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Abstract

Different aspects in applying the nucleation theorem to the description of crystal-

lization of liquids are analyzed. It is shown that, by employing the classical Gibbs’

approach in the thermodynamic description of heterogeneous systems and assum-

ing that the basic assumptions of classical nucleation theory commonly employed

in application to crystallization hold, a general form of the nucleation theorem can

be formulated valid not only for one-component but generally for multi-component

systems. This result is taken then as the starting point for the derivation of particu-

lar forms of this theorem for the cases that the deviation from equilibrium is caused

by variations of either composition of the liquid phase, temperature, or pressure.

In this procedure, recently developed by us expressions for the curvature depen-

dence of the surface tension, respectively, the dependence of the surface tension

on pressure and/or temperature are employed. It is shown that the formulation of

the nucleation theorem as proposed by Kashchiev [J. Chem. Phys. 76, 5098-5102

(1982)] holds also for multi-component systems as far as mentioned above assump-

tions are fulfilled. In the application of classical nucleation theory to crystallization

processes it is assumed as one of its basic ingredients that the bulk properties of the

critical clusters are widely identical to the properties of the newly evolving crystal

phase. This assumption is, however, in general, it is not true. This limitation of

the theoretical description can be overcome by the application of the generalized

Gibbs approach for the specification of the dependence of the properties of critical

crystal clusters on the degree of metastability of the liquid phase. Applying this

method, it is demonstrated that a similar formulation of the nucleation theorem as

derived based on classical nucleation theory holds true also in cases when a depen-

dence of the state parameters of the critical clusters on the degree of deviation from

equilibrium is appropriately accounted for.

2

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 November 2019                   doi:10.20944/preprints201911.0038.v1

Peer-reviewed version available at Entropy 2019, 21, 1147; doi:10.3390/e21121147

https://doi.org/10.20944/preprints201911.0038.v1
https://doi.org/10.3390/e21121147


1 Introduction

Crystal nucleation and growth processes play a major role in a variety of phenomena

occurring in nature and technological processes. By this reason, intensive research is

devoted to their analysis (see e.g. [1, 2, 3, 4]) attempting to exhibit the major factors

either catalyzing or inhibiting crystal nucleation and growth.

In the interpretation of experimental data on crystal nucleation and growth processes

up to now predominantly the classical nucleation theory (CNT) is employed [5, 6, 7, 8, 9].

Utilizing CNT, the expression for the steady-state nucleation rate, J(T, p), is commonly

used hereby in the form

J(T, p) = J0 exp

(
− Wc

kBT

)
, J0 = c

√
σ

kBT

(
D

d0

)
∼= c

√
σkBT

ηd20
, (1)

Wc =
16π

3

σ3

(∆g)2
, Rc =

2σ

∆g
. (2)

Here Wc is the work of critical cluster formation, kB is the Boltzmann constant, and T is

the absolute temperature. Assuming a spherical shape (and choosing, as it is commonly

done in applications to nucleation, the surface of tension as the dividing surface [10]),

the surface area of the critical cluster is given by Ac = 4πR2
c , where Rc is the critical

cluster radius and σ is the surface tension both taken for this particular dividing surface.

The theoretical foundation of the possibility to describe critical crystal nucleation (critical

crystals may have, in general, quite different shapes) in terms of such simplified model is

described in detail in [11, 12]. This model we will use in the present study.

In the derivation of Eqs. (2), the basic concepts of Gibbs’ thermodynamic theory of

heterogeneous systems are employed underlying also the performed by us generalization

of Gibbs’ classical treatment [10, 13, 14, 15, 16]. Being aware of possible different opinions

concerning the correct form of Eq. (2) (denoted commonly as ”Renninger-Wilemski prob-
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lem” [17]), we would like to underline that Eqs. (2) hold - as far as the surface of tension

is chosen as the dividing surface as we do - both in cases when the surface tension is taken

as a constant involving the capillarity approximation and similarly also when a curvature

dependence of the surface tension is accounted for [10, 18, 19, 20, 21, 22]. The critical

cluster size is determined in such approach by the ratio of surface tension, σ, and the

thermodynamic driving force of crystallization, ∆g, the change of the bulk contributions

to the Gibbs’ free energy per unit volume of the crystal phase both for one-component

and multi-component systems [4, 23].

In applications of CNT to crystal nucleation the thermodynamic driving force of crys-

tallization is specified in accordance with Gibbs’ theory of surface phenomena. It has the

same value for both nucleation and growth processes, i.e., the possibility that critical clus-

ters have properties different from the properties of the evolving crystalline phase is, as

a rule, not accounted for. Corrections in the theoretical description of crystal nucleation

rates are introduced in CNT into the description exclusively via curvature corrections

to the surface tension [11, 12]. In contrast, employing the generalized Gibbs approach

[4, 14, 15, 16], also the bulk properties of the critical clusters are shown to deviate, as a

rule, significantly from the properties of the newly evolving macroscopic phases and can

be appropriately accounted for.

The pre-exponential factor, J0, is specified in Eq. (1) originally for the case of ho-

mogeneous crystallization of one-component liquids characterized by a particle density,

c = 1/d30, where d0 is a measure of the size of the ambient phase particles, and D is

their diffusion coefficient in the liquid. The diffusion coefficient is frequently replaced in

applications of CNT to crystallization by the Newtonian viscosity, η, utilizing the Stokes-

Einstein-Eyring relation, D ∼= kBT/ηd0. Although formulated here for one-component
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systems, Eq. (1) can be employed also in more general cases as discussed in detail in

[4, 24, 25]. In particular, for multi-component systems nucleation may be not limited

kinetically but by diffusion processes of the different components or by some intermediate

form of aggregation kinetics (see also [26]). Consequently, in such cases the parameter d0

may become dependent on the size of the critical clusters.

For one-component systems we can perform the substitution ∆g = ∆µ/vα where ∆µ

is the difference between the chemical potential per particle in the liquid and the crystal

phases and vα ∼= d30 is the volume per particle in the crystal phase. Utilizing these

notations, we obtain approximately

dWc

d(∆µ)
= −nc . (3)

Here nc is the number of particles in the critical cluster. The assumptions employed in

the derivation of Eq. (3) will be specified below. One of them consists in the application

of the capillarity approximation, i.e., the surface tension is assumed to be equal to the

respective value for an equilibrium coexistence of liquid and crystal at planar interfaces.

Relations of the form of Eqs. (3) are widely discussed in the literature [3, 4, 10, 27,

28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44] starting immediately with

the work by Gibbs. They are denoted, following Kashchiev [29], as the first nucleation

theorem. The interest in such relations is caused by the fact that they allow one to derive

conclusions on the properties of critical clusters in nucleation based on measurements of

the nucleation rate. Indeed, in line with Eq. (3), variations of the nucleation rate are in-

trinsically connected with changes of the work of critical cluster formation. Consequently,

from measurements of the nucleation rate one can make conclusions on the change of the

work of critical cluster formation caused by variations of the external control parameters

and, utilizing relations of the form of Eq. (3), on the properties of critical clusters. Of
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course, in such procedure also the variations of the kinetic coefficients like diffusion coef-

ficient or viscosity have to be appropriately accounted for (see e.g. [3, 39]). Most studies

of applications of the nucleation theorem are devoted to condensation. Here we concen-

trate the attention on crystal nucleation utilizing appropriate approximations valid for

this particular case of phase formation (for more general approaches and the discussion

of different forms of the nucleation theorem, see e.g. [33, 35, 36, 37]).

It was stressed by Kashchiev and Oxtoby [29, 33] that relations of the form of Eq. (3)

may hold independently on the method of how surface correction terms into the expression

for the change of the Gibbs free energy are introduced. However, once such surface cor-

rections terms may be of significance, then its proper specification is of huge importance

for a correct application of the nucleation theorem to the specification of the properties

of critical clusters (see e.g. [35, 36]). As noted in another context by Albert Einstein in

conversation with Werner Heisenberg: ”Only the theory decides what one can observe”

[45]. In our case, this statement refers to the question how one can determine the prop-

erties of critical clusters from the derivatives of the work of critical cluster formation by

the thermodynamic driving force or other appropriate control parameters specifying the-

oretically correctly both the bulk and, in particular, the surface contributions to critical

cluster formation.

In line with above given considerations, in the present paper, we derive several versions

of Eq. (3) utilizing different approaches in the specification of both the bulk and surface

contributions to the work of critical cluster formation. We start the analysis first taking

as granted the assumptions commonly employed in CNT (Section 2.1). As demonstrated,

in particular, we perform here the analysis immediately for the general case of crystal

nucleation in multi-component systems going beyond the case of one-component systems
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as studied in [29] and extending the results obtained by us earlier in [35]. In CNT, in order

to reconcile experimental data with theoretical predictions, the capillarity approximation

has been often released introducing a size dependence of the surface tension [10, 46, 47, 48,

49] of the critical clusters (or, equivalently, a dependence on pressure and temperature

determining the degree of metastability of the melt, respectively, the thermodynamic

driving force). Based on the Stefan-Skapski-Turnbull rule, in recent papers [11, 12, 23,

50, 51] expressions for the dependence of the surface tension on both external control

parameters have been derived. These relations are utilized in the present analysis to

arrive at expressions for the derivatives of the work of critical cluster formation with

respect to the thermodynamic driving force. In experiments, the thermodynamic driving

force can be varied by changes of composition, pressure and/or temperature. By this

reason, we will formulate dependencies of the form of Eq. (3) also for these particular

cases (Section 2.2). Our approach is compared with the method employed by Kashchiev

[29] in order to arrive at expressions of the form of Eq. (3). It is shown that, provided

the underlying assumptions hold, the approach developed by Kashchiev is valid also for

multi-component systems (Section 2.3).

In a second step of the present analysis, an extension of Eq. (3) is derived for the

case that the work of critical cluster formation is described in terms of the generalized

Gibbs approach not utilizing a variety of assumptions inherent in CNT and, in particular,

accounting appropriately for the dependence of the bulk properties of critical crystallites

on the degree of deviation from thermodynamic equilibrium. As will be shown, also for

such general situation a formulation of the nucleation theorem in application to crystal

nucleation can be given (Section 3) which is widely similar to the result obtained by us

in the present paper in terms of CNT. A discussion of the results and a summary of the
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conclusions completes the paper (Section 4).

2 Nucleation theorem: Analysis in terms of classical

nucleation theory

2.1 Basic equations and results

In CNT, the thermodynamic driving force of crystallization, ∆g, is expressed commonly

in a first approximation via the difference of the bulk contributions to the Gibbs free

energy between liquid and crystal per unit volume of the crystal phase [3, 4, 12, 23] both

taken at the pressure, p, and temperature, T , of the liquid phase i.e. ∆g ∼= ∆gCNT (p, T )

with

∆gCNT (T, p) =
k∑

i=1

ρiα (µiβ (T, p, {xiβ})− µiα (T, p, {xiα})) . (4)

Here µiα and µiβ are the chemical potentials per particle of the different components

in the crystal (specified by the subscript α) and the liquid (specified by the subscript

β) phases, xiα/β and ρiα/β are the molar fractions and particle densities of the different

components in the respective phases. In the derivation of this relation it is assumed

that the composition of the critical crystallites is widely identical to the composition

of the newly evolving macroscopic phases [4, 23]. Indeed, employing Gibbs’ method of

specification of the parameters of the critical clusters, the bulk properties of the critical

clusters turn out to be widely similar to the properties of the newly evolving macroscopic

phases. This result gives some foundation of mentioned assumption adopted as a rule in

CNT. Commonly also the composition of the liquid phase remains fixed. Consequently,

the thermodynamic driving force is essentially a function of pressure and temperature.
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Instead of ∆g, frequently also the chemical potential difference, ∆µ, is utilized for the

description of the thermodynamic driving force being for multi-component systems of the

form [4, 23]

∆µ(T, p) =
k∑

i=1

xiα (µiβ (T, p, {xiβ})− µiα (T, p, {xiα})) , (5)

∆gCNT (T, p) =
1

vα
∆µ(T, p) , xiα =

niα

n
, vα =

Vα

n
. (6)

Here n is the total number of particles and niα are the numbers of particles of the i−th

component, xiα are its molar fractions and vα the (average) volume per particle all of

them referring to the crystal phase, {xiβ} is the set of independent molar fractions of

the different components in the liquid phase. Employing these notations, Eqs. (2) can be

reformulated as

Wc =
16π

3

σ3v2α
(∆µ)2

, Rc =
2σvα
∆µ

, (7)

and supplemented by a relation for the number of particles, nc, in the critical cluster

nc =
32π

3

(
σ

∆µ

)3

v2α . (8)

By taking the derivative of Wc with respect to ∆µ, we obtain then

dWc

d(∆µ)
= −nc

(
1− 3

2

d lnσ

d ln(∆µ)

)
. (9)

Employing the capillarity approximation (assuming the surface tension to be equal to

the respective value for a planar equilibrium coexistence of liquid and crystal phases at

a planar interface i.e. that it does not change in response on variations of the degree

of deviation from equilibrium, ∆µ), Eq. (9) is reduced to the particular form given by

Eq. (3) but here referring to nucleation in multi-component systems.
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2.2 Some alternative forms of the nucleation theorem

Eq. (9) connects variations of the work of critical cluster formation in dependence on the

thermodynamic driving force of the phase transformation, expressed here via ∆µ(T, p),

with changes of the surface tension caused by such variations of the thermodynamic

driving force. In order to derive particular expressions for the application of this relation

to experiment, both the expressions for the thermodynamic driving force and the surface

tension have to be specified expressing them via those control parameters, which can be

varied in experiment. Such specification will be performed here again for the general case

of crystal nucleation in multi-component systems.

Eq. (4) is the basic equation for the description of the thermodynamic driving force

of crystallization as employed commonly in CNT as the starting point of the analysis

of nucleation and crystal growth. However, for its direct application, one has to have

at one’s disposal the knowledge of the chemical potentials of the different components

in both phases. Such detailed knowledge is commonly not available. By this reason,

in applications it is preferable to have expressions allowing one to compute ∆g(T, p)

directly by knowing the parameters (Tm, pm) of some particular macroscopic equilibrium

state liquid-crystal and the respective deviations of temperature, (T −Tm), and pressure,

(p − pm), from it. If both temperature and pressure are changed simultaneously the

thermodynamic driving force of crystallization can be determined in a good approximation

as (for details see [4, 12, 23])

∆gCNT (T, p) ∼= ∆hm

(
1− T

Tm

)[
1− ∆cp(Tm, pm)

2∆sm

(
1− T

Tm

)]
(10)

+pm∆vm

(
p

pm
− 1

)[
1− pm∆κT (Tm, pm)

2∆vm

(
p

pm
− 1

)]
.

Here ∆hm and ∆sm are the melting enthalpy and melting entropy per unit volume of the
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crystal at the temperature, Tm, and the pressure, pm, ∆vm = (Vliquid − Vcrystal)/Vcrystal,

∆cp and ∆κT are the differences of specific volume, specific heat, and isothermal compress-

ibility. These relations can be employed for both one- and multi-component (considered

here) systems and both stoichiometric and non-stoichiometric crystallization.

In addition to the thermodynamic driving force, the specific interfacial energy has

to be known for the determination of the work of critical cluster formation as given by

Eq. (2). It can be brought into the form [12, 50, 51]

σ(T, p)

σ(Tm, pm)
∼=

(
T

Tm

)[
1− ∆cp

∆sm

(
1− T

Tm

)
− pm∆αT

∆sm

(
p

pm
− 1

)]
. (11)

Here ∆αT is the difference in the thermal expansion coefficients between liquid and crys-

tal. A combination of Eqs. (9) - (11) allows us to determine the change of the work of

critical cluster formation in dependence on either pressure or temperature. The respec-

tive computations are straightforward and by this reason not given here in the general

form. Anyway, to have some impression below two special cases are considered employing

truncated expressions for the dependencies of the thermodynamic driving force and the

surface tension.

In case the chemical potential difference and surface tension is caused by temperature

variations described in such first-order approximation as

∆µ(T, pm) ∼= vα∆hm

(
1− T

Tm

)
, σ(T, pm) ∼= σ(Tm, pm)

(
T

Tm

)
, (12)

Eq. (9) yields

dWc

dT
∼= nc

(
3vα∆hm

2T

)(
1− T

3Tm

)
. (13)

For pressure-induced nucleation, using the approximations,

∆µ(Tm, p) ∼= vαpm∆vm

(
p

pm
− 1

)
, (14)
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σ(Tm, p) ∼= σ(Tm, pm)

[
1−

(
pm∆αT

∆sm

)(
p

pm
− 1

)]
,

we obtain instead

dWc

dp
∼= −nc

vα∆vm
2


2 +

(
pm∆αT

∆sm

)(
p

pm
− 1

)
1−

(
pm∆αT

∆sm

)(
p

pm
− 1

)
 (15)

both as zeroth-order estimates. As evident, in both cases the partial derivatives of the

work of critical cluster formation taken with respect to the external control parameters

are proportional to the number of particles in the critical clusters. However, in these cases

the coefficient of proportionality is generally quite different from one.

As noted above, in CNT the bulk state parameters of the critical crystallites are

assumed to be widely identical to the properties of the newly evolving macroscopic phases.

Consequently, in line with Eq. (5), the thermodynamic driving force can be considered

as a function of the set of variations of the chemical potential differences, {∆µi}, of the

different components. Provided it would be possible to vary only one of the chemical

potential differences, say ∆µj, then (see e.g. also [43, 44])

∂Wc

∂(∆µj)
=

dWc

d(∆µ)

∂∆µ

∂(∆µj)
= −njc

(
1− 3

2

d lnσ

d ln(∆µ)

)
, njc = ncxjα . (16)

Here njc is the number of particles of the j-th component in the critical cluster. However,

in any attempts to realize such variations in experiment, one has to take care about

possible limitations of the applicability of these equations caused by necessity to fulfil the

Gibbs-Duhem relations [35, 36, 52].

On the other hand, independently varied can be the molar fractions, xjβ, j = 1, 2, . . . , (k−

1), of the liquid phase. Assuming that such process of variation of only one independent

molar fraction is performed at constant pressure and temperature, we obtain

∂Wc

∂xjβ

=
dWc

d(∆µ)

∂∆µ

∂xjβ

(17)
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or

∂Wc

∂xjβ

= −nc

(
1− 3

2

d lnσ

d ln(∆µ)

)
∂

∂xjβ

{
k∑

i=1

xiα (µiβ (T, p, {xiβ})− µiα (T, p, {xiα}))

}
.

(18)

A change of the composition of the liquid may lead to variations of the composition

of the crystal phase coexisting in equilibrium with the liquid. If such variations of the

composition of the crystalline phase can be neglected, we obtain as a special case

∂Wc

∂xjβ

= −nc

(
1− 3

2

d lnσ

d ln(∆µ)

) k∑
i=1

xiα

(
∂µiβ (T, p, {xiβ})

∂xjβ

)
. (19)

Again, the partial derivative (∂Wc/∂xjβ) is proportional to the critical cluster size, nc,

but the evaluation of the coefficient of proportionality requires a detailed knowledge both

on the bulk properties of the coexisting phases and the change of the surface tension with

respect to variations of the thermodynamic driving force for this particular method of

variation of the state of the liquid.

2.3 Comparison with the approach employed by Kashchiev

In his first paper ([29], see also [3, 33]), Kashchiev considered exclusively one-component

systems. He formulated an equation for the work of critical cluster formation of the form

of Eq. (7) for this particular case. He assumed then validity of the capillarity approxi-

mation and arrived at Eq. (3). As shown above, this method is similarly applicable to

the description of crystal nucleation for the general case of multi-component systems and

accounting for a dependence of the surface tension of critical crystal nuclei immediately

yields the generalization given by Eq. (9).

The account of surface free energy contributions was performed by Kashchiev in a

different way as compared to the standard one used here. In line with Gibbs’ thermody-

namic approach and the approximations usually employed in crystal nucleation, the bulk
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contribution to the change of the Gibbs’ free energy was written as −n∆µ supplemented

but surface energy corrections given by F (n,∆µ). Accounting for both bulk and surface

terms, the work of formation of a cluster containing n particles is expressed then as [29]

W (n,∆µ) = −n∆µ+ F (n,∆µ) . (20)

It is stated that the derivative of the work of critical cluster formation with respect to

∆µ reads

dWc

d(∆µ)
= −nc +

∂Fc

∂(∆µ)
, (21)

denoting this expression as nucleation theorem. In the second term on the right hand side

of Eq. (21), the partial derivative with respect to ∆µ implies that the derivative has to

be taken at constant values of the cluster size.

Utilizing Gibbs’ method and certain approximations, one obtains as a special case

F (n,∆µ) ∼= σA then. Here A = 4πR2 is the surface area of the crystallite. A substitution

of this relation into Eq. (21) leads immediately to Eqs. (7) and (9), again, when ∆µ is

expressed via Eq. (5). Consequently, in contrast to the respective statements in [29, 33],

Eqs. (20) and (21) hold not only for one- but also for multi-component systems as far as

the assumptions commonly utilized in CNT are fulfilled. Such extension of the approach

formulated by Kashchiev [29] to multi-component systems was performed already also by

Yang Gao et al. in [43, 44].

Although both methods lead for this particular case to the same results, we consider

our approach as preferable. It involves exclusively the analysis of parameters of critical

clusters and does not require the specification of the bulk and surface contributions to

cluster formation for arbitrary cluster sizes as it has to be done in the formulation of

Eq. (20). If this procedure is realized in a general form, very detailed considerations have

to be performed as discussed in detail in [13, 14, 15, 53, 54]. Moreover, it is supposed in
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the formulation of Eq. (20) that the surface contributions are a function of the number

of particles in the cluster, n, and of the driving force, ∆µ. In general, this is as a rule

not the case as evident from Gibbs’ theory of heterogeneous systems [10]. According to

Gibbs’ adsorption equation, the surface tension of critical clusters is a function of either

the set of state parameters of the newly evolving or of the ambient phase. For example,

as evident from Eq. (11), the surface tension of critical clusters can be expressed as a

function of pressure and temperature. In line with Eq. (10), one and the same values of

∆µ may yield, in principle, different values of the surface tension. Moreover, utilizing

exclusively Gibbs’ theory (referring to thermodynamic equilibrium states) nothing can be

said concerning the value of the surface tension for clusters not being in equilibrium with

the ambient liquid.

In our approach, it is merely required that infinitesimal variations of the state param-

eters of the ambient phase like (T, p, {xiβ}) lead to infinitesimal variations of Wc, ∆µ,

and σ (referred also exclusively to the critical cluster) and that the differential quotient,

(dσ/d(∆µ)), has well-defined values. This difference in the interpretation is even more

important if the expressions for the thermodynamic driving force and the surface tension

are more complex as compared with the assumptions commonly employed in CNT and

underlying also Eq. (20). The respective generalizations and their consequences will be

analyzed in the next section.

15
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3 Thermodynamics of cluster formation: Beyond the

classical Gibbs’ approach

3.1 One main deficiency of classical nucleation theory

Already quite soon after the formulation of the basic concepts of CNT it has been un-

derstood clearly that also the bulk properties of the critical (and, consequently, of sub-

and supercritical) crystallites may be quite different as compared to the properties of the

newly evolving macroscopic phases (see e.g. [4, 7, 55, 56, 57, 58]). This insight was the

stimulus for the development of alternative continuums approaches to the description of

heterogeneous systems and its application to phase formation processes [59, 60, 61] re-

peating and advancing the work performed much earlier by J. D. van der Waals [62, 63].

Latter approaches account appropriately for the fact that the parameters of the critical

cluster may differ significantly from the properties of the evolving macroscopic phases.

These results are confirmed by a variety of computer simulations and a rapidly increasing

number of experimental data (e.g. [64, 65, 66, 67, 68, 69, 70, 71, 72]). Consequently,

the computation of the thermodynamic driving force performed under the assumption of

nearly constant macroscopic values of the bulk state parameters of the crystal clusters

can be only an approximation more or less valid in dependence on the specific problem

under consideration.

Mentioned deficiencies of the classical Gibbs’ method and other its contradictions to

the van der Waals and more advanced density functional approaches, computer simula-

tions, and experimental data have been overcome by us developing a generalization of

the classical Gibbs’ approach. The basic ideas of such generalization and some of the

results of its application are reviewed in [4, 14, 15, 16, 73, 74, 75, 76]. The main difference

16
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of our as compared to Gibbs’ classical treatment consists in the fact that we developed

as the first step a theory of heterogeneous systems for non-equilibrium states. This is

a straightforward generalization of Gibbs classical approach who restricted his consid-

erations exclusively to equilibrium states. This generalization accounts, in particular,

appropriately for the fact that in non-equilibrium states the surface tension has to de-

pend, in general, on the state parameters of both the ambient and newly evolving phases.

Based on such generalization, more complex equations for the description of the properties

of the critical clusters governing nucleation are obtained as compared to Gibbs’ classical

treatment. Accounting for such effects and the described method of their description, we

will advance now a reformulation of the nucleation theorem.

3.2 Basic equations and results

Utilizing the standard approach to the description of thermodynamically heterogeneous

systems as developed in its basic premises by J. W. Gibbs [10] and the performed by us on

its basis generalization to non-equilibrium states [13, 14, 15, 16], the work of critical cluster

formation, Wc, and the critical cluster radius, Rc (referred to the surface of tension), can

be expressed both in the classical and generalized Gibbs’ approaches via

Wc =
16π

3

σ3(pα, Tα, {xiα}; pβ, Tβ, {xiβ})
(∆g(pα, Tα, {xiα}; pβ, Tβ, {xiβ}))2

, (22)

Rc =
2σ(pα, Tα, {xiα}; pβ, Tβ, {xiβ})
∆g(pα, Tα, {xiα}; pβ, Tβ, {xiβ})

. (23)

The correct expression for the thermodynamic driving force of cluster formation is given

by [22, 23]

∆g(pα, Tα, {xiα}; pβ, Tβ, {xiβ}) = sα(Tβ − Tα) + (pα − pβ) (24)

+
k∑

i=1

ρiα (µiβ (pβ, Tβ, {xiβ})− µiα (pα, Tα, {xiα})) .
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In the derivation of these relations, the fundamental equation of Gibbs’ approach was

generalized to allow the surface tension to be a function of the state parameters of both

ambient and newly evolving phases.

In order to determine the thermodynamic potentials for non-equilibrium states, one of

the problems one has to solve consists in the determination of the values of the chemical

potentials, µjσ, and the temperature, Tσ, referring to the surface phase. In accordance

with an intensive analysis of such problems by Defay et al. [77], Prigogine and Bellemans

[78] (”a surface phase has no real autonomy, in general”), and Rowlinson and Widom

[79] (”we cannot measure or define unambiguously the thermodynamic properties of the

surface phase”) we postulated [13, 14, 15] that the superficial surface parameters, Tσ and

µjσ, have to be set equal to the respective quantities of the ambient phase

Tσ = Tβ , µjσ = µjβ . (25)

As one consequence, in above equations, the superficial particle numbers, niσ, and the

superficial entropy, Sσ, which enter the description in terms of Gibbs theory as correction

terms describing effects of the interface, are included into the number of particles of the

newly evolving phase, niα = ρiαVα, and the volume density of the entropy, sα, of this

phase, correspondingly.

Equation (4), employed commonly in CNT for the description of the thermodynamic

driving force of crystallization and used here also in Section 2, is an approximation ob-

tained as a limiting case for Tα → Tβ and pα → pβ, i.e., it is supposed that temperature

and pressure of the critical cluster and the ambient liquid coincide. The first of these

assumptions (Tα → Tβ) is in agreement with the equilibrium conditions

µiβ (pβ, Tβ, {xjβ})− µiα (pα, Tα, {xjα}) = 0 for i = 1, 2, . . . , k , (26)

18
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Tβ − Tα = 0 , (27)

pβ − pα +
2σ

Rc

= 0 , (28)

as obtained in the classical Gibbs approach [10], the second (pα → pβ), in general, not.

Approximately, Eq. (4) can be obtained from Eq. (24) by a truncated Taylor expansion

[4, 23]. In this procedure it is assumed that the bulk state parameters of the critical

clusters do not depend neither on pressure nor on temperature. The conditions Tα → Tβ

and pα → pβ are also employed in the derivation of Eqs. (8) and (11) for the dependence

of the specific surface energy on temperature and pressure.

However, as mentioned, the properties of the critical clusters may deviate considerably

from the properties of the evolving macroscopic phases. They can be correctly described

via the generalized Gibbs approach (e.g. [4, 73]). In the framework of latter approach,

the critical cluster size is determined by Eq. (23) in combination with Eq. (24), again.

This relation differs, now, from Eq. (28). Moreover, instead of Eqs. (26) and (27) we get

the additional equilibrium conditions now in the form [4, 14, 15, 16, 22],

µiβ − µiα =
3

Rc

(
∂σ

∂ρiα

)
{ρiβ},sβ

for i = 1, 2, . . . , k , (29)

Tβ − Tα =
3

Rc

(
∂σ

∂sα

)
{ρiβ},sβ

. (30)

The generalized Gibbs approach leads to the conclusion that for critical clusters of nanome-

ter sizes not only the equilibrium conditions for pressure but also for thermal and diffusion

equilibrium are modified. In particular, we conclude that also the first of the assumptions

employed in CNT (Tα = Tβ) for the determination of the thermodynamic driving force

lacks any theoretical foundation (see also [80, 81]). Note further that in this more general

situation (described by Eqs. (29) and (30)), Eq. (23) is not reduced to Eq. (28) as this

is the case in Gibbs’ classical approach. It follows as an additional consequence that the
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bulk parameters of the critical clusters may vary considerably in dependence on the degree

of metastability. This effect is determined by the derivatives of the surface tension with

respect to the state parameters of the cluster phase. In the generalized Gibbs’ approach,

the surface tension is a function of the state parameters of both ambient and newly evolv-

ing phases. By this reason, here derivatives of the surface tension occur in the equilibrium

conditions. This result is not in conflict with the Renninger-Wilemski problem. Latter

refers to the question how the equilibrium conditions have to be expressed in terms of the

classical Gibbs approach.

Substituting the parameters of the critical clusters obtained via the generalized Gibbs

approach (Eqs. (23), (29), and (30)) into Eq. (24) we get then the correct expression for the

thermodynamic driving force of crystal nucleation. In particular, utilizing Eqs. (29) and

(30), the correct expression, Eq. (24), for the thermodynamic driving force of nucleation

can be expressed also as

∆g = (pα − pβ) +
3

Rc

[
sα

(
∂σ

∂sα

)
{ρjβ},sβ

+
k∑

i=1

ρiα

(
∂σ

∂ρiα

)
{ρjβ},sβ

]
. (31)

Variations of the bulk state parameters of the cluster phase in response to variations of

the degree of metastability may be, consequently, of considerable effect concerning the

value of the thermodynamic driving force.

In order to employ above derived equations, we have to know the surface tension (and

here in an even more complex form as compared to the classical approach) as a function

of the state parameters of both coexisting phases. An expression for the surface tension

can be obtained, again, via the Stefan-Skapski-Turnbull relation. We may write [50, 51]

σ

σ(Tm, pm)
=

1

Tm∆sm

{
Tβsβ − Tαsα +

k∑
i=1

ρiα (µiβ − µiα)

}
. (32)

This expression allows us to determine the dependence of the surface tension on pressure
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and temperature, again. However, in contrast to Eqs. (11), here also the dependence

of the bulk state parameters of the critical clusters on pressure and temperature has

to be accounted for. These state parameters have to be determined by the equilibrium

conditions Eqs. (29)-(30), again. Substituting the equilibrium conditions into Eq. (32),

we get instead of Eq. (8)

σ

σ(Tm, pm)
=

1

Tm∆sm

{
Tβ(sβ − sα) +

3

Rc

[
sα

(
∂σ

∂sα

)
{ρjβ},sβ

+
k∑

i=1

ρiα

(
∂σ

∂ρiα

)
{ρjβ},sβ

]}
(33)

(for details see [50]).

The specification of the dependence of the thermodynamic driving force and the sur-

face tension, accounting for possible variations of both bulk and surface state parameters

of the critical clusters, is, consequently, a highly complex task (see also [16]). For any set

of state parameters of the ambient liquid phase, (pβ, Tβ, {xiβ}), first the state parameters

of the critical clusters have to be determined. This procedure can be performed via the

equilibrium conditions, Eqs. (23), (29), and (30), supplying us with (k+2) relations for the

determination of the (k+1) bulk state parameters and the size of the critical cluster. Hav-

ing at one’s disposal these parameters, both the surface tension and the thermodynamic

driving force can be computed. Infinitesimal variations of the state parameters of the

ambient liquid phase will result, consequently, in similar variations of both the thermody-

namic driving force, d∆g, and the surface tension, dσ. For the formulation of the general

form of the nucleation theorem employing the generalized Gibbs’ approach only latter

mentioned conclusion is of importance, i.e., that the ratio (dσ/d(∆g)) is well-defined.

Indeed, as noted, the work of critical cluster formation is given also in the generalized

Gibbs’ approach by the simple relation, Eq. (22). Taking the derivative with respect to
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∆g, we obtain similarly to Eqs. (8) and (9)

Vc =
32π

3

(
σ

∆g

)3

, (34)

dWc

d(∆g)
= −Vc

(
1− 3

2

d lnσ

d ln(∆g)

)
. (35)

Here Vc is the volume of the critical cluster. The general form of the nucleation theorem

remains the same as derived in employing basic assumptions of CNT. Of course, intro-

ducing the assumptions of CNT at this stage, Eq. (9) is reproduced as a special limiting

case, again.

Note, however, that also another expression derived in terms of Gibbs classical ap-

proach can be obtained based on Eq. (35) (but not via Eq. (9) involving additional

approximations sketched here earlier) as a special case. Utilizing Gibbs’ equilibrium

conditions, Eqs. (26) and (27), ∆g can be replaced by (pα − pβ). In such limiting case,

we obtain

dWc

d(pα − pβ)
= −Vc

(
1− 3

Rc

dσ

d(pα − pβ)

)
(36)

derived by us earlier in [35] utilizing Gibbs’ classical approach [10].

Although the nucleation theorem is of very similar form as the one derived in terms

of CNT, the specification of the conclusions what are its consequences when e.g. either

composition, pressure, or temperature are varied becomes a much more complex task.

Consequently, the predictions concerning the parameters of the critical clusters as ob-

tained via the generalized Gibbs approach may be quite different from the conclusions

obtained in terms of CNT (see also [35]).
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4 Results and discussion

Classical nucleation theory assumes that the thermodynamic driving force of crystalliza-

tion is determined by Gibbs’ free energy differences between macroscopic samples of liquid

and crystal. Such approach is a good approximation provided the composition of the crit-

ical crystal clusters is widely the same as the composition of the macroscopic crystal. This

assumption is supported by Gibbs’s classical theory but, as a rule, in conflict with alterna-

tive theories and experimental data. Based on a generalization of both the classical Gibbs

approach and the Stefan-Skapski-Turnbull rule, a set of equations for the determination

of the properties of the critical clusters has been formulated allowing one to overcome this

deficiency of the classical method. In this way, a new tool for the theoretical treatment

of crystal nucleation has been proposed. One of its general consequences consists in the

fact that the classical approach to crystal nucleation involving in addition the capillarity

approximation overestimates the work of critical cluster formation and underestimates the

steady-state nucleation rate. Retaining the classical method of specification of the ther-

modynamic driving force the work of critical cluster formation can be expressed correctly

by introducing a dependence of the specific interfacial energy on the degree of deviation

from equilibrium accounting both for a curvature dependence of the surface tension and

corrections to the description of the thermodynamic driving force.

The main ideas of CNT and the respective results are the basis of the first part of the

present analysis of the nucleation theorem. They can be summarized as follows: (i) By em-

ploying the classical Gibbs’ approach in the thermodynamic description of heterogeneous

systems and utilizing the basic assumptions of classical nucleation theory, a general form

of the nucleation theorem, Eq. (9), can be formulated valid not only for one-component

but generally for multi-component systems. (ii) This result is taken then as the starting
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point for the derivation of particular forms, Eqs. (13), (15), (16), and (18) of this theo-

rem for the cases that the degree of deviation from equilibrium is caused by variations

of either composition of the liquid phase, temperature, and/or pressure. In this proce-

dure, mentioned above expressions for the curvature dependence of the surface tension,

respectively, the dependence of the surface tension on pressure and/or temperature are

utilized. (iii) It is shown that the nucleation theorem in the form of Eq. (21) as expressed

by Kashchiev [29] can be extended in application to crystallization to multi-component

systems provided the basic assumptions commonly employed in classical nucleation theory

are fulfilled.

The application of the generalized Gibbs’ approach to crystal nucleation allows one to

interpret appropriately a variety of experimental data in crystal nucleation which cannot

be understood in terms of the classical treatment. Consequently, the effects caused by

changes of the properties of critical clusters modeled by this approach can be expected

to be of high significance also in connection with problems analyzed in terms of the

nucleation theorem. Utilizing this approach for the description of the dependence of the

properties of critical crystal clusters on the degree of metastability of the liquid phase, it is

demonstrated here that (iv) a similar formulation of the nucleation theorem as obtained

via the assumptions employed in CNT holds true also in cases when a dependence of

the state parameters of the critical clusters on the degree of deviation from equilibrium

is appropriately accounted for. However, the specific forms of the nucleation theorem,

modeling the change of the critical clusters with respect to variations of temperature,

pressure, and/or composition will have a considerably more complex shape. Similarly to

the specification of the parameters of critical clusters in crystal nucleation they have to

be appropriately accounted for in order to arrive at a correct method of specification of
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critical cluster properties via the different forms of the nucleation theorem.
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