

1 Article

2 The Effects of Sacubitril/Valsartan on Clinical, 3 Bioumoral and Echocardiographic Parameters in 4 Patients with Heart Failure with Reduced Ejection 5 Fraction: The “Hemodynamic Reverse Remodeling”

6 Giuseppe Romano, MD^a, Giuseppe Vitale, MD^b, Laura Ajello, MD^c, Valentina Agnese, PhD^a,
7 Diego Bellavia, MD, PhD, MSC^a, Giuseppa Caccamo, MD^b, Egle Corrado, MD^b, Gabriele Di
8 Gesaro, MD^a, Calogero Falletta, MD^a, Eluisa La Franca, MD^a, Chiara Minà, MD^a, Salvatore
9 Antonio Storniolo^c, MD, Filippo Maria Sarullo^b, MD, and Francesco Clemenza, MD^a

10 ^aCardiology Unit and Research Office, Department for the Treatment and Study of Cardiothoracic Diseases
11 and Cardiothoracic Transplantation, Mediterranean Institute for Transplantation and Advanced Specialized
12 Therapies (IRCCS-ISMETT), Via Tricomi 5, 90127, Palermo, Italy; ^bCardiovascular Rehabilitation Unit,
13 Buccheri La Ferla Fatebenefratelli Hospital, via Messina Marine, 197, 90123, Palermo, Italy; ^cCardiology Unit,
14 University Hospital, Policlinico Paolo Giaccone, via del Vespro 129, 90127, Palermo, Italy

15 Corresponding Author:

16 Giuseppe Romano, MD, Cardiology Unit and Research Office, Department for the Treatment and Study of
17 Cardiothoracic Diseases and Cardiothoracic Transplantation, Mediterranean Institute for Transplantation and
18 Advanced Specialized Therapies (IRCCS-ISMETT), Via Tricomi 5, 90127, Palermo, Italy, Mobile Ph.: +39
19 3298782304; Fax: +39 091 219 24 28, email: gromano@ismett.edu

20 Author Email Addresses:

21 gromano@ismett.edu; romanogiusseppe81@gmail.com

23 Abstract:

24 **BACKGROUND:** Sacubitril/valsartan has been shown to be superior to enalapril in reducing the
25 risks of death and hospitalization for heart failure (HF). However the effect on cardiac performance
26 remains unknown. We sought to evaluate the effects of sacubitril/valsartan on clinical, bioumoral
27 and echocardiographic parameters in patients with HFrEF.

28 **METHODS:** Sacubitril/valsartan was administered to 205 HFrEF patients.

29 **RESULTS:** Among 230 patients (mean age 59 ± 10 years, 46% with ischemic heart disease) 205 (89%)
30 completed the study. After a follow-up of $10.49 (2.93 \pm 18.44)$ months, the percentage of patients in
31 NYHA class III changed from 40% to 17% ($p < 0.001$). Median N-Type natriuretic peptide (Nt-
32 proBNP) decreased from 1865 ± 2318 to 1514 ± 2205 pg/mL, ($p = 0.01$). Furosemide dose reduced from
33 131.3 ± 154.5 to 120 ± 142.5 ($p = 0.047$). Ejection fraction (from $27 \pm 5.9\%$ to $30 \pm 7.7\%$ ($p < 0.001$) and E/A
34 ratio (from 1.67 ± 1.21 to 1.42 ± 1.12 ($p = 0.002$)) improved. Moderate to severe mitral regurgitation
35 (from 30.1% to 17.4%; $p = 0.002$) and tricuspid velocity decreased from 2.8 ± 0.55 m/sec to 2.64 ± 0.59
36 m/sec ($p < 0.014$).

37 **CONCLUSIONS:** Sacubitril/valsartan induce “hemodynamic reverse remodeling” and in
38 association with Nt-proBNP concentrations lowering improve NYHA class despite a diuretic dose
39 reduction.

40
41 **Keywords:** Heart failure; Sacubitril/valsartan; Neprilysin inhibition; Reduced ejection fraction;
42 echocardiography, Nt-Pro-BNP, hemodynamic, remodeling.

43 1. Introduction

44 Combining renin-angiotensin-aldosterone system (RAAS) blockade with natriuretic peptide
45 system enhancement may deliver specific therapeutic benefits to patients with heart failure and
46 reduced ejection fraction (HFrEF). The first-in-class angiotensin receptor neprilysin inhibitor (ARNI)
47 sacubitril/valsartan combines the angiotensin II type-1 receptor blocker (ARB) valsartan with the
48 neprilysin inhibitor sacubitril. Sacubitril/valsartan was superior to enalapril in reducing risks of death
49 and hospitalization for HF in patients with HFrEF in the Prospective Comparison of ARNI with ACEI
50 to Determine Impact on Global Mortality and Morbidity in Heart Failure (PARADIGM-HF) study
51 [1]. However the effect of sacubitril/valsartan on cardiac performance in patients with HFrEF remains
52 unknown. Therefore, in this study, we sought to evaluate the effects of sacubitril/valsartan on clinical,
53 bioumoral, echocardiographic, parameters in HFrEF patients.
54

55 2. Experimental Section

56 Study Design and Patient Selection.

57 The study was conducted in our outpatient HF clinic center between September 1st, 2017
58 through January 15th, 2019 and was approved by the ethics committee in 14.01.17 (project code IRBB
59 23/16) of the Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione (ISMETT) center
60 in Palermo, Italy.

61 All patients provided informed consent for participation. The protocol was approved by the
62 research ethics committee in accordance with the principles of the Declaration of Helsinki and
63 national regulations.

64 In this prospective observational single center study, sacubitril/valsartan was administered to
65 patients with HFrEF, in addition to recommended therapy.[2] The aim of the study was to evaluate
66 the effects of sacubitril/valsartan on clinical, bioumoral and echocardiographic parameters, recorded
67 at baseline and after follow-up.

68 Patients were included in the study in accordance with the following inclusion criteria:

- 69 (1) symptomatic heart failure defined as New York Heart Association (NYHA) class II-III.
- 70 (2) left ventricular ejection fraction (LVEF) below 35% measured by echocardiography;
- 71 (3) pretreatment with an individual optimal dose of angiotensin-converting enzyme inhibitor
(ACE-I) or ARB for at least 6 months;
- 72 (4) arterial blood pressure \geq 100 mmHg;
- 73 (5) serum potassium (K⁺) level $<$ 5.4 mEq/L.

74 Exclusion criteria were as follows:

- 75 (1) hospitalization for HF within 90 days before ambulatory evaluation.
- 76 (2) Myocardial revascularization within 180 days before ambulatory visit.
- 77 (3) Concomitant initiation of cardiac resynchronization therapy (CRT) and/or percutaneous
mitral valve treatment during study follow-up or in the previous 6 months.
- 78 (4) Presence of congenital heart disease.
- 79 (5) Severe liver insufficiency (Child-Pugh C).
- 80 (6) History of angioedema.

83 Study Procedures: To assess clinical stability, patients were assessed in our outpatient clinic at
84 the enrolment phase (baseline visit). Medical history, physical exam, weight, blood pressure, NYHA
85 class, 12-lead electrocardiogram (ECG), and laboratory analysis comprehensive of biomarkers
86 including N-terminal pro-brain natriuretic peptide (NT-proBNP) were obtained every 1 month to
87 undertake sacubitril/valsartan dose up-titration and then every 6 months. Doses of
88 sacubitril/valsartan were prescribed according to established recommendations [2]. The
89 recommended starting dose was 49/51 mg twice-daily. Patients were switched from an ACE-I after a
90 36-hour washout period. For patients with severe renal impairment (estimated glomerular filtration
91 rate [eGFR] $<$ 30 mL/min), moderate liver insufficiency (Child-Pugh B), hypotensive ($<$ 110 mmHg), or
92 taking low doses of ACE-I or ARB, the starting dose was 24/26 mg twice-daily. Up-titration was
93

94 performed every 4 weeks if tolerated by the patient. Changes in the doses of diuretics were allowed
 95 during follow-up. Safety and tolerability assessments were performed, including monitoring and
 96 recording of all adverse events and their relationship to the study drug. Two hundred thirty were
 97 initially enrolled. After the run-in phase (one month), eight patients discontinued sacubitril/valsartan
 98 because of hypotension, four because of worsening renal function and two because of skin erythema:
 99 Two hundred and sixteen patients were finally evaluated.

100 Echocardiography: A standard 2-Dimensional and Doppler transthoracic echocardiogram was
 101 performed at two time points (baseline assessment and 6 months after the initiation of
 102 sacubitril/valsartan) in all patients. All ultrasound examinations were done with a commercially
 103 available echocardiographic instrument (Vivid 9 System, Vingmed, General Electric Healthcare and
 104 Philips Medical Systems, EPIC). LVEF and volumes were measured from apical views using the
 105 modified biplane Simpson method, as previously described [3]. Volumes and mass were indexed to
 106 the body surface area. The right ventricular (RV) longitudinal systolic function was assessed by
 107 tricuspid annular plane systolic excursion (TAPSE). ColorDoppler was used to qualitatively assess
 108 mitral regurgitation (MR) degree. Assessment of diastolic function was made by trans-mitral early (E
 109 wave velocity) and late (A wave velocity) Doppler flow waves, E/A ratio, and E deceleration time,
 110 and by measuring the early diastolic pulsed wave tissue Doppler (PW-TDI) at the medial and lateral
 111 mitral annulus (e'). E/e' ratio was used as a parameter of LV end-diastolic filling pressure
 112 (LVEDP)[4]. Tricuspid regurgitation (TR) velocity was measured as measure of systolic pulmonary
 113 arterial pressure and inferior vena cava diameter variation as surrogate of central venous pressure.
 114 Images were analyzed offline by two expert investigators blinded to clinical factors.

115 Statistical analysis was performed using SPSS Statistics 25 software (IBM). Continuous variables
 116 are described by mean (SD), or by median and interquartile range, in case of non-normal distribution.
 117 Categorical variables were expressed as number (percentages). One hundred and sixty-one patients
 118 were followed-up in our outpatient clinic, and changes from baseline were tested by paired t-test or
 119 McNemar test, respectively. A *P*-value <0.05 was considered statistically significant.

120 3. Results

121 3.1 Baseline Evaluations

122 A total of 216 patients were prospectively enrolled. However Five patients discontinued
 123 sacubitril/valsartan because experienced hypotension, four patients because acute on chronic HF
 124 and two patients had ventricular arrhythmia. Therefore, 205 (89%) patients were included in the final
 125 analysis with a median follow-up of 10.49 m (range 2.93-18.44) months. The mean age was 59 ± 10
 126 years, 15% females, 46% with ischemic heart disease, 62 % with NYHA functional class II and 17% on
 127 atrial fibrillation. Baseline characteristics of patients are presented in Table 1.

TABLE 1

PATIENTS CHARACTERISTICS,	N (%)
Pazients	205
Age (mean \pm SD)	59 \pm 10
Female sex	31 (15)
BSA (mean \pm SD)	2 \pm 0.2
ETIOLOGY	
Ischemic	95 (46)
Non Ischemic	110 (54)
NYHA	
II	128 (62)
III	77 (38)
COMORBIDITY	
hypertension	90 (45)

Diabetes	63 (32)
Atrial fibrillation	35 (17)
COPD	7 (3)
MEDICAL THERAPY	
FUROSEMIDE	180 (88)
MRA	174 (85)
ACE- I/ARB	100 (205)
β-BLOCKERS	197 (96)
IVABRADINE	37 (18)
ELECTRICAL THERAPY	
ICD	164 (80)
CRT	51 (25)

Values are mean \pm standard deviation. BSA, Body surface area; NYHA, New York Heart Association; COPD, chronic obstructive pulmonary disease; MRA, mineralocorticoid receptor antagonist; ACE-I, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; ICD, intracardiac defibrillator; CRT, cardiac resynchronization therapy.

128
129
130
131
132
133
134
135
136
137
138
139
140
141

The mean (SD) of systolic blood pressure was 118.5 ± 15 mm Hg. The median of NT-proBNP levels, eGFR (Modification of Diet in Renal Disease [MDRD] Study) equation dosages, creatinine concentrations and serum potassium at baseline were 1865 ± 2318 pg/mL, 69.4 ± 23.1 mL/min/1.73 m², 1.2 ± 0.35 mg/dl, 4.14 ± 0.44 mEq/L respectively. Beta-blockers, mineralocorticoid receptor antagonist, and furosemide were administered in 96%, 85%, and 88% of patients, respectively. The mean daily furosemide dose was 131.3 ± 154.5 mg. Eighty percent of patient underwent to cardiac defibrillator (ICD) implantation and 25% of patients received CRT device with ICD. The starting dose of sacubitril/valsartan was 24/26 mg twice daily in 77% of patients. The dose of 49/51 mg was administered in 23 % of patients. Mean baseline values of LVEF, E/A ratio, left atrial volume index (LAVi), were 27 ± 5.9 %, 1.67 ± 1.21 , 54.2 ± 22.6 mL respectively. The percentage of patients with moderate to severe functional MR was 30.1% and the mean baseline values of TR velocity was 2.8 ± 0.55 m/sec. (table 2).

TABLE 2

Changes in CLINICAL, sacubitril/valsartan dose, BIOUMORAL and echocardiographic PARAMETHERS			
	Baseline	Follow-up	p value
SBP (mmHg)	118.5 ± 15	115.4 ± 16.9	0.042
DBP (mmHg)	73 ± 10.3	67.5 ± 9.3	<0.001
NT-proBNP (pg/ml)	1865 ± 2318	1514 ± 2205	0.01
Creatinine (mg/dl)	1.2 ± 0.35	1.31 ± 0.57	0.052
eGFR (ml/min/1,73m ²)	69.4 ± 23.1	65.3 ± 23.2	0.012
potassium (mEq/l)	4.14 ± 0.44	4.17 ± 0.44	0.611
Furosemide dose (mg)	131.3 ± 154.5	120 ± 142.5	0.047
SACUBITRIL/VALSARTAN			
24/26 (mg/bid)	77	39	
49/51 (mg/bid)	23	34	
97/103 (mg/bid)	0	27	
FE (%)	27 ± 5.9	30 ± 7.7	<0.001
EDVi (ml/m ²)	120.5 ± 31.4	120.7 ± 33	0.932

MR mod/sev (%)	30.1	17.4	0.002
E/A	$1,67 \pm 1,21$	$1,42 \pm 1,12$	0,002
E/e'	$14,79 \pm 6,10$	$13,85 \pm 6,09$	0.194
LAVi (ml/m ²)	$54,2 \pm 22,6$	$52,4 \pm 19,1$	0.202
TR velocity (m/s)	$2,8 \pm 0,55$	$2,64 \pm 0,59$	0.014
TAPSE (mm)	$19,03 \pm 4,55$	$19,28 \pm 3,62$	0.472

SBP: Systolic blood pressure; DBP: Diastolic blood pressure; Nt-pro-BNP, N-terminal pro-B-type natriuretic peptide. eGFR, estimated glomerular filtration rate; EF, ejection fraction; EDVi, enddiastolic volume index; MR, mitral regurgitation from moderate to severe grade; E/A: peak e-wave velocity/ peak a-wave velocity ratio; E/e' peak: e-wave velocity divided by mitral annular e' velocity (average) ratio; LAV-i, left atrial volume index; RA, right atrium; TR velocity: tricuspid regurgitation peak velocity; TAPSE, tricuspid annular plane systolic excursion.

142

143

144 3.2 Change in Clinical Characteristics, ARNI dose and Laboratory Data.

145 After a median follow-up of 10.49 months (2.93 ± 18.44) days, percentage of patients HYHA class
 146 II increase from 60% to 73% and the number of patients in NYHA class III decrease from 40% to 17%
 147 ($p < 0.001$).

148 Systolic and diastolic blood pressure decreased with treatment ($P = 0.009$ and $P < 0.001$,
 149 respectively). The dose of sacubitril/valsartan 49/51 mg twice daily was administered in 34% of
 150 patients. In 39% patients the initial dosage of 24/26 mg twice daily was maintained. In the 27% of
 151 patients the dose was up titrated until 97/103 mg twice daily. The median furosemide dose decreased
 152 from 131.3 ± 154.5 mg at baseline to 120 ± 142.5 mg after follow-up ($P = 0.047$), see table 2. Initiation
 153 and titration of sacubitril-valsartan was associated with a reduction in NT-proBNP concentration
 154 (1514 ± 2205 pg/ml; $p = 0.01$). We observed significant changes, but not clinically relevant, in eGFR
 155 (65.3 ± 23.2 ml/min/1.73 m²; $p = 0.012$). In fact no variation in creatinine concentrations and in serum
 156 potassium (1.31 ± 0.57 mg/ml; $P = 0.052$) (4.17 ± 0.44 mEq/L, $p = 0.611$) were founded, see table 2.

157 3.3 Change in Echocardiographic Measurements.

158 Patients exhibited a mild but significant improvement in LVEF ($30 \pm 7.7\%$; $P = 0.001$). The
 159 changes in the E/A-wave ratio from baseline to follow up were (1.42 ± 1.12 ; $p = 0.002$), on the contrary
 160 there was no significant change in E/e' (from 14.79 ± 6.10 to 13.85 ± 6.09 ; $P = 0.194$). Treatment with
 161 sacubitril-valsartan was also associated with significant reduction of the percentage of patients with
 162 moderate to severe MR (from 30.1% to 17.4%, $P = 0.002$). In addition TR velocity decrease from $2.8 \pm$
 163 0.55 m/sec to 2.64 ± 0.59 m/sec ($p < 0.014$), (Table 2).

164 3.4 Safety

165 During follow-up 5 (2%) patients discontinued sacubitril/valsartan because experienced
 166 hypotension, 4 (2%) patients because acute on chronic HF. In 2 (1%) patients worsening renal function
 167 was observed.

168

169 4. Discussion

170 This prospective observational study of patients with HFrEF showed that: switching to
 171 sacubitril/valsartan may generate “hemodynamic reverse remodeling” by reducing left ventricular
 172 filling pressure, MR and finally pulmonary artery systolic pressure; This hemodynamic effect in
 173 association with the reduction of Nt-proBNP may ameliorate functional class capacity and identify
 174 patients in which diuretic withdrawal could be safely performed (figure 1).

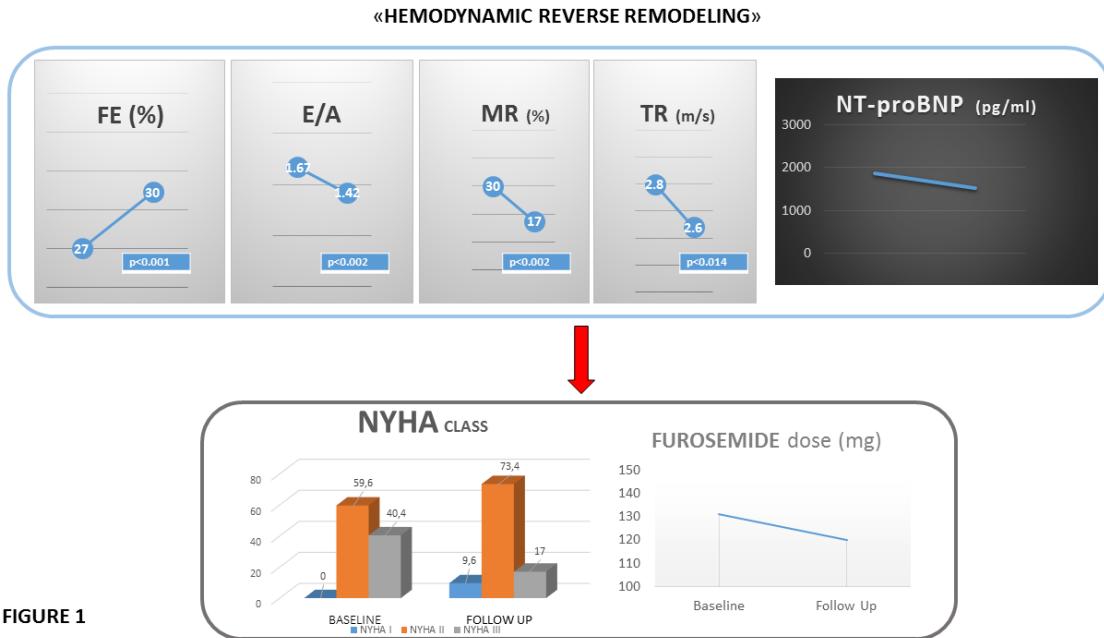


FIGURE 1

175
176
177

178 **Figure 1.** Hemodynamic reverse remodeling". Sacubitril/valsartan improved EF, reduced E/A
179 ratio, MR, TR velocity and Nt-ProBNP concentration. This hemodynamic effect ameliorate NYHA
180 class and reduce diuretic dose at follow up.

181 EF, ejection fraction; MR, mitral regurgitation from moderate to severe grade; E/A: peak e-wave
182 velocity/ peak a-wave velocity ratio; TR velocity: tricuspid regurgitation peak velocity.

183
184 In this study, we evaluated the effect of switching to sacubitril/valsartan therapy in HFrEF
185 patients through a multiparametric approach, that is NT-proBNP levels, echocardiography, and
186 NYHA Class and all collected data were used to test the hypothesis that sacubitril/valsartan may
187 confer an early comprehensive and global benefit to HFrEF patients.

188 In addition to their vasodilatory, natriuretic, and diuretic effects, natriuretic peptides inhibit the
189 RAAS, sympathetic nervous system, and consequent release of antidiuretic hormone, improve
190 myocardial relaxation and vagal tone, and have antifibrotic and antihypertrophic properties [5,6].
191 Mechanistically, sacubitril is implicated in attenuating cardiomyocyte cell death, hypertrophy, and
192 impaired myocyte contractility [7]. Based on these preclinical and mechanistic evaluations of
193 sacubitril, the incremental beneficial effect systolic and diastolic function might seem more intuitive
194 than expected. However prospective data regarding sacubitril-valsartan and cardiac remodeling are
195 limited: Martens and colleagues [8] reported a 5% mean improvement in LVEF after a follow-up
196 period of 4 months. The recent PROVE-HF study [9] adds information regarding associations
197 between ARNI therapy, change in NT-proBNP, and cardiac remodeling. Reduction in NT-proBNP
198 following treatment with sacubitril-valsartan was associated with an increase in LVEF, and
199 reductions in indexed LV and LA volumes as well as E/e' ratio. In line with this findings we found a
200 mild but significant improvement in cardiac function measured by LVEF, confirming the potential
201 LV reverse remodeling effect mediated by sacubitril/valsartan.

202 Moreover, at the best of our knowledge this is the first study to report a reduction in E/A ratio
203 as well as improvement of MR severity. Both are important prognostic measures, reflecting the
204 magnitude and chronicity of elevated cardiac filling pressures, LV negative remodeling and fluid
205 congestion. This improvement determine reduction in TR velocity and in the pulmonary artery
206 systolic pressure. The observed benefit of ARNI in inducing not only left ventricular reverse
207 remodeling but also E/A ratio, MR degree reduction and pulmonary pressure lowering is unique and
208 fascinating because it is crucial in the clinical management and of HFrEF patients, and above all
209 because it is consistent with the significant improvement in NYHA class observed in our population.

210 Coherently with echocardiographic measurements, neprilysin inhibition mediated by sacubitril
211 acutely amplified the hemodynamic effects of natriuretic peptides determining natriuresis and
212 vasodilation [10,11] which resulted in decreased neurohormonal activation as our data have
213 demonstrated by NT-proBNP concentrations abatement at follow-up.

214 In facts reduction in NT-proBNP concentration was strongly associated with outcomes in
215 PARADIGM-HF [1]. On the other hand, studies have suggested that a lack of NT-proBNP reduction
216 after therapy for HFrEF is associated with worse left ventricular size and function [12,13]

217 Our results suggest that patients with NT-proBNP reduction following ARNI initiation are likely
218 to experience reverse cardiac remodeling.

219 Improving in filling pressure, MR degree and pulmonary pressure in tandem with a small yet
220 significant improvement in EF, that is “hemodynamic reverse remodeling”, effectively improved
221 NYHA class and exertional dyspnea.

222 In a recent metanalysis of twenty studies enrolling 10 175 patients, ARNI improved functional
223 capacity in patients with HFrEF, including increasing NYHA class and 6-minute walking distance.
224 Moreover ARNI outperformed angiotensin-converting enzyme inhibitors/angiotensin receptor
225 blockers in terms of cardiac reverse remodeling with striking changes in left ventricular EF, diameter,
226 and volume [14].

227 Confirming these data, we found a reduction of percentage of patients in NYHA class III and an
228 increasing number of patients in NYHA class I and II at follow up (Figure 1).

229 These data are in line with our previously published results showing a significant improvement
230 in well known surrogates of cardiac performance such as peak VO₂ and O₂ pulse as well as others
231 main prognostic-relevant CPET parameters after initiation of sacubitril/valsartan [15].

232 Furthermore this “hemodynamic reverse remodeling” in association with Nt-proBNP
233 concentration reduction, could lead to identify patients in which diuretic withdrawal strategy can be
234 safely undertaken [16]. As we founded in our study reducing the mean diuretic dose, allows to avoid
235 a significant deterioration of renal function, [17] and electrolyte imbalance.

236 Interestingly treatment with sacubitril/valsartan was associated with more loop diuretic dose
237 reductions and fewer dose increases compared with enalapril in the PARADIGM-HF study [18],
238 suggesting that treatment with sacubitril/valsartan may reduce the relative requirement for loop
239 diuretics in patients with heart failure with reduced ejection fraction. The reduced relative need for
240 diuretics in patients treated with sacubitril/valsartan may potentially be secondary to the natriuretic
241 effects of sacubitril or the presumed improvement in haemodynamics that may occur with
242 sacubitril/valsartan.

243 Loop diuretic use has been associated in prior studies with worse outcomes in heart failure.
244 Several mechanisms have been proposed by which loop diuretics may increase risk of mortality:
245 neurohormonal activation electrolytes depletion, serious cardiac arrhythmias [19,20], as well as an
246 increased risk of cardio-renal syndrome [21] have all been reported in the literature. For this reason,
247 as we have already demonstrated [16] diuretic therapy can and should be suspended in well-selected,
248 asymptomatic, patients with HFrEF after adequate therapeutic neuro-hormonal modulation to
249 preserve renal function.

250 Study limitation: This study has a number of limitations. Firstly, the study was not randomized.
251 However, prospective longitudinal studies with multiple blinded assessors are a well-accepted
252 design for evaluating echocardiographic and cardiopulmonary changes. Secondly, an important
253 limitation of this study is the relatively small sample size and lack of a control group.

254 5. Conclusions

255 In summary, our findings are strongly suggestive of “hemodynamic reverse remodeling” in which a
256 modulation of neurohormonal activation determined by sacubitril/valsartan may lead to a hemodynamic effect
257 that may impact cardiac performance and in association with Nt-proBNP concentration abatement could lead to
258 a ameliorate NYHA class and reduce diuretics administration and consequently to preserve renal function..

259 **Author Contributions:** For research articles with several authors, a short paragraph specifying their individual
260 contributions must be provided. The following statements should be used “conceptualization, FC. and FM S.;

261 methodology, CM, DB.; software, DB and VA.; validation, LA., GC.; formal analysis, DB AND VA.; resources,
262 GD, CF.; data curation, SS, VA.; writing—original draft preparation, GR.; writing—review and editing, GR, GV.;
263 visualization, EL.; supervision, EC, FC.; project administration, DB.;

264 **Acknowledgments:** We thank Ms. Rosaria Segreto for continual clinical patient care, and coordination
265 support..

266 **Conflicts of Interest:** "The authors declare no conflict of interest."

267 References

- 268 1. M.J.; P.M. Angiotensin-neprilysin inhibition versus enalapril in heart failure. *N Engl J Med* 2014; **371**:
269 993-1004.
- 270 2. P.P.; V.A. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The
271 Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society
272 of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of
273 the ESC. *Eur Heart J* 2016; **37**: 2129-200.
- 274 3. L.R.; B.L. Recommendations for cardiac chamber quantification by echocardiography in adults: an
275 update from the American Society of Echocardiography and the European Association of
276 Cardiovascular Imaging. *J Am Soc Echocardiogr*. 2015; **28**: 1-39.
- 277 4. N.S.; S.O. Recommendations for the Evaluation of Left Ventricular Diastolic Function by
278 Echocardiography: An Update from the American Society of Echocardiography and the European
279 Association of Cardiovascular Imaging. *J Am Soc Echocardiogr* 2016; **29**: 277-314.
- 280 5. P.L.; A.S. Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent
281 signaling functions. *Endocr Rev* 2006; **27**: 47-72.
- 282 6. G.D.; C.S. Molecular biology of the natriuretic peptide system: implications for physiology and
283 hypertension. *Hypertension* 2007; **49**: 419-26.
- 284 7. I.O.; G.C. Mechanisms of action of sacubitril/valsartan on cardiac remodeling: a systems biology
285 approach. *NPJ Syst Biol Appl* 2017; **3**: 12.
- 286 8. M.P.; B.H. The reverse remodeling response to sacubitril/valsartan therapy in heart failure with
287 reduced ejection fraction. *Cardiovasc Ther* 2018; **36**: e12435.
- 288 9. J.L.; P.M. Association of Change in N-Terminal Pro-B-Type Natriuretic Peptide Following Initiation of
289 Sacubitril-Valsartan Treatment With Cardiac Structure and Function in Patients With Heart Failure
290 With Reduced Ejection Fraction. *Jama* 2019; 1-11.
- 291 10. D.E.; I.A. Neprilysin inhibition in heart failure: mechanisms and substrates beyond modulating
292 natriuretic peptides. *Eur J Heart Fail* 2017; **19**: 710-7.
- 293 11. B.A.; B.J. A Test in Context: Neprilysin: Function, Inhibition, and Biomarker. *J Am Coll Cardiol* 2016;
294 **68**: 639-53.
- 295 12. D.M.; A.K. NT-proBNP Goal Achievement Is Associated With Significant Reverse Remodeling and
296 Improved Clinical Outcomes in HFrEF. *JACC Heart Fail* 2019; **7**: 158-68.
- 297 13. G.H.; T.Q. Characterization and prediction of natriuretic peptide "nonresponse" during heart failure
298 management: results from the ProBNP Outpatient Tailored Chronic Heart Failure (PROTECT) and the
299 NT-proBNP-Assisted Treatment to Lessen Serial Cardiac Readmissions and Death
300 (BATTLESCARRED) study. *Congest Heart Fail* 2013; **19**: 135-42.
- 301 14. W.Y; Z.R. Effects of the Angiotensin-Receptor Neprilysin Inhibitor on Cardiac Reverse Remodeling:
302 Meta-Analysis. *J Am Heart Assoc* 2019; **8**: e012272.

303 15. V.G.; R.G. Early Effects of Sacubitril/Valsartan on Exercise Tolerance in Patients with Heart Failure with
304 Reduced Ejection Fraction. *J Clin Med* 2019; **8**.

305 16. R.G.; V.G. Is diuretic withdrawal safe in patients with heart failure and reduced ejection fraction? A
306 retrospective analysis of our outpatient cohort. *Eur J Intern Med* 2017; **42**: 11-3.

307 17. V.A.; R.F. The year in cardiology: heart failure 2014. *Eur Heart J* 2015; **36**: 421-4.

308 18. V.O.; C.B. Reduced loop diuretic use in patients taking sacubitril/valsartan compared with enalapril:
309 the PARADIGM-HF trial. *Eur J Heart Fail* 2019; **21**: 337-41.

310 19. H.J.; S.P. Thiazide diuretics, hypokalemia and cardiac arrhythmias. *Acta Med. Scand.* 1981; **647**: 67-73.

311 20. S.E.; O.K. Cardiac arrhythmias induced by hypokalaemia and potassium loss during maintenance
312 digoxin therapy. *Br. Heart J* 1976; **38**: 167-72.

313 21. R.C.; D.L. Cardiorenal syndrome. *Heart Fail. Clin* 2014; **10**: 251-80.