T Vju=—- gi (7)
where u = (u,v) is the velocity and P is the pressure in the fluid. The boundary y = —h
is taken as impenetrable, so v(x,—h) = 0. The fluid is incompressible and has constant
vorticity, w and so:

ou Ov ov  Ou

=0 = - = =uw. 8
ox i oy 7 Oz 0Oy “ (®)
These equations can be cross differentiated to obtain a single equation for v,
0*v 0%
— +—=0. 9
ox? * 0y? (9)
The free surface equation is given by:
on o _
=n(t,x). 10

This gives a boundary condition for v on y = n(t,x). The lower boundary for v is given
by:
v(t,z,—h) =0 (11)

Equations (9)-(11) are the core of the technique in deriving the free surface profiles. The
other boundary condition used is the Young-Laplace equation given by:
62
AT — o (12)
T+ (@)

The Euler equations may be simplified using electrostatic equilibrium. The equilibrium

condition is: 18
p
X _4=0 13
>y (13)

Integrating this equation shows that p = —pgy + C To compute the value of C, use the
Young-Laplace equation to see C = P, — e4E3 /2, here P, is the atmospheric pressure. So

now write: 2
€
P — Pa o p2 0

—pgy +p (14)
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The Euler equations now become:

ou 1
o . N 1
T + (u-V)u pr (15)

The Young-Laplace equation becomes:

- —EpEgzP——[(a )21 — 20,081 + 2 }—UL
p—pgn 9 1+ (0.m)? «l]) 211 xT] 212 22 (1+(aa:77)2)%

3 Linear Theory

The scaling for the linear theory is:

o h3 . o, o
(eogom) = h(@9.0), t=\E P =T(GP) u=[o0  (17)

h ph
P =pghP V =hE)\W (18)
The equations become:
PV PV o
oV 9nov
4 2 =0. =07 20
0z Tazag v YT (20)
o1 N N
6‘;+(ﬁ-vm=—v;a, 1<g<h (21)
ou 0o o 0u
=0, —— =Q, —-1<gy<n 22
o= % o5 g<n (22)
o .on .
on _ _ 23
Lragl =0, g=1 (23)
o 0%
= 24
032 "o =¥ (24
N By e - .
—Bi— == ——[aj Sy — 2037315 + S| —
D =5 P 1+ (0:1)? (0:1)"%11 1212 + 2422
021
———l =i (25)
(1+ (9:1)?)>
Where:
3 2 E2
Qo [P gt 9 (26)
g g g
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Expand according to:

u = —Qy+eu+o(e) (27)
0 = ev;+o(g) (28)
p = ep1+o(e) (29)
P = eP1+o(e) (30)
n = en +o(e) (31)
4 —+ Vi +o(e) (32)
The set of linear equations now becomes:
*Vy  0*V;
= 0 33
ovy  Om .
— = = 34
Ouy Ouy Ip1 .
— = — Qv = ———, -1 <0 35
o7~ War —fu 5 <y (35)
O, o, op1 X
— = = —, —-1<yg<0 36
7 W TR J (36)
821)1 82111
=0, —-1<y<0 37
T , <y< (37)
om N
— = vy, =0, 38
L (33)
ovi 82771
— By, = E — 39
D1 M P1+ Ey o) 02 (39)
3.1 General Dispersion Relation
To obtain a dispersion relation set P; = 0 and write all perturbations in the form:
1 o )
ftg) = oo [ R k)< (40)
2T R
Solving the equation for v; and V; shows that:
vy = asinhk(y +1), Vi = Be My (41)
Using equations (34) and (38) yields § in terms of a:
B = —éa sinh k (42)

Only p; at the surface is required, so it is possible to set y = 0 in equation (35) to find:
o :
P = ?(f cosh k — Qsinh k) (43)
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Figure 2: Linear dispersion relation with constant vorticity for various values of parameter €.

Inserting everything into the linearised Young-Laplace equations shows:
€2 — ¢Qtanh k — Bktanh k + Eyk|k|tanh k — k® tanh k = 0 (44)

The phase velocity, ¢ is given by ¢ = £/k and solving for the phase velocity shows that:

_ Qtanhk

¢ 2%

+ %\/92 tanh® k + 4(Bk — Eyk|k| + k3) tanh k (45)
It can be seen that setting {2 = 0 reduces to the dispersion relation in (insert reference
here). It was noted in (insert ref again) that in order to have a linear wave profile the
parameters had to satisfy the inequality 4B > F7?, however with the inclusion of positive
vorticity this is no longer the case.

As can be seen in figure 2, there is a minimum which is positive. For various choices
of B and Ej, there is a positive minimum for a wide range of vorticity(figure 3). By
differentiation of equation (45), one can show:

def . Bb  _
dk|,_q VQ2+4B

on the branch for which ¢(0) > 0. One can also show that for large k, ¢(k) ~ vk as k — oo
which shows the existence of a minimum in the dispersion relation. The beginning point

0 (46)
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Figure 3: Dispersion relations for various values of the vorticity parameter Q, with B = 0.1 and
Ey = +0.2.

at k = 0 can be seen to satisfy the equation:

Q+ V02 +4B

A —Qc—4B=0=c= 5

(47)

3.2 Free Surface Profiles

Consider a moving pressure distribution moving with non-dimensional speed U. Then a
frame of reference moving with speed U is selected and all time derivative terms may be
dropped. The horizontal velocity component is expanded as:

0 =U—Qy+eu + o) (48)
The equations which are changed are then:

Ou _on

(U - Qy)(?_x Q= - (49)
o . op1
0
% = T (51)
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Figure 4: Free surface profiles under a moving pressure distribution.

The method of derivation is very similar to that of the derivation of the dispersion relation
will be omitted. The perturbations will be expressed at:

1 o .
flag) = 5= [ ket 52)
™ Jr
The free surface is given by:

P, tanh k

- : 53
kU? + (=B + QU + Ey|k| — k2) tanh & (53)

n=

Figures 4(a) and 4(b) use B = E, = 2 and Q2 = 1.

4 The Weakly Nonlinear Free Surface

To obtain a weakly nonlinear model of the phenomena, scale according to:

h
r=Xe, yV=hg y®@=xj t= b w=coi, = %@ (54)

EdEg
2

n=aj, V=RV, P=P,—pgy— "+ pghp (55)
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where ¢y = y/gh. The scaled equations are then:

*V PV
0i2 ' 0y’

oV onov
Oi O 0 Op
Bl O

=~ + U—==
ot 0L

(20, 000, 0 _ b

oi Yor " Yag) T oy

86 i
% g

5% " a5

o 00 _
ox oy
on .on
o lor T

e}

™|

Where Q = hw/cy. The Young-Laplace equation becomes:

p—ai — F?% = aP — Ha2F—§(am)2(a2ﬁ(3@ﬁ)2T11 — 20/ B0 T 1o + Thy)—
~Bap—B__(s6)
(1+a2B(9:1)?)>
Where: o .
F} = ﬁ = (57)

The term FF, is the ratio of a velocity to ¢y which shows that there is a natural velocity
occurring which is given by, U = /esEZ/p, for this reason Fg should be referred to as the
electric Froude number. The next step is to make the transformation:

(p, ,0) = (op, —Qy + i, aD) (58)

The KdV scaling is &« = [ = e. The speed of propagation, ¢ of the (linear) waves is
unknown at this point; thus the following co-ordinate transformation is used:

X=g—ct, T=¢t (59)
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Dropping bars and hats the equations then become:

o*vV. PV

X2 + ar 0, y>en (60)
g—)‘;jtegg—;(g—‘y/ = 0, y=en (61)
—cg—§+sg—;+sug—;+svg—z = —aa—;, -l<y<en (62)
€ <—c§—; + 83—; + sua@—; + avg—;) = —g—z, —-l<y<en (63)
_05_)77( + 52—; + 6u§—;7( = v y=en (64)
53—;}( - g—Z =0, —-l<y<en (65)
3—; g—z =0, —-l<y<en (66)
F2 1 F2 5 2 3
p=n—5_ =P~ 51+63—(8X77)2(€ (Oxm)"Th1 — 2220xnThs — Toa)—
— Be Oxn , y=en (67)

(1+3(9xm)?)>

It can be notes that the combination of equations (65) and (66) can be combined into:

2 2
55;2+§—y§—0, l<y<en (68)
Expand according to:
u(T, X,y) = —%—l—uo(T,X,y)—i—zful(T,X,y)—i-o(s) Yy >en (69)
(T, X,y) = vo(T,X,y) +evi(T, X,y) + o(e) (70)
p = polT, X, y) +epi(T, X, y) + o(e) (71)
P = ePi+o(e) (72)
V(T,X,y) = —y+e2Vi(T,X,y)+o(c?) (73)
n = no(T,X) +em(T, X) + o(e) (74)

The O(1) equations are:
Oypo =0, —(c+ Qy)dxug — Qug = —xPo, 357)0 =0, Oxup+ 9dyvy (75)
With boundary conditions:
Po ="y, —COxMg =1y, on y=>0 (76)
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The equation 851)0 = 0 has solution:
vo = (y+ 1) Ao(T, X) = Oxug = —A(T, X) (77)

Setting y = 0 shows that Ay = —cOxny and so uy = cny. The equation 9,py = 0 shows
that po = ng. The equation —(c + Qy)Oxug — Qug = —dxpo can be evaluated at y = 0.
using the previous solutions yields:

— 20xmo + Qcdxmy = —Oxno (78)

which gives the following expression for c,

Q+vQ2+4

F—Qc—1=0=c= 5 (79)
The usual way to obtain this expression is to evaluate the Burns condition, which in this
case is evaluating the integral:
/ Code (80)
L erap

The method presented here bypasses the evaluation of increasingly complicated integrals
with simple substitution. The next order equations are:

% + a;_y‘/; =0 (81)
Vi—m =0 (82)
e (53)
(e = —%—f;l (84)
2 2
—C% + % + (2 — Q)no% = (86)
nom = P-FBSE-BTE )

Where the scaling on Fr has been made, Fp = F Lel/t to keep the electric term in the
Young-Laplace equation. To progress, one finds the expression for p; by integrating (84)
and using (87) to obtain:

~ 8‘/1 627’]0

_ (c—9Q) 2 _Q 3 9no P2 .
R e VRS VR - VRS VE) AU TR PRR ) - (o Al

(88)

To obtain an equation, all one requires in v1 (T, X, 0). Solving equation (85) for v; shows

that:
c 5% 4
vy 26(y+1) pcha (T, X)(y+1) (89)
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Setting y = 0 in equation (83) allows A, (7', X') to be computed:

Qc (93770 Oup oug Oy 0Py -, P4
+ S0 g 20 iy L
0X3 ' oT 0X 0X 0X 0X 0y

(c— QAT X) = [—B L

6
(90)
Showing that:
Qc ] Pn Oug Ouyg o oP; 0*V;
AT, X B+ ——— — o — C—— + I 1
(T, X) [ % 2} oxs 9T~ Max ~ax ~ “ax T Fepxg, OV
So this gives vy (T, X, 0) to be:
C 837’]0 Qc 83770 8u0 Guo 8771
T.X,0)==-—— B+——— — — —c—=—
(X, 0) =555 +e { % 13}(3 “or ~““ox ~ “ax
879 9*Vi
cf? 2
“ox T Traxa,
To compute V7, use the Fourier representation to obtain:
9V, ~
= — V=0, Vit k,0) =i (93)
dy?
to obtain: )
— — | poe kY kX g1 4
V=g [ e (94)
Then:
81}1 1
—(7,X,0) = —k X dk
ay( , X, 0) 5 [ ~Iklioe
1 ,
- (z‘k)(z‘sgn(k»ﬁoewk
2 R
= HA(0xm)

Where 7(-) denotes the Hilbert transform. From the properties of Hilbert transforms:

0*Vy

o 2

Inserting vy into equation (86) yields the equation of interest:

o o e 83770 0? 9o o°P
(1+c)aT+(20+c Qo 8X+ {3 B e cFin e +caX_0 (96)
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A quick check by setting ¢ = 1 and €2 = 0 shows that it reduces to the original equation.
Putting the dimensions back in shows that:

on 10n 2c+c —Q On c? 0n
on (00 Lon =3 on Ly | 510
(1+c)(cax—|—008t>+ 77$—|—hc 3 B 53

0%n 1 0p
— chF: (ﬁ) + 505 0 (97)

where p = &?p, the scaled pressure. Now travelling wave profiles are examined by n =
n(x — Vt) to get the equation:
2+ —-Q 2

; n”’ + hic {% — B} W —heF2a0)+ L =0 (98)

(1+c*)(e—=F)n+ 7

5 Numerical methods and results

In the sequel we consider the free wave propagation only, i.e. p = 0. In order to generate
numerically the solitary wave solutions to Equation (98), we employ the classical Fourier-
type pseudo-spectral discretization on a sufficiently large domain, where the solution decays
below the machine accuracy to annihilate the effect of implied periodic boundary condi-
tions. In other words, we solve formally a periodic BVP, but the repeated value is actually
zero in agreement with the decaying properties of solitary waves. The discrete problem
for spectral coefficients is solved using the classical Petviashvili iteration as it was de-
scribed in [5] for the classical Benjamin equation. To implement the Petviashvili scheme,
Equation (98) is written in the following form:

Ly = N(n), (99)
where the linear £ and nonlinear N (-) operators are defined as
2
Ly = (1+A)(c—F)n + h% [% — B] n' — heFL2(0),
Q-2 - ¢
N(n) = ; 0.

Then, the Petviashvili iteration for Equation (99) reads:
N = R LT e N (™),

where we took into account the fact that the mapping A (+) is a homogeneous function of
degree two of its argument. Finally, the stabilizing factor ~, is defined as

o _ fR Tn, - ‘Cnn dx

For more details on the Petviashvili iteration we refer to [1, 5].
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Table 1: Dimensional parameters used in numerical computations.

Parameter name Value
Froude number, F' 0.5
Electric Froude number, Fg 0.5...1.2
Vorticity strength, 2 1.0
Bond number, B 0.4
Fluid layer depth, d 1.0
Gravity acceleration, g 1.0
Celerity, c Q= V4+D?) = —0.62
Number of Fourier modes, N 1024
Domain half-length, L 10.0
Error tolerance, € 5 x 1071°

5.1 Numerical results

Equation (98) was discretized in space using the standard Fourier-type pseudo-spectral
method. Namely, we used N = 1024 modes in our computations. Since we are looking
at localized travelling waves, the computational domain was taken to be T' = [—10, 10]
assuming periodic boundary conditions ensured by the choice of basis functions. The
Petviashvili iterations were stopped when the L., norm of the difference of two successive
iterations became smaller than € = 5x 107'°. As the initial guess we always took a localized
bump of negative polarity. The convergence of the method was marginally dependent on
our choice, which only influenced the total number of iterations. In any case, from the
end user perspective, the computations lasted virtually instantaneously. We noticed that
the number of iterations increased with the electric Froude number Fr. The computation
of an oscillating travelling wave for Fr = 1.27 took 117 Petviashvili iterations, while for
Fr = 0.5 the method needed only 59 iterations to converge. The dimensionless physical
and numerical parameters used in this computation are reported in Table 1.

First of all, we would like to mention that for some values of parameters we were able
to compute also the periodic travelling wave solutions, which was not our initial goal. One
such solution is reported in Figure 5. So, from now on we focus on localized (in space)
travelling wave solutions. Several examples of such structures are shown in Figure 6, where
we gradually increased the electric Froude number Fg by keeping all other values constant
(see Table 1).

6 Conclusions and perspectives
In the present manuscript we considered the propagation of free surface electrohydrody-
namic waves in the presence of non-zero, but constant vorticity distribution. The problem

was analyzed from the linear and weakly nonlinear points of view. The linear analysis
allowed us to get rid of Burns’s condition. The weakly nonlinear approach allowed us to
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Figure 5: Fully converged travelling periodic wave solution to Equation (98) with B = 0.1 and
Fr =0.5. All other parameters are reported in Table 1.

n(x—F-t)

n(x—F-t)

(c) Fp =1.22 (d) Fg =1.27

Figure 6: Computed localized solitary waves to Equation (98) for different values of the electric
Froude number Fg. All other parameters are reported in Table 1.
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compute solitary wave solutions by solving numerically the non-local ODE which describes
them. The non-local effects are described by a linear term involving the Hilbert transform
of the free surface excursion derivative n’. It turns out that the dynamics of weakly non-
linear electrohydrodynamic waves is described by a generalized Benjamin equation, which
appears clearly in this context for the first time, to our knowledge. So far, it appeared as
a model equation for internal capillary-gravity waves. In our study it serves to predict the
shape of coherent structures in electrohydrodynamic flows with constant vorticity.

Concerning the perspectives, in future works we would like to consider more general
vorticity distributions. Another promising direction consists in considering the three-
dimensional wave propagation problem. Finally, the unsteady simulations have to be
performed to understand better the dynamics of solutions discussed hereinabove. We
suspect also that the derived Benjamin-type Equation (98) possesses also other types of
travelling wave solutions such as multi-pulsed solitary waves which were computed in [5]
in the context of internal waves.
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