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Abstract: In this paper, we found new classes of exact models to the Einstein-Maxwell system of 
equations which describe the internal structure of a compact star made of strange matter 
considering the equation of state proposed by Rocha, Bernardo, de Avellar and Horvath in 2019.  It 
has been assumed that this matter is composed of equal number of up, down and strange quarks 
and a small amount of electrons required to reaching the charge neutrality. If this hypothesis is 
correct, the neutron stars could be strange stars or hybrid stars with a thin crust of nuclei where the 
temperatures and pressures are capable of converting hadronic matter into this new stable phase of 
quarks. We have chosen a particular form of gravitational potential Z(x) that depends on an 
adjustable parameter related to degree of anisotropy of the models and the new solutions can be 
written in terms of elementary and polynomial functions. The obtained models satisfy all physical 
features expected in a realistic star and the expressions for mass, density and stellar radius are 
comparable with the experimental results. 
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1. Introduction   
    The analysis and description of gravitational collapse in ultracompacts objects has high 
importance in astrophysics and has attracted and influenced many physicists due to formulation of 
the general theory of relativity [1,2]. One of the most fundamental problems in theoretical physics is 
finding exact solutions of the Einstein field equations [3]. The exact solutions as physical model of 
compact stars was studied by Delgaty and Lake [4] who constructed several analytical solutions 
that describe static spherically symmetric perfect fluid and it satisfies all the necessary conditions to 
be physically acceptable and interesting topic as a case research.  
    In the construction of models of compact stars, the researches of Schwarzschild [5], Tolman [6] 
and Oppenheimer and Volkoff [7] are very important. Schwarzschild [5] found analytical solutions 
that allowed describing a star with uniform density, Tolman [6] developed a method to find 
solutions of static spheres of fluid and Oppenheimer and Volkoff [7] used Tolman's solutions to 
study the gravitational balance of neutron stars. It is important to mention Chandrasekhar's 
contributions [8] in the model production of white dwarfs in presence of relativistic effects and the 
works of Baade and Zwicky [9] who propose the concept of neutron stars and identify an 
astronomic dense objects known as supernovas.  
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    The description of the gravitational collapse and evolution of the compact objects has been a topic 
of great importance in general relativity. Recent experimental results in binary pulsars suggest that 
some compact objects could be quark stars [10]. The existence of quark stars in hydrostatic 
equilibrium was first suggested by Itoh [11] in a seminal treatment. The study of strange stars with 
quark matter has been a topic of great interest in the last decades since this could represent the most 
energetically favorable state of baryon matter [12].  
            Stellar models consisting of spherically symmetric distribution of matter with presence of 
anisotropy in the pressure have been widely considered in the frame of general relativity [13-25]. 
The existence of anisotropy within a star can be explained by the presence of a solid core, phase 
transitions, a type III super fluid, a pion condensation [26] or another physical phenomenon by the 
presence of an electrical field [27]. Many researchers and scientists have used a vast and great 
variety of mathematical techniques to try and test in order to obtain solutions of the Einstein-
Maxwell field equations for anisotropic relativistic stars since it has been demonstrated by 
Komathiraj and Maharaj [28], Thirukkanesh and Maharaj [29], Maharaj et al.[30], Thirukkanesh and 
Ragel [31,32], Feroze and Siddiqui [33,34], Sunzu et al.[35], Pant et al. [36] and Malaver [37-40]. 
These analyses indicate that the system of Einstein-Maxwell equations is very important in the 
description of ultracompacts objects.  
   In order to analytically integrate field equations, the choice of the appropriate equation of state 
allows obtaining models of compact stars to be physically acceptable [41]. Komathiraj and Maharaj 
[12], Malaver [42], Bombaci [43], Thirukkanesh and Maharaj [29], Dey et al [44] and Usov [27] 
assume linear equation of state for quark stars. Feroze and Siddiqui [33] consider a quadratic 
equation of state for the matter distribution and specify particular forms for the gravitational 
potential and electric field intensity. Mafa Takisa and Maharaj [45] obtained new exact solutions to 
the Einstein-Maxwell system of equations with a polytropic equation of state. Thirukkanesh and 
Ragel [10] have obtained particular models of anisotropic fluids with polytropic equation of state, 
which are consistent with the reported experimental observations. Malaver [46] generated new 
exact solutions to the Einstein-Maxwell system considering Van der Waals modified equation of 
state with polytropic exponent. More recently, Rocha et al.[41] presented a new model with 
anisotropic pressure and an equation of state that describes the internal structure of a compact star 
made of strange matter in the color flavor locked (CFL) phase. This matter is assumed to be 
composed of equal numbers of up, down and strange quarks and a small number of electrons 
needed to maintain the charge neutrality. If this hypothesis is correct, neutron stars could be 
strange stars or hybrid stars with a thin crust of nuclei.   
    In this paper, we generated a new class of anisotropic matter with CFL matter equation of state 
proposed for Rocha et al.[41] in a static spherically symmetric space-time using a gravitational 
potential Z(x) which depends on an adjustable parameter η. We obtained some new class of static 
spherically symmetrical models for an uncharged anisotropic matter distribution where the 
variation of the parameter modifies the radial pressure, energy density, stellar radius and the mass 
of the compact objects. This article is organized as follows: In Section 2, we present Einstein´s field 
equations. In Section 3, we make a particular choice of gravitational potential Z(x) that allows 
solving the field equations and we have obtained new models for uncharged anisotropic matter. In 
Section 4, physical acceptability conditions are discussed. In section 5,  a physical analysis of the 
new solutions is performed. Finally, in Section 6, we make a conclusion about obtained and 
discussed results.  
 

2. The Einstein-Maxwell field equations 
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 Consider a spherically symmetric four-dimensional space-time so that whose line element is given 
in Schwarzschild coordinates by  
 

    
)θdφ+(dθr+dre+dte=ds 2(r)2(r)2 22222λ2ν sin

                                                       (1)
 

 
where ν(r)  and λ(r)  are the two arbitrary functions. For uncharged anisotropic fluids, the 
Einstein-Maxwell system of field equations are obtained as follows: 
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where  is the energy density, rp  is the radial pressure and tp  is the tangential pressure, Δ is the 

anisotropy and primes denote differentiations with respect to r. Using the transformations 

suggested by Dugapal and Bannerji [47] as 2crx  , (r)e=Z(x) 2λ and (r)e=(x)yA 2ν22  where A 
and c are arbitrary constants, then the Einstein-Maxwell system has the equivalent form as follows : 
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where rt pp   is the measure of anisotropy and dots denote differentiation with respect to x. 

 
 

With the transformations of  Durgapal and Bannerji [47], the mass within a radius r of the sphere 
takes the form 


x

ρ(x)dxx=M(x)
0

3/24c

1
                                                                (9) 

In this paper, the equation of state for radial pressure is presented in the form 
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  21

rp                                                                                       (10) 
 

proposed by Rocha et al.[41]. In eq. (10)  , and  are arbitrary constants and  is the energy 
density. 
 

3. Classes of models 

  In this treatment, we have chosen the form of the gravitational potential as 2)1()( axxZ   

where is a real constant and η is an adjustable parameter. This potential is well behaved and regular 
at the origin in the interior of the sphere. We have considered the particular cases for η= 3/2, 3.  
  For the case η=3/2, using )(xZ in eq.(5), we obtain  
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Substituting (11) into eq. (10), the radial pressure can be written in the form 
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Using (11) in (9), the expression of the mass function is 
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With (11) and (12), eq. (6) becomes  
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Integrating (14) , we have  
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where for convenience we have let  
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The anisotropy factor Δ is given by  
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The metric functions 2e and 2e can be written as 
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With η=3, the expression for the energy density is   
 
 

                              
 axac 529    

                                                                                                                                      (19)                              

 
Replacing (19) in (10), we have the radial pressure as  
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and the mass function is     
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   With (19) and (20), the eq. (6) can be written as  
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Integrating (22), we obtain  

 
   

  acaxac

Cacaccxa
ac

accxa
axac

A eaxcxy 1312

253
615

2

1
arctan1335

2

2
2

13)( 













 








                                                      
 

                                                                                                                                  (23)         

    Again, for convenience we have let  
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and 2c   is the constant of integration. 
 

The metric functions 2e , 2e and the anisotropy factor   can be written as 
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4. Physical acceptability conditions  

For a solution of the field equations to be physically acceptable [10, 48, 49], they must satisfy in 
the following conditions:   

   (i) Regularity of the gravitational potentials in the stellar interior and at the origin.   
(ii) The radial pressure should be positive and a decreasing function of radial coordinate.  
(iii) The energy density should be well defined, positive and a decreasing function of the radial 
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parameter.   

(iv) rp > 0 and  >0 in the origin. 
(v) Any physically acceptable solution must satisfy the causality condition where the   radial 

speed of sound should be less than speed of light throughout the model, i.e                                                  

10 
d
dpr  .     

 (vi)  For the anisotropic case, the radial and the tangential pressure are equal to zero at the 
centre r=0, i.e. Δ(r=0) =0.    
(vii)  In the surface of the sphere, it should be matched with the Schwarzschild exterior solution, 

for which the metric is given by 
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through  the boundary r=R where M is the total mass of the star. 

 

5. Physical Analysis of the new models 
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and according to the equations (28) and (29) the energy density and radial pressure decrease from 
the centre to the surface of the star.  
From (13), we have  
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From (21) ,we get  
 

                                
 
2

323
)(

23 acracr
rM




                                                                 (38)                                                 
 

 
and the total mass of the star is 
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 If α=1/5, β=1/10 and γ=0 , the eq. (39) takes the form    
ac

RrM
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 . 

 
 
Matching conditions for r=R can be written as 
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For this case, the condition 10 2  srv , also implies that  

                 

                              

                               
 
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2
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acrac

acrac

                     

 

 

The figures 1,2,3,4 and 5 represent the graphs of pr , ρ , M(x)  , Δ  and  v2sr  , respectively with η=3/2 , 

α=1/5, β=1/10, γ=0 , a=0.028  and a stellar radius of  r= 5.3 km . 

 

                               

Figure 1. Radial pressure vs radial coordinate for η=3/2,  α=1/5, β=1/10, γ=0 where a=0.028 and c=1. 
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Figure 2. Energy density vs radial coordinate for η=3/2,  α=1/5, β=1/10, γ=0 where a=0.028 and c=1. 
 

                                         
 

                                     

 Figure 3. Mass function vs radial coordinate for for η=3/2,  α=1/5, β=1/10, γ=0 where    a=0.028 and 

c=1. 
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 Figure 4. Measure of anisotropy vs radial coordinate for η=3/2,  α=1/5, β=1/10, γ=0 where a=0.028 

and c=1. 

 

                                         

Figure 5. Radial speed sound vs radial coordinate for η=3/2,  α=1/5, β=1/10, γ=0 where a=0.028 and 

c=1.  
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In figure 1, it is observed that the radial pressure is finite and decreasing from the center to the surface of 
the star. In figure 2, the energy density is continuous, also is finite and monotonically decreasing 
function. In figure 3, the mass function is strictly increasing, continuous and finite. In figure 4, the 
measure of anisotropy is increasing and continuous in the stellar interior and Δ vanishes at the center 
and this means that the radial and tangential pressures should be equal in r=0. The figure 5 shows that 

the condition 10 2  srv  is maintained throughout the interior of the star and satisfy the causality, 
which is a physical requirement for the construction of a realistic star [4].  

 
6. Conclusion 

 
 In this research, we have generated some new class of exact models with an equation of state that 
considers CFL strange matter phase and anisotropy in the pressure where the gravitational potential Z 
depends on an adjustable parameter η. All the obtained models are physically reasonable and satisfy the 
physical characteristics of a realistic star as are the regularity of the gravitational potentials at the origin, 
cancellation of anisotropy in r=0, radial pressure finite at the centre and decreasing of the energy density 
and the radial pressure from the centre to the surface of the star. These solutions match with the 
Schwarzschild exterior metric at the boundary for each value of adjustable parameter and the CFL phase 
is modelled, as it is electrically neutral according to Rocha et al. [41].  
   The values calculated for energy density, mass and stellar radius could correspond to compact objects 

with real existence. For η=3 , the radius and total mass of the star is given by  
ac

R
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1
   and  

 
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RrM
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12
   with α=1/5, β=1/10 and γ=0. When η=3/2 ,  

ac
R
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1
   and     

ac
RrM

10

125

12
  

. We can then generate models with anisotropy in the pressure made of CFL strange matter with defined 
values of mass and radius.  The values of α, β and γ have been chosen in order to maintain the causality 
condition and the regularity of metric potentials inside the radius of the star.    
    With the CFL equation of state,  the MIT bag model can be recovered as a particular case of this work 
by taking   β=0   in eq. (10) and generates families of exact solutions for the Einstein-Maxwell field 
equations for modeling relativistic compact objects,  strange stars  and configurations with anisotropic 
matter distribution.   
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