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Abstract: Wearable sensors have the potential to enable comprehensive patient characterization and 10 

optimized clinical intervention. Critical to realizing this vision is accurate estimation of 11 
biomechanical time-series in daily-life, including joint, segment, and muscle kinetics and 12 
kinematics, from wearable sensor data. The use of physical models for estimation of these quantities 13 
often requires many wearable devices making practical implementation more difficult. However, 14 
regression techniques may provide a viable alternative by allowing the use of a reduced number of 15 
sensors for estimating biomechanical time-series. Herein, we review 46 articles that used regression 16 
algorithms to estimate joint, segment, and muscle kinematics and kinetics. We present a high-level 17 
comparison of the many different techniques identified and discuss the implications of our findings 18 
concerning practical implementation and further improving estimation accuracy. In particular, we 19 
found that several studies report the incorporation of domain knowledge often yielded superior 20 
performance. Further, most models were trained on small datasets in which case nonparametric 21 
regression often performed best. No models were open-sourced, and most were subject-specific and 22 
not validated on impaired populations. Future research should focus on developing open-source 23 
algorithms using complementary physics-based and machine learning techniques that are validated 24 
in clinically impaired populations. This approach may further improve estimation performance and 25 
reduce barriers to clinical adoption. 26 

Keywords: machine learning, hybrid estimation, wearable sensors, electromyography, inertial 27 

sensor, regression, remote patient monitoring, joint mechanics 28 
 29 

1. Introduction 30 

Since the turn of the century, wearable sensors have experienced substantial technological 31 
advancements that have reduced their size and power requirements, improved their wearability, and 32 
increased the quality and types of data they capture. These improvements have allowed the 33 
application of wearable sensors to important clinical challenges impacting human health. These 34 
challenges include the development of novel digital biomarkers [1] that could be used for diagnosis, 35 
prognosis, and clinical decision making in a variety of neurological [2,3], mental health [4,5], and 36 
musculoskeletal [6–9] disorders. 37 

In many cases, clinical evaluation using these biomarkers could be enhanced by also considering 38 
remote observation made during a patient’s daily life (e.g., daily biomechanical variability is 39 
clinically informative in persons with multiple sclerosis [2]). Recent research suggests remote 40 
observations may differ than those made in the lab or clinic [10–12], and thus may provide additional 41 
information for informing clinical decision making. Additionally, remote observation could be used 42 
as an endpoint for assessing efficacy of interventions designed to target specific biomechanical 43 
indices (e.g., using biofeedback to reduce knee loading [13]). Taken together, these developments 44 
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suggest that remote observation of patient biomechanics during daily life is emerging as an important 45 
tool for improving human health. Thanks to recent technological advancements, wearable sensors 46 
are ideally positioned to enable remote patient monitoring. However, wearable sensors do not 47 
necessarily provide direct measurement of the mechanisms underlying any particular clinical 48 
condition. Previous research on the mechanistic origins of various diseases (e.g., musculoskeletal [14–49 
16], neurological [17]) motivate the incorporation of physically interpretable biomarkers as a part of 50 
a comprehensive patient evaluation. These biomarkers, when observed continuously via remote 51 
patient monitoring, may then directly inform an optimal clinical intervention [18–20]. In this review 52 
we focus on the estimation of physically interpretable biomarkers for musculoskeletal and 53 
neurological disorders which take the form of biomechanical time-series representing joint, segment, 54 
and muscle kinetics and kinematics.  55 

1.1. Physical Models 56 

The aforementioned biomechanical time-series may be determined from wearable sensor data 57 
using established mathematical relationships governed by physical models. For example, strapdown 58 
integration [21] of the angular rate signal from a segment attached gyroscope is a physics-based 59 
estimate of segment orientation where an accompanying accelerometer and magnetometer may 60 
provide the initial conditions and drift correction over time (e.g., see [6]). The development of sensor 61 
fusion techniques for removing integration drift in orientation estimates has been (and continues to 62 
be) a research focus [21,22]. Inertial sensor estimates of segment kinematics are sufficient to estimate 63 
joint kinetics during open-chain tasks using an inverse-dynamics approach given estimates of 64 
segment inertial and geometric parameters [23]. However, additional sensors are needed for closed-65 
kinetic chain tasks since then external contact forces must be considered (i.e. measured). 66 
Alternatively, wearable surface electromyography (sEMG) sensors may inform a solution for the net 67 
joint moment using Hill-type muscle models and thus also joint and/or segment kinematics for open-68 
chain tasks via forward-dynamics [24–26]. However, as noted in [27], it is quickly realized that the 69 
number of sensors required to inform a physical model is inhibitive since the muscle activation of 70 
every muscle must be estimated thus limiting the use of these approaches for remote patient 71 
monitoring.  72 

One solution is to simplify the physical model such that a reduced number of sensors can be 73 
used to measure all required independent variables. Many techniques for simplification have been 74 
proposed and are context dependent. For example, sacral accelerations have been assumed to 75 
represent those of the center of mass enabling a single inertial sensor estimate of ground reaction 76 
force [28]. For muscle force estimation, muscle contraction dynamics are often simplified to comply 77 
with a lumped-parameter Hill-type model as opposed to a continuum model [29–32]. Further, it is 78 
common practice to assume unobserved muscle states (e.g. activation, tension) can be computed in 79 
terms of a single or multiple synergistic muscles whose states are available (e.g. via sEMG) [24,27,33]. 80 
Recently, Dorschky et al. (2019) present a physics-based technique for estimation wherein the states 81 
of a neuromusculoskeletal model (including the biomechanical time-series of interest) were 82 
optimized to agree with measured sensor data using trajectory optimization [34]. While the results 83 
were promising, the model was only two-dimensional, requires an inertial sensor on each of seven 84 
segments, and was further limited by computation time (mean CPU time was 50 ± 26 min across 60 85 
optimizations where each optimization had 10 strides). The model simplifications and unwieldy 86 
sensor arrays required for physical modeling approaches motivate alternative methods for estimating 87 
biomechanical time-series, and especially for remote patient monitoring. 88 

1.2. Regression Techniques  89 

Regression models that capture the relationship between wearable sensor inputs and 90 
biomechanical time-series outputs may provide an opportunity to further simplify the wearable 91 
sensor system required for remote patient monitoring. These models are developed from a large 92 
number of observations through a process that may be referred to as system identification [35], 93 
function approximation [36], or machine learning [37], depending on the field. It is important to note, 94 
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however, that many of the physics-based techniques also regress model parameters from a large 95 
number of observations [32], wherein that process is often referred to as calibration, and the 96 
parameters being regressed are physical constructs based on the derivation of the model from first 97 
principles (e.g. tendon slack length, muscle activation constants [24]). The current review will focus 98 
on the use of non-physical regression as a means for estimating joint, segment, and muscle kinetics 99 
and kinematics from wearable sensor data.  100 
 101 

1.3. Relevant Reviews 102 

Techniques for estimating biomechanical time-series from wearable sensor data have been the 103 
focus of previous literature reviews. Faisal et al. (2019) recently provided a high-level overview of 104 
sensing technologies, applications of wearables in monitoring joint health, and analysis techniques 105 
[38]. Several reviews are available concerning the use of Hill-type muscle models for sEMG informed 106 
muscle force estimation which can be used to estimate kinematics via forward-dynamics 107 
[26,27,32,39]. Dowling (1997) mentions the potential use of neural networks in this context but does 108 
not review any relevant literature. Sabatini (2011) provides an overview of the use of inertial sensors 109 
for estimating segment and joint kinematics using physics-based techniques and sensor fusion 110 
algorithms [21]. Ancillao et al. (2018) review physics-based techniques for estimating ground reaction 111 
forces and moments using wearable inertial sensors [40]. While these previous reviews capture the 112 
current state of physics-based techniques well, there has not been a comprehensive review of 113 
regression techniques for estimating joint, segment, and muscle kinetics and kinematics from 114 
wearable sensor data. Schöllhorn (2004) provides a relevant review, but focuses only on neural 115 
networks and, as will be seen later, none of the articles they reviewed met the inclusion criteria 116 
outlined below and thus we also include studies using neural networks in this review [41]. Shull et 117 
al. (2014) review the applications of wearable sensors for clinical evaluation and for biofeedback, but 118 
they were only interested in gait, did not focus on the estimation technique, and none of the papers 119 
they reviewed used sEMG [42]. Caldas et al. (2017) review the application of adaptive algorithms for 120 
estimating gait phase, spatiotemporal features, and joint angles [43]. While joint angles are relevant 121 
to this review, Caldas et al. focus only on the use of inertial sensors and only mention three studies 122 

Table 1. Search terms and the item pertaining to this review that they reflect. 

Review Relevant Item Search Terms 

Regression 

 

regress* OR "machine learning" OR "artificial intelligence" OR 

"statistical learning" OR "supervised learning" OR "unsupervised 

learning" OR "neural network" OR perceptron OR "support vector" OR 

"gaussian process" 

 

 AND 

Biomechanical Time-Series 

 

joint OR limb OR segment OR ankle OR knee OR hip OR wrist OR 

elbow OR shoulder OR muscle 

 

AND 

 

angle OR velocity OR acceleration OR moment OR torque OR force OR 

kinematic* OR kinetic* OR biomechanics OR mechanics OR dynamics 

 

 AND 

Wearable Sensors 

 

wearable OR accelerometer OR gyroscope OR electromyo* OR EMG 

OR sEMG OR "inertial sensor" OR "inertial measurement unit" OR IMU 

OR insole OR goniometer 
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used to estimate joint angles; two of which are also included here. Finally, Ancillao et al. (2018) also 123 
reviewed machine learning techniques for estimating ground reaction forces and moments [40]. Thus, 124 
studies estimating only ground reaction forces and moments were excluded in this review. 125 

The aim of this review was to characterize the use of regression algorithms to estimate 126 
biomechanical time-series from wearable sensor data. A secondary aim was to develop a 127 
classification method to group the prediction equations based on their technical similarities.  128 

2. Methods 129 

2.1. Search Strategy 130 

 The PubMed and IEEE Xplore databases were searched for relevant articles in August 2019. 131 
Search terms were chosen to reflect the aims of the current review namely studies investigating (1) 132 
regression of (2) human biomechanical time-series using (3) wearable sensor data (see Table 1 for 133 
search terms pertaining to items 1-3). After duplicates were removed, the title and abstract of each 134 
article was screened to determine if the full text would be reviewed.  135 

2.2. Inclusion/Exclusion Criteria 136 

 Only peer-reviewed journal articles (no conference proceedings) written in English were 137 
considered. Articles were included in the review if they met all criteria within the following three 138 
categories: 139 
 140 

(1) Sensor criteria: clear use of data for estimation from a sensor that is currently deployable as 141 
a wearable. Studies investigating model inputs dependent on virtual wearable sensor data 142 
derived from a non-wearable sensor were excluded. Studies using exoskeletons were 143 
excluded if the wearable sensor is only feasibly deployed using the exoskeleton. 144 

 145 
(2) Prediction criteria: use of non-physical regression (not classification, regressed parameters 146 

must not be physical constructs). The estimated variable must have been a biomechanical 147 
time-series describing either the kinetics or kinematics of a joint, segment, or muscle. Studies 148 
were excluded if they estimated only grip or pinch forces unless the contact forces of each 149 
involved segment were estimated separately. Finally, studies estimating only ground 150 
reaction forces and moments were excluded as methods for this purpose have recently been 151 
reviewed [40]. 152 

 153 
(3) Validation criteria: all studies reviewed must have reported the objective (i.e. numerical) 154 

quantification of testing error using their estimation method. Studies were excluded if they 155 
report statistics for the training error only or if the only description of performance was given 156 
graphically. Studies utilizing inappropriate validation were excluded (e.g. one that could not 157 
be repeated or one using an invalid gold standard for validation).  158 

2.3. Data Analysis 159 

 All studies that met the inclusion criteria were characterized by the sample size, subject 160 
demographics (sex, health status, age), wearable sensors (type, sampling frequency), biomechanical 161 
variable estimated, tasks for which the estimation was validated, model characteristics, and 162 
estimation performance. One aim of the current review was to summarize the various estimation 163 
techniques and their performance. A detailed description of the methods and error statistics used in 164 
each study is infeasible, so we grouped prediction equations post-hoc according to a grouping method 165 
which distinguishes the different techniques for comparison (see Section 3.4). Further, we report 166 
summary statistics which summarize the overall performance (e.g. range of root mean square error 167 
across all observed tasks). 168 
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3. Results 169 

A total of 46 articles met the inclusion criteria for full-text review out of 2,259 distinct articles 170 
identified via database search and from external sources (Figure 1). There was a clear increasing trend 171 
in the number of articles which met our review criteria published since the earliest identified in 1995 172 
(Figure 2).  173 

3.1. Subject Demographics 174 

Across all participants used for validating the regression techniques, most were unimpaired 175 
males (64%) followed by unimpaired females (29%) and impaired individuals (7%) (Figure 3). Three 176 
studies validated their algorithm on just one person while only 11 studies validated their algorithm 177 
on a sample size of greater than 10 participants (Figure 3). One study [44] did not report any 178 
information concerning the subject sample (other than that they were normal subjects) and the largest 179 
sample size for which an algorithm was validated was 33 (all unimpaired, 15 female) [45].  180 

3.2. Wearable Sensors 181 

Surface electromyography sensors were the most popular wearable sensors used (32 studies) 182 
followed by inertial sensors (nine studies, four used magnetic/inertial measurement units, three used 183 
inertial measurement units, and two used accelerometer only) and high density sEMG (HD-sEMG) 184 
(five studies). One study used an electrogoniometer in addition to sEMG [46] and two studies used 185 
mechanomyography sensors in addition to sEMG [47,48]. Two studies used force sensitive resistors 186 
to instrument insoles [49,50] and one of these used an additional load cell over the Achilles’ tendon 187 
[50]. The average sensor sampling rate across all studies using sEMG was 2,288.8 Hz (range: 500 – 188 
16,000 Hz) and was 303.75 Hz across the nine studies using inertial sensors (range: 50 – 1,500 Hz). 189 
Grid sizes for HD-sEMG included 128, 160, and 192 with an average sensor sampling rate of 1,838.4 190 
Hz (range: 1.0 – 2.048 kHz).  191 

 

 

 

Figure 1. Flow chart of article selection process. Of the 123 full-text reviewed articles, 77 were removed on the 

basis of one or several exclusion criteria pertaining to the sensors used, the prediction approach, and/or the 

validation procedure. See section 2.2 for details. 

Records identified through database 
searching:
N = 2,320

Records identified through other 
sources:
N = 49

Records after duplicates removed:
N = 2,259

Title/abstract review
Records removed:

N = 2,136

Full-text articles assessed for eligibility:
N = 123

Records removed: N = 77
-Sensor criteria: N = 33
-Prediction criteria: N = 27
-Validation criteria: N = 17

Full-text articles included in review:
N = 46
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3.3. Biomechanical Variables 192 

Across all studies, the most frequently estimated biomechanical time-series was joint kinematics 193 
(23 studies) followed by joint kinetics (16 studies), segment kinetics (seven studies), and segment 194 
kinematics (five studies) (Figure 4). Of the 16 studies estimating joint kinetics, only three estimated 195 
the intersegmental force. No studies estimated joint contact forces, individual muscle forces, or 196 
muscle kinematics. Most studies focused on joint/segment biomechanics in the sagittal plane (87%), 197 
followed by the frontal plane (46%), and transverse plane (33%) (Figure 4). Across all studies and 198 
considering the major upper and lower extremity joints, the wrist joint received the most attention 199 
(28%), followed by the knee (26%), the elbow (24%), the ankle (20%), the shoulder (15%), and the hip 200 
(13%). 201 

3.4. Prediction Equations 202 

3.4.1. Prediction Equation Classification 203 

One aim of the current review was to develop a classification method post-hoc allowing a high-204 
level comparison of the many different prediction equations used in the reviewed papers. The rest of 205 
this section describes the classification we have developed for this comparison. We feel this method 206 
best groups the reviewed papers for an insightful comparison, but it is by no means unique. The 207 
description of all techniques used in the reviewed papers according to this classification is presented 208 
in Table 2 in addition to some other study characteristics for a succinct overview of all reviewed 209 
papers. It is recommended that the description of the classification system be read first to best 210 
understand the comparison in Table 2. 211 

We use 𝒙(𝑡) ∈ ℝ𝑑  to denote the 𝑑 -dimensional input used to estimate the 𝑚 -dimensional 212 
output (biomechanical time-series) 𝒚(𝑡) ∈ ℝ𝑚 at time 𝑡. All reviewed papers presented regression 213 
algorithms to determine the parameters of a prediction equation 𝑓: ℝ𝑑 → ℝ𝑚  which defines the 214 
explicit mapping 𝒙(𝑡) → 𝒚(𝑡). In the context of this review, the 𝑖𝑡ℎ element 𝑥𝑖(𝑡) of the input 𝒙(𝑡) 215 
may be a wearable sensor measurement after some pre-processing step (called an exogenous input) or 216 
a state variable being fed back. This state variable may be either an element 𝑦𝑖(𝑡 − 𝑡𝑑) of a previous 217 
output 𝒚(𝑡 − 𝑡𝑑) (i.e. at time 𝑡 − 𝑡𝑑 , 𝑡𝑑 > 0), or some other internal state (e.g. an output from a 218 
hidden neuron prior to the output layer in a neural network). All prediction equations reviewed in 219 
this paper use exogenous inputs. In this review, we use the term feedback to refer to models which 220 
also use output and/or internal state variable feedback. For example, herein Elman networks [51], 221 
long-short term memory (LSTM) neural networks [52,53], and non-linear/linear autoregressive (with 222 
exogenous inputs) models [48,54] are all considered to have a feedback structure.  223 

 

 

Figure 2. Number of articles included in the review for each five-year bin. The oldest paper included in our 

review was published in 1995. 
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In general, an exogenous input 𝑥𝑖(𝑡) will be either the value of a sensor time-series 𝑠 at time 𝑡, 224 
𝑠(𝑡), or a discrete feature which describes 𝑠 over some finite time interval. Note that 𝑠(𝑡) may be 225 
the raw sensor signal itself or after some pre-processing step. For example, in this review, we classify 226 
the value of an sEMG envelope at some time instant as a time-series input, even though this value 227 
may depend on previous (or future) raw sEMG samples. Similar to system theory, we use the term 228 
dynamic to refer to models which use past exogenous inputs, for example 𝑥𝑖(𝑡 − 𝑡𝑑) for  𝑡𝑑 > 0, to 229 
estimate 𝒚(𝑡) at time 𝑡 . Note the difference between what we call a dynamic structure versus a 230 
feedback structure is that dynamic refers to the use of past exogenous inputs whereas feedback refers to 231 
the use of past outputs and/or internal state variables as a part of the input. We further classify discrete 232 
exogenous inputs as time-domain (TD) if computed in the time-domain (e.g. root mean square value) 233 
and frequency-domain (FD) if computed in the frequency-domain (e.g. Fourier coefficients). We also 234 
report which studies first decomposed the sEMG into motor unit action potentials (MUAPs) from 235 
which time domain (MUAP-TD) or frequency domain (MUAP-FD) discrete features were extracted. 236 

Previous efforts to classify prediction equations have identified two classes, (1) a mixture of 237 
linear models and (2) a weighted sum of basis functions, into which a wide range of techniques can 238 
be classified [55]. We found that all prediction equations used in the studies reviewed herein can be 239 
viewed as a weighted sum of basis functions (where the weight of any one particular basis function 240 
is not restricted to be constant as in [55]). Given this general perspective, we identified a three-class 241 
classification for grouping the techniques used in each of the 46 reviewed papers: (i) polynomial 242 
mixtures (ℙ𝑛), (ii) neural networks (NN), and (iii) nonparametric regression (NP).  243 

The ℙ𝑛  class is viewed as a special case where the basis functions are strictly 𝑛𝑡ℎ -order 244 
polynomials, 𝑛 ∈ ℕ. Often, models are classified as either linear or non-linear, but here we consider 245 
both first-order polynomial mixtures (𝑛 = 1) and higher order polynomial mixtures (𝑛 > 1) as sub-246 
classes of ℙ𝑛 . This is because a first-order linear model may use features which are non-linear 247 
transformations of raw sensor signals. For example, consider a model using the sEMG amplitude at 248 
time 𝑡 (denoted by 𝑥(𝑡)) for estimation. Then the prediction equation 𝑦(𝑡) = 𝑎1𝑥(𝑡) + 𝑎2𝑥2(𝑡), for 249 
coefficients 𝑎1, 𝑎2 ∈ ℝ, may be interpreted as a linear model with two features as inputs (namely 250 
sEMG amplitude and squared sEMG amplitude) or as a 2nd order polynomial with a single input (i.e. 251 
sEMG amplitude). To improve clarity, we report both the polynomial model order and a description 252 
of the features used for estimation in Table 2. Prediction equations belonging to the ℙ𝑛 class in this 253 
review include those resulting from Gaussian mixture regression [56], lasso [57] and ridge [58] 254 
regression, and an ensemble of polynomials [58] among others. 255 

 

 

Figure 3. Characteristics of the samples used for model training and validation: sample sizes (a) and the 

proportion of unimpaired males, unimpaired females, and impaired individuals represented in those 

samples (b). 
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The NN class is viewed as a special case where the basis functions are neural networks. This 256 
formulation allows for both radial basis function networks [59] and an ensemble of networks [60] as 257 
the final prediction equation. 258 

The NP class refers to models which require access to all training data when making predictions 259 
(as defined in [36]). All NP prediction equations in this review are either linear smoothers [36,61] or 260 
(kernelized) support vector regression (SVR). Linear smoothers express the estimated output for a 261 
test input as a linear combination of all training targets. These include the prediction equations 262 
resulting from Gaussian process regression [48,62], kernel ridge regression [58], kernel smoothers 263 
[63,64], and k-nearest neighbors regression [65]. 264 
 265 
3.4.2. Descriptive Statistics of Prediction Equations 266 
  267 

Neural networks were the most popular model (33 studies, 72%) followed by polynomial 268 
mixtures (14 studies, 30%) and nonparametric regression (seven studies, 15%) (Figure 5). Of the 14 269 
polynomial mixtures, 12 were first-order (linear models) of which nine used time-series inputs. Time-270 
series inputs were used more often (72% of studies) than discrete features (33% of studies). Across 271 
the 15 studies using discrete features as inputs, 13 contained time-domain features, three contained 272 
frequency-domain features, and three studies estimated the decomposition of the raw sEMG signals 273 
into individual MUAPs before computing discrete features. Nine studies used a dynamic structure 274 
and nine studies used a feedback structure. Seven studies used principal component analysis as an 275 
unsupervised feature reduction method. Most studies present subject-specific models (80%) (Figure 276 
5). No final prediction equations developed in any studies were open-sourced, but one paper [66] 277 
provided open-source code for their MUAP decomposition algorithm. Table 2 provides an overview 278 

 

 

Figure 4. Description of the biomechanical variables estimated across all reviewed studies. The top row of 

figures illustrates the percentage of studies that estimated joint kinematics (a), joint kinetics (b), segment 

kinetics (c), and segment kinematics (d) and the bottom row of figures are radar plots illustrating the number 

of studies estimating the major upper and lower extremity joint kinematics (blue) and kinetics (red) in the 

sagittal (e), frontal (f), and transverse (g) planes. No studies estimated muscle forces or joint contact forces. 
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of the prediction equations used in each study as well as a summary statistic summarizing estimation 279 
performance. 280 

4. Discussion 281 

Remote monitoring of patient segment, muscle, and joint kinematic and kinetic time-series has 282 
been established as an important component of digital health. Practical limitations in the number of 283 
sensors that can be deployed simultaneously to a given user motivate the pursuit of regression-based 284 
approaches. Thus, the primary aim of this review is to summarize relevant developments in the use 285 
of regression for estimating these biomechanical time-series. This review is timely given the increase 286 
in relevant studies since the turn of the century (Figure 2) and the limitations of other systematic 287 
reviews in the area. While many different techniques were observed since the first relevant method 288 
published in 1995, there are some common themes consistent across studies which we discuss below. 289 
Additionally, we discuss challenges concerning the practical implementation of the reviewed 290 
methods and common characteristics of the techniques that provided the best performance to provide 291 
possible directions for future work. In particular, we discuss how incorporating domain knowledge 292 
often improved performance and the implications for hybrid estimation (i.e. using both physics-293 
based and machine learning techniques in concert). Note that our identification of techniques that 294 
provided the best performance was not based on a comparison of methods between the studies 295 
reviewed herein. Instead we draw conclusions concerning techniques that led to improved 296 
performance only where those conclusions were inferred within individual studies that report an 297 
appropriate statistical comparison. 298 

4.1. Overview of Techniques 299 

 Neural networks were the most popular regression model. Most incorporated a 3-layer feed 300 
forward neural network (non-recurrent, single hidden layer) [47,50,57–59,62,65,67–81] and differed 301 
based on the choice of activation function and/or number of hidden neurons. The number of hidden 302 
neurons in the NN models reviewed was usually optimized over a set of predefined values 303 
[46,47,51,54,58,62,65,71,73,75–78,82,83] but sometimes not [37,50,68–70,72]. Two papers considered an 304 
ensemble of networks. Koike and Kawato (1995) trained two task-specific NNs (one for postural 305 
activities and the other for dynamic) and a gating network which provided the weights for linearly 306 

 

 

Figure 5. Characteristics of the prediction approach across all studies: (a) percentage of studies estimating 

biomechanical time-series for subjects whose data were not included in the training set (subject extrapolation, 

purple) vs. subject-specific models (yellow) and (b) number of studies utilizing polynomial mixture (ℙ), 

neural network (NN), and non-parametric regression (NP). See section 3.4.1. for details concerning the model 

classification. 
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combining the joint torque estimates from the two task-specific NNs [60]. Ding et al. (2017) utilized 307 
an unscented Kalman filter for combining two NNs to estimate elbow joint angle and upper arm 308 
orientation [83] wherein a recurrent NN trained using sEMG data with reduced information 309 
redundancy (using a custom reduction approach) was used to model the time-update equation and 310 
a second NN trained to estimate a redundant sEMG time-series was used as the measurement-update 311 
equation. Convolutional and long-short term memory NN (CNN and LSTM respectively) were first 312 
used in 2018. Xia et al. (2018) found that an LSTM in series with a CNN (C-LSTM) outperformed a 313 
CNN alone for estimating hand position during general open-chain tasks [52]. Likewise, Xu et al. 314 
(2018) found that C-LSTM outperformed LSTM alone which outperformed CNN alone (nRMSE: 315 
8.67%, 9.07%, and 12.13% respectively) for estimating contact forces at the distal forearm and was one 316 
of the few studies to use a leave-one-subject-out validation approach [53].  317 

Polynomial mixtures were the next most popular model and of these, first order polynomials 318 
were most common. Consideration of simple linear models is motivated by an observed relationship 319 
between sEMG amplitude and muscle force, especially at lower force levels. However, to increase 320 
muscle force, additional motor units are recruited and/or stimulation frequency increases which 321 
along with heterogenous activation within a muscle and load sharing between muscles makes this 322 
relationship non-linear [27,32]. Some reviewed papers compared linear models (ℙ1) to both neural 323 
networks [57,58,75] and nonparametric regression [48,57,58]. Although between model comparisons 324 
varied and two of these four studies only considered isometric tasks [57,75], the NN and NP 325 
performances were no different than those from linear models. Comparisons have also been made 326 
between first order and higher order polynomial mixtures. It was shown in [84] that linear models 327 
performed equally as well as second order models for estimating lumbo-sacral joint torque using 328 
sEMG and Clancy et al. (2006) show that superior sEMG amplitude estimation techniques (e.g. 329 
whitening, multi-channel) can improve linear models [35]. Alternatively, Clancy et al. (2012) show 330 
that 2nd or 3rd order polynomials outperformed 1st and 4th order models (with regularization and 331 
optimal dynamic orders) for estimating isometric elbow joint torque using sEMG inputs [45]. A few 332 
studies considered an ensemble of polynomials. Michieletto et al. (2016) used Gaussian mixture 333 
regression, which can be shown to be a linear mixture [55], to estimate knee flexion/extension angle 334 
using sEMG inputs [56]. Hahne et al. (2014) used degree-of-freedom-specific linear models to 335 
estimate wrist joint angle and linearly combined their estimates using weights determined by a 336 
logistic regression model trained to classify the degree-of-freedom of the movement (the weights 337 
were the posterior class probabilities) [58]. 338 

Nonparametric regression was used least frequently. This may be due to the amount of data 339 
necessary to compute an estimate given the nonparametric models used in the reviewed studies 340 
(although reduction methods exist [36]). While this may be prohibitive for real-time applications (e.g. 341 
for prosthetic control [58]) it may still be a feasible method for remote patient monitoring applications 342 
where data can be stored locally during the day and processed at a later time. Linear smoothers were 343 
the most popular nonparametric regression. The first study to use nonparametric regression in the 344 
proposed context was in 2008 where the Nadaraya-Watson estimator, a kernel smoothing technique, 345 
was used to estimate lower extremity joint angles using IMU data [63]. Goulermas et al. (2008) built 346 
upon this model by incorporating an additional term in the Gaussian kernel intended to accentuate 347 
or attenuate a training target’s contribution to the final estimate according to a custom pattern 348 
similarity index [64]. Several papers noted the advantage of nonparametric regression for small 349 
training sets. For example, Ngeo et al. (2014) show Gaussian process regression outperformed a 350 
neural network in estimating finger joint angles using sEMG data, especially for smaller data sets 351 
[62]. Similarly, Hahne et al. (2014) found that kernel ridge regression outperformed a neural network 352 
for both a reduced training set and when reducing the number of sEMG channels of a high-density 353 
array (from 192 to 12 – 16) [58]. 354 

4.2. Concerns for Practical Implementation 355 

Remote patient monitoring and myoelectric prosthetic control were the two most common 356 
applications used to motivate the many different techniques reviewed which indicates that eventual 357 
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users of these systems are expected to present with clinical impairment. However, our results show 358 
that most studies do not validate their estimation techniques on impaired individuals (Figure 3). 359 
Evaluating algorithm performance on unimpaired populations is certainly useful for algorithm 360 
development as it reduces extraneous variables and simplifies study recruitment and retention 361 
efforts. Nevertheless, these algorithms need to be deployed to impaired populations and, while some 362 
studies present improved or equal performance for impaired individuals, many show performance 363 
decreases. Thus, caution should be taken when considering how well a technique will work when 364 
deployed for a population on which it has not been validated. This clearly applies for a model trained 365 
on healthy participants but deployed to participants with impairment (though in some cases the drop 366 
in performance is minimal [85]). However, one also cannot assume that a model trained and tested 367 
on impaired participants will have identical performance characteristics as the same model trained 368 
and tested on healthy participants. 369 

In addition to generalizing performance across populations, more research is needed to better 370 
understand how these regression models generalize across individuals and tasks. The majority of 371 
studies (80%) developed subject-specific models (Figure 5) and only 33% of studies explored task 372 
extrapolation. The latter may be less of a barrier to implementation since in practice task identification 373 
will likely be a part of the pipeline for automated analysis [8]. Thus, task specific models could be 374 
selected following task identification. However, given the approaches reviewed herein, subject-375 
specific models require every user to be observed in-lab for model training. Further, the observation 376 
sets for model training must be broad enough in scope (e.g. multi-speed, multi-load) so that they can 377 
be confidently applied for estimation in unconstrained environments. These requirements 378 
substantially limit the scalability of these solutions for remote patient monitoring. Subject-general 379 
models may be one of the more difficult challenges to overcome in the future as they appear to 380 
frequently result in performance decreases [59,63,64,67]. Intuitively, this may indicate that current 381 
regression models are learning person-specific patterns as opposed to generalizable phenomena. This 382 
may be a result of the small sample sizes used for model training in many of the reviewed studies. 383 
To fully realize the potential of regression techniques for estimating biomechanical time-series, future 384 
work should incorporate observations from impaired populations in their training and validation 385 
sets and larger sample sizes to foster learning of generalizable phenomena. 386 

Deployment of many of the reviewed techniques is further complicated by hardware limitations. 387 
Of particular concern are the battery capacity and memory constraints of current wearables. Of the 388 
more popular wearable sensors, gyroscopes are notorious for limiting long-term capture due to their 389 
power requirements and would thus limit immediate application of several methods reviewed 390 
[37,63–65,67–69]. Alternatively, accelerometers and sEMG are able to provide continuous recording 391 
for at least 24-hours with current battery technology. The use of sEMG for remote monitoring is less 392 
common than accelerometry and has been used primarily for quantifying indices of physical activity 393 
[86–89]. Recent efforts have estimated muscle activation time-series during walking using methods 394 
similar to those used to estimate muscle force using Hill-type muscle models [8,90]. This pre-395 
processing step was used by several reviewed papers suggesting they may be practically deployed. 396 
However, the sEMG sampling frequency used in many of the reviewed studies (500 Hz to 16 kHz) 397 
was much higher than what has been used for remote monitoring (10 – 250 Hz). It is currently 398 
unknown to what extent estimation performance is influenced by sEMG sampling frequency. Future 399 
research should explore these limitations in search of hardware and algorithmic solutions that are 400 
practically deployable for remote patient monitoring. 401 

An additional practical concern is the number of wearable sensors required for the reviewed 402 
algorithms. Several studies considered the effect of reducing the number of sensors on estimation 403 
performance. Clancy et al. (2017) present a backward stepsize selection method for reducing the number 404 
of necessary sensors [91]. They show that additional sensors beyond four (up to 16) provided no 405 
statistically significant advantage for estimating degree-of-freedom-specific wrist joint kinetics. This 406 
reduction method was later used by Dai et al. (2019) for a similar application where the reduction 407 
approach generally outperformed pre-selected sensor locations [92]. Dai and Hu (2019) present a 408 
method for reducing a high-density grid of 160 sEMG electrodes down to an 8x8 grid, however, the 409 
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8x8 subset was finger specific (for estimating finger kinematics) [93]. Future work in the development 410 
of regression approaches for estimating biomechanical time-series should incorporate analysis of the 411 
effect of reducing instrumentation complexity (i.e., reducing the number and types of sensors 412 
required) on estimation performance.  413 

Finally, only one study provided open-source code for any part of their methodology [66]. The 414 
code was for performing the MUAP decomposition of the raw sEMG signals and not the actual 415 
regression model. Open-sourcing subject-general models will allow non-specialized research teams 416 
without expertise in engineering or computer science to utilize these methods for clinical purposes. 417 
Further, it will allow 3rd party validation; a necessary component prior to practical deployment and 418 
to promote confidence from the public in the clinical utility of these tools. Open-source data as well 419 
as open-source code in future studies would help speed the pace of development of these techniques. 420 

4.3. Incorporating Domain Knowledge 421 

 While we excluded physics-based techniques from the current review, several papers 422 
incorporated domain knowledge into their approach (e.g muscle and neural physiology, rigid body 423 
dynamics) which seems to improve performance. For example, pre-processing of the raw sEMG 424 
signals to optimally estimate sEMG amplitude was often motivated by an understanding of muscle 425 
activation dynamics. State-of-the art estimation incorporates signal whitening and the use of multiple 426 
channels (multiple sensors per muscle) [32,35,94]. These techniques have been shown to improve 427 
estimation performance compared to other methods [35,45]. Most papers used the standard highpass 428 
filter, rectify, lowpass filter processing to estimate sEMG amplitudes and a broad range of lowpass 429 
filter cutoff frequencies were used [15,46,48,53,54,56,57,62,68,70,71,73,84,92,95]. In addition to 430 
enveloping techniques, some incorporate the fact that the observed sEMG is the superposition of 431 
many MUAPs. Three studies (all since 2018) computed discrete features as model inputs after first 432 
performing MUAP decomposition (Table 2). Given their results, Dai and Hu (2019) recommend the 433 
MUAP decomposition over standard enveloping techniques [93]. Sun et al. (2018) identified shape-434 
based clusters (𝐾-means, 5 ≤ 𝐾 ≤ 20) of MUAPs extracted from the biceps brachii sEMG and suggest 435 
the different clusters represent different motor units [66]. The final estimation can be seen as a scaling 436 
of a single feature related to the number of activated motor units which they use to represent firing 437 
rate (see eq. (10) in [66]). Thus, the pre-processing of the raw sEMG signal, to estimate both sEMG 438 
amplitude and MUAPs, based on its physiological origin [32,94] may have contributed to improved 439 
estimation performance. 440 
     An electromechanical delay (delayed increase in muscle force following neural excitation) is also 441 
known to characterize muscle contraction dynamics [32]. This phenomenon may provide a 442 
physiological justification for the improvements in performance associated with the use of a dynamic 443 
model structure allowing previous sEMG values to have lasting effects on the estimated output. Total 444 
delay was sometimes optimized using a grid search (625 – 875 ms [71], 50 – 150 ms [54]) and 445 
sometimes not (130 ms [84], 0.5 ms [44], 488.3 ms [92]). Clancy et al. (2006) found that performance 446 
increased with greater total time delay up to about 10 or 15 samples (i.e. 244.1 or 366.2 ms) [35]. 447 
Likewise, Clancy et al. (2012) tried between 1 and 30 sample delays and found that lesser time delays 448 
(namely total delay < 5 samples or 122.1 ms) resulted in poorer performance [45]. Overly large delays 449 
also resulted in poor performance, especially for high polynomial orders which they attribute to 450 
overfitting. The best total delays (439.5 ms – 683.ms) were dependent on polynomial order and the 451 
regularization method. Ngeo et al. (2014) modeled the sEMG to activation dynamics using the 452 
method described in [96] and optimized the electromechanical delay. Optimal values were person-453 
specific (between 39.6 – 75 ms) and they show that incorporating electromechanical delay into their 454 
activation model improved performance compared to neglecting it [62]. Some of the optimal delays 455 
reported in the reviewed studies are larger than what is reported elsewhere in the literature (30 – 150 456 
ms) [32]. One explanation may be that in addition to the delayed effect of neural excitation, more 457 
information concerning the sEMG time-history could help a regression algorithm capture some sub-458 
task related neural control pattern which may be inferred from a sufficiently large (i.e. > 150 ms) 459 
window of time. The muscle synergy hypothesis may provide a physiological basis for expecting said 460 
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pattern to exist [97]. This concept was mentioned in several reviewed papers and thus we pay it 461 
special attention next. 462 

4.3.1. Reference to Muscle Synergies 463 

 Several papers referred to the muscle synergy hypothesis in the development of their models 464 
and in the discussion of its performance. The muscle synergy hypothesis provides a potential 465 
explanation of how the central nervous system accomodates redundancy in motor control [98]. The 466 
theory suggests that the activation time-series of a given muscle is a linear combination of a small set 467 
of basis waveforms. Non-negative matrix factorization (NMF) is an algorithm commonly used in 468 
muscle synergy analysis to optimally determine the basis functions and the coefficients for linear 469 
combination given a set of muscle sEMG or activation time-series [97–99]. Jiang et al. (2009) used 470 
these techniques directly in their estimation and show that for estimating contact forces at the hand, 471 
their method using NMF is nearly unsupervised in that target force values are not needed and is only 472 
supervised in the sense that the degree-of-freedom must be known for model training [75]. 473 
     Others have referred to muscle synergies as a possible explanation for the observed accuracy of 474 
some regression techniques [35,71,81,82]. The synergy hypothesis indicates that the activity of all 475 
muscles contributing to a given joint torque may be approximated given a common and observable 476 
subset of sEMG observations. While the estimation of muscle activation time-series was not included 477 
in the current review, we note that Bianco et al. (2018) explored the possibility of estimating 478 
unmeasured muscle activations from sEMG time-series measured from eight different muscles using 479 
the traditional linear combination of basis waveforms formulation of muscle synergies [100]. To the 480 
authors’ knowledge, no studies have regressed unmeasured muscle activations using a reduced 481 
number of wearable sensors. In this formulation, the function being identified in the regression would 482 
effectively model the synergistic relationship between muscles. Such an approach might enable 483 
estimated activations to inform a complete set of Hill-type muscle models crossing the joint of interest 484 
to estimate muscle force. Wang and Buchannan (2002) tried a similar approach wherein a neural 485 
network was trained to learn the muscle activation dynamics (intramuscular EMG to muscle 486 
activation model) using estimated torque error to drive parameter adaptation in the learning process 487 
[101]. However, they estimated activations only for those muscles with measured intramuscular 488 
EMG. Thus, advances in modeling the observed synergistic behavior of muscle activations may prove 489 
useful for improving estimation of biomechanical time-series with a minimal number of wearable 490 
sensors.  491 
     The muscle synergy hypothesis suggests that an observed set of muscle activation or sEMG 492 
time-series carries redundant information and can be explained by a lower dimensional structure 493 
(e.g. less than the number of sensors available). Regularization is a common technique in machine 494 
learning used to reduce model complexity and prevent overfitting, usually at the expense of training 495 
error. Reducing the number of inputs by removing redundant information also reduces model 496 
complexity and the muscle synergy hypothesis may provide a physiological basis for this 497 
phenomenon. Clancy et al. (2012) compared ridge regression to their pseudo-inverse based 498 
regularization wherein the reciprocals of singular values below some threshold were replaced with 499 
zero [45]. The best ridge regression results were similar to the pseudo-inverse regularization, 500 
however, optimal fits were less sensitive to changes in pseudo-inverse tolerances near the optimum 501 
than they were to changes in the ridge penalty hyperparameter suggesting the pseudo-inverse 502 
technique may be easier to tune. This technique, also used in [91] and [92], along with self-organizing 503 
maps [74] and principal component analysis [53,58,76,78,81,95,102] are examples of unsupervised 504 
feature reduction techniques. Chen et al. (2018) found that using a deep belief network to reduce 10 505 
inputs to three outperformed the PCA approach for the same dimensionality reduction task [95]. This 506 
might be considered a supervised dimensionality reduction (as would lasso regression [57]) as the 507 
determination of the weights in the hidden neurons of the deep belief network are optimized so that 508 
the final output best approximates the training set targets. Thus, although feature reduction is 509 
common in machine learning for improving generalizability, it may be further justified on a 510 
physiological basis given the assumption that a lower dimensional structure of the inputs exists. 511 
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4.3.2. Towards a Hybrid Approach 512 

A general conclusion from these observations is that clever incorporation of domain knowledge 513 
in regression techniques may improve performance. In the papers we reviewed, this was mostly by 514 
way of sensor signal pre-processing, feature engineering, and model structure (e.g. feedback or 515 
dynamic). Incorporation of domain knowledge in regression has been suggested for other 516 
biomechanics applications [103], and as shown in [36], a good understanding of system dynamics can 517 
directly inform kernel structure in Gaussian process regression. For these reasons, hybrid methods 518 
using both physics-based and machine learning techniques in concert are being proposed in other 519 
fields including climate sciences [104], GPS-inertial navigation [105], and general chaotic processes 520 
[106]. As noted in a recent editorial [107] concerning climate modeling, “The hybrid approach makes 521 
the most of well-understood physical principles such as fluid dynamics, incorporating deep learning 522 
where physical processes cannot yet be adequately resolved.” The general approach observed in 523 
many of these techniques are generalizable and applicable beyond specific scientific disciplines and 524 
thus may prove beneficial for remote patient monitoring. One approach might be to regress an 525 
unobserved internal state for which the physical relationship with observed measurements is either 526 
not well understood or not fully informed (e.g. not enough sensors) and then to drive a physical 527 
model using the estimated internal state variable. For example, this was done in [101] where the 528 
authors’ chose to model muscle activation dynamics using a neural network since they determined 529 
these dynamics to be the least well understood. A second approach might be the fusion of a regression 530 
estimate and a physical model estimate. Along these lines, if uncertainties are modeled, the 531 
parameters of the regression (or the physical model) may be adapted in real-time. Gui et al. (2019) 532 
use a similar approach to remove the need to calibrate an EMG-torque model [108]. In the proposed 533 
context this could be especially useful as it may be interpreted as real-time subject specification from 534 
a general model. Further, it may enable the adaptation of a model to time-varying signal 535 
characteristics (e.g. due to electrode displacement, changes in skin conductivity, specific spatial 536 
position of inertial sensors) which may negatively affect estimation [57]. Future developments in 537 
hybrid methods that take advantage of the strengths of both physical models and machine learning 538 
may help realize the maximum potential of remote patient monitoring. 539 

5. Conclusion 540 

Regression techniques present an alternative approach to physical models for estimating 541 
biomechanical time-series using wearable sensor data. These methods could be transformative for 542 
personalizing healthcare interventions as they allow the monitoring of a patient’s biomechanics 543 
continuously and in unconstrained environments. The aim of this review was to summarize relevant 544 
regression techniques in this context to imply directions for future research concerning practical 545 
implementation and improving estimation performance. Several reviewed studies found that 546 
incorporating some form of domain knowledge resulted in better estimation accuracy. Advances in 547 
this area along with open-source algorithms, validation in impaired populations, and consideration 548 
of practical hardware limitations (e.g. battery capacity and memory) may expedite future 549 
developments to make clinical implementation a reality. In summary, future work should consider 550 
the following: 551 

 Development of methods using hardware specifications that can be implemented remotely 552 
and for a full 24-hour capture 553 

 Development of subject-general models or real-time calibration 554 
 Development of hybrid machine learning and physics-based estimation 555 
 Open-source algorithms 556 
 Development of regression models for estimating muscle forces and joint contact forces 557 
 Validation of models on impaired populations 558 
 559 
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Table 2 Overview of the 46 reviewed papers.  

Reference 

(year) 
 

Sensors 

(𝑓𝑠, max number) 

Variable 

(location): plane(s) 

Tasks Inputs Model Performance Summary 

Koike and Kawato [60] 

(1995) 
sEMG (2 kHz, 10) 

𝜏 (elbow): S 

𝜏 (shoulder): F 
ISO, OC TS NN (FB) CD: 0.89 

Suryanarayanan et al. [44] 

(1996) 
sEMG (2 kHz, 1) 𝜃 (elbow): S OC TS NN (dyn) RMSE ≤ 15% 

Shih and Patterson [70] 

(1997) 
sEMG (900 Hz, 4) 

𝜏 (elbow): S 

𝜏 (wrist): S 

𝜏 (shoulder): S 

𝜃 (elbow): S 

𝜃 (wrist): S 

𝜃 (shoulder): S 

WCP TS NN 

RMSE: 0.67 – 5.76 Nm, 0.64 – 5.62 Nm 

RMSE: 4.78 – 13.76, 4.73 – 14.33 

 

van Dieën and Visser [84] 

(1999) 
sEMG (600 Hz, 6) 𝜏 (lumbo-sacral): S ISO, LOC TS ℙ1 (dyn) RMSE: 26 - 54 Nm, 49 – 160 Nm 

Au and Kirsch [71] 

(2000) 
sEMG (500 Hz, 6) 

𝜃 (shoulder): S, F, T 

𝜃 (elbow): S 

𝜃̇ (shoulder): S, F, T 

𝜃̇ (elbow): S 

 

OC, LOC TS NN (dyn) 
RMSE: 14.2 – 19.6 

RMSE: 8 – 17.2 (impaired subjects) 

Dipietro et al. [82] 

(2003) 
sEMG (1 kHz, 5) 𝑝 (hand): T OC TS NN (FB) RMSE: 7.3 – 11.5% 

Song and Tong [46] 

(2005) 

sEMG (1 kHz, 3) 

goni (1 kHz, 2) 
𝜏 (elbow): S LOC TS NN (FB) 

nRMSE: 4.53 – 8.45% 

nRMSE: 10.56 – 16.20% (sEMG only) 

Clancy et al. [35] 

(2006) 
sEMG (4096 Hz, 8) 𝜏 (elbow): S ISO TS ℙ1 (dyn) MAE: 7.3% 

Došen and Popovič [72] 

(2008) 
2D ACC (200 Hz, 4) 

𝜃 (ankle): S 

𝜃 (knee): S 

𝜃 (hip): S 

𝑝̈ (hip joint center): S 

MSW TS NN (dyn) 

RMSE: 1.19 – 3.60, 1.18 – 2.62 

RMSE: 0.26 – 0.39 m/s2, 0.29 – 0.46 m/s2 

CC (𝜃): 0.97 – 0.998, 0.97 – 0.998 

CC (𝑝̈): 0.96 – 0.99, 0.91 – 0.99 

Findlow et al. [63] 

(2008) 
IMU (100 Hz, 4) 

𝜃 (ankle): S 

𝜃 (knee): S 

𝜃 (hip): S 

Normal 

Walk 
TS NP (KS) 

MAE: 1.69 – 2.30, 4.91 – 9.06 

MAE: 1.78 – 5.32 (reduced sensor array) 

CC: 0.93 – 0.99, 0.70 – 0.89 

CC: 0.87 – 0.99 (reduced sensor array) 

Goulermas et al. [64] 

(2008) 
IMU (--, 4) 

𝜃 (ankle): S 

𝜃 (knee): S 

𝜃 (hip): S 

MSW TS NP (KS) CC: 0.97, 0.96, 0.83 

Hahn and O’Keefe [73] 

(2008) 
sEMG (1 kHz, 7) 

𝜏 (ankle): S 

𝜏 (knee): S 

𝜏 (hip): S 

Normal 

Walk 
TS NN 

CD: 0.54 – 0.84 (sEMG only) 

CD: 0.77 – 0.92 (sEMG with demographics & 

anthropometrics) 

Mijovic et al. [59] 

(2008) 
2D ACC (50 Hz, 2) 𝜃̈ (forearm): S OC TS NN (RBF) CD: 0.841 – 0.998, 0.75 – 0.99, 0.03 – 0.88 

Delis et al. [74] 

(2009) 
sEMG (1744.25 Hz, 2) 𝜃 (knee): S 

Normal 

Walk 
DISC (TD) NN (SOM) CC: 0.59 – 0.84 
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Jiang et al. [75] 

(2009) 
sEMG (1 kHz, 8) CF (hand) ISO DISC (TD) 

1) NN 

2) ℙ1 

1) CD: 0.86 

2) CD: 0.78 

Youn and Kim [47] 

(2010) 

sEMG (1 kHz, 2) 

MMG (1 kHz, 2) 
CF (hand) ISO DISC (TD) NN 

nRMSE ≤ 16% (MMG only) 

nRMSE ≤ 13% (sEMG only) 

nRMSE ≤ 10% (sEMG + MMG) 

Ziai and Menon [57] 

(2011) 
sEMG (1 kHz, 8) 𝜏 (wrist): S ISO TS 

1) ℙ1 

2) ℙ1 (lasso) 

3) ℙ1 (LWPR) 

4) NP (SVR) 

5) NN (2L) 

1) nRMSE: 2.88% 

2) nRMSE: 2.83% 

3) nRMSE: 3.03% 

4) nRMSE: 2.85% 

5) nRMSE: 2.82% 

Nielsen et al. [76] 

(2011) 
sEMG (1024 Hz, 7) CF (hand) ISO DISC (TD) NN 

RMSE: 0.16 N 

RMSE: 0.10 N (impaired subjects) 

CD: 0.93 

CD: 0.82 (impaired subjects) 

de Vries et al. [68] 

(2012) 

MIMU (50 Hz, 4) 

sEMG (1 kHz, 13) 

ISF (SC): S, F, T 

ISF (AC): S, F, T 

ISF (shoulder): S, F, T 

LOC, ADL TS NN nRMSE: 7 – 17% 

Jiang et al. [77] 

(2012) 
sEMG (2048 Hz, 7) 𝜃 (wrist): S, F, T OC DISC (TD) NN CD: 0.74 – 0.78 

Muceli and Farina [78] 

(2012) 
HD-sEMG 128 (2048 Hz, 2) 𝜃 (wrist): S, F, T OC TS NN CD: 0.79 – 0.89 

Howell et al. [49] 

(2012) 
FSR (118 Hz, 12) 

𝜏 (ankle): S 

𝜏 (knee): S, F 

Normal 

Walk 
TS ℙ1 

nRMSE: 5.9 – 17.1% 

CC: 0.82 – 0.97 

Clancy et al. [45] 

(2012) 
sEMG (4096 Hz, 2) 𝜏 (elbow): S ISO TS 

ℙ1, ℙ2, ℙ3, ℙ4 

(dyn) 

nMAE: 4.65 – 6.38% 

nMAE: 5.55 – 7.97 % (reduced training set) 

Kamavuako et al. [79] 

(2013) 
sEMG (10 kHz, 6) 𝜏 (wrist): S, T ISO DISC (TD) NN 

nRMSE: 6.1 – 13.5% 

CD: 0.87 – 0.91 

Jiang et al. [80] 

(2013) 
sEMG (2048 Hz, 7) 𝜏 (wrist): S, F, T OC DISC (TD) NN 

CD: 0.63 – 0.86, 0.34 – 0.74 

CD: 0.61 – 0.77, 0.46 – 0.59 (impaired subjects) 

Farmer et al. [54] 

(2014) 
sEMG (1 kHz, 4) 𝜃 (ankle): 4 

Normal 

Walk 
TS NN (FB, dyn) RMSE: 1.2 – 5.4 

Ngeo et al. [62] 

(2014) 
sEMG (2 kHz, 8) 𝜃 (MCPs): S OC 

TS 

DISC (TD) 

1) NN (dyn) 

2) NP (GPR, dyn) 

1) CC: 0.71 (TS inputs only) 

2) CC: 0.84 (TS inputs only) 

Hahne et al. [58] 

(2014) 
HD-sEMG 192 (2048 Hz, 1) 𝜃 (wrist): S, F OC DISC (TD) 

1) ℙ1 (ridge) 

2) ℙ1 

3) NN 

4) NP (KRR) 

4) CD: 0.8 (reduced sensor array) 

CD: 0.8 – 0.9 (range across all models) 

Jacobs and Ferris [50] 

(2015) 

FSR (1 kHz, 8) 

Load Cell (1 kHz, 1) 
𝜏 (ankle): S 

MSW, Calf 

Raises 
TS NN 

nRMSE: 7.04 – 13.78% 

nRMSE: 8.72 – 16.52% (FSR only) 

nRMSE: 20.47 – 46.02% (Load Cell only) 

de Vries et al. [69] 

(2016) 
 

MIMU (50 Hz, 4) 

sEMG (1 kHz, 13) 
ISF (shoulder): S, F, T LOC, ADL TS NN 

nSEM: 4 – 1 % 

nSEM: 3 – 21% (reduced sensor array) 
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Wouda et al. [65] 

(2016) 
MIMU (240 Hz, 5) 

𝜃 (ankle): S, F, T 

𝜃 (knee): S, F, T 

𝜃 (hip): S, F, T 

𝜃 (shoulder): S, F, T 

𝜃 (elbow): S, F, T 

𝜃 (wrist): S, F, T 

𝜃 (spine): S, F, T 

OC, ADL, 

MSW, 

MSR, 

sport 

TS 
1) NN 

2) NP (k-NN) 

1) Mean Error: 7 

2) Mean Error: 8 

Michieletto et al. [56] 

(2016) 
sEMG (1 kHz, 8) 𝜃 (knee): S 

Seated 

Kick 
TS ℙ1 (GMR) Custom error statistic (see paper) 

Xiloyannis et al. [48] 

(2017) 

sEMG (--, 5) 

MMG (--, 5) 
𝜃̇ (MCPs): S 

OC, ADL, 

ISO 
TS 

1) ℙ1 (FB) 

2) NP (GPR, FB) 

1) CC: 0.54 

2) CC: 0.79, 0.62, 0.67 (sEMG only) 

Zhang et al. [81] 

(2017) 
sEMG (1 kHz, 8) 

𝜃 (shoulder): S, F, T 

𝜃 (elbow): S 
OC DISC (TD) NN CD: 0.90 – 0.91, 0.86 – 0.87 

Ding et al. [83] 

(2017) 
sEMG (2 kHz, 8) 

𝜃 (elbow): S 

𝜃 (humerus): S, F, T 
OC, ADL TS 

1) NN 

2) NN (FB) 

3) NN (FB, UKF) 

1) RMSE: 11 - 14, CC: 0.88 – 0.90 

2) RMSE: 11 - 15, CC: 0.87 – 0.89 

3) RMSE: 7 – 9, CC: 0.95 – 0.96 

Clancy et al. [91] 

(2017) 
sEMG (2048 Hz, 16) 

CF (hand): S, F 

𝜏 (wrist): T 
ISO TS ℙ1 RMSE: 6.7 – 10.6%, 11.0 – 15.7 (4 sensors) 

Xia et al. [52] 

(2018) 
sEMG (2 kHz, 5) 𝑝 (hand): S, F, T OC 

DISC (FD) 

DISC (TD) 

1) NN (CNN) 

2) NN (C-LSTM, FB) 

1) CD: 0.78 

2) CD: 0.90 

Wouda et al. [67] 

(2018) 
MIMU (240 Hz, 3) 𝜃 (knee): S MSR TS NN 

RMSE: 2.27 – 8.41, 6.29 – 25.05 

CC: 0.98 – 0.99, 0.77 – 0.99 

Sun et al. [66] 

(2018) 
sEMG (16 kHz, 1) CF (forearm) ISO 

DISC 

(MUAP-TD) 
ℙ1 CD: 0.72 – 0.89 

Chen et al. [95] 

(2018) 
sEMG (1.2 kHz, 10) 

𝜃 (ankle): S 

𝜃 (knee): S 

𝜃 (hip): S 

MSW TS NN (DBN) 
RMSE: 2.45 – 3.96 

CC: 0.95 – 0.97 

Xu et al. [53] 

(2018) 
HD-sEMG 128 (1 kHz, 1) CF (forearm) ISO TS 

1) NN (CNN) 

2) NN (LSTM, FB) 

3) NN (C-LSTM, FB) 

1) nRMSE: 7.33 – 10.93%  

2) nRMSE: 6.16 – 9.33% 

3) nRMSE: 5.95 – 9.74% 

Wang et al. [51] 

(2019) 
sEMG (1.6 kHz, 5) 𝜃 (knee): S LOC DISC (FD) NN (FB) nRMSE: 3.55 – 5.13% 

Dai and Hu [93] 

(2019) 
HD-sEMG 160 (2048 Hz, 1) 𝜃 (MCPs): S OC 

TS, DISC 

(MUAP-FD) 
ℙ2 

CD: 0.66 – 0.81 (TS inputs) 

CD: 0.69 – 0.86 (MUAP-FD inputs) 

Dai et al. [92] 

(2019) 
sEMG (2048 Hz, 16) 

CF (hand): S, F 

𝜏 (wrist): T 
ISO TS ℙ1 (dyn) RMSE: 7.3 – 9.2%, 11.5 – 13.0% (4 sensors) 

Kapelner et al. [102] 

(2019) 
HD-sEMG 192 (2048 Hz, 3) 𝜃 (wrist): S, F, T OC 

DISC (TD, 

MUAP-TD) 
ℙ1 

CD: 0.77 (MUAP-TD inputs) 

CD: 0.70 (TD inputs) 

Stetter et al. [37] 

(2019) 
IMU (1.5 kHz, 2) ISF (knee): S, F, T 

MSW, 

MSR, 

sport 

TS NN (2L) 
nRMSE: 14.2 – 45.9% 

CC: 0.25 – 0.94 
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Sensors: 𝑓𝑠: sampling frequency (-- indicates 𝑓𝑠 not reported), ACC: accelerometer; IMU: inertial measurement unit (accelerometer + gyroscope); MIMU: IMU with magnetometer, HD-sEMG N: high density 

grid of N surface electromyography electrodes, FSR: force sensitive resistors (instrumented insole); MMG: mechanomyography; goni: electrogoniometer 

Variables: 𝜏: net joint (muscle) moment; 𝜃, 𝜃̇, 𝜃̈ : joint/segment angular position, velocity, acceleration; 𝑝, 𝑝̇, 𝑝̈: segment position, velocity, acceleration; ISF: joint intersegmental force; CF: joint/segment contact 

force, AC: acromio-clavicular joint, SC: sterno-clavicular joint, MCPs: one or several of the metacarpophalangeal joints 

Tasks: ISO: isometric; OC, LOC: open-chain, loaded open-chain; MSW: multi-speed walking; ADL: activities of daily living (brushing teeth, drinking, etc.); MSR: multi-speed running; sport: sport related 

movements (e.g. jumping, kicking, throwing) 

Inputs: TS: time-series; DISC: discrete; TD, FD: time-domain, frequency domain; MUAP: sEMG data were first decomposed into motor unit action potentials from which discrete features were extracted 

Model: FB: model exhibits output and/or internal state variable feedback (includes autoregression); dyn: dynamic (dependent on previous inputs); ℙ𝑛: mixture of 𝑛-th order polynomials; GMR: Gaussian mixture 

regression; NN: neural network; RBFN: radial basis function network; SOM: self-organizing map; DBN: deep belief network; NP: nonparametric regression; KS: kernel smoother; GPR: Gaussian process 

regression; SVR: support vector regression; KRR: kernel ridge regression; k-NN: k nearest neighbors regression; UKF: unscented Kalman filter; CNN: convolutional neural network, LSTM: long-short term 

memory network, C-LSTM: CNN in series with LSTM; 2L: two hidden layers 

Performance Summary: RMSE: root mean square error; nRMSE: normalized RMSE (e.g. RMSE in physical units normalized by maximum); MAE: mean absolute error; nMAE: normalized mean absolute error 

(see nRMSE); nSEM: normalized standard error of measurement; CC: correlation coefficient; CD: coefficient of determination; italic performance metrics indicate results for task extrapolation (e.g. trained on normal 

walking data, tested on fast walking data), bold performance metrics indicate results for subject extrapolation (all data in the test set were associated with different subjects than were data in the training set) 

 560 
 561 
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