Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 November 2019

Analysis of Pollard's Rho Factoring Method
Soud K. Mohamed

NTNU (Nowegian university of Science and Technology)
Corresponding: soudmohamed124@gmail.com

ABSTRACT. A comprehensive heuristic analysis of the Pollard’s Rho Method
(PRM) is given. The analysis is based on ultimate periods and tails dis-
tribution of sequences. If n is the composite number to be factored, then
an improved version of PRM is developed which has an expected run time

of O(¥/nlnn) on a multi-core architecture which utilized a clever way of
evaluating polynomials.

Keywords: ultimate period distribution; parallelization; tail distribution

INTRODUCTION

The security of cryptographic schemes based on RSA, the most widely
used cryptosystem for secure data transmission on the Internet, relies on the
factorization of large integers. Hence integer factorization algorithms must
play a very importance role in secure communication on the Internet.

There are several algorithms of factorizing integers, the most common ones
being: trivial division, Pollard’s rho and (p — 1) methods, Fermat’s method,
Index calculus method, Elliptic curve method, Quadratic sieve method and
number field sieve method. A good survey of modern factorization method
is given by Lenstra [12]. Good analyses for most of the methods are found
in the literature [1, 2, 3, 12, 16]. Trivial division is the most inefficient one
of all the factorization methods. To find a factor p of a composite number
n by trivial division, one needs to divide n by all primes less than y/n. The
best factorization algorithm so far is the number field sieve, which has sub-
exponential run time as indicated by Lenstra [12]. The Pollard’s rho method
has a heuristic expected run time of O(,/p), where p is the smallest factor
of a composite number n [2, 3, 11, 12].

Pollard’s tho method is one of the earliest factoring method in contem-
porary world which was developed by Pollard [14]. Since is invention in the
seventies, there are very few analyses found in the literature: the well-known
heuristic analysis based on the Birthday Paradox and the analysis which
determining the probability of success discussed by Bach [2]. This paper
proposed a new analysis of PRM, which is based on ultimate periods and

© 2019 by the author(s). Distributed under a Creative Commons CC BY license.

d0i:10.20944/preprints201911.0044.v1

https://doi.org/10.20944/preprints201911.0044.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 November 2019

2 Soud K. Mohamed

tails distribution of sequences in Z,. An improve parallel implementation of
PRM is proposed, which has expected run time O((Inp)./p).

Let p be a prime number > 5 and f(x) be a polynomial function over Z,,
and a = f(ax—1) be a sequence in Z,. Fixing a choice of coefficients of f(x),
then the average of the ultimate periods of a; as ag runs over all element
in Z, is called the ultimate period of f with respect to p, and is denoted
by up,(f). We conjecture that for a polynomial f(x) € Z[x] which is not a
permutation, we have that up,(f) < /p.

If ap = f(ar_1) is a sequence, then Floyd Cycle Detection Algorithm
(FCDA), as explained by Pollard [14] and Brent [3], picks every other element
in a, by using the (sub)sequence b, = f*(bp_1), where by = ag. Every
sequence in Z, is ultimately periodic, hence it has a tail. The presence of
tail makes the use of FCDA algorithm to detect collision inevitable as one is
not sure when the sequence will enter a circle. With an appropriate selection
of sequence generator, we show that the distribution of of the tails can be
approximated by the function In(p)/p. This can be used to improve the run
time of PRM.

On the other hand, if the period of the sequence ay, is even, them applica-
tion of FCDA reduces it by half. Referring to original FCDA as the FCDA of
index 2, one can introduce an FCDA of index t. Then using the algorithm,
the period of a; is reduced by a factor of ¢, provided ¢ divides the period
of ap. We show that by utilizing suitable FCDA of length ¢, one can obtain
sequences by, with expected period In(p)/p.

Parallel implementation of factoring algorithms have been use in order to
increase the efficiency of factoring algorithms [5, 6, 7]. For the PRM, two
parallel implementation have been consider which have run time of O(,/p)
and O(y/p(logm)?/m) [6, 7). An improved parallel implementation which
with the help of fast polynomial multiplication is proposed.

A brief review of the literature is given in Section 1, while in Section 2 an
investigation of ultimate periods of some special sequences and subsequences
is discussed. In Section 3, the analysis of PRM is provided together with
an improve parallelization of PRM. Finally conclusion and further research
areas are given in Section 4.

1. LITERATURE REVIEW

In this section a literature review of the PRM analysis is given. Also a brief
review of fast polynomial evaluation algorithms and it runtime is provided.

1.1. Pollard’s Rho Factorization Method. Let n be a square-free com-
posite number, and let p be the smallest prime dividing n. If one picks
numbers ag, ay, as, ... from Z, independently at random, then after at most
p—+ 1 such picks we have for the first time two numbers a;, a; with ¢ < s such

d0i:10.20944/preprints201911.0044.v1

https://doi.org/10.20944/preprints201911.0044.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 November 2019

ANALYSIS OF POLLARD'S RHO FACTORING METHOD 3

that a; = a, mod p. Since n is composite, there is another prime factor ¢ of
n with p < ¢ such that x; # s mod ¢ with probability at least 1 —1/q even
when a; = a; mod p. Hence ¢ must divide n, and so ged(n,a; —as) = ¢ is a
non-trivial divisor of n with probability 1—1/¢. The fact that a; = a; mod p
for @ < s will be referred to as collision. By using the Birthday Paradox, the
expected number of cycles before one encounters a collision is roughly of the
order of |/p. This briefly explains the Pollard’s Rho Factorization Method
(PRM).

To generate a random sequence, a "random” function f on Z, is used.
Since all function on Z, are polynomials, a polynomial f(z) which is not a
permutation polynomial can be use as a random map. The so called magical
polynomial f(z) = 22 + ¢, where ¢ # 0, —1, —2 are widely used. The current
analysis of the algorithm work under the assumption that f(x) behave like
a random function which has never been proved!

To find a factor p of composite integer n by PRM, a Floyd Cycle Detection
Algorithm (FCDA) is used. The algorithm simultaneously compute a; =
f(ak—1) and by = f(f(bk—1)), where by = a¢ and check whether ged(a; —
bj,n) > 1 for some j > 0. In that situation we would have encounter
a collision mod p. The algorithm can be improved by accumulating the
differences a; — b; and compute the ged in a batch, that is, by letting z; =
szl a; — b; and compute ged(zj,n) only when [is a multiple of m for
log, n < m < /n as shown by Pollard [14].

1.2. Analysis of PRM in the literature. As stated in the introduction
the most well-known analysis of PRM found in the literature are the one
based on the Birthday Paradox. Pollard [14] heuristically established that
a prime factor p of a composite number n can be found in O(,/p) arith-
metics operations. The heuristics was based on the fact that the generating
sequence, which was then the polynomial 22 + ¢ for an integer ¢ # 0,2, is a
random polynomial chosen among the p?. The first rigorous analysis of PRM
was done by Bach [2], who showed that the probability that a prime factor p
is discovered before the kth iteration, for k fixed, is at least (%) /p+O(p~/?).

The original PRM uses FCDA to determine collision. Brant [3] proposed
another cycle-finding algorithm which is on average about 36 percent faster
than FCDA. He used his algorithm to improve PRM by about 24 percent.
The improvement was obtained by omitting the terms a; — b; in the product
z; it k < 3r/2, where r is the power of 2 less than or equal to sum of the tail
and period [3, sec. 7]. However to find a r one has to find a cycle first!

Parallel implementation of PRM method was discussed by Brent [5]. He
showed that if one uses m parallel machines, the expected heuristic run time

of PRM is O(\/L%), a nonlinear speed up! Crandall [7] came up with a new
parallel implementation of PRM which is able to discover p using m machines

d0i:10.20944/preprints201911.0044.v1

https://doi.org/10.20944/preprints201911.0044.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 November 2019

4 Soud K. Mohamed

2
in a heuristic time of O(W). However, the heuristic has never been

tested as noted by Brent [5].

1.3. Fast Polynomial Evaluation. Two type of fast polynomials evalu-
ation are found in the literature. Sequential implementation uses a single
core architecture, while parallel implementation utilizes a multi-core archi-
tecture. The well-known Horner’s method, which is sequential, is often the
default method for evaluating polynomials in many many computer libraries
as noted by Reynolds [15]. The method has a runtime of O(m), where m is
the degree of the polynomial. There are two parallel algorithms which are
the most common. Dorn’s method, which is a generalized form of Horner’s
form, and has a run time of at least 2m/k + 2log, k, where k is the number
of processors as indicated by Munro, Paterson [13]. The other one is Es-
trin’s algorithm, also explained by Munro et. al. [13], which has run time of
O(logy m), hence is very suitable for polynomial whose degree is a power of
2. The later was also discussed by Xu [17] and Reynolds [15].

2. PRELIMINARIES

In this section we special sequence in Z, and their properties, as well as
the relation between sequence in Z,, and those in Z, for a factor p of n.

Definition 2.1. [3, 8] A sequence ay is a ultimately periodic if there are
unique integers g > 0 and A > 1 such that a; = aj) for each & > p. The
number A is called the ultimate period or period of the sequence, while the
number p is the tail or prepedriod of the sequence. The sum A + p is the
length of the sequence.

Ezxample. The sequence ay : 1,2,5,3,10,9,13,9,13,9,13,9,13,9,13 is ulti-
mately periodic of ultimate period 2, tail 5 and length 7.

Let p be an odd prime. Then any natural sequence in Z, is eventually
periodic, since Z,, is a finite set. Consider a polynomial function f(z) over
Zy,. If a; € Z3, then the sequence aj, = f(ax_1) is called the sequence in Z,
generated by f(x). Now if ¢ be a positive integer, then by = fi(by_1) is a
subsequence of a;. Note that the subsequences by, defined above are obtained
by picking every t-th element of ay.

Ezample. Consider the sequence ay, : 1,2,5,3,10,9,13,9,13,9,13,9,13,9, 13.
Then b : 1,5,10,13,13,13, ... and by : 2,3,9,9,9, ... are subsequences of ay
of ultimate period 1.

Consider the sequences ay = f(ag_1) in Z, generated by polynomial f over
Zp, and their corresponding subsequences b, = f'(bx_1) for some positive
integer t. Then the ultimate periods of a; and by are related as shown in the
following result.

d0i:10.20944/preprints201911.0044.v1

https://doi.org/10.20944/preprints201911.0044.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 November 2019

ANALYSIS OF POLLARD'S RHO FACTORING METHOD 5

Lemma 2.2. Let a;, = f(ax—1) be a sequence in Z, generated by a polynomial
| over Z, with ultimate period A\ and let by = f'(bx—_1) for some positive
integer t be a subsequence with ultimate period 6. Then

i. 0 divides A\, and
ii. § =m/ged(A).

Proof. i. by is obtained by picking elements with indices 0, 9, 29, 30, Since
d < X and by, is ultimately periodic, it follows that J|\.

ii. Since the sequences are ultimately periodic, there is an integer s such
that ag = bs = as\ = ag, so that sA = dt, which implies that § = t/is We
claim that t/s = ged(\, t). If t/s = g, then observe that g|\, since § is indeed
an integer. On the other hand A\ = dg, so that sdg = dt, which implies that
t = sg. Hence g is a common divisor of § and ¢t. To show that g = ged(\, t)
is left as an exercise. O

2.1. Ultimate period of a Prime. Let n be a square-free composite in-
teger and p a prime factor of n. In this section an investigation of ultimate
period of special sequences in Z, is given. Also relationship of ultimate
periods of sequences in Z,, and Z, is discussed.

Let f(x) is a fixed polynomial of degree m, then there are about p such
sequences ai. S0 as j runs from 1 to p we get p ultimate periods. Now
if the coefficients of f are chosen at random, then there are p™ choices of
coefficients, and we get p™*! ultimate period. The average of these periods
might be some thing useful.

Definition 2.3. Let p > 3 be a prime, let f(z) be a polynomial over Z, of
degree m and let a,, = f(ax—1) be a sequence in € Z,,.

1. The average ultimate period of a; for a given coefficients of f as the
initial seed ay runs over {1,2,3, ..., p} is called the ultimate period
of f(x) with respect to p, and will be denoted by up,(f).

2. Then the average ultimate period of a; as the coefficients of f and the
initial seed ag run over {1,2,3,...,p} is called the ultimate period
of p with respect to f(z), and will be denoted by up,(p).

Let f(x) =22+ 1, g(x) = f*(x) and h(x) = ¢g*(z). Then the ultimate
periods of f, g and h with respect to the primes p between 3 and 225 Figure
1. From the figure we can observe that the ultimate period of a polynomial
with respect to a a prime p is a most /p. We have the following conjecture.

Conjecture 2.4. Let p > 3 be a prime and let f(x) be a polynomial over Z,
which is not a permutation. Then

(1) up,(f) < v/p-

d0i:10.20944/preprints201911.0044.v1

https://doi.org/10.20944/preprints201911.0044.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 November 2019 d0i:10.20944/preprints201911.0044.v1

6 Soud K. Mohamed
P up(p) | upg (») up, (p) ‘5 p ups(p) | UPg (») up;, (p) \."5
5 25 2.0 1.0 2.2 101 6.5 4.6 3.3 10.0
7 1.8 15 156 2.6 103 6.4 4.7 3.0 101
11 25 2.3 11 33 107 6.7 4.7 3.8 10.3
13 28 1.8 14 36 109 6.6 51 38 104
17 29 2.1 26 41 113 6.3 49 4.0 106
19 29 2.3 25 44 127 7.3 53 4.4 11.3
23 31 2.4 1.9 48 13 6.9 54 3.8 114
29 41 34 2.2 54 137 6.9 5.2 41 11.7
N 4.2 3.0 2.3 56 139 74 55 37 118
37 4.1 29 23 6.1 149 g.0 58 473 12.2
41 41 31 28 6.4 151 7.7 54 4.4 12.3
43 43 3.2 21 6.6 1657 8.5 58 41 12.5
47 44 3.3 2.2 6.9 163 75 57 45 12.8
53 38 2.8 23 7.3 167 77 55 45 12.9
59 52 4.4 27 17 173 8.4 6.5 4.8 13.2
61 52 41 25 7.8 179 78 6.0 43 134
67 45 35 2.7 8.2 181 8.4 6.2 46 135
i 53 4.0 27 8.4 191 9.3 7.3 4.3 13.8
73 53 39 33 8.5 193 8.7 6.6 51 13.9
79 51 36 34 8.9 197 8.9 71 45 14.0
83 57 4.3 3.0 91 199 8.6 6.5 45 141
89 6.5 47 3.8 9.4 211 8.8 6.6 4.4 14.5
97 6.0 438 39 9.8 223 9.4 6.9 59 14.9

FIGURE 1. Ultimate Period for Primes less than 225

Remark 2.5. The ultimate period of a prime p with respect to a polynomial f,
up f(p) is more interesting, because the sound parallelization of PRM found
in the literature [5] use random coefficients and initial seeds. However, it
exact computation is very time consuming.

Suppose that a; = f(akg_1) for some polynomial f over Z,. We determine
the relationship of ultimate period in Z,, and in Z,, for 7 = 1,2, ..., s. This will
be very useful in the coming sections when we analyze the Rho Factorization

Method.

Proposition 2.6. Let n = pips---ps be a square-free integer and let ap =
flag—1) for some polynomial f over Z. If ay has ultimate periods A, ..., As
respectively in Zy,, Loy, - .., Ly,, then it has ultimate period lem(Ay, -+, \g)
m Ly,

Proof. 1t can be easily deduced that the sequence (ay mod py,...,ar mod p;)
has ultimate period lem(Ay, ..., \s) in Z,, X --- X Z,,. Then the result fol-

lows from the fact that Z, ~ Z, X --- x Z,, via the isomorphism ¢ :
L, X -+ X Lp, — Ly, given by @(ay,...,as) = eja; + - - - + esa,, where e; are
elements in Z,, such that 1 =¢; + -+ + e;. O

Remark 2.7. The converse of Proposition 2.6 is indeed true, namely if a
is a sequence in Z, with ultimate period m = lem(Ay, ..., \), then a; has

https://doi.org/10.20944/preprints201911.0044.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 November 2019 d0i:10.20944/preprints201911.0044.v1

ANALYSIS OF POLLARD'S RHO FACTORING METHOD 7

ultimate period A; in Z,, for some ¢ from 1,...,s. One thing to note here is
that it happen sometimes that all \; are the same!

Remark 2.8. In the next sections, all the analysis will be based on a prime
factor p of a composite n. Although one will be working in n, but because
of the classification theory of finite abelian groups, the structure of p in n is
kept intact.

3. ANALYSIS OF POLLARD’S RHO METHOD

In this section analysis of rho method using tails distribution of sequence
ay, generated by a polynomial f over Z, and ultimate period of the sequences
ay is given. The analysis is based on two experiments done the researcher.

3.1. Tail and period distributions. As mentioned in the literature re-
view, Brant [3] proposed another cycle-finding algorithm which he used to
improve PRM by about 24 percent. The improvement was obtained by omit-
ting the terms a; — b; in the product z; if k& < 3r/2, where r is the power of
2 less than A + p [3, Sec. 7]. The motive behind this move was to compute
gcd using terms which lie in a cycle. This means that the knowledge of a
position in a sequence where a cycle start (the end of the tail) may improve
the PRM.

Let n be a composite number and a, = f(ax_1) be a sequence in Z,.
Suppose that A is a period of the sequence a; = f(ax_1) and p is its tail.
Then using the help of FCDA, the algorithm PRM finds the smallest prime
factor p of n after exactly A+ u terms.The subsequence by of a; found during
the execution of PRM has ultimate period A\; = A/ ged(2, A) by Lemma 2.2.
Now if FCDA is applied on by, ged(bj,by;) > 1 would be obtained after
exactly Ay = /2 + A1 terms, and if A was even, one would need to compute
even smaller number of terms, namely (A + u)/2. Hence, applying several
FCDA would reduce the number of terms required to get ged(a;,b;) > 0
even when the order A is not even, as it would reduce the tail by a power 2.

Remark 3.1. 1. In the original PRM and and its subsequent variants, the
choice by = f?(ay_1) was preferred only because of computation complexity
of higher degree polynomials. In other word, any power ¢t > 2 would have
suffices for successful computation of period of a;, with increased number of
computation as t increases.

2. The nature of the sequences by are perfectly suitable for implementation
in computers with ¢ core processors using Estrin’s algorithm. Since the
degree 2, then the algorithm has a run time of O(¢).

3.2. Setting up of the experiments. In the first experiment, tails of dif-
ference sequences in Z,, for different primes p were computed. For the prime
between 4 and 5000 tails for the sequences generated by f(z) = 2? — 1 and

https://doi.org/10.20944/preprints201911.0044.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 November 2019 d0i:10.20944/preprints201911.0044.v1

8 Soud K. Mohamed

g(z) = f*(z) were computed for all initial seeds ag in Z,. For the primes
in the other ranges a sample of size ,/p was considered. The second exper-
iment was conducted to determine the proportion of periods of sequences
less than In(p)/p, where p is a prime number. The sequence generator was
by = f*(br_1), where f(z) = 2% + ¢. Two instances were used, where the
first instance used random ag = r¢ and ¢ = ry, while the second one utilized
random ap = r3 and fixed ¢ = fy. For each prime p about ,/p tails were
computed.

Analysis of Experiment 1. Then tails mean of each prime p with respect
to the polynomials f and g, TM(p), T'M,(p), were computed. The the distri-
bution of the TM were than compared to LL(p) = In(p)-Inp, S(p) = /p, and
LF(p) =Inp-/p. Figure 3.2 and 3.2 show comparisons of T'M(p), T M,(p),
LL(p), S(p) and LF(p).

Distribution of TM for primes less than 15000 Distribution of TM for primes: 100000-101000
250 600
200 v 500 N -
* % LTMip) 200 «TM £(p)
150 + ..‘.A. * ey mMEp) * * mmzp)
* A In(pyinGe) so0 aeqelaccosnc: ;’m%.’ﬁ m“ | Inp)in(s)
100 < sqrt(p) sqrt(p)
«inp)*saresqricpy) || 2% |W3wm:ﬁ: &ﬂ‘$w &) +In(p)*sqrt(sqrt(p))
0 100 'H‘ ‘:
F o "y
0 0
Distribution of TM for primes:1000000- Distribution of TM for primes: 3222000-
1000500 3223000
2000 3500
1800 + 3000 | .
1600 .
1 2500 * TM(p)
1400 . *TME(p) * . . *TM.E(p
1200 mTM g(p) 2000 @ WTME(p)
1000 | w weowe Remn e aln(p’ln(p) ."m “”K HOCRE *&‘”‘ AIn(p)*Inp)
Sl S s s o, Xsqre(p) 100 1 . B ‘ <sart(p)
600 » * o a4 + ‘ # In(p)*sqri(sqrt(p)) 1000 ¥ In(p)*sqr(sgrt(p))
200 I Y o,) o0 ﬂ “ |¢ W
200 L -- 8 s
i A
0

FIGURE 2 FIGURE 3

The top left diagram of Figure 3.2 shows that almost all T'M,(p) lies
bellow the function LL(g), S(p), and LF(p), while some of the TM;(p) are
above the functions. But as p increases T'M(p) grows faster than LL(p),
but can be fitted into LF(p), while more than half of T'M;(p) lies below
LF(p), see top right diagram. As p moves to seven digits none of T'M,(p)
lies under LL(p), while only a handful of T'M,(p) are under LL(p), see the
bottom left diagram. In the bottom left diagram almost none of tails means
are under LL(p), a few of TMy(p) lies under LF(p), while TM,(p) can be
approximated by LF(p).

The above analysis draws the following conclusion: If a; = f(ax_1) is a
sequence generated by a non-permutation polynomial f over Z,, then, for

https://doi.org/10.20944/preprints201911.0044.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 November 2019

ANALYSIS OF POLLARD'S RHO FACTORING METHOD 9

some positive integer ¢, the expected tail of the sequence by, = f*(by_1), where
bo = ao is In(p) - /p with reasonable probability.

Remark 3.2. As p increases LF(p) is moving below T'M,(p), in other word
probability of having a good number of tails below LF(p) decreases. How-
ever, in the analysis we used ¢ = 2, so an increase of ¢ will remedy this
problem.

Analysis of Experiment 2. The outcome of the experiment is shown in
Table 1. Row two of the table shows probabilities for different primes when

TABLE 1. Probability of period < In(p)/p

N P(period <In(p)/p)
v ag =1y, c=1ry | ay=rs3c= fo
41149 0.822 1
61129 0.773 0.012
100189 0.797 0.092
111143 0.771 0
211177 0.692 0.847
411259 0.692 1
511279 0.660 0.172
611189 0.635 1
821295 0.628 0.101

random ag, c are used. They are all greater than 0.5, hence good probabilities.
On the other hand, when the parameter c is fixed (row 3), there are all kind
of probabilities, 0, very small and very big.

There are at least few of inferences that can be drown from the table.
First, it highlight the concern J. M. Pollard himself raised by Crandall [7]
about the consequence of fixing ¢, as there will be then very few periods
O(< [Inp]). Moreover, it strengthen the idea of using random parameters
ap and ¢ in the construction and execution of PRM, as one has a very wide
iterative cycles to work with noted by Crandall [7]. In all the cases considered
there were more than In(p)? different cycles.

One can then infer that the use of random parameters ag and ¢ are impor-
tant in implementation of PRM, both single and parallel modes. Moreover,
In(p)/p is a good estimate of the expected period of a sequence by, in heuristic
terms.

Remark 3.3. From row 2 one can observe that as p increases the proportion of
periods less than In(p)/p decreases. This can be offset by taking appropriate
value of . Note that in this example t = 2.

3.3. A Parallelization. Let n be a composite whole number to be factored,
and a = f(ag_1) be a sequence generated by the polynomial f(z) = 2% + c,

d0i:10.20944/preprints201911.0044.v1

https://doi.org/10.20944/preprints201911.0044.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 November 2019 d0i:10.20944/preprints201911.0044.v1

10 Soud K. Mohamed

in Z,, where ¢ # 0, —2 is an integer. Choose t such that 2 < [In\/n]. A set
of t independently machines will be used and in each one of them, a PRM
will be run using the sequences b, = f*(by_1) for t =2,...;¢t.

The algorithm. Each machine j should perform the following steps:

(1) Set the sequence by, for j = 2,...,t, and generate random parameters
aop and c. '
(2) Compute the first M = [{/nln+/n] terms, and store the term by,.
(3) Set N = [lny/n], for I = 0,N,2N, ..., compute the terms b for
k > M and store the product
4N '
Puw = [[0 ~) modn
i=l
(4) Compute ged(Pyn,n) . If ged(Pyn,n) > 1 in one of the machines,
stop. Otherwise, repeat Step 3 until ¢ = M.

Remark 3.4. Observe that the algorithm does not utilize a cycle detection
algorithm in Step 3, instead it computes the difference by, — byy; for i =
0, ..., M. This move will improve the efficiency of the algorithm as it avoid
computation of tow sequences and comparison associated to cycle detection
algorithms.

Analysis of the algorithm. The analysis will be based on two implemen-
tation, namely a single core architecture and a multi-core architecture. The
first thing to note is that the algorithm is a Monte Carlo algorithms, it has
a probability of success, which we will try to determine. In Step 2 the algo-
rithm is trying to escape the tail and enter a circle, an idea which was use
with success by Brent [3]. Using Remark 3.2, Step 2 will reach its goal with
a very good probability.

Case 1. For one core architecture, computation of the terms of by in Step 3
can be estimated as follow. By using the Horner’s form, each term of b for
k > 0 can be computed in O(In y/n) arithmetic operations, since its degree is
less than In(y/n). Step 3 will require O(/n(In+/n)?) arithmetic operations
from each machine. Apart from computation of b% in Step 3 and 4, there
is multiplication of terms and computation of gecd. But it is plausible to
consider the cost of only a; and ignore the other. The motive behind this
move is the fact that computation of by is more costly than multiplication
and gcd computations. Moreover, the cost bound set on b, is the worst-case
scenario, in other word, very few machine will come near the bound. Now
the expected cost of each machine is O(/nlny/n-In/n+/nin\/n-In/n) =
O(¥/nln/n - 1In/n), where In/n is the cost of computation of terms as in
the sense of [6].

Case 2. Using Estrin’s method on multi-core architecture, each by in Step
3 can be computed in O(t) arithmetic operations. Hence the step will re-
quire O(¥/nln+/n) arithmetics operations from each machine. By using the

https://doi.org/10.20944/preprints201911.0044.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 November 2019 d0i:10.20944/preprints201911.0044.v1

ANALYSIS OF POLLARD'S RHO FACTORING METHOD 11

same assumption as in Case 1, the expected cost of each machine is now
O(¥/nln+/n), vast improvement from Case 1.

4. SUMMARY AND CONCLUSION

Analysis of Pollard’s rho factorization method is given which is based on
the distribution of periods and tails of sequences. An improved paralleliza-
tion of the method is given with a run time of O(/nln+/n). The paral-
lelization can be improved with an improve in the polynomial evaluation
algorithms and an increase in the number of cores in a machine.

REFERENCES

[1] B. R. Ambedkar, S. S. Bedi (2011), A New Factorization Method to Factor RSA Public
Key Encryption, 1JCSI, 90 (6.1), 130-155.

[2] E. Bach (1991), Toward a Theory of Pollard’s Rho Method, Information and Compu-
tation 90, 130-155.

[3] R. P. Brent (1980), An Improved Monte Carlo Factorization Algorithm, BIT 20, 176-
184.

[4] R. P. Brent (1990), Number Theory and Cryptography, Cambridge University Press.

[5] R. P. Brent (1990), Parallel Algorithms for Integer Factorization,Number theory and

cryptography 154, 26-37.

R. P. Brent (1999), Ssome Parallel Algorithms for Integer Factorization, Porc. Eu-

ropar’99, Toulouse, Sept 1999.

R.E. Crandall, Parallelization of Pollard-rho factorization, preprint, 23 April 1999

A. Dubickas, P. Plankis (2008), Periodicity of Some Recurrence Sequences Modulo M,

Combinatorial Journal of Number Theory, 8, # A42.

[9] G. ESTRIN (1960), Organization of Computer System—The Fized Plus Variable Struc-
ture Computer, Proceedings Western Joint Computer Conference, May, 1960, AFIPS
Press, Montvale, N J, pp. 33-40.

[10] A. K. Koundinya, G. Harish, N. K. Srinath, G. E. Raghavendra, Y. V. Pramod, R.
Sandeep, P. G. Kumar (2013), Performance Analysis of Parallel Pollard’s Rho Factor-
ing Algorithm , International Journal of Computer Science & Information Technology
(LJCSIT), 5 (2), 157-164 .

[11] N. Koblitz (1994), A Course in Number Theory and Cryptography, 2nd Ed., Springer,
USA.

[12] A. K. Lenstra (2000), Integer Factoring, Designs, Codes Cryptography, 19, 101-128.

[13] I. Munro, M. Paterson (1973), Optimal Algorithms for Parallel Polynomial Evalua-
tion, JCSS, 7, 189-198.

[14] J. M. Pollard (1975), A Monte Carlo Method for Factorization, BIT 15, 331-334.

[15] G. S. Reynolds (2010), Investigation of different methods of fast polynomial evalua-
tion, Master thesis, The University of Edinburgh.

[16] R. D. Silverman (1987), The Multiple Polynomial Quadratic Sieve, Mathematics of
Computation, 48(177), 329-339.

[17] S. Xu (2013), Eficient Polynomial Evaluation Algorithm and Implementation on
FPGA, Mater thesis, Nanyang Technological University.

=

N

Email address: shkhalifa@hotmail.com, soudkm@stud.ntnu.no

https://doi.org/10.20944/preprints201911.0044.v1

