Articl

Hydrogenation production from ammonia borane over PtNi alloy nanoparticles immobilized on graphite carbon nitride

Mingya Zhang 1, Xue Xiao 1,2, Yan Wu 2, Yue An 4, Lixin Xu 2,3 and Chao Wan 2,3,4*

1 Key Laboratory of Metallurgical Emission Reduction & Resources Recycling, Ministry of Education, School of Metallurgical Engineering, Anhui University of Technology, Ma’anshan 243002, China; 525071395@qq.com (M.Z.)
2 School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Coal Clean Conversion and High Valued Utilization, Anhui University of Technology, Ma’anshan 243002, China; 1219738904@qq.com(X.X.); 1115945327@qq.com(Y.W.); lxx@hotmail.com(L.X.)
3 Ahut Chemical Science & Technology Co., Ltd, Ma’anshan 243002, China;
4 College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; zju.anyue@hotmail.com
* Correspondence: wanchao1219@hotmail.com(C.W.); Tel: +86 555 2311807(C.W.); Fax: +86 555 2311822(C.W.)

Abstract: Graphite carbon nitride (g-C3N4) supported PtNi alloy nanoparticles (NPs) were fabricated via a facile and simple impregnation and chemical reduction method and explored their catalytic performance towards hydrogen evolution from ammonia borane (AB). Interestingly, the resultant Pt0.5Ni0.5/g-C3N4 catalyst affords superior performance, including 100% conversion, 100% H2 selectivity, yielding the extraordinary initial total turnover frequency (TOF) of 250.8 mol H2 min-1 (mol Pt)-1 for hydrogen evolution from AB at 10 °C, a relatively low activation energy of 38.09 kJ mol-1, and a remarkable reusability (at least 10 times), which surpass most of the noble metal heterogeneous catalysts. This notably improved activity is attributed to the charge interaction between PtNi NPs and g-C3N4 support. Especially, the nitrogen-containing functional groups on g-C3N4, serving as the anchoring sites for PtNi NPs, may be beneficial for becoming a uniform distribution and decreasing the particle size for the NPs. Our work not only provides a cost-effective route for constructing high-performance catalysts towards the hydrogen evolution of AB but also prompts the utilization of g-C3N4 in energy fields.

Keywords: Ammonia borane; PtNi/g-C3N4; Hydrogen storage; Dehydrogenation

1. Introduction

With the ever-growing consumption of fossil energy, accompanying with seriously environmental issues, searching for green, sustainable, abundant and alternative energy sources is of burgeoning urgency [1,2]. Hydrogen, as a clean energy source, has attracted significant research interest owing to its distinctive merits such as producing only water as a by-product and possessing more energy density than that of fossil fuels [3-5]. However, hydrogen, possessing the feature of low density, makes it difficult to liquefy and compress, thus hindering the large-scale applications [4-6]. Therefore, the exploration and seek for hydrogen storage materials with outstanding performance remains a challenging issue.

Tremendous efforts, in the past decades, have been made to explore and design hydrogen storage materials such as hydrazine, formic acid, and ammonia borane and so forth [7-13]. Among various hydrogen storage materials conducted, ammonia borane (AB), a white solid with excellent stability at room temperature and high hydrogen content (19.6 wt %), has aroused considerable interest as a promising hydrogen storage material [14,15]. There are two main approaches for AB to release hydrogen: (i) thermal dehydrogenation, (ii) hydrolysis dehydrogenation [14-16]. However,
compared with thermal dehydrogenation, proceeding under high temperature, hydrolysis dehydrogenation process is easier to accomplish the industrial application under mild conditions[15-17]. With the aid of the suitable catalyst, 1 mol of AB can be controlled to release 3 mol of hydrogen under moderate conditions. The catalytic hydrolysis reaction can be described in detail as follows[18-22]:

\[
NH_3BH_3(aq) + 2H_2O(l) \xrightarrow{\text{Catalyst}} NH_4BO_2(aq) + 3H_2(g)
\]

In recent years, a large number of supported metal catalysts including noble metal and non-noble metal, have been constructed for the hydrolysis of AB, among which Pt-based catalysts, as one of the most studied catalysts both in industrial and scientific fields, demonstrate more extraordinary catalytic performance than that of other metal catalysts for hydrolysis of AB [20-27]. However, the features of Pt with its high prices and limited reserves severely restrict its extensive utilization of Pt metal as the catalyst [27-29]. Currently, to actually reduce the utilization amount of Pt, assembling with the enhancement of catalysts, the fabrication of Pt alloy nanomaterials, especially coupling with the noble-free metals, such as Fe, Co, and Ni etc., has been identified to be an effective approach due to its structural and electronic effects [30-33]. Previous studies have revealed that Pt-M bimetallic catalysts could display higher catalytic activity than that of their single counterparts as well as lower cost [32-36]. For instance, Han et al. applied a chemical reduction route to synthesize amino modified SiO2 nanospheres supported CoPt-Co hybrid at 278 K, affording a turnover frequency (TOF) value of 25.59 molamin-1mol−1, almost two-fold as high as that of unsupported Pt36Co36 NPs [37]. Xu et al. fabricated hierarchical nanoporous PtCu alloy nanoflowers by means of the two-step dealloying method with a maximum TOF value up to 108 molamin-1mol−1 [38]. Lu et al. reported the synthesis of PtNiNiO Clusters Coated by Hollow Silica using atomic sacrifice method, reaching a TOF of 1240.3 molamin-1mol−1 [39]. However, Pt-M NPs are readily tending to aggregate to form a bigger particle, resulting in a momentous decrease in the catalytic performance including activity, stability, and efficiency. Therefore, in order to obtain high catalytic performance for hydrolytic dehydrogenation of AB, considerable effort have been devoted to fabricate high efficiency catalysts involving many types of supporting materials.

It is noted that assembling alloy with appropriate supports, such as metal oxides, carbon nanotubes, mesoporous carbon nitride and graphene etc., emerges as one of novel encouraging approach to further improve the catalytic activities and stability [39-46]. It is well known that the supporting materials play a critical role in enhancing its catalytic properties due to the synergetic effects between alloy and supports. Graphitic carbon nitride (g-C3N4), a promising two-dimensional non-metal material, is regarded as a promising candidate owing to its attractive electronic structure, high nitrogen content, excellent chemical and thermal stability, and environment friendliness [45-48]. Chen et al. constructed Au–Co nanoparticles (Au–Co@CN), displaying exceedingly good catalytic activity with a TOF value reaching 2897 mol H:molmetal−1h−1 at 298 K [49]. Fan et al. reported the in-situ construction of g-C3N4 supported Rh NPs, giving a very high TOF value of 969 mol H:molRh−1h−1 [50]. Encouraged by these achievements, the construction of PtNi alloy anchored into g-C3N4 for hydrogen production from the hydrolysis of AB is of paramount significance and has rarely been reported. Additionally, investigating the construction of bi-metal NPs in g-C3N4 as well as the exploration of the synergistic effect between them are also of utmost importance.

Hence, in this work, we focused on the construction of PtNi with different ratios immobilized on g-C3N4 preparing via the direct pyrolysis of melamine under nitrogen atmosphere [51,52], through a simple impregnation and co-reduction method under an ambient atmosphere. The resulting materials were evaluated as catalysts towards the hydrogen production from AB under mild conditions. The influence of some parameters, such as metal concentration, catalyst concentration, AB concentration, and reaction temperature, on the catalytic performance of PtNi/g-C3N4 were conducted in detail. Especially, the Pt0.5Ni0.5/g-C3N4 demonstrates optimal catalytic performance for the hydrolysis of AB compared with the samples of other molar ratio of PtNi. Furthermore, the stability of the optimum catalyst was investigated as well.

2. Results and Discussion
The synthesis process of PtNi/g-C₃N₄ is schematically emerged in Scheme 1. Typically, g-C₃N₄ was prepared via a direct pyrolysis route employing melamine as precursor. Then, the Pt and Ni precursor with different contents immobilized on g-C₃N₄ was fabricated, using a simple impregnation and reduction process, where sodium borohydride is employed as a reducing agent, and then applied as catalysts towards hydrogen production of AB. The accurate composition of PtNi/g-C₃N₄ was analyzed by inductively coupled plasma atomic emission spectroscopy (ICP-AES), which are close to their desired contents (Table S1). As displayed in Table S1, the BET specific areas of PtNi/g-C₃N₄ is around 10 m²/g, which is close to the values reported in the literature [51,52].

Figure 1 shows the XRD patterns of PtNi/g-C₃N₄ composites with different molar ratio of PtNi: (a) g-C₃N₄, (b) Ni/g-C₃N₄, (c) Pt/g-C₃N₄, (d) Pt₀.₅Ni₀.₅/g-C₃N₄, (e) Pt₀.₆Ni₀.₄/g-C₃N₄, (f) Pt₀.₅Ni₀.₅/g-C₃N₄, (g) Pt₀.₄Ni₀.₆/g-C₃N₄, (h) Pt₀.₂Ni₀.₈/g-C₃N₄.

It is evident that a strong peak at 27.5° for all samples is attributed to the (200) plane of g-C₃N₄. For Ni/g-C₃N₄, other than the characteristic peak of g-C₃N₄, there are three peaks centered at 51.8°, 76.4°, respectively, which can be ascribed to the (111), (200) and (220) planes of Ni (JCPDS no: 65-0380). For Pt/g-C₃N₄, three peaks at 39.8°, 46.2° and 67.5° are assigned to the (111), (200) and (220) planes of Pt (JCPDS no: 65-2868). Furthermore, it is evident that a shift to higher angle compared to that of the Pt (111) peak in Pt/g-C₃N₄, indicating that PtNi is existed in the form of alloy, which is consistent with the previous literatures yet reported [39,53-55]. The chemical structures of g-C₃N₄, Pt/g-C₃N₄, Ni/g-C₃N₄ and Pt₀.₅Ni₀.₅/g-C₃N₄ were further investigated by Fourier transform infrared
FTIR), as presented in Figure 2. A similar FT-IR spectra can be observed for all samples. An obvious absorption peak centered at 810 cm\(^{-1}\) for all samples is ascribed to the bending vibration of the triazine ring. A series of peaks detected in 1200-1600 cm\(^{-1}\) are identified as the stretching modes of aromatic CN heterocycles. In addition, the broad absorption ranging from 3000 to 3400 cm\(^{-1}\) is attributed to the stretching mode of O-H (adsorbed water molecules) and N-H (amino groups) [31-36,51,52].

![Figure 2. FT-IR spectra of (a) g-C3N4, (b) Pt/g-C3N4, (c) Ni/g-C3N4 and (d) Pt0.5Ni0.5/g-C3N4.](image)

To gain the valence state of Pt and Ni, XPS analysis is employed for Pt0.5Ni0.5/g-C3N4, and the result is illustrated in Figure 3, which presents the characteristic peaks for Pt and Ni, thereby implying the coexistence of both metals. The binding energy (BE) of C and N in Pt0.5Ni0.5/g-C3N4 are in accordance with the previous reported literatures about g-C3N4 (Figure S1) [50-52]. As given in Figure 3(a), the BE observed at 852.5 and 869.9 eV are ascribed to the Ni 2p\(_{3/2}\) and Ni 2p\(_{1/2}\) of metallic Ni, respectively. The oxidized Ni centered at 858.1 and 876.5 eV are detected, which may likely attribute to the sample treatment route for the XPS measurements, as revealed before [56-58]. The BE of 71.4 and 74.6 eV in Figure 3(b) are corresponded to the Pt 4f\(_{7/2}\) and Pt 4f\(_{5/2}\) of metallic Pt. In addition, there is a positive shift toward 0.1 eV for the BE of Pt in Pt0.5Ni0.5/g-C3N4 compared with that of pure Pt, while a negative shift with 0.4 eV could be observed for Ni in Pt0.5Ni0.5/g-C3N4 in comparison with that of pure Ni, thereby confirming the formation of PtNi alloy, which is good agreement with those of alloy previously reported [56-61].

![Figure 3. XPS spectra for catalyst Ni/g-C3N4, Pt/g-C3N4 and Pt0.5Ni0.5/g-C3N4 showing (a) Ni 2p, and (b) Pt 4f.](image)
To further explore the morphology and microstructure of the Pt$_{0.5}$Ni$_{0.5}$/g-C$_3$N$_4$ catalyst, we conducted TEM, high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and EDS measurements, as depicted in Figure 4 (a-i). The TEM images of Ni/g-C$_3$N$_4$ reveal that almost all the nanoparticles are uniformly dispersed into the surface of g-C$_3$N$_4$ with an average size of ~4.3 nm (Figure S2(a,b)). Furthermore, for Pt/g-C$_3$N$_4$, there are many homogeneous distribution of nanoparticles with their size ranging from 3.6 to 6.0 nm, as depicted in Figure S2 (d,e). However, TEM images reveal that the PtNi nanoparticles in Pt$_{0.5}$Ni$_{0.5}$/g-C$_3$N$_4$ catalyst have a uniform diameter distribution with a mean diameter of ~3.2 nm and are homogeneously dispersed on the surface of g-C$_3$N$_4$ (Figure 4 (a-c)), which may be due to the alloy effect. Figure 4 (b) presents that the d-spacing of the particle is 0.211 nm, which differs from the (111) plane of Pt (0.227 nm) (Figure S2(f)) and Ni (0.204 nm) (Figure S2(c)), further revealing that Pt$_{0.5}$Ni$_{0.5}$ is in the form of alloy state [54-56, 58-61]. The energy dispersive X-ray (EDX) result (Figure S3) further verifies the coexistence of Pt and Ni in the Pt$_{0.5}$Ni$_{0.5}$/g-C$_3$N$_4$. A representative high-angle annular dark-field scanning TEM (HAADF-STEM) image confirmed the homogeneous distribution of Pt and Ni elements on the g-C$_3$N$_4$ catalyst surface at the same position (Figure 4 (d-i)), which confirms again the formation of a PtNi alloy.

Figure 5(a) presents the hydrogen release from AB catalyzed by Pt$_{x}$Ni$_{1-x}$/g-C$_3$N$_4$ catalyst with different components. Among all the Pt$_{x}$Ni$_{1-x}$/g-C$_3$N$_4$ conducted, Pt$_{0.5}$Ni$_{0.5}$/g-C$_3$N$_4$ reveals optimum catalytic performance towards the dehydrogenation of AB in comparison with that of other molar ratio of Pt$_{x}$Ni$_{1-x}$/g-C$_3$N$_4$. The hydrogen production from AB over Pt$_{0.5}$Ni$_{0.5}$/g-C$_3$N$_4$ can be completed within only 1.5 min, giving a TOF value of 250.8 mol H$_2$ min$^{-1}$ (mol Pt$^{-1}$) (Figure 5(b)), which is the highest as compared with other as-prepared PtNi alloy catalysts, as well higher than most reported Pt–based or other noble metal–based catalysts towards the hydrogen evolution of AB as displayed in Table 1 [38,40,62-68]. The results showed that the platinum coupling with nickel could significantly improve the hydrolytic activity of AB. The superior catalytic performance of the Pt$_{0.5}$Ni$_{0.5}$/g-C$_3$N$_4$ can be
ascribed to the synergetic effect between Pt and Ni atoms as well as the enhanced interaction between PtNi NPs and g-C₃N₄.

Figure 5. (a) Time plots of catalytic dehydrogenation of AB (4 mmol) by PtNi/g-C₃N₄ catalyst with different ratios at 10 °C; (b) Time needed to complete the reaction and TOF values (obtained based on the overall Pt moles) of the PtNi/g-C₃N₄ catalysts.

Table 1. Catalytic activities and the activation energy of catalysts in the hydrolysis of AB.

<table>
<thead>
<tr>
<th>Catalysts</th>
<th>TOF(molH₂/molPt/min⁻¹)</th>
<th>E_a(kJ mol⁻¹)</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt₀.₅Ni₀.₅/g-C₃N₄</td>
<td>250.8</td>
<td>38.09</td>
<td>This work</td>
</tr>
<tr>
<td>NP–Pt₄Co₆0 composite</td>
<td>131</td>
<td>38.8</td>
<td>40</td>
</tr>
<tr>
<td>Pt@SiO₂</td>
<td>158</td>
<td>53.6</td>
<td>62</td>
</tr>
<tr>
<td>PtRu</td>
<td>59.6</td>
<td>38.9</td>
<td>63</td>
</tr>
<tr>
<td>RuCu/graphene</td>
<td>135</td>
<td>30.89</td>
<td>64</td>
</tr>
<tr>
<td>PtCeO₂/RGO</td>
<td>48</td>
<td>-</td>
<td>65</td>
</tr>
<tr>
<td>RuCo(1:1)/γ-Al₂O₃</td>
<td>32.9</td>
<td>47</td>
<td>66</td>
</tr>
<tr>
<td>Pt₀.₄₅Ni₀.₄₅</td>
<td>44.3</td>
<td>39.0</td>
<td>67</td>
</tr>
<tr>
<td>hnp–Pt₃₅Cu₆₅</td>
<td>108</td>
<td>40.5</td>
<td>38</td>
</tr>
<tr>
<td>Pd–Pt@PVP NPs</td>
<td>125</td>
<td>51.7</td>
<td>68</td>
</tr>
</tbody>
</table>

Given that Pt₀.₅Ni₀.₅/g-C₃N₄ demonstrates the best catalytic performance towards the dehydrogenation of AB in this work, Pt₀.₅Ni₀.₅/g-C₃N₄, as the representative, is selected to further explore its dehydrogenation kinetics. As illustrated in **Figure 6(a)**, the catalyst concentration-dependent test of Pt₀.₅Ni₀.₅ NPs was investigated at 10 °C by modifying the catalyst concentration ranging from 6.25 to 25 mM. The hydrogen generation rate demonstrates an obvious upward tendency with the increasing of catalyst concentration. The relation between logarithmic plots of dehydrogenation rate and catalyst concentration is illustrated in **Figure 6(b)**. The slope of straight line was estimated to be 1.08, implying that the dehydrogenation reaction is first-order in term of the catalyst concentration. Furthermore, to explore the influence of AB concentration on the dehydrogenation of AB, a series of experiments with different concentrations of AB were performed, where the AB concentrations were modulated from 250 to 1000 mM, as shown in **Figure 6(a)**, and Pt₀.₅Ni₀.₅/g-C₃N₄ NPs was kept at 0.100g. **Figure 7(a)** shows corresponding hydrogen amount versus time. As the concentration of AB increased, the dehydrogenation reaction time increased clearly from 0.8 to 1.5 min. **Figure 7(b)** displays logarithmic plots of dehydrogenation rate versus AB.
concentrations, where the line slope is 0.05, suggesting that the dehydrogenation reaction of AB presents zero-order regarding the catalyst concentrations.

Figure 6. (a) Plots of moles of H₂ per mole of AB versus time for the hydrolysis of AB (4 mmol) in the presence of Pt₀.₅Ni₀.₅@g-N₃ (0.1 g) at different catalyst concentrations at 10 °C, (b) The logarithmic plot of hydrogen evolution rate versus PtNi concentrations.

Figure 7. (a) Plot of H₂ volume versus time for hydrogen generation from AB hydrolysis catalyzed by Pt₀.₅Ni₀.₅@g-N₃ catalyst at different AB concentrations ([Pt₀.₅Ni₀.₅@g-N₃]=0.100 g, T=10 °C), (b) The logarithmic plot of hydrogen evolution rate versus AB concentrations.

To explore the influence of temperature, the AB concentration was maintained at 1000 mM and the Pt₀.₅Ni₀.₅@g-N₃ was kept at 0.100 g. Plot of the molar ratio of H₂/AB versus time for hydrogen evolution from AB catalyzed by Pt₀.₅Ni₀.₅@g-N₃ catalyst at different temperatures are presented in Figure 8(a). As the reaction temperature from -5 °C to 10 °C, the dehydrogenation rate significantly increased. According to the slop of the straight line in Figure 8(b), the activation energy is estimated to be 38.09 kJ/mol, which is lower than most of the reported Eₐ values of many different Pt-based and some other catalysts [62-68].
Figure 8. (a) Plot of equivalent H\textsubscript{2} per mole of AB versus time for hydrogen generation from AB hydrolysis catalyzed by Pt\textsubscript{0.5}Ni\textsubscript{0.5}/g-C\textsubscript{3}N\textsubscript{4} catalyst at different temperatures ([Pt\textsubscript{0.5}Ni\textsubscript{0.5}/g-C\textsubscript{3}N\textsubscript{4}]=0.100g, [AB]=4 mM), (b) Arrhenius plot of ln k vs (1/T).

Scheme 2 Possible mechanism of hydrogen evolution from NH\textsubscript{3}BH\textsubscript{3} in aqueous solution over Pt\textsubscript{0.5}Ni\textsubscript{0.5}/g-C\textsubscript{3}N\textsubscript{4}.

Combining the XRD, FT-IR, XPS and TEM, a possible mechanism for the hydrogen evolution from ammonia borane catalyzed by Pt\textsubscript{0.5}Ni\textsubscript{0.5}/g-C\textsubscript{3}N\textsubscript{4} can be proposed. The obtained results endow persuasive and obvious evidence regarding the synergistic effects between Pt and Ni in the Pt\textsubscript{0.5}Ni\textsubscript{0.5} NPs and the synergistic electronic effects between Pt\textsubscript{0.5}Ni\textsubscript{0.5} nanoparticles and g-C\textsubscript{3}N\textsubscript{4}, which could efficiently activate the B–N bonds in AB, thereby lowering the reaction energy barrier and prompting hydrogen evolution, as verified by Table S1. As shown in Scheme 2, firstly, both H\textsubscript{2}O and AB are adsorbed on the surface of the catalyst, and then, the B–H bond of AB is broken to form H\textsubscript{3}NBH\textsubscript{2}−OH by attacking BH\textsubscript{3}* group in H\textsubscript{3}NBH\textsubscript{3} using OH*, the OH* further attack other B–H to dissociate hydrogen atoms. At last, the dissociated hydrogen atoms in the surface of the catalysts can combine to release hydrogen gas [69-72]. In addition, the active energy for the dehydrogenation catalyzed by Pt\textsubscript{0.5}Ni\textsubscript{0.5}/g-C\textsubscript{3}N\textsubscript{4} was calculated to as low as 38.09 kJ mol-1 and its kinetics were also obviously improved.

The stability, as a significant issue for the large-scale application of one catalyst, of the Pt\textsubscript{0.5}Ni\textsubscript{0.5}/g-C\textsubscript{3}N\textsubscript{4} in the hydrolytic dehydrogenation of AB was studied and displayed in Figure 9(a). However, after 10 successive cycles, the hydrolysis of AB can also be completed within 3 min, generating a TOF value of 136.8 mol H\textsubscript{2} min-1 (mol Pt\textsubscript{0.5}Ni\textsubscript{0.5})-1, which is only 55% of its initial catalytic activity. To further explore the reason for the decreased dehydrogenation performance, the morphology of Pt\textsubscript{0.5}Ni\textsubscript{0.5}/g-C\textsubscript{3}N\textsubscript{4} after cycle test was characterized by TEM, as presented in Figure 9 (b). The slight aggregation can be observed, which may be attributed to the activity decay of Pt\textsubscript{0.5}Ni\textsubscript{0.5}/g-C\textsubscript{3}N\textsubscript{4}.

\[\text{ln} k = -\frac{4581.21}{T} + 15.98 \]
\[E_a = 38.09 \text{kJ/mol} \]

\[\text{ln} k = 0.00354, 0.00360, 0.00366, 0.00372 \]

\[\frac{1}{T} = 0.00354, 0.00360, 0.00366, 0.00372 \]

\[3\text{H}_2 + \]

\[\text{H}_3\text{NBH}_3 \text{OH} \rightarrow \text{H}_3\text{NBH}_2\text{−OH} \]
3. Materials and Methods

3.1. Materials and chemicals

Ammonia borane (NH₃BH₃, AB, ≥90%) and melamine (C₃H₆N₆, ≥99%) were obtained from Aldrich. Chloroplatinic Acid (H₂PtCl₆) was supplied by Nanjing Chemical Reagent Co., Ltd. Nickel(II) chloride hexahydrate (NiCl₂·6H₂O, AR), sodium hydroxide (NaOH, ≥96.0%) and sodium borohydride (NaBH₄, ≥98%) were purchased from Sinopharm Chemical Reagent Co., Ltd. All chemicals were purchased and used without further treatment.

3.2. Synthesis of g-C₃N₄

Pure g-C₃N₄ was prepared by the direct pyrolysis of melamine, as reported by previous literatures [51,52]. Specifically, 2.00 g of melamine, placed into an alumina crucible with a cover, was annealed at 520 °C in a muffle furnace for 2h at a ramp rate of 3 °C/min. After cooling to room temperature naturally, the resulting yellow-colored material is g-C₃N₄.

3.3. Synthesis of PtNi/g-C₃N₄

PtNi/g-C₃N₄ was fabricated via a simple and facile impregnation and chemical reduction method. In a typical procedure, for Pt₀.₅Ni₀.₅/g-C₃N₄, 200 mg of g-C₃N₄ and 0.4 mmol of metal precursors (0.2 mmol of H₂PtCl₆ and 0.2 mmol of NiCl₂) was firstly mixed under ultrasonic for 30 min, and then the mixture was continuously stirred for 24 hours at room temperature. After that, a mixture solution containing 0.08 g of NaBH₄ was added the above-mentioned solution at -3°C, then stirring for 5 hours. Finally, the resulting mixture was centrifuged and dried at 80°C in a vacuum oven. The obtained powder was denoted as Pt₀.₅Ni₀.₅/g-C₃N₄. The g-C₃N₄ supported Pt/Ni with other molar ratios could be labeled as PtₓNi₁-x/g-C₃N₄ (x = 0, 0.2, 0.4, 0.6, 0.8 and 1).

3.4. Characterization

The crystal structure of the catalysts was recorded at a scanning rate of 4 °min⁻¹ using a X-ray diffraction (XRD, Bruker D8-Advance, Cu Ka radiation source (λ= 0.154178 nm)). The Fourier transformed infrared spectra (FTIR) was investigated by a Tensor 27 spectrometer (Bruker). The metal composition of the catalysts was conducted by employing inductively coupled plasma-atomic emission spectrometer (ICP-AES, Thermo iCAP6300). The specific surface area was measured using Micromeritics ASAP2020 according to adsorption/desorption nitrogen isotherms. The electronic states of the surface of the as-obtained catalyst were measured by X-ray photoelectron spectroscopy (XPS, Thermo scientific Escalab 250Xi). The morphologies and sizes of the catalysts were obtained using a Transmission electron microscope (TEM, JEOL JEM 2100F) equipped with an energy dispersive X-ray detector (EDX) at a working voltage of 200 kV. The composition of the generated gas was evaluated through a Hiden QIC-20 quadruple mass spectrometer using Ar as carrying gas.
3.5. Catalytic activity measurement

In a typical experiment, 0.1 g of the as-obtained PtNi/g-C₃N₄ was dispersed into 2 mL water in a two-necked round-bottom flask. A solution containing 2 mL of AB (2 M) was injected through one neck with a syringe under stirring, and the other was connected with a gas burette to estimate the volume of gas. Upon the injection of AB aqueous solution, the amount of H₂ production was estimated via water-displacement approach by measuring the volume of drained water. The reaction time was recorded as the first bubble appeared. The reaction was over when there was no gas released. The reaction was carried out under designed temperature, controlling by cryogenic bath. The reaction time was recorded as the first bubble appeared. The reaction was completed when there was no gas released. The reaction was carried out under the designed temperature, controlling by cryogenic bath. The turnover frequency (TOF, mol_H²/mol Catalyst·h⁻¹) was calculated according to the linear relationship between volume and time in AB hydrolysis.

In order to explore the influence of catalysts concentration, AB concentration over the dehydrogenation of AB, AB hydrolysis for the Pt₈₅Ni₁₅/g-C₃N₄ was evaluated in the same way as described above, except that the parameters, such as catalysts concentration, AB concentration, were changed, respectively. In addition, to acquire the activation energy (E_a) value of the hydrogen production of AB over Pt₈₅Ni₁₅/g-C₃N₄ catalyst, the hydrolysis of AB was conducted at a series of temperatures including -5 °C, 0 °C, 5 °C and 10 °C.

3.6. Stability tests

The catalyst was recovered and washed with ethanol and water after the completion of dehydrogenation reaction. And then the recovered catalyst was set into a two-necked round-bottom flask according to the above-mentioned dehydrogenation procedure for stability tests. A similar operation was repeated ten times.

4. Conclusions

In summary, we report a simple and facile impregnation and chemical reduction approach to synthesize PtNi/g-C₃N₄ nanoparticles as catalyst for boosting the hydrogen generation of AB. Among the Pt₈₅Ni₁₅/g-C₃N₄ catalysts, the resultant Pt₈₅Ni₁₅/g-C₃N₄ catalyst demonstrates outstanding performance, including 100% conversion, 100% H₂ selectivity, yielding the extraordinary initial total turnover frequency (TOF) of 250.8 mol_H²/mol Catalyst·h⁻¹ for hydrogen production from AB at 10 °C, a relatively low activation energy of 38.09 kJ mol⁻¹, and a remarkable reusability (at least 10 times), which outperform most of the noble metal heterogeneous catalysts. This notably improved activity is attributed to the charge interaction between PtNi NPs and g-C₃N₄ support. Especially, the nitrogen-containing functional groups on g-C₃N₄ serving as the anchoring sites for PtNi NPs, may be beneficial for forming a uniform distribution and decreasing the particle size for the NPs. Moreover, the fabrication of g-C₃N₄-based catalysts may prompt the utilization of g-C₃N₄ in energy fields.

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: XPS spectra for Pt₈₅Ni₁₅/g-C₃N₄ showing C 1s, N 1s, Figure S2: (a) TEM images of Ni/g-C₃N₄, (b) amplified HRTEM image of Ni/g-C₃N₄, (c) Particle size distribution of Ni/g-C₃N₄, (d) TEM images of Pt/g-C₃N₄, (e) amplified HRTEM image of Pt/g-C₃N₄, (f) Particle size distribution of Pt/g-C₃N₄, Figure S3: SEM–energy-dispersive X-ray spectroscopic (EDS) spectrum of Pt₈₅Ni₁₅/g-C₃N₄, Table S1: ICP-AES results of PtNi/g-C₃N₄ catalysts.

Author Contributions: Data curation, M.Z.; Writing—original draft, X.X.; Investigation, Y.W.; Formal analysis, Y.A.; Funding acquisition, L.X.; Supervision, Writing – review & editing, C.W.

Funding: This work was financially supported by Anhui Provincial Natural Science Foundation (1608085QF156, 1908085QB68), the Natural Science Foundation of the Anhui Higher Education Institutions of China (JK2019A0072), Foundation of Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology (Grant No. ZJKL-ACEMT-1802), Research Fund for Young Teachers of Anhui University of Technology (QZ201610) and National Natural Science Foundation of China (21376005).

Conflicts of Interest: The authors declare no conflict of interest.
References

60. Yang, X.J.; Cheng, F.Y.; Liang, J.; Tao, Z.L.; Chen, J. Carbon-supported Ni3–xPt4x (x=0.32, 0.43, 0.60, 0.67, and 0.80) core-shell nanoparticles as catalysts for hydrogen generation from hydrolysis of ammonia borane. Int. J. Hydrogen Energy 2011, 36, 1984–1990.

