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10 Abstract: Wearable sensors have the potential to enable comprehensive patient characterization and
11 optimized clinical intervention. Critical to realizing this vision is accurate estimation of
12 biomechanical time-series in daily-life, including joint, segment, and muscle kinetics and
13 kinematics, from wearable sensor data. The use of physical models for estimation of these quantities
14 often requires many wearable devices making practical implementation more difficult. However,
15 regression techniques may provide a viable alternative by allowing the use of a reduced number of
16 sensors for estimating biomechanical time-series. Herein, we review 46 articles that used regression
17 algorithms to estimate joint, segment, and muscle kinematics and kinetics. We present a high-level
18 comparison of the many different techniques identified and discuss the implications of our findings
19 concerning practical implementation and further improving estimation accuracy. In particular, we
20 found that several studies report the incorporation of domain knowledge often yielded superior
21 performance. Further, most models were trained on small datasets in which case nonparametric
22 regression often performed best. No models were open-sourced, and most were subject-specific and
23 not validated on impaired populations. Future research should focus on developing open-source
24 algorithms using complementary physics-based and machine learning techniques that are validated
25 in clinically impaired populations. This approach may further improve estimation performance and
26 reduce barriers to clinical adoption.
27 Keywords: machine learning, hybrid estimation, wearable sensors, electromyography, inertial
28 sensor, regression, remote patient monitoring, joint mechanics
29

30 1. Introduction

31 Since the turn of the century, wearable sensors have experienced substantial technological
32 advancements that have reduced their size and power requirements, improved their wearability, and
33  increased the quality and types of data they capture. These improvements have allowed the
34 application of wearable sensors to important clinical challenges impacting human health. These
35  challenges include the development of novel digital biomarkers [1] that could be used for diagnosis,
36  prognosis, and clinical decision making in a variety of neurological [2,3], mental health [4,5], and
37  musculoskeletal [6-9] disorders.

38 In many cases, clinical evaluation using these biomarkers could be enhanced by also considering
39  remote observation made during a patient’s daily life (e.g., daily biomechanical variability is
40  clinically informative in persons with multiple sclerosis [2]). Recent research suggests remote
41  observations may differ than those made in the lab or clinic [10-12], and thus may provide additional
42 information for informing clinical decision making. Additionally, remote observation could be used
43  as an endpoint for assessing efficacy of interventions designed to target specific biomechanical
44 indices (e.g., using biofeedback to reduce knee loading [13]). Taken together, these developments
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45  suggest that remote observation of patient biomechanics during daily life is emerging as an important
46  tool for improving human health. Thanks to recent technological advancements, wearable sensors
47  are ideally positioned to enable remote patient monitoring. However, wearable sensors do not
48  necessarily provide direct measurement of the mechanisms underlying any particular clinical
49  condition. Previous research on the mechanistic origins of various diseases (e.g., musculoskeletal [14—
50  16], neurological [17]) motivate the incorporation of physically interpretable biomarkers as a part of
51  a comprehensive patient evaluation. These biomarkers, when observed continuously via remote
52 patient monitoring, may then directly inform an optimal clinical intervention [18-20]. In this review
53  we focus on the estimation of physically interpretable biomarkers for musculoskeletal and
54 neurological disorders which take the form of biomechanical time-series representing joint, segment,
55  and muscle kinetics and kinematics.

56  1.1. Physical Models

S7 The aforementioned biomechanical time-series may be determined from wearable sensor data
58  using established mathematical relationships governed by physical models. For example, strapdown
59  integration [21] of the angular rate signal from a segment attached gyroscope is a physics-based
60 estimate of segment orientation where an accompanying accelerometer and magnetometer may
61  provide the initial conditions and drift correction over time (e.g., see [6]). The development of sensor
62  fusion techniques for removing integration drift in orientation estimates has been (and continues to
63 be) a research focus [21,22]. Inertial sensor estimates of segment kinematics are sufficient to estimate
64  joint kinetics during open-chain tasks using an inverse-dynamics approach given estimates of
65  segment inertial and geometric parameters [23]. However, additional sensors are needed for closed-
66  kinetic chain tasks since then external contact forces must be considered (i.e. measured).
67  Alternatively, wearable surface electromyography (SEMG) sensors may inform a solution for the net
68  joint moment using Hill-type muscle models and thus also joint and/or segment kinematics for open-
69  chain tasks via forward-dynamics [24-26]. However, as noted in [27], it is quickly realized that the
70 number of sensors required to inform a physical model is inhibitive since the muscle activation of
71 every muscle must be estimated thus limiting the use of these approaches for remote patient
72 monitoring.

73 One solution is to simplify the physical model such that a reduced number of sensors can be
74 used to measure all required independent variables. Many techniques for simplification have been
75  proposed and are context dependent. For example, sacral accelerations have been assumed to
76  represent those of the center of mass enabling a single inertial sensor estimate of ground reaction
77  force [28]. For muscle force estimation, muscle contraction dynamics are often simplified to comply
78  with a lumped-parameter Hill-type model as opposed to a continuum model [29-32]. Further, it is
79  common practice to assume unobserved muscle states (e.g. activation, tension) can be computed in
80  terms of a single or multiple synergistic muscles whose states are available (e.g. via SEMG) [24,27,33].
81  Recently, Dorschky et al. (2019) present a physics-based technique for estimation wherein the states
82  of a neuromusculoskeletal model (including the biomechanical time-series of interest) were
83  optimized to agree with measured sensor data using trajectory optimization [34]. While the results
84  were promising, the model was only two-dimensional, requires an inertial sensor on each of seven
85  segments, and was further limited by computation time (mean CPU time was 50 + 26 min across 60
86  optimizations where each optimization had 10 strides). The model simplifications and unwieldy
87  sensor arrays required for physical modeling approaches motivate alternative methods for estimating
88  biomechanical time-series, and especially for remote patient monitoring.

89  1.2. Regression Techniques

90 Regression models that capture the relationship between wearable sensor inputs and
91  biomechanical time-series outputs may provide an opportunity to further simplify the wearable
92  sensor system required for remote patient monitoring. These models are developed from a large
93  number of observations through a process that may be referred to as system identification [35],
94  function approximation [36], or machine learning [37], depending on the field. It is important to note,
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95  however, that many of the physics-based techniques also regress model parameters from a large

96 number of observations [32], wherein that process is often referred to as calibration, and the

97  parameters being regressed are physical constructs based on the derivation of the model from first

98  principles (e.g. tendon slack length, muscle activation constants [24]). The current review will focus

99  on the use of non-physical regression as a means for estimating joint, segment, and muscle kinetics
100  and kinematics from wearable sensor data.

101

102  1.3. Relevant Reviews

103 Techniques for estimating biomechanical time-series from wearable sensor data have been the
104  focus of previous literature reviews. Faisal et al. (2019) recently provided a high-level overview of
105  sensing technologies, applications of wearables in monitoring joint health, and analysis techniques
106  [38]. Several reviews are available concerning the use of Hill-type muscle models for sSEMG informed
107  muscle force estimation which can be used to estimate kinematics via forward-dynamics
108 [26,27,32,39]. Dowling (1997) mentions the potential use of neural networks in this context but does
109  not review any relevant literature. Sabatini (2011) provides an overview of the use of inertial sensors
110  for estimating segment and joint kinematics using physics-based techniques and sensor fusion
111  algorithms[21]. Ancillao et al. (2018) review physics-based techniques for estimating ground reaction
112 forces and moments using wearable inertial sensors [40]. While these previous reviews capture the
113 current state of physics-based techniques well, there has not been a comprehensive review of
114 regression techniques for estimating joint, segment, and muscle kinetics and kinematics from
115  wearable sensor data. Schéllhorn (2004) provides a relevant review, but focuses only on neural
116 networks and, as will be seen later, none of the articles they reviewed met the inclusion criteria
117  outlined below and thus we also include studies using neural networks in this review [41]. Shull et
118  al. (2014) review the applications of wearable sensors for clinical evaluation and for biofeedback, but
119  they were only interested in gait, did not focus on the estimation technique, and none of the papers
120  they reviewed used sEMG [42]. Caldas et al. (2017) review the application of adaptive algorithms for
121  estimating gait phase, spatiotemporal features, and joint angles [43]. While joint angles are relevant
122 to this review, Caldas et al. focus only on the use of inertial sensors and only mention three studies

Table 1. Search terms and the item pertaining to this review that they reflect.

Review Relevant Item Search Terms

regress* OR "machine learning" OR "artificial intelligence" OR
"statistical learning" OR "supervised learning" OR "unsupervised
learning" OR "neural network" OR perceptron OR "support vector" OR
"gaussian process"

Regression

AND

joint OR limb OR segment OR ankle OR knee OR hip OR wrist OR
elbow OR shoulder OR muscle

Biomechanical Time-Series AND

angle OR velocity OR acceleration OR moment OR torque OR force OR
kinematic* OR kinetic* OR biomechanics OR mechanics OR dynamics

AND

wearable OR accelerometer OR gyroscope OR electromyo* OR EMG
Wearable Sensors OR sEMG OR "inertial sensor" OR "inertial measurement unit" OR IMU
OR insole OR goniometer
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123 used to estimate joint angles; two of which are also included here. Finally, Ancillao et al. (2018) also
124 reviewed machine learning techniques for estimating ground reaction forces and moments [40]. Thus,
125  studies estimating only ground reaction forces and moments were excluded in this review.

126 The aim of this review was to characterize the use of regression algorithms to estimate
127  biomechanical time-series from wearable sensor data. A secondary aim was to develop a
128  classification method to group the prediction equations based on their technical similarities.

129 2. Methods

130 2.1. Search Strategy

131 The PubMed and IEEE Xplore databases were searched for relevant articles in August 2019.
132  Search terms were chosen to reflect the aims of the current review namely studies investigating (1)
133 regression of (2) human biomechanical time-series using (3) wearable sensor data (see Table 1 for
134 search terms pertaining to items 1-3). After duplicates were removed, the title and abstract of each
135  article was screened to determine if the full text would be reviewed.

136  2.2. Inclusion/Exclusion Criteria

137 Only peer-reviewed journal articles (no conference proceedings) written in English were
138  considered. Articles were included in the review if they met all criteria within the following three
139  categories:

140

141 (1) Sensor criteria: clear use of data for estimation from a sensor that is currently deployable as
142 a wearable. Studies investigating model inputs dependent on virtual wearable sensor data
143 derived from a non-wearable sensor were excluded. Studies using exoskeletons were
144 excluded if the wearable sensor is only feasibly deployed using the exoskeleton.

145

146 (2) Prediction criteria: use of non-physical regression (not classification, regressed parameters
147 must not be physical constructs). The estimated variable must have been a biomechanical
148 time-series describing either the kinetics or kinematics of a joint, segment, or muscle. Studies
149 were excluded if they estimated only grip or pinch forces unless the contact forces of each
150 involved segment were estimated separately. Finally, studies estimating only ground
151 reaction forces and moments were excluded as methods for this purpose have recently been
152 reviewed [40].

153

154 (3) Validation criteria: all studies reviewed must have reported the objective (i.e. numerical)
155 quantification of testing error using their estimation method. Studies were excluded if they
156 report statistics for the training error only or if the only description of performance was given
157 graphically. Studies utilizing inappropriate validation were excluded (e.g. one that could not
158 be repeated or one using an invalid gold standard for validation).

159  2.3. Data Analysis

160 All studies that met the inclusion criteria were characterized by the sample size, subject
161  demographics (sex, health status, age), wearable sensors (type, sampling frequency), biomechanical
162  variable estimated, tasks for which the estimation was validated, model characteristics, and
163  estimation performance. One aim of the current review was to summarize the various estimation
164  techniques and their performance. A detailed description of the methods and error statistics used in
165  each study is infeasible, so we grouped prediction equations post-hoc according to a grouping method
166  which distinguishes the different techniques for comparison (see Section 3.4). Further, we report
167  summary statistics which summarize the overall performance (e.g. range of root mean square error
168  across all observed tasks).
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Figure 1. Flow chart of article selection process. Of the 123 full-text reviewed articles, 77 were removed on the
basis of one or several exclusion criteria pertaining to the sensors used, the prediction approach, and/or the
validation procedure. See section 2.2 for details.

169  3.Results

170 A total of 46 articles met the inclusion criteria for full-text review out of 2,259 distinct articles
171  identified via database search and from external sources (Figure 1). There was a clear increasing trend
172 in the number of articles which met our review criteria published since the earliest identified in 1995

173  (Figure 2).

174 3.1. Subject Demographics

175 Across all participants used for validating the regression techniques, most were unimpaired
176  males (64%) followed by unimpaired females (29%) and impaired individuals (7%) (Figure 3). Three
177  studies validated their algorithm on just one person while only 11 studies validated their algorithm
178  on a sample size of greater than 10 participants (Figure 3). One study [44] did not report any
179  information concerning the subject sample (other than that they were normal subjects) and the largest
180  sample size for which an algorithm was validated was 33 (all unimpaired, 15 female) [45].

181  3.2. Wearable Sensors

182 Surface electromyography sensors were the most popular wearable sensors used (32 studies)
183  followed by inertial sensors (nine studies, four used magnetic/inertial measurement units, three used
184  inertial measurement units, and two used accelerometer only) and high density sSEMG (HD-sEMG)
185  (five studies). One study used an electrogoniometer in addition to SEMG [46] and two studies used
186  mechanomyography sensors in addition to SEMG [47,48]. Two studies used force sensitive resistors
187  to instrument insoles [49,50] and one of these used an additional load cell over the Achilles’ tendon
188  [50]. The average sensor sampling rate across all studies using SEMG was 2,288.8 Hz (range: 500 —
189 16,000 Hz) and was 303.75 Hz across the nine studies using inertial sensors (range: 50 — 1,500 Hz).
190  Grid sizes for HD-sEMG included 128, 160, and 192 with an average sensor sampling rate of 1,838.4
191 Hz(range: 1.0 - 2.048 kHz).
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Figure 2. Number of articles included in the review for each five-year bin. The oldest paper included in our
review was published in 1995.

192  3.3. Biomechanical Variables

193 Across all studies, the most frequently estimated biomechanical time-series was joint kinematics
194 (23 studies) followed by joint kinetics (16 studies), segment kinetics (seven studies), and segment
195  kinematics (five studies) (Figure 4). Of the 16 studies estimating joint kinetics, only three estimated
196  the intersegmental force. No studies estimated joint contact forces, individual muscle forces, or
197  muscle kinematics. Most studies focused on joint/segment biomechanics in the sagittal plane (87%),
198  followed by the frontal plane (46%), and transverse plane (33%) (Figure 4). Across all studies and
199  considering the major upper and lower extremity joints, the wrist joint received the most attention
200  (28%), followed by the knee (26%), the elbow (24%), the ankle (20%), the shoulder (15%), and the hip
201 (13%).

202  3.4. Prediction Equations

203  3.4.1. Prediction Equation Classification

204 One aim of the current review was to develop a classification method post-hoc allowing a high-
205  level comparison of the many different prediction equations used in the reviewed papers. The rest of
206  this section describes the classification we have developed for this comparison. We feel this method
207  Dbest groups the reviewed papers for an insightful comparison, but it is by no means unique. The
208  description of all techniques used in the reviewed papers according to this classification is presented
209  in Table 2 in addition to some other study characteristics for a succinct overview of all reviewed
210  papers. It is recommended that the description of the classification system be read first to best
211  understand the comparison in Table 2.

212 We use x(t) € R? to denote the d-dimensional input used to estimate the m-dimensional
213  output (biomechanical time-series) y(t) € R™ at time t. All reviewed papers presented regression
214  algorithms to determine the parameters of a prediction equation f:R* - R™ which defines the
215  explicit mapping x(t) — y(t). In the context of this review, the i*" element x;(t) of the input x(t)
216  may be a wearable sensor measurement after some pre-processing step (called an exogenous input) or
217  astate variable being fed back. This state variable may be either an element y;(t — t;) of a previous
218  output y(t —t,) (i.e. at time t —tg, t; > 0), or some other internal state (e.g. an output from a
219  hidden neuron prior to the output layer in a neural network). All prediction equations reviewed in
220  this paper use exogenous inputs. In this review, we use the term feedback to refer to models which
221  also use output and/or internal state variable feedback. For example, herein Elman networks [51],
222  long-short term memory (LSTM) neural networks [52,53], and non-linear/linear autoregressive (with
223  exogenous inputs) models [48,54] are all considered to have a feedback structure.
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Figure 3. Characteristics of the samples used for model training and validation: sample sizes (a) and the
proportion of unimpaired males, unimpaired females, and impaired individuals represented in those

samples (b).

224 In general, an exogenous input x;(t) will be either the value of a sensor time-series s at time ¢,
225  s(t), or a discrete feature which describes s over some finite time interval. Note that s(t) may be
226  the raw sensor signal itself or after some pre-processing step. For example, in this review, we classify
227  the value of an sSEMG envelope at some time instant as a time-series input, even though this value
228  may depend on previous (or future) raw sSEMG samples. Similar to system theory, we use the term
229 dynamic to refer to models which use past exogenous inputs, for example x;(t — t;) for tg > 0, to
230  estimate y(t) at time t. Note the difference between what we call a dynamic structure versus a
231 feedback structure is that dynamic refers to the use of past exogenous inputs whereas feedback refers to
232 the use of past outputs and/or internal state variables as a part of the input. We further classify discrete
233 exogenous inputs as time-domain (TD) if computed in the time-domain (e.g. root mean square value)
234  and frequency-domain (FD) if computed in the frequency-domain (e.g. Fourier coefficients). We also
235  report which studies first decomposed the sSEMG into motor unit action potentials (MUAPs) from
236  which time domain (MUAP-TD) or frequency domain (MUAP-FD) discrete features were extracted.
237 Previous efforts to classify prediction equations have identified two classes, (1) a mixture of
238  linear models and (2) a weighted sum of basis functions, into which a wide range of techniques can
239  be classified [55]. We found that all prediction equations used in the studies reviewed herein can be
240  viewed as a weighted sum of basis functions (where the weight of any one particular basis function
241  is not restricted to be constant as in [55]). Given this general perspective, we identified a three-class
242  classification for grouping the techniques used in each of the 46 reviewed papers: (i) polynomial
243  mixtures (P™), (ii) neural networks (NN), and (iii) nonparametric regression (NP).

244 The P" class is viewed as a special case where the basis functions are strictly n'"-order
245 polynomials, n € N. Often, models are classified as either linear or non-linear, but here we consider
246  both first-order polynomial mixtures (n = 1) and higher order polynomial mixtures (n > 1) as sub-
247  classes of P". This is because a first-order linear model may use features which are non-linear
248  transformations of raw sensor signals. For example, consider a model using the SEMG amplitude at
249  time t (denoted by x(t)) for estimation. Then the prediction equation y(t) = a,x(t) + a,x?(t), for
250  coefficients ay,a, € R, may be interpreted as a linear model with two features as inputs (namely
251  sEMG amplitude and squared sEMG amplitude) or as a 2nd order polynomial with a single input (i.e.
252 sEMG amplitude). To improve clarity, we report both the polynomial model order and a description
253 of the features used for estimation in Table 2. Prediction equations belonging to the P™ class in this
254  review include those resulting from Gaussian mixture regression [56], lasso [57] and ridge [58]
255  regression, and an ensemble of polynomials [58] among others.
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Figure 4. Description of the biomechanical variables estimated across all reviewed studies. The top row of
figures illustrates the percentage of studies that estimated joint kinematics (a), joint kinetics (b), segment
kinetics (c), and segment kinematics (d) and the bottom row of figures are radar plots illustrating the number
of studies estimating the major upper and lower extremity joint kinematics (blue) and kinetics (red) in the
sagittal (e), frontal (f), and transverse (g) planes. No studies estimated muscle forces or joint contact forces.

256 The NN class is viewed as a special case where the basis functions are neural networks. This
257  formulation allows for both radial basis function networks [59] and an ensemble of networks [60] as
258  the final prediction equation.

259 The NP class refers to models which require access to all training data when making predictions
260 (as defined in [36]). All NP prediction equations in this review are either linear smoothers [36,61] or
261  (kernelized) support vector regression (SVR). Linear smoothers express the estimated output for a
262  test input as a linear combination of all training targets. These include the prediction equations
263  resulting from Gaussian process regression [48,62], kernel ridge regression [58], kernel smoothers
264  [63,64], and k-nearest neighbors regression [65].

265

266  3.4.2. Descriptive Statistics of Prediction Equations

267

268 Neural networks were the most popular model (33 studies, 72%) followed by polynomial

269  mixtures (14 studies, 30%) and nonparametric regression (seven studies, 15%) (Figure 5). Of the 14
270  polynomial mixtures, 12 were first-order (linear models) of which nine used time-series inputs. Time-
271  series inputs were used more often (72% of studies) than discrete features (33% of studies). Across
272 the 15 studies using discrete features as inputs, 13 contained time-domain features, three contained
273  frequency-domain features, and three studies estimated the decomposition of the raw sEMG signals
274  into individual MUAPs before computing discrete features. Nine studies used a dynamic structure
275  and nine studies used a feedback structure. Seven studies used principal component analysis as an
276  unsupervised feature reduction method. Most studies present subject-specific models (80%) (Figure
277  5). No final prediction equations developed in any studies were open-sourced, but one paper [66]
278  provided open-source code for their MUAP decomposition algorithm. Table 2 provides an overview
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279  of the prediction equations used in each study as well as a summary statistic summarizing estimation
280  performance.

281 4. Discussion

282 Remote monitoring of patient segment, muscle, and joint kinematic and kinetic time-series has
283  been established as an important component of digital health. Practical limitations in the number of
284  sensors that can be deployed simultaneously to a given user motivate the pursuit of regression-based
285  approaches. Thus, the primary aim of this review is to summarize relevant developments in the use
286  of regression for estimating these biomechanical time-series. This review is timely given the increase
287  in relevant studies since the turn of the century (Figure 2) and the limitations of other systematic
288  reviews in the area. While many different techniques were observed since the first relevant method
289  published in 1995, there are some common themes consistent across studies which we discuss below.
290  Additionally, we discuss challenges concerning the practical implementation of the reviewed
291  methods and common characteristics of the techniques that provided the best performance to provide
292  possible directions for future work. In particular, we discuss how incorporating domain knowledge
293  often improved performance and the implications for hybrid estimation (i.e. using both physics-
294  based and machine learning techniques in concert). Note that our identification of techniques that
295  provided the best performance was not based on a comparison of methods between the studies
296  reviewed herein. Instead we draw conclusions concerning techniques that led to improved
297  performance only where those conclusions were inferred within individual studies that report an
298  appropriate statistical comparison.

299  4.1. Overview of Techniques

300 Neural networks were the most popular regression model. Most incorporated a 3-layer feed
301 forward neural network (non-recurrent, single hidden layer) [47,50,57-59,62,65,67-81] and differed
302 based on the choice of activation function and/or number of hidden neurons. The number of hidden
303  neurons in the NN models reviewed was usually optimized over a set of predefined values
304 [46,47,51,54,58,62,65,71,73,75-78,82,83] but sometimes not [37,50,68-70,72]. Two papers considered an
305  ensemble of networks. Koike and Kawato (1995) trained two task-specific NNs (one for postural
306 activities and the other for dynamic) and a gating network which provided the weights for linearly

I Subject Extrapolation a5
200 [ I1Subject Specific [l Polynomial Mixture
a0t [INeural Network
Il Nonparametric
G5t
=]
2
0 20¢
S5}
s
210}
5 L
80%
0
P NN NP
(a) (b)

Figure 5. Characteristics of the prediction approach across all studies: (a) percentage of studies estimating
biomechanical time-series for subjects whose data were not included in the training set (subject extrapolation,
purple) vs. subject-specific models (yellow) and (b) number of studies utilizing polynomial mixture (IP),
neural network (NN), and non-parametric regression (NP). See section 3.4.1. for details concerning the model
classification.
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307  combining the joint torque estimates from the two task-specific NNs [60]. Ding et al. (2017) utilized
308  an unscented Kalman filter for combining two NNs to estimate elbow joint angle and upper arm
309  orientation [83] wherein a recurrent NN trained using sEMG data with reduced information
310  redundancy (using a custom reduction approach) was used to model the time-update equation and
311  asecond NN trained to estimate a redundant SEMG time-series was used as the measurement-update
312  equation. Convolutional and long-short term memory NN (CNN and LSTM respectively) were first
313  used in 2018. Xia et al. (2018) found that an LSTM in series with a CNN (C-LSTM) outperformed a
314  CNN alone for estimating hand position during general open-chain tasks [52]. Likewise, Xu et al.
315  (2018) found that C-LSTM outperformed LSTM alone which outperformed CNN alone (nRMSE:
316  8.67%,9.07%, and 12.13% respectively) for estimating contact forces at the distal forearm and was one
317  of the few studies to use a leave-one-subject-out validation approach [53].

318 Polynomial mixtures were the next most popular model and of these, first order polynomials
319  were most common. Consideration of simple linear models is motivated by an observed relationship
320  between sEMG amplitude and muscle force, especially at lower force levels. However, to increase
321  muscle force, additional motor units are recruited and/or stimulation frequency increases which
322  along with heterogenous activation within a muscle and load sharing between muscles makes this
323  relationship non-linear [27,32]. Some reviewed papers compared linear models (P!) to both neural
324 networks [57,58,75] and nonparametric regression [48,57,58]. Although between model comparisons
325 varied and two of these four studies only considered isometric tasks [57,75], the NN and NP
326  performances were no different than those from linear models. Comparisons have also been made
327  between first order and higher order polynomial mixtures. It was shown in [84] that linear models
328  performed equally as well as second order models for estimating lumbo-sacral joint torque using
329  sEMG and Clancy et al. (2006) show that superior SEMG amplitude estimation techniques (e.g.
330  whitening, multi-channel) can improve linear models [35]. Alternatively, Clancy et al. (2012) show
331  that 2nd or 3 order polynomials outperformed 1st and 4t order models (with regularization and
332  optimal dynamic orders) for estimating isometric elbow joint torque using SEMG inputs [45]. A few
333  studies considered an ensemble of polynomials. Michieletto et al. (2016) used Gaussian mixture
334  regression, which can be shown to be a linear mixture [55], to estimate knee flexion/extension angle
335  using sEMG inputs [56]. Hahne et al. (2014) used degree-of-freedom-specific linear models to
336  estimate wrist joint angle and linearly combined their estimates using weights determined by a
337  logistic regression model trained to classify the degree-of-freedom of the movement (the weights
338  were the posterior class probabilities) [58].

339 Nonparametric regression was used least frequently. This may be due to the amount of data
340  necessary to compute an estimate given the nonparametric models used in the reviewed studies
341  (although reduction methods exist [36]). While this may be prohibitive for real-time applications (e.g.
342 for prosthetic control [58]) it may still be a feasible method for remote patient monitoring applications
343  where data can be stored locally during the day and processed at a later time. Linear smoothers were
344 the most popular nonparametric regression. The first study to use nonparametric regression in the
345  proposed context was in 2008 where the Nadaraya-Watson estimator, a kernel smoothing technique,
346  was used to estimate lower extremity joint angles using IMU data [63]. Goulermas et al. (2008) built
347  upon this model by incorporating an additional term in the Gaussian kernel intended to accentuate
348  or attenuate a training target's contribution to the final estimate according to a custom pattern
349  similarity index [64]. Several papers noted the advantage of nonparametric regression for small
350  training sets. For example, Ngeo et al. (2014) show Gaussian process regression outperformed a
351  neural network in estimating finger joint angles using SEMG data, especially for smaller data sets
352  [62]. Similarly, Hahne et al. (2014) found that kernel ridge regression outperformed a neural network
353  for both a reduced training set and when reducing the number of SEMG channels of a high-density
354  array (from 192 to 12 - 16) [58].

355  4.2. Concerns for Practical Implementation

356 Remote patient monitoring and myoelectric prosthetic control were the two most common
357  applications used to motivate the many different techniques reviewed which indicates that eventual
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358  users of these systems are expected to present with clinical impairment. However, our results show
359  that most studies do not validate their estimation techniques on impaired individuals (Figure 3).
360  Evaluating algorithm performance on unimpaired populations is certainly useful for algorithm
361  development as it reduces extraneous variables and simplifies study recruitment and retention
362  efforts. Nevertheless, these algorithms need to be deployed to impaired populations and, while some
363  studies present improved or equal performance for impaired individuals, many show performance
364 decreases. Thus, caution should be taken when considering how well a technique will work when
365  deployed for a population on which it has not been validated. This clearly applies for a model trained
366  onhealthy participants but deployed to participants with impairment (though in some cases the drop
367 in performance is minimal [85]). However, one also cannot assume that a model trained and tested
368  on impaired participants will have identical performance characteristics as the same model trained
369  and tested on healthy participants.

370 In addition to generalizing performance across populations, more research is needed to better
371  understand how these regression models generalize across individuals and tasks. The majority of
372  studies (80%) developed subject-specific models (Figure 5) and only 33% of studies explored task
373  extrapolation. The latter may be less of a barrier to implementation since in practice task identification
374 will likely be a part of the pipeline for automated analysis [8]. Thus, task specific models could be
375  selected following task identification. However, given the approaches reviewed herein, subject-
376  specific models require every user to be observed in-lab for model training. Further, the observation
377  sets for model training must be broad enough in scope (e.g. multi-speed, multi-load) so that they can
378  be confidently applied for estimation in unconstrained environments. These requirements
379  substantially limit the scalability of these solutions for remote patient monitoring. Subject-general
380  models may be one of the more difficult challenges to overcome in the future as they appear to
381  frequently result in performance decreases [59,63,64,67]. Intuitively, this may indicate that current
382  regression models are learning person-specific patterns as opposed to generalizable phenomena. This
383  may be a result of the small sample sizes used for model training in many of the reviewed studies.
384  To fully realize the potential of regression techniques for estimating biomechanical time-series, future
385  work should incorporate observations from impaired populations in their training and validation
386  sets and larger sample sizes to foster learning of generalizable phenomena.

387 Deployment of many of the reviewed techniques is further complicated by hardware limitations.
388  Of particular concern are the battery capacity and memory constraints of current wearables. Of the
389  more popular wearable sensors, gyroscopes are notorious for limiting long-term capture due to their
390  power requirements and would thus limit immediate application of several methods reviewed
391 [37,63-65,67-69]. Alternatively, accelerometers and sEMG are able to provide continuous recording
392  for at least 24-hours with current battery technology. The use of SEMG for remote monitoring is less
393  common than accelerometry and has been used primarily for quantifying indices of physical activity
394  [86-89]. Recent efforts have estimated muscle activation time-series during walking using methods
395  similar to those used to estimate muscle force using Hill-type muscle models [8,90]. This pre-
396  processing step was used by several reviewed papers suggesting they may be practically deployed.
397  However, the sEMG sampling frequency used in many of the reviewed studies (500 Hz to 16 kHz)
398  was much higher than what has been used for remote monitoring (10 — 250 Hz). It is currently
399  unknown to what extent estimation performance is influenced by sSEMG sampling frequency. Future
400  research should explore these limitations in search of hardware and algorithmic solutions that are
401  practically deployable for remote patient monitoring.

402 An additional practical concern is the number of wearable sensors required for the reviewed
403  algorithms. Several studies considered the effect of reducing the number of sensors on estimation
404  performance. Clancy et al. (2017) present a backward stepsize selection method for reducing the number
405  of necessary sensors [91]. They show that additional sensors beyond four (up to 16) provided no
406  statistically significant advantage for estimating degree-of-freedom-specific wrist joint kinetics. This
407  reduction method was later used by Dai et al. (2019) for a similar application where the reduction
408  approach generally outperformed pre-selected sensor locations [92]. Dai and Hu (2019) present a
409  method for reducing a high-density grid of 160 SEMG electrodes down to an 8x8 grid, however, the
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410  8x8subset was finger specific (for estimating finger kinematics) [93]. Future work in the development
411  of regression approaches for estimating biomechanical time-series should incorporate analysis of the
412  effect of reducing instrumentation complexity (i.e., reducing the number and types of sensors
413  required) on estimation performance.

414 Finally, only one study provided open-source code for any part of their methodology [66]. The
415  code was for performing the MUAP decomposition of the raw sEMG signals and not the actual
416  regression model. Open-sourcing subject-general models will allow non-specialized research teams
417  without expertise in engineering or computer science to utilize these methods for clinical purposes.
418  Further, it will allow 3t party validation; a necessary component prior to practical deployment and
419  to promote confidence from the public in the clinical utility of these tools. Open-source data as well
420  asopen-source code in future studies would help speed the pace of development of these techniques.

421  4.3. Incorporating Domain Knowledge

422 While we excluded physics-based techniques from the current review, several papers
423  incorporated domain knowledge into their approach (e.g muscle and neural physiology, rigid body
424 dynamics) which seems to improve performance. For example, pre-processing of the raw sSEMG
425  signals to optimally estimate SEMG amplitude was often motivated by an understanding of muscle
426  activation dynamics. State-of-the art estimation incorporates signal whitening and the use of multiple
427  channels (multiple sensors per muscle) [32,35,94]. These techniques have been shown to improve
428  estimation performance compared to other methods [35,45]. Most papers used the standard highpass
429  filter, rectify, lowpass filter processing to estimate SEMG amplitudes and a broad range of lowpass
430  filter cutoff frequencies were used [15,46,48,53,54,56,57,62,68,70,71,73,84,92,95]. In addition to
431  enveloping techniques, some incorporate the fact that the observed sEMG is the superposition of
432  many MUAPs. Three studies (all since 2018) computed discrete features as model inputs after first
433  performing MUAP decomposition (Table 2). Given their results, Dai and Hu (2019) recommend the
434  MUAP decomposition over standard enveloping techniques [93]. Sun et al. (2018) identified shape-
435  based clusters (K-means, 5 < K < 20) of MUAPs extracted from the biceps brachii SEMG and suggest
436  the different clusters represent different motor units [66]. The final estimation can be seen as a scaling
437  of asingle feature related to the number of activated motor units which they use to represent firing
438  rate (see eq. (10) in [66]). Thus, the pre-processing of the raw sEMG signal, to estimate both SEMG
439  amplitude and MUAPs, based on its physiological origin [32,94] may have contributed to improved
440  estimation performance.

441 An electromechanical delay (delayed increase in muscle force following neural excitation) is also
442  known to characterize muscle contraction dynamics [32]. This phenomenon may provide a
443  physiological justification for the improvements in performance associated with the use of a dynamic
444 model structure allowing previous SEMG values to have lasting effects on the estimated output. Total
445  delay was sometimes optimized using a grid search (625 — 875 ms [71], 50 — 150 ms [54]) and
446 sometimes not (130 ms [84], 0.5 ms [44], 488.3 ms [92]). Clancy et al. (2006) found that performance
447  increased with greater total time delay up to about 10 or 15 samples (i.e. 244.1 or 366.2 ms) [35].
448  Likewise, Clancy et al. (2012) tried between 1 and 30 sample delays and found that lesser time delays
449  (namely total delay < 5 samples or 122.1 ms) resulted in poorer performance [45]. Overly large delays
450  also resulted in poor performance, especially for high polynomial orders which they attribute to
451  overfitting. The best total delays (439.5 ms — 683.ms) were dependent on polynomial order and the
452  regularization method. Ngeo et al. (2014) modeled the sEMG to activation dynamics using the
453  method described in [96] and optimized the electromechanical delay. Optimal values were person-
454 specific (between 39.6 — 75 ms) and they show that incorporating electromechanical delay into their
455  activation model improved performance compared to neglecting it [62]. Some of the optimal delays
456  reported in the reviewed studies are larger than what is reported elsewhere in the literature (30 — 150
457  ms) [32]. One explanation may be that in addition to the delayed effect of neural excitation, more
458  information concerning the sSEMG time-history could help a regression algorithm capture some sub-
459  task related neural control pattern which may be inferred from a sufficiently large (i.e. > 150 ms)
460  window of time. The muscle synergy hypothesis may provide a physiological basis for expecting said


https://doi.org/10.20944/preprints201911.0006.v1
https://doi.org/10.3390/s19235227

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 November 2019 d0i:10.20944/preprints201911.0006.v1

13 of 24

461  pattern to exist [97]. This concept was mentioned in several reviewed papers and thus we pay it
462  special attention next.

463  4.3.1. Reference to Muscle Synergies

464 Several papers referred to the muscle synergy hypothesis in the development of their models
465  and in the discussion of its performance. The muscle synergy hypothesis provides a potential
466  explanation of how the central nervous system accomodates redundancy in motor control [98]. The
467  theory suggests that the activation time-series of a given muscle is a linear combination of a small set
468  of basis waveforms. Non-negative matrix factorization (NMF) is an algorithm commonly used in
469  muscle synergy analysis to optimally determine the basis functions and the coefficients for linear
470 combination given a set of muscle SEMG or activation time-series [97-99]. Jiang et al. (2009) used
471  these techniques directly in their estimation and show that for estimating contact forces at the hand,
472  their method using NMF is nearly unsupervised in that target force values are not needed and is only
473  supervised in the sense that the degree-of-freedom must be known for model training [75].

474 Others have referred to muscle synergies as a possible explanation for the observed accuracy of
475  some regression techniques [35,71,81,82]. The synergy hypothesis indicates that the activity of all
476  muscles contributing to a given joint torque may be approximated given a common and observable
477  subset of SEMG observations. While the estimation of muscle activation time-series was not included
478  in the current review, we note that Bianco et al. (2018) explored the possibility of estimating
479  unmeasured muscle activations from sEMG time-series measured from eight different muscles using
480  the traditional linear combination of basis waveforms formulation of muscle synergies [100]. To the
481  authors’ knowledge, no studies have regressed unmeasured muscle activations using a reduced
482  number of wearable sensors. In this formulation, the function being identified in the regression would
483  effectively model the synergistic relationship between muscles. Such an approach might enable
484  estimated activations to inform a complete set of Hill-type muscle models crossing the joint of interest
485  to estimate muscle force. Wang and Buchannan (2002) tried a similar approach wherein a neural
486  network was trained to learn the muscle activation dynamics (intramuscular EMG to muscle
487  activation model) using estimated torque error to drive parameter adaptation in the learning process
488  [101]. However, they estimated activations only for those muscles with measured intramuscular
489  EMG. Thus, advances in modeling the observed synergistic behavior of muscle activations may prove
490  useful for improving estimation of biomechanical time-series with a minimal number of wearable
491  sensors.

492 The muscle synergy hypothesis suggests that an observed set of muscle activation or sEMG
493  time-series carries redundant information and can be explained by a lower dimensional structure
494  (e.g. less than the number of sensors available). Regularization is a common technique in machine
495  learning used to reduce model complexity and prevent overfitting, usually at the expense of training
496  error. Reducing the number of inputs by removing redundant information also reduces model
497  complexity and the muscle synergy hypothesis may provide a physiological basis for this
498  phenomenon. Clancy et al. (2012) compared ridge regression to their pseudo-inverse based
499  regularization wherein the reciprocals of singular values below some threshold were replaced with
500  zero [45]. The best ridge regression results were similar to the pseudo-inverse regularization,
501  however, optimal fits were less sensitive to changes in pseudo-inverse tolerances near the optimum
502  than they were to changes in the ridge penalty hyperparameter suggesting the pseudo-inverse
503  technique may be easier to tune. This technique, also used in [91] and [92], along with self-organizing
504  maps [74] and principal component analysis [53,58,76,78,81,95,102] are examples of unsupervised
505 feature reduction techniques. Chen et al. (2018) found that using a deep belief network to reduce 10
506 inputs to three outperformed the PCA approach for the same dimensionality reduction task [95]. This
507  might be considered a supervised dimensionality reduction (as would lasso regression [57]) as the
508  determination of the weights in the hidden neurons of the deep belief network are optimized so that
509  the final output best approximates the training set targets. Thus, although feature reduction is
510  common in machine learning for improving generalizability, it may be further justified on a
511  physiological basis given the assumption that a lower dimensional structure of the inputs exists.
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512  4.3.2. Towards a Hybrid Approach

513 A general conclusion from these observations is that clever incorporation of domain knowledge
514  in regression techniques may improve performance. In the papers we reviewed, this was mostly by
515  way of sensor signal pre-processing, feature engineering, and model structure (e.g. feedback or
516  dynamic). Incorporation of domain knowledge in regression has been suggested for other
517  biomechanics applications [103], and as shown in [36], a good understanding of system dynamics can
518  directly inform kernel structure in Gaussian process regression. For these reasons, hybrid methods
519  using both physics-based and machine learning techniques in concert are being proposed in other
520 fields including climate sciences [104], GPS-inertial navigation [105], and general chaotic processes
521  [106]. As noted in a recent editorial [107] concerning climate modeling, “The hybrid approach makes
522  the most of well-understood physical principles such as fluid dynamics, incorporating deep learning
523  where physical processes cannot yet be adequately resolved.” The general approach observed in
524  many of these techniques are generalizable and applicable beyond specific scientific disciplines and
525  thus may prove beneficial for remote patient monitoring. One approach might be to regress an
526  unobserved internal state for which the physical relationship with observed measurements is either
527  not well understood or not fully informed (e.g. not enough sensors) and then to drive a physical
528  model using the estimated internal state variable. For example, this was done in [101] where the
529  authors’ chose to model muscle activation dynamics using a neural network since they determined
530  these dynamics to be the least well understood. A second approach might be the fusion of a regression
531  estimate and a physical model estimate. Along these lines, if uncertainties are modeled, the
532  parameters of the regression (or the physical model) may be adapted in real-time. Gui et al. (2019)
533  use a similar approach to remove the need to calibrate an EMG-torque model [108]. In the proposed
534  context this could be especially useful as it may be interpreted as real-time subject specification from
535  a general model. Further, it may enable the adaptation of a model to time-varying signal
536  characteristics (e.g. due to electrode displacement, changes in skin conductivity, specific spatial
537  position of inertial sensors) which may negatively affect estimation [57]. Future developments in
538  hybrid methods that take advantage of the strengths of both physical models and machine learning
539  may help realize the maximum potential of remote patient monitoring.

540 5. Conclusion

541 Regression techniques present an alternative approach to physical models for estimating
542  biomechanical time-series using wearable sensor data. These methods could be transformative for
543  personalizing healthcare interventions as they allow the monitoring of a patient’s biomechanics
544 continuously and in unconstrained environments. The aim of this review was to summarize relevant
545  regression techniques in this context to imply directions for future research concerning practical
546  implementation and improving estimation performance. Several reviewed studies found that
947  incorporating some form of domain knowledge resulted in better estimation accuracy. Advances in
548  this area along with open-source algorithms, validation in impaired populations, and consideration
549  of practical hardware limitations (e.g. battery capacity and memory) may expedite future
550  developments to make clinical implementation a reality. In summary, future work should consider
9551  the following:

552 = Development of methods using hardware specifications that can be implemented remotely
553 and for a full 24-hour capture

554 » Development of subject-general models or real-time calibration

555 » Development of hybrid machine learning and physics-based estimation

556 » Open-source algorithms

557 = Development of regression models for estimating muscle forces and joint contact forces
558 * Validation of models on impaired populations

559
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Table 2 Overview of the 46 reviewed papers.
Reference Sensors Variable Tasks Inputs Model Performance Summary
(year) (fs» max number) (location): plane(s)
Koike and Kawato [60] T (elbow): S _
(1995 SEMG (2 kHz, 10) ¢ (shoulded: F 1SO, OC TS NN (FB) CD: 0.89
5 “rya“ara(ylzgzr)‘ ctal. [44] SEMG (2 kHz, 1) 0 (elbow): S oc TS NN (dyn) RMSE < 15%
T (elbow): S
T (wrist): S
RMSE: 0.67 — 5.76 Nm, 0.64 — 5.62 Nm
Shih and Patterson [70] T (shoulder): S ) S o
(1997) sEMG (900 Hz, 4) 9 (elbow): S WCP TS NN RMSE: 4.78 - 13.76°, 4.73 - 14.33'
6 (wrist): S
6 (shoulder): S
van Dieén and Visser [84] .
(1999) sEMG (600 Hz, 6) T (lumbo-sacral): S 1SO, LOC TS P' (dyn) RMSE: 26 - 54 Nm, 49 — 160 Nm
0 (shoulder): S, F, T
. 6 (elbow): S
Au and Kirsch [71] . ; RMSE: 14.2 - 19.6°
(2000) sEMG (500 Hz, 6) 6 (shoulder). S, ET OC, LOC TS NN (dyn) RMSE: 8 - 17.2° (impaired subjects)
6 (elbow): S
Dlp‘et(rzoogg;l' (821 sEMG (1 kHz, 5) p (hand): T oc TS NN (FB) RMSE: 7.3 — 11.5%
Song and Tong [46] sEMG (1 kHz, 3) nRMSE: 4.53 - 8.45%
1] : L T FB
(2005) goni (1 kHz, 2) 7 (elbow): S 0C 5 NN (FB) nRMSE: 10.56 — 16.20% (SEMG only)
1 L.
¢ amé ; :) 351 SEMG (4096 Hz, 8) 7 (elbow): ISO TS P! (dyn) MAE: 7.3%
0 (ankle): S RMSE: 1.19 - 3.60°, 1.18 — 2.62 °
Dosen and Popovic [72] 6 (knee): S RMSE: 0.26 — 0.39 m/s?, 0.29 — 0.46 m/s?
(2008) 2D ACC (200 Hz, 4) 9 (hip): S MSw B NN (dyn) CC (6): 0.97 - 0.998, 0.97 — 0.998
p (hip joint center): S CC (p): 0.96 - 0.99, 0.91 —0.99
MAE: 1.69 —2.30°, 4.91 - 9.06°
Findlow et al. [63] 0 (ankle): S Normal MAE: 1.78 — 5.32° (reduced sensor array)
(2008) IMU (100 Hz, 4) 99 (t(;e‘?: SS Walk 15 NP (KS) CC: 0.93 - 0.9, 0.70 — 0.89
p): CC: 0.87 - 0.99 (reduced sensor array)
6 (ankle): S
Goulermas et al. [64] IMU (- 4) 0 (knee):S MSW TS NP (KS) CC: 0.97, 0.96, 0.83
(2008) )
6 (hip): S
| T (ankle): S CD: 0.54 - 0.84 (sEMG only)
Hahn and O'Keefe [73] SEMG (1 kHz, 7) 7 (knee): S Normal TS NN CD: 0.77 - 0.92 (SEMG with demographics &
(2008) ) Walk .
T (hip): S anthropometrics)
M”O"(‘;Oeot;l' (59 2D ACC (50 Hz, 2) § (forearm): S oc TS NN (RBF) CD: 0.841 — 0.998, 0.75 — 0.99, 0.03 — 0.88
Delis et al. [74] . Normal )
(2009) sEMG (1744.25 Hz, 2) 6 (knee): S Walk DISC (TD) NN (SOM) CC:0.59-0.84
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Jiang et al. [75] 1) NN 1) CD: 0.86
000, SEMG (1 kHz, 8) CF (hand) ISO DISC (TD) 2 pi 2 CD: 078
. nRMSE < 16% (MMG only)
Youn jrz‘gllg)‘m 471 iﬂ:ﬁg ((} llzgz ;; CF (hand) 1SO DISC (TD) NN nRMSE < 13% (SEMG only)
i nRMSE < 10% (sEMG + MMG)
1) P! 1) nRMSE: 2.88%
N 2) P! (lasso) 2) nRMSE: 2.83%
Ziai a“‘(izg/ﬁr)‘on 571 SEMG (1 kHz, 8) T (wrist): S IS0 TS 3) P! (LWPR) 3) nRMSE: 3.03%
4) NP (SVR) 4) nRMSE: 2.85%
5) NN (2L) 5) nRMSE: 2.82%
RMSE: 0.16 N
Nielsen et al. [76] RMSE: 0.10 N (impaired subjects)
o1 SEMG (1024 Hz, 7) CF (hand) IS0 DISC (ID) NN D: 003
CD: 0.82 (impaired subjects)
_ ISF (SC): S, F, T
de V“ezso’i;al' [68] l\gﬁch isf;z’ 1? ISF (AC):S, F, T LOC, ADL TS NN nRMSE: 7 - 17%
(2012) SEMG (1 kHz, 13) ISF (shoulder): S, F, T
]la“‘f;otlz])' (771 SEMG (2048 Hz, 7) 6 (wrist):S,F, T ocC DISC (TD) NN CD: 0.74-0.78
Muceli a(%l f;;rma (78] HD-sEMG 128 (2048 Hz, 2) 0 (wrist): S, F, T oc TS NN CD: 0.79 - 0.89
Howell et al. [49] T (ankle): S Normal 1 nRMSE: 5.9 - 17.1%
FSR (118 Hz, 12 T P
(2012) SR (118 Hz, 12) T (knee): S, F Walk S CC: 0.82-0.97
Clancy et al. [45] ) P!, P?, P3, P* nMAE: 4.65 - 6.38%
(2012) SEMG (4096 Hz, 2) 7 (elbow): S 150 15 (dyn) nMAE: 5.55 - 7.97 % (reduced training set)
Kamavuako et al. [79] . nRMSE: 6.1 - 13.5%
2013, SEMG (10 kHz, 6) T (wrist): S, T ISO DISC (TD) NN D 057 051
Jiang et al. [80] . CD: 0.63-0.86, 0.34 —0.74
(2013) SEMG (2048 Hz, 7) © (wrist): S, F, T oc DISC (TD) NN CD: 0.61 - 0.77, 0.46 — 0.59 (impaired subjects)
Farmer et al. [54] . Normal ) .
2o14) SEMG (1 kHz, 4) 0 (ankle): 4 Walk TS NN (FB, dyn) RMSE: 1.2 - 5.4
Ngeo et al. [62] . TS 1) NN (dyn) 1) CC: 0.71 (TS inputs only)
(2014) SEMG (2 kHz, 8) 9 (MCPs): S oc DISC (TD) 2) NP (GPR, dyn) 2) CC: 0.84 (TS inputs only)
1) P! (ridge)
Hahne et al. [58] . 2) P! 4) CD: 0.8 (reduced sensor array)
(014) HD-sEMG 192 (2048 Hz, 1) 9 (wrist): 5, F oc DISC(TD) 3)NN CD: 0.8 - 0.9 (range across all models)
4) NP (KRR)
. nRMSE: 7.04 — 13.78%
Jacobs a(;g 11:_3”15 (501 LO:?;SITE;Z) b 7 (ankle): S M?z‘:is ecsalf TS NN nRMSE: 8.72 - 16.52% (FSR only)
’ nRMSE: 20.47 - 46.02% (Load Cell only)
de Vries et al. [69] 4_10
(2016) MIMU (50 Hz, 4) ISF (shoulder):S,F, T  LOC, ADL TS NN nSEM: 4 -1 %

SEMG (1 kHz, 13)

nSEM: 3 - 21% (reduced sensor array)
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6 (ankle): S, F, T
Wouda et al. [65] el MSW, 1) NN 1) Mean Error: 7°
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Sensors: f;: sampling frequency (-- indicates f; not reported), ACC: accelerometer; IMU: inertial measurement unit (accelerometer + gyroscope); MIMU: IMU with magnetometer, HD-sEMG N: high density
grid of N surface electromyography electrodes, FSR: force sensitive resistors (instrumented insole); MMG: mechanomyography; goni: electrogoniometer

Variables: 7: net joint (muscle) moment; 6,6, :joint/segment angular position, velocity, acceleration; p,p, p: segment position, velocity, acceleration; ISF: joint intersegmental force; CF: joint/segment contact
force, AC: acromio-clavicular joint, SC: sterno-clavicular joint, MCPs: one or several of the metacarpophalangeal joints

Tasks: ISO: isometric; OC, LOC: open-chain, loaded open-chain; MSW: multi-speed walking; ADL: activities of daily living (brushing teeth, drinking, etc.); MSR: multi-speed running; sport: sport related
movements (e.g. jumping, kicking, throwing)

Inputs: TS: time-series; DISC: discrete; TD, FD: time-domain, frequency domain; MUAP: sSEMG data were first decomposed into motor unit action potentials from which discrete features were extracted
Model: FB: model exhibits output and/or internal state variable feedback (includes autoregression); dyn: dynamic (dependent on previous inputs); P™: mixture of n-th order polynomials; GMR: Gaussian mixture
regression; NN: neural network; RBFN: radial basis function network; SOM: self-organizing map; DBN: deep belief network; NP: nonparametric regression; KS: kernel smoother; GPR: Gaussian process
regression; SVR: support vector regression; KRR: kernel ridge regression; k-NN: k nearest neighbors regression; UKF: unscented Kalman filter; CNN: convolutional neural network, LSTM: long-short term
memory network, C-LSTM: CNN in series with LSTM; 2L: two hidden layers

Performance Summary: RMSE: root mean square error; nRMSE: normalized RMSE (e.g. RMSE in physical units normalized by maximum); MAE: mean absolute error; nMAE: normalized mean absolute error
(see nRMSE); nSEM: normalized standard error of measurement; CC: correlation coefficient; CD: coefficient of determination; italic performance metrics indicate results for task extrapolation (e.g. trained on normal
walking data, tested on fast walking data), bold performance metrics indicate results for subject extrapolation (all data in the test set were associated with different subjects than were data in the training set)
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