

1 *Review*

2 **Estimating Biomechanical Time-Series with** 3 **Wearable Sensors: A Systematic Review of Machine** 4 **Learning Techniques**

5 **Reed D. Gurchiek ¹, Nick Cheney ², and Ryan S. McGinnis ^{1*}**

6 ¹ M-Sense Research Group, University of Vermont, Burlington, VT, USA

7 ² Dept. of Computer Science, University of Vermont, Burlington, VT, USA

8 * Correspondence: ryan.mcginnis@uvm.edu

9

10 **Abstract:** Wearable sensors have the potential to enable comprehensive patient characterization and
11 optimized clinical intervention. Critical to realizing this vision is accurate estimation of
12 biomechanical time-series in daily-life, including joint, segment, and muscle kinetics and
13 kinematics, from wearable sensor data. The use of physical models for estimation of these quantities
14 often requires many wearable devices making practical implementation more difficult. However,
15 regression techniques may provide a viable alternative by allowing the use of a reduced number of
16 sensors for estimating biomechanical time-series. Herein, we review 46 articles that used regression
17 algorithms to estimate joint, segment, and muscle kinematics and kinetics. We present a high-level
18 comparison of the many different techniques identified and discuss the implications of our findings
19 concerning practical implementation and further improving estimation accuracy. In particular, we
20 found that several studies report the incorporation of domain knowledge often yielded superior
21 performance. Further, most models were trained on small datasets in which case nonparametric
22 regression often performed best. No models were open-sourced, and most were subject-specific and
23 not validated on impaired populations. Future research should focus on developing open-source
24 algorithms using complementary physics-based and machine learning techniques that are validated
25 in clinically impaired populations. This approach may further improve estimation performance and
26 reduce barriers to clinical adoption.

27 **Keywords:** machine learning, hybrid estimation, wearable sensors, electromyography, inertial
28 sensor, regression, remote patient monitoring, joint mechanics

29

30 **1. Introduction**

31 Since the turn of the century, wearable sensors have experienced substantial technological
32 advancements that have reduced their size and power requirements, improved their wearability, and
33 increased the quality and types of data they capture. These improvements have allowed the
34 application of wearable sensors to important clinical challenges impacting human health. These
35 challenges include the development of novel digital biomarkers [1] that could be used for diagnosis,
36 prognosis, and clinical decision making in a variety of neurological [2,3], mental health [4,5], and
37 musculoskeletal [6–9] disorders.

38 In many cases, clinical evaluation using these biomarkers could be enhanced by also considering
39 remote observation made during a patient's daily life (e.g., daily biomechanical variability is
40 clinically informative in persons with multiple sclerosis [2]). Recent research suggests remote
41 observations may differ than those made in the lab or clinic [10–12], and thus may provide additional
42 information for informing clinical decision making. Additionally, remote observation could be used
43 as an endpoint for assessing efficacy of interventions designed to target specific biomechanical
44 indices (e.g., using biofeedback to reduce knee loading [13]). Taken together, these developments

45 suggest that remote observation of patient biomechanics during daily life is emerging as an important
46 tool for improving human health. Thanks to recent technological advancements, wearable sensors
47 are ideally positioned to enable remote patient monitoring. However, wearable sensors do not
48 necessarily provide direct measurement of the mechanisms underlying any particular clinical
49 condition. Previous research on the mechanistic origins of various diseases (e.g., musculoskeletal [14–
50 16], neurological [17]) motivate the incorporation of physically interpretable biomarkers as a part of
51 a comprehensive patient evaluation. These biomarkers, when observed continuously via remote
52 patient monitoring, may then directly inform an optimal clinical intervention [18–20]. In this review
53 we focus on the estimation of physically interpretable biomarkers for musculoskeletal and
54 neurological disorders which take the form of biomechanical time-series representing joint, segment,
55 and muscle kinetics and kinematics.

56 1.1. Physical Models

57 The aforementioned biomechanical time-series may be determined from wearable sensor data
58 using established mathematical relationships governed by physical models. For example, strapdown
59 integration [21] of the angular rate signal from a segment attached gyroscope is a physics-based
60 estimate of segment orientation where an accompanying accelerometer and magnetometer may
61 provide the initial conditions and drift correction over time (e.g., see [6]). The development of sensor
62 fusion techniques for removing integration drift in orientation estimates has been (and continues to
63 be) a research focus [21,22]. Inertial sensor estimates of segment kinematics are sufficient to estimate
64 joint kinetics during open-chain tasks using an inverse-dynamics approach given estimates of
65 segment inertial and geometric parameters [23]. However, additional sensors are needed for closed-
66 kinetic chain tasks since then external contact forces must be considered (i.e. measured).
67 Alternatively, wearable surface electromyography (sEMG) sensors may inform a solution for the net
68 joint moment using Hill-type muscle models and thus also joint and/or segment kinematics for open-
69 chain tasks via forward-dynamics [24–26]. However, as noted in [27], it is quickly realized that the
70 number of sensors required to inform a physical model is inhibitive since the muscle activation of
71 every muscle must be estimated thus limiting the use of these approaches for remote patient
72 monitoring.

73 One solution is to simplify the physical model such that a reduced number of sensors can be
74 used to measure all required independent variables. Many techniques for simplification have been
75 proposed and are context dependent. For example, sacral accelerations have been assumed to
76 represent those of the center of mass enabling a single inertial sensor estimate of ground reaction
77 force [28]. For muscle force estimation, muscle contraction dynamics are often simplified to comply
78 with a lumped-parameter Hill-type model as opposed to a continuum model [29–32]. Further, it is
79 common practice to assume unobserved muscle states (e.g. activation, tension) can be computed in
80 terms of a single or multiple synergistic muscles whose states are available (e.g. via sEMG) [24,27,33].
81 Recently, Dorschky et al. (2019) present a physics-based technique for estimation wherein the states
82 of a neuromusculoskeletal model (including the biomechanical time-series of interest) were
83 optimized to agree with measured sensor data using trajectory optimization [34]. While the results
84 were promising, the model was only two-dimensional, requires an inertial sensor on each of seven
85 segments, and was further limited by computation time (mean CPU time was 50 ± 26 min across 60
86 optimizations where each optimization had 10 strides). The model simplifications and unwieldy
87 sensor arrays required for physical modeling approaches motivate alternative methods for estimating
88 biomechanical time-series, and especially for remote patient monitoring.

89 1.2. Regression Techniques

90 Regression models that capture the relationship between wearable sensor inputs and
91 biomechanical time-series outputs may provide an opportunity to further simplify the wearable
92 sensor system required for remote patient monitoring. These models are developed from a large
93 number of observations through a process that may be referred to as system identification [35],
94 function approximation [36], or machine learning [37], depending on the field. It is important to note,

95 however, that many of the physics-based techniques also regress model parameters from a large
 96 number of observations [32], wherein that process is often referred to as *calibration*, and the
 97 parameters being regressed are physical constructs based on the derivation of the model from first
 98 principles (e.g. tendon slack length, muscle activation constants [24]). The current review will focus
 99 on the use of non-physical regression as a means for estimating joint, segment, and muscle kinematics
 100 and kinematics from wearable sensor data.
 101

102 *1.3. Relevant Reviews*

103 Techniques for estimating biomechanical time-series from wearable sensor data have been the
 104 focus of previous literature reviews. Faisal et al. (2019) recently provided a high-level overview of
 105 sensing technologies, applications of wearables in monitoring joint health, and analysis techniques
 106 [38]. Several reviews are available concerning the use of Hill-type muscle models for sEMG informed
 107 muscle force estimation which can be used to estimate kinematics via forward-dynamics
 108 [26,27,32,39]. Dowling (1997) mentions the potential use of neural networks in this context but does
 109 not review any relevant literature. Sabatini (2011) provides an overview of the use of inertial sensors
 110 for estimating segment and joint kinematics using physics-based techniques and sensor fusion
 111 algorithms [21]. Ancillao et al. (2018) review physics-based techniques for estimating ground reaction
 112 forces and moments using wearable inertial sensors [40]. While these previous reviews capture the
 113 current state of physics-based techniques well, there has not been a comprehensive review of
 114 regression techniques for estimating joint, segment, and muscle kinematics and kinematics from
 115 wearable sensor data. Schöllhorn (2004) provides a relevant review, but focuses only on neural
 116 networks and, as will be seen later, none of the articles they reviewed met the inclusion criteria
 117 outlined below and thus we also include studies using neural networks in this review [41]. Shull et
 118 al. (2014) review the applications of wearable sensors for clinical evaluation and for biofeedback, but
 119 they were only interested in gait, did not focus on the estimation technique, and none of the papers
 120 they reviewed used sEMG [42]. Caldas et al. (2017) review the application of adaptive algorithms for
 121 estimating gait phase, spatiotemporal features, and joint angles [43]. While joint angles are relevant
 122 to this review, Caldas et al. focus only on the use of inertial sensors and only mention three studies

Table 1. Search terms and the item pertaining to this review that they reflect.

Review Relevant Item	Search Terms
Regression	regress* OR "machine learning" OR "artificial intelligence" OR "statistical learning" OR "supervised learning" OR "unsupervised learning" OR "neural network" OR perceptron OR "support vector" OR "gaussian process" AND
Biomechanical Time-Series	joint OR limb OR segment OR ankle OR knee OR hip OR wrist OR elbow OR shoulder OR muscle AND angle OR velocity OR acceleration OR moment OR torque OR force OR kinematic* OR kinetic* OR biomechanics OR mechanics OR dynamics
Wearable Sensors	wearable OR accelerometer OR gyroscope OR electromyo* OR EMG OR sEMG OR "inertial sensor" OR "inertial measurement unit" OR IMU OR insole OR goniometer

123 used to estimate joint angles; two of which are also included here. Finally, Ancillao et al. (2018) also
124 reviewed machine learning techniques for estimating ground reaction forces and moments [40]. Thus,
125 studies estimating only ground reaction forces and moments were excluded in this review.

126 The aim of this review was to characterize the use of regression algorithms to estimate
127 biomechanical time-series from wearable sensor data. A secondary aim was to develop a
128 classification method to group the prediction equations based on their technical similarities.

129 2. Methods

130 2.1. Search Strategy

131 The PubMed and IEEE Xplore databases were searched for relevant articles in August 2019.
132 Search terms were chosen to reflect the aims of the current review namely studies investigating (1)
133 regression of (2) human biomechanical time-series using (3) wearable sensor data (see Table 1 for
134 search terms pertaining to items 1-3). After duplicates were removed, the title and abstract of each
135 article was screened to determine if the full text would be reviewed.

136 2.2. Inclusion/Exclusion Criteria

137 Only peer-reviewed journal articles (no conference proceedings) written in English were
138 considered. Articles were included in the review if they met all criteria within the following three
139 categories:

140

141 (1) Sensor criteria: clear use of data for estimation from a sensor that is currently deployable as
142 a wearable. Studies investigating model inputs dependent on *virtual* wearable sensor data
143 derived from a non-wearable sensor were excluded. Studies using exoskeletons were
144 excluded if the wearable sensor is only feasibly deployed using the exoskeleton.

145

146 (2) Prediction criteria: use of non-physical regression (not classification, regressed parameters
147 must not be physical constructs). The estimated variable must have been a biomechanical
148 time-series describing either the kinetics or kinematics of a joint, segment, or muscle. Studies
149 were excluded if they estimated only grip or pinch forces unless the contact forces of each
150 involved segment were estimated separately. Finally, studies estimating only ground
151 reaction forces and moments were excluded as methods for this purpose have recently been
152 reviewed [40].

153

154 (3) Validation criteria: all studies reviewed must have reported the objective (i.e. numerical)
155 quantification of testing error using their estimation method. Studies were excluded if they
156 report statistics for the training error only or if the only description of performance was given
157 graphically. Studies utilizing inappropriate validation were excluded (e.g. one that could not
158 be repeated or one using an invalid gold standard for validation).

159 2.3. Data Analysis

160 All studies that met the inclusion criteria were characterized by the sample size, subject
161 demographics (sex, health status, age), wearable sensors (type, sampling frequency), biomechanical
162 variable estimated, tasks for which the estimation was validated, model characteristics, and
163 estimation performance. One aim of the current review was to summarize the various estimation
164 techniques and their performance. A detailed description of the methods and error statistics used in
165 each study is infeasible, so we grouped prediction equations *post-hoc* according to a grouping method
166 which distinguishes the different techniques for comparison (see Section 3.4). Further, we report
167 summary statistics which summarize the overall performance (e.g. range of root mean square error
168 across all observed tasks).

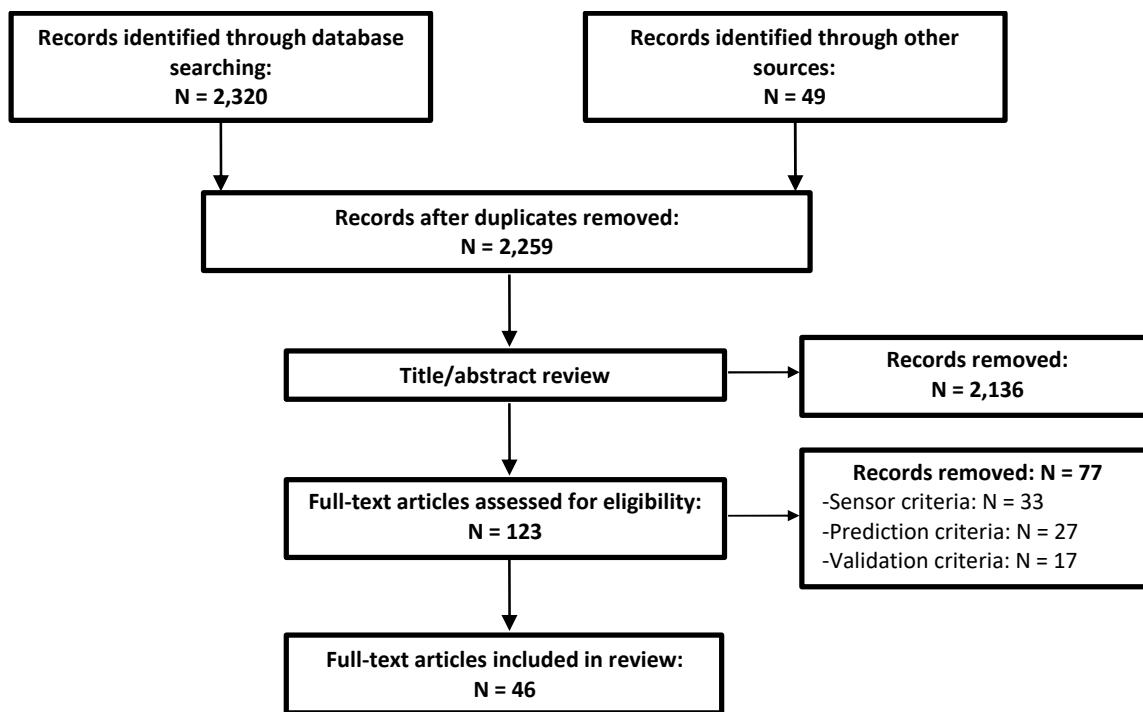


Figure 1. Flow chart of article selection process. Of the 123 full-text reviewed articles, 77 were removed on the basis of one or several exclusion criteria pertaining to the sensors used, the prediction approach, and/or the validation procedure. See section 2.2 for details.

169 3. Results

170 A total of 46 articles met the inclusion criteria for full-text review out of 2,259 distinct articles
 171 identified via database search and from external sources (Figure 1). There was a clear increasing trend
 172 in the number of articles which met our review criteria published since the earliest identified in 1995
 173 (Figure 2).

174 3.1. Subject Demographics

175 Across all participants used for validating the regression techniques, most were unimpaired
 176 males (64%) followed by unimpaired females (29%) and impaired individuals (7%) (Figure 3). Three
 177 studies validated their algorithm on just one person while only 11 studies validated their algorithm
 178 on a sample size of greater than 10 participants (Figure 3). One study [44] did not report any
 179 information concerning the subject sample (other than that they were *normal* subjects) and the largest
 180 sample size for which an algorithm was validated was 33 (all unimpaired, 15 female) [45].

181 3.2. Wearable Sensors

182 Surface electromyography sensors were the most popular wearable sensors used (32 studies)
 183 followed by inertial sensors (nine studies, four used magnetic/inertial measurement units, three used
 184 inertial measurement units, and two used accelerometer only) and high density sEMG (HD-sEMG)
 185 (five studies). One study used an electrogoniometer in addition to sEMG [46] and two studies used
 186 mechanomyography sensors in addition to sEMG [47,48]. Two studies used force sensitive resistors
 187 to instrument insoles [49,50] and one of these used an additional load cell over the Achilles' tendon
 188 [50]. The average sensor sampling rate across all studies using sEMG was 2,288.8 Hz (range: 500 –
 189 16,000 Hz) and was 303.75 Hz across the nine studies using inertial sensors (range: 50 – 1,500 Hz).
 190 Grid sizes for HD-sEMG included 128, 160, and 192 with an average sensor sampling rate of 1,838.4
 191 Hz (range: 1.0 – 2.048 kHz).

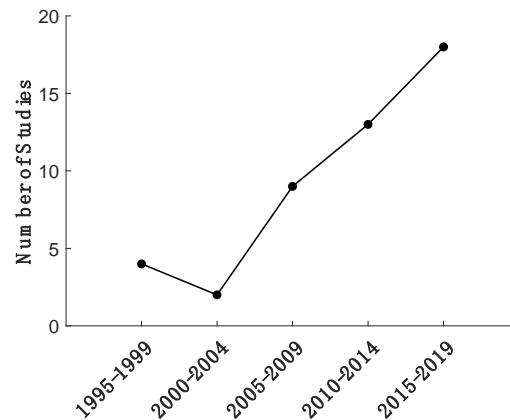


Figure 2. Number of articles included in the review for each five-year bin. The oldest paper included in our review was published in 1995.

192 3.3. Biomechanical Variables

193 Across all studies, the most frequently estimated biomechanical time-series was joint kinematics
 194 (23 studies) followed by joint kinetics (16 studies), segment kinematics (seven studies), and segment
 195 kinematics (five studies) (Figure 4). Of the 16 studies estimating joint kinetics, only three estimated
 196 the intersegmental force. No studies estimated joint contact forces, individual muscle forces, or
 197 muscle kinematics. Most studies focused on joint/segment biomechanics in the sagittal plane (87%),
 198 followed by the frontal plane (46%), and transverse plane (33%) (Figure 4). Across all studies and
 199 considering the major upper and lower extremity joints, the wrist joint received the most attention
 200 (28%), followed by the knee (26%), the elbow (24%), the ankle (20%), the shoulder (15%), and the hip
 201 (13%).

202 3.4. Prediction Equations

203 3.4.1. Prediction Equation Classification

204 One aim of the current review was to develop a classification method *post-hoc* allowing a high-
 205 level comparison of the many different prediction equations used in the reviewed papers. The rest of
 206 this section describes the classification we have developed for this comparison. We feel this method
 207 best groups the reviewed papers for an insightful comparison, but it is by no means unique. The
 208 description of all techniques used in the reviewed papers according to this classification is presented
 209 in Table 2 in addition to some other study characteristics for a succinct overview of all reviewed
 210 papers. It is recommended that the description of the classification system be read first to best
 211 understand the comparison in Table 2.

212 We use $\mathbf{x}(t) \in \mathbb{R}^d$ to denote the d -dimensional input used to estimate the m -dimensional
 213 output (biomechanical time-series) $\mathbf{y}(t) \in \mathbb{R}^m$ at time t . All reviewed papers presented regression
 214 algorithms to determine the parameters of a prediction equation $f: \mathbb{R}^d \rightarrow \mathbb{R}^m$ which defines the
 215 explicit mapping $\mathbf{x}(t) \rightarrow \mathbf{y}(t)$. In the context of this review, the i^{th} element $x_i(t)$ of the input $\mathbf{x}(t)$
 216 may be a wearable sensor measurement after some pre-processing step (called an *exogenous* input) or
 217 a state variable being fed back. This state variable may be either an element $y_i(t - t_d)$ of a previous
 218 output $\mathbf{y}(t - t_d)$ (i.e. at time $t - t_d$, $t_d > 0$), or some other internal state (e.g. an output from a
 219 hidden neuron prior to the output layer in a neural network). All prediction equations reviewed in
 220 this paper use exogenous inputs. In this review, we use the term *feedback* to refer to models which
 221 also use output and/or internal state variable feedback. For example, herein Elman networks [51],
 222 long-short term memory (LSTM) neural networks [52,53], and non-linear/linear autoregressive (with
 223 exogenous inputs) models [48,54] are all considered to have a feedback structure.

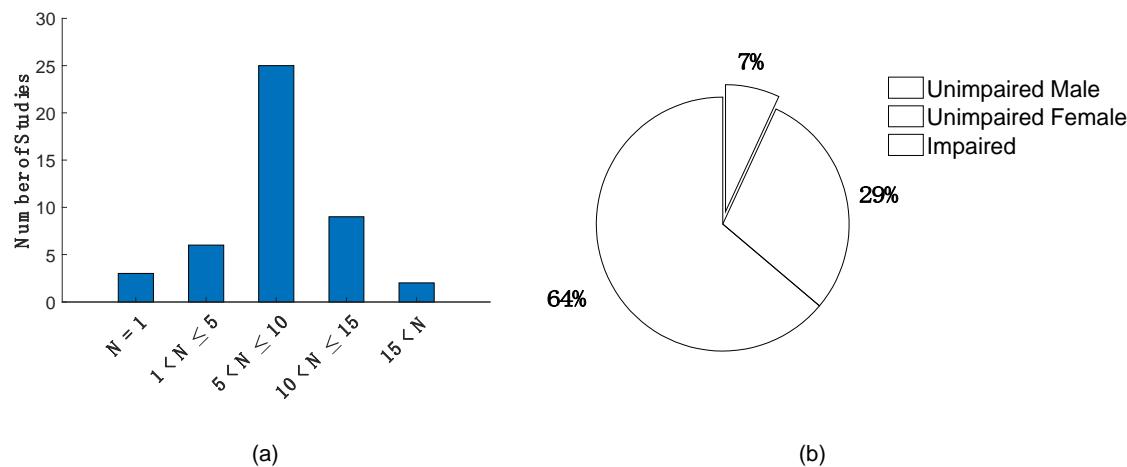


Figure 3. Characteristics of the samples used for model training and validation: sample sizes (a) and the proportion of unimpaired males, unimpaired females, and impaired individuals represented in those samples (b).

224 In general, an exogenous input $x_i(t)$ will be either the value of a sensor time-series s at time t ,
 225 $s(t)$, or a discrete feature which describes s over some finite time interval. Note that $s(t)$ may be
 226 the raw sensor signal itself or after some pre-processing step. For example, in this review, we classify
 227 the value of an sEMG envelope at some time instant as a time-series input, even though this value
 228 may depend on previous (or future) raw sEMG samples. Similar to system theory, we use the term
 229 *dynamic* to refer to models which use past exogenous inputs, for example $x_i(t - t_d)$ for $t_d > 0$, to
 230 estimate $y(t)$ at time t . Note the difference between what we call a *dynamic* structure versus a
 231 *feedback* structure is that *dynamic* refers to the use of past *exogenous* inputs whereas *feedback* refers to
 232 the use of past *outputs* and/or *internal state variables* as a part of the input. We further classify discrete
 233 exogenous inputs as time-domain (TD) if computed in the time-domain (e.g. root mean square value)
 234 and frequency-domain (FD) if computed in the frequency-domain (e.g. Fourier coefficients). We also
 235 report which studies first decomposed the sEMG into motor unit action potentials (MUAPs) from
 236 which time domain (MUAP-TD) or frequency domain (MUAP-FD) discrete features were extracted.
 237

238 Previous efforts to classify prediction equations have identified two classes, (1) a mixture of
 239 linear models and (2) a weighted sum of basis functions, into which a wide range of techniques can
 240 be classified [55]. We found that all prediction equations used in the studies reviewed herein can be
 241 viewed as a weighted sum of basis functions (where the weight of any one particular basis function
 242 is not restricted to be constant as in [55]). Given this general perspective, we identified a three-class
 243 classification for grouping the techniques used in each of the 46 reviewed papers: (i) *polynomial*
 244 *mixtures* (\mathbb{P}^n), (ii) *neural networks* (NN), and (iii) *nonparametric regression* (NP).
 245

246 The \mathbb{P}^n class is viewed as a special case where the basis functions are strictly n^{th} -order
 247 polynomials, $n \in \mathbb{N}$. Often, models are classified as either linear or non-linear, but here we consider
 248 both first-order polynomial mixtures ($n = 1$) and higher order polynomial mixtures ($n > 1$) as sub-
 249 classes of \mathbb{P}^n . This is because a first-order linear model may use features which are non-linear
 250 transformations of raw sensor signals. For example, consider a model using the sEMG amplitude at
 251 time t (denoted by $x(t)$) for estimation. Then the prediction equation $y(t) = a_1x(t) + a_2x^2(t)$, for
 252 coefficients $a_1, a_2 \in \mathbb{R}$, may be interpreted as a linear model with two features as inputs (namely
 253 sEMG amplitude and squared sEMG amplitude) or as a 2nd order polynomial with a single input (i.e.
 254 sEMG amplitude). To improve clarity, we report both the polynomial model order and a description
 255 of the features used for estimation in Table 2. Prediction equations belonging to the \mathbb{P}^n class in this
 256 review include those resulting from Gaussian mixture regression [56], lasso [57] and ridge [58]
 257 regression, and an ensemble of polynomials [58] among others.

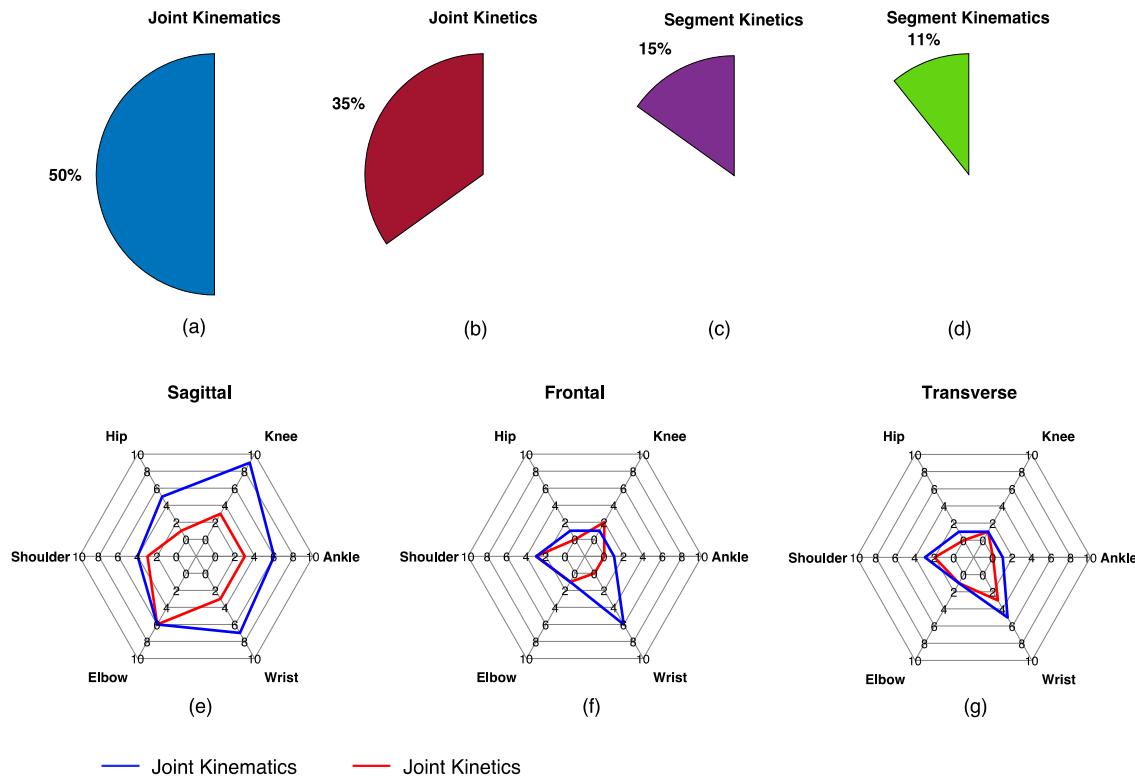


Figure 4. Description of the biomechanical variables estimated across all reviewed studies. The top row of figures illustrates the percentage of studies that estimated joint kinematics (a), joint kinetics (b), segment kinetics (c), and segment kinematics (d) and the bottom row of figures are radar plots illustrating the number of studies estimating the major upper and lower extremity joint kinematics (blue) and kinetics (red) in the sagittal (e), frontal (f), and transverse (g) planes. No studies estimated muscle forces or joint contact forces.

256 The NN class is viewed as a special case where the basis functions are neural networks. This
 257 formulation allows for both radial basis function networks [59] and an ensemble of networks [60] as
 258 the final prediction equation.

259 The NP class refers to models which require access to all training data when making predictions
 260 (as defined in [36]). All NP prediction equations in this review are either linear smoothers [36,61] or
 261 (kernelized) support vector regression (SVR). Linear smoothers express the estimated output for a
 262 test input as a linear combination of all training targets. These include the prediction equations
 263 resulting from Gaussian process regression [48,62], kernel ridge regression [58], kernel smoothers
 264 [63,64], and k -nearest neighbors regression [65].
 265

266 3.4.2. Descriptive Statistics of Prediction Equations

267
 268 Neural networks were the most popular model (33 studies, 72%) followed by polynomial
 269 mixtures (14 studies, 30%) and nonparametric regression (seven studies, 15%) (Figure 5). Of the 14
 270 polynomial mixtures, 12 were first-order (linear models) of which nine used time-series inputs. Time-
 271 series inputs were used more often (72% of studies) than discrete features (33% of studies). Across
 272 the 15 studies using discrete features as inputs, 13 contained time-domain features, three contained
 273 frequency-domain features, and three studies estimated the decomposition of the raw sEMG signals
 274 into individual MUAPs before computing discrete features. Nine studies used a dynamic structure
 275 and nine studies used a feedback structure. Seven studies used principal component analysis as an
 276 unsupervised feature reduction method. Most studies present subject-specific models (80%) (Figure
 277 5). No final prediction equations developed in any studies were open-sourced, but one paper [66]
 278 provided open-source code for their MUAP decomposition algorithm. Table 2 provides an overview

279 of the prediction equations used in each study as well as a summary statistic summarizing estimation
280 performance.

281 **4. Discussion**

282 Remote monitoring of patient segment, muscle, and joint kinematic and kinetic time-series has
283 been established as an important component of digital health. Practical limitations in the number of
284 sensors that can be deployed simultaneously to a given user motivate the pursuit of regression-based
285 approaches. Thus, the primary aim of this review is to summarize relevant developments in the use
286 of regression for estimating these biomechanical time-series. This review is timely given the increase
287 in relevant studies since the turn of the century (Figure 2) and the limitations of other systematic
288 reviews in the area. While many different techniques were observed since the first relevant method
289 published in 1995, there are some common themes consistent across studies which we discuss below.
290 Additionally, we discuss challenges concerning the practical implementation of the reviewed
291 methods and common characteristics of the techniques that provided the best performance to provide
292 possible directions for future work. In particular, we discuss how incorporating domain knowledge
293 often improved performance and the implications for hybrid estimation (i.e. using both physics-
294 based and machine learning techniques in concert). Note that our identification of techniques that
295 provided the best performance was not based on a comparison of methods between the studies
296 reviewed herein. Instead we draw conclusions concerning techniques that led to improved
297 performance only where those conclusions were inferred within individual studies that report an
298 appropriate statistical comparison.

299 *4.1. Overview of Techniques*

300 Neural networks were the most popular regression model. Most incorporated a 3-layer feed
301 forward neural network (non-recurrent, single hidden layer) [47,50,57–59,62,65,67–81] and differed
302 based on the choice of activation function and/or number of hidden neurons. The number of hidden
303 neurons in the NN models reviewed was usually optimized over a set of predefined values
304 [46,47,51,54,58,62,65,71,73,75–78,82,83] but sometimes not [37,50,68–70,72]. Two papers considered an
305 ensemble of networks. Koike and Kawato (1995) trained two task-specific NNs (one for postural
306 activities and the other for dynamic) and a gating network which provided the weights for linearly

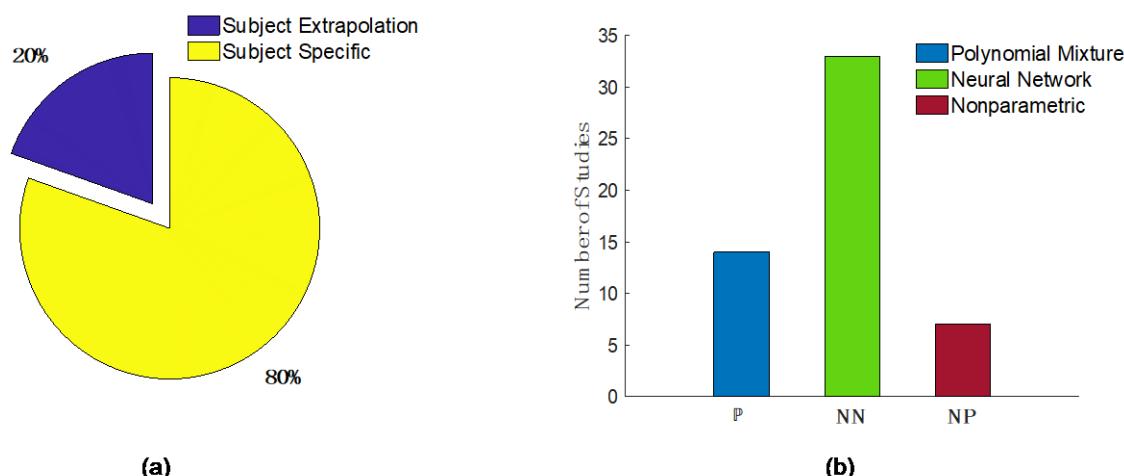


Figure 5. Characteristics of the prediction approach across all studies: (a) percentage of studies estimating biomechanical time-series for subjects whose data were not included in the training set (subject extrapolation, purple) vs. subject-specific models (yellow) and (b) number of studies utilizing polynomial mixture (P), neural network (NN), and non-parametric regression (NP). See section 3.4.1. for details concerning the model classification.

307 combining the joint torque estimates from the two task-specific NNs [60]. Ding et al. (2017) utilized
308 an unscented Kalman filter for combining two NNs to estimate elbow joint angle and upper arm
309 orientation [83] wherein a recurrent NN trained using sEMG data with reduced information
310 redundancy (using a custom reduction approach) was used to model the time-update equation and
311 a second NN trained to estimate a redundant sEMG time-series was used as the measurement-update
312 equation. Convolutional and long-short term memory NN (CNN and LSTM respectively) were first
313 used in 2018. Xia et al. (2018) found that an LSTM in series with a CNN (C-LSTM) outperformed a
314 CNN alone for estimating hand position during general open-chain tasks [52]. Likewise, Xu et al.
315 (2018) found that C-LSTM outperformed LSTM alone which outperformed CNN alone (nRMSE:
316 8.67%, 9.07%, and 12.13% respectively) for estimating contact forces at the distal forearm and was one
317 of the few studies to use a leave-one-subject-out validation approach [53].

318 Polynomial mixtures were the next most popular model and of these, first order polynomials
319 were most common. Consideration of simple linear models is motivated by an observed relationship
320 between sEMG amplitude and muscle force, especially at lower force levels. However, to increase
321 muscle force, additional motor units are recruited and/or stimulation frequency increases which
322 along with heterogenous activation within a muscle and load sharing between muscles makes this
323 relationship non-linear [27,32]. Some reviewed papers compared linear models (\mathbb{P}^1) to both neural
324 networks [57,58,75] and nonparametric regression [48,57,58]. Although between model comparisons
325 varied and two of these four studies only considered isometric tasks [57,75], the NN and NP
326 performances were no different than those from linear models. Comparisons have also been made
327 between first order and higher order polynomial mixtures. It was shown in [84] that linear models
328 performed equally as well as second order models for estimating lumbo-sacral joint torque using
329 sEMG and Clancy et al. (2006) show that superior sEMG amplitude estimation techniques (e.g.
330 whitening, multi-channel) can improve linear models [35]. Alternatively, Clancy et al. (2012) show
331 that 2nd or 3rd order polynomials outperformed 1st and 4th order models (with regularization and
332 optimal dynamic orders) for estimating isometric elbow joint torque using sEMG inputs [45]. A few
333 studies considered an ensemble of polynomials. Michieletto et al. (2016) used Gaussian mixture
334 regression, which can be shown to be a linear mixture [55], to estimate knee flexion/extension angle
335 using sEMG inputs [56]. Hahne et al. (2014) used degree-of-freedom-specific linear models to
336 estimate wrist joint angle and linearly combined their estimates using weights determined by a
337 logistic regression model trained to classify the degree-of-freedom of the movement (the weights
338 were the posterior class probabilities) [58].

339 Nonparametric regression was used least frequently. This may be due to the amount of data
340 necessary to compute an estimate given the nonparametric models used in the reviewed studies
341 (although reduction methods exist [36]). While this may be prohibitive for real-time applications (e.g.
342 for prosthetic control [58]) it may still be a feasible method for remote patient monitoring applications
343 where data can be stored locally during the day and processed at a later time. Linear smoothers were
344 the most popular nonparametric regression. The first study to use nonparametric regression in the
345 proposed context was in 2008 where the Nadaraya-Watson estimator, a kernel smoothing technique,
346 was used to estimate lower extremity joint angles using IMU data [63]. Goulermas et al. (2008) built
347 upon this model by incorporating an additional term in the Gaussian kernel intended to accentuate
348 or attenuate a training target's contribution to the final estimate according to a custom pattern
349 similarity index [64]. Several papers noted the advantage of nonparametric regression for small
350 training sets. For example, Ngeo et al. (2014) show Gaussian process regression outperformed a
351 neural network in estimating finger joint angles using sEMG data, especially for smaller data sets
352 [62]. Similarly, Hahne et al. (2014) found that kernel ridge regression outperformed a neural network
353 for both a reduced training set and when reducing the number of sEMG channels of a high-density
354 array (from 192 to 12 – 16) [58].

355 4.2. Concerns for Practical Implementation

356 Remote patient monitoring and myoelectric prosthetic control were the two most common
357 applications used to motivate the many different techniques reviewed which indicates that eventual

358 users of these systems are expected to present with clinical impairment. However, our results show
359 that most studies do not validate their estimation techniques on impaired individuals (Figure 3).
360 Evaluating algorithm performance on unimpaired populations is certainly useful for algorithm
361 development as it reduces extraneous variables and simplifies study recruitment and retention
362 efforts. Nevertheless, these algorithms need to be deployed to impaired populations and, while some
363 studies present improved or equal performance for impaired individuals, many show performance
364 decreases. Thus, caution should be taken when considering how well a technique will work when
365 deployed for a population on which it has not been validated. This clearly applies for a model trained
366 on healthy participants but deployed to participants with impairment (though in some cases the drop
367 in performance is minimal [85]). However, one also cannot assume that a model trained and tested
368 on impaired participants will have identical performance characteristics as the same model trained
369 and tested on healthy participants.

370 In addition to generalizing performance across populations, more research is needed to better
371 understand how these regression models generalize across individuals and tasks. The majority of
372 studies (80%) developed subject-specific models (Figure 5) and only 33% of studies explored task
373 extrapolation. The latter may be less of a barrier to implementation since in practice task identification
374 will likely be a part of the pipeline for automated analysis [8]. Thus, task specific models could be
375 selected following task identification. However, given the approaches reviewed herein, subject-
376 specific models require every user to be observed in-lab for model training. Further, the observation
377 sets for model training must be broad enough in scope (e.g. multi-speed, multi-load) so that they can
378 be confidently applied for estimation in unconstrained environments. These requirements
379 substantially limit the scalability of these solutions for remote patient monitoring. Subject-general
380 models may be one of the more difficult challenges to overcome in the future as they appear to
381 frequently result in performance decreases [59,63,64,67]. Intuitively, this may indicate that current
382 regression models are learning person-specific patterns as opposed to generalizable phenomena. This
383 may be a result of the small sample sizes used for model training in many of the reviewed studies.
384 To fully realize the potential of regression techniques for estimating biomechanical time-series, future
385 work should incorporate observations from impaired populations in their training and validation
386 sets and larger sample sizes to foster learning of generalizable phenomena.

387 Deployment of many of the reviewed techniques is further complicated by hardware limitations.
388 Of particular concern are the battery capacity and memory constraints of current wearables. Of the
389 more popular wearable sensors, gyroscopes are notorious for limiting long-term capture due to their
390 power requirements and would thus limit immediate application of several methods reviewed
391 [37,63–65,67–69]. Alternatively, accelerometers and sEMG are able to provide continuous recording
392 for at least 24-hours with current battery technology. The use of sEMG for remote monitoring is less
393 common than accelerometry and has been used primarily for quantifying indices of physical activity
394 [86–89]. Recent efforts have estimated muscle activation time-series during walking using methods
395 similar to those used to estimate muscle force using Hill-type muscle models [8,90]. This pre-
396 processing step was used by several reviewed papers suggesting they may be practically deployed.
397 However, the sEMG sampling frequency used in many of the reviewed studies (500 Hz to 16 kHz)
398 was much higher than what has been used for remote monitoring (10 – 250 Hz). It is currently
399 unknown to what extent estimation performance is influenced by sEMG sampling frequency. Future
400 research should explore these limitations in search of hardware and algorithmic solutions that are
401 practically deployable for remote patient monitoring.

402 An additional practical concern is the number of wearable sensors required for the reviewed
403 algorithms. Several studies considered the effect of reducing the number of sensors on estimation
404 performance. Clancy et al. (2017) present a *backward stepsize selection* method for reducing the number
405 of necessary sensors [91]. They show that additional sensors beyond four (up to 16) provided no
406 statistically significant advantage for estimating degree-of-freedom-specific wrist joint kinetics. This
407 reduction method was later used by Dai et al. (2019) for a similar application where the reduction
408 approach generally outperformed pre-selected sensor locations [92]. Dai and Hu (2019) present a
409 method for reducing a high-density grid of 160 sEMG electrodes down to an 8x8 grid, however, the

410 8x8 subset was finger specific (for estimating finger kinematics) [93]. Future work in the development
411 of regression approaches for estimating biomechanical time-series should incorporate analysis of the
412 effect of reducing instrumentation complexity (i.e., reducing the number and types of sensors
413 required) on estimation performance.

414 Finally, only one study provided open-source code for any part of their methodology [66]. The
415 code was for performing the MUAP decomposition of the raw sEMG signals and not the actual
416 regression model. Open-sourcing subject-general models will allow non-specialized research teams
417 without expertise in engineering or computer science to utilize these methods for clinical purposes.
418 Further, it will allow 3rd party validation; a necessary component prior to practical deployment and
419 to promote confidence from the public in the clinical utility of these tools. Open-source data as well
420 as open-source code in future studies would help speed the pace of development of these techniques.

421 4.3. Incorporating Domain Knowledge

422 While we excluded physics-based techniques from the current review, several papers
423 incorporated domain knowledge into their approach (e.g muscle and neural physiology, rigid body
424 dynamics) which seems to improve performance. For example, pre-processing of the raw sEMG
425 signals to optimally estimate sEMG amplitude was often motivated by an understanding of muscle
426 activation dynamics. State-of-the art estimation incorporates signal whitening and the use of multiple
427 channels (multiple sensors per muscle) [32,35,94]. These techniques have been shown to improve
428 estimation performance compared to other methods [35,45]. Most papers used the standard highpass
429 filter, rectify, lowpass filter processing to estimate sEMG amplitudes and a broad range of lowpass
430 filter cutoff frequencies were used [15,46,48,53,54,56,57,62,68,70,71,73,84,92,95]. In addition to
431 enveloping techniques, some incorporate the fact that the observed sEMG is the superposition of
432 many MUAPs. Three studies (all since 2018) computed discrete features as model inputs after first
433 performing MUAP decomposition (Table 2). Given their results, Dai and Hu (2019) recommend the
434 MUAP decomposition over standard enveloping techniques [93]. Sun et al. (2018) identified shape-
435 based clusters (K -means, $5 \leq K \leq 20$) of MUAPs extracted from the biceps brachii sEMG and suggest
436 the different clusters represent different motor units [66]. The final estimation can be seen as a scaling
437 of a single feature related to the number of activated motor units which they use to represent firing
438 rate (see eq. (10) in [66]). Thus, the pre-processing of the raw sEMG signal, to estimate both sEMG
439 amplitude and MUAPs, based on its physiological origin [32,94] may have contributed to improved
440 estimation performance.

441 An electromechanical delay (delayed increase in muscle force following neural excitation) is also
442 known to characterize muscle contraction dynamics [32]. This phenomenon may provide a
443 physiological justification for the improvements in performance associated with the use of a dynamic
444 model structure allowing previous sEMG values to have lasting effects on the estimated output. Total
445 delay was sometimes optimized using a grid search (625 – 875 ms [71], 50 – 150 ms [54]) and
446 sometimes not (130 ms [84], 0.5 ms [44], 488.3 ms [92]). Clancy et al. (2006) found that performance
447 increased with greater total time delay up to about 10 or 15 samples (i.e. 244.1 or 366.2 ms) [35].
448 Likewise, Clancy et al. (2012) tried between 1 and 30 sample delays and found that lesser time delays
449 (namely total delay < 5 samples or 122.1 ms) resulted in poorer performance [45]. Overly large delays
450 also resulted in poor performance, especially for high polynomial orders which they attribute to
451 overfitting. The best total delays (439.5 ms – 683.ms) were dependent on polynomial order and the
452 regularization method. Ngeo et al. (2014) modeled the sEMG to activation dynamics using the
453 method described in [96] and optimized the electromechanical delay. Optimal values were person-
454 specific (between 39.6 – 75 ms) and they show that incorporating electromechanical delay into their
455 activation model improved performance compared to neglecting it [62]. Some of the optimal delays
456 reported in the reviewed studies are larger than what is reported elsewhere in the literature (30 – 150
457 ms) [32]. One explanation may be that in addition to the delayed effect of neural excitation, more
458 information concerning the sEMG time-history could help a regression algorithm capture some sub-
459 task related neural control pattern which may be inferred from a sufficiently large (i.e. > 150 ms)
460 window of time. The muscle synergy hypothesis may provide a physiological basis for expecting said

461 pattern to exist [97]. This concept was mentioned in several reviewed papers and thus we pay it
462 special attention next.

463 4.3.1. Reference to Muscle Synergies

464 Several papers referred to the muscle synergy hypothesis in the development of their models
465 and in the discussion of its performance. The muscle synergy hypothesis provides a potential
466 explanation of how the central nervous system accommodates redundancy in motor control [98]. The
467 theory suggests that the activation time-series of a given muscle is a linear combination of a small set
468 of basis waveforms. Non-negative matrix factorization (NMF) is an algorithm commonly used in
469 muscle synergy analysis to optimally determine the basis functions and the coefficients for linear
470 combination given a set of muscle sEMG or activation time-series [97–99]. Jiang et al. (2009) used
471 these techniques directly in their estimation and show that for estimating contact forces at the hand,
472 their method using NMF is nearly unsupervised in that target force values are not needed and is only
473 supervised in the sense that the degree-of-freedom must be known for model training [75].

474 Others have referred to muscle synergies as a possible explanation for the observed accuracy of
475 some regression techniques [35,71,81,82]. The synergy hypothesis indicates that the activity of all
476 muscles contributing to a given joint torque may be approximated given a common and observable
477 subset of sEMG observations. While the estimation of muscle activation time-series was not included
478 in the current review, we note that Bianco et al. (2018) explored the possibility of estimating
479 unmeasured muscle activations from sEMG time-series measured from eight different muscles using
480 the traditional linear combination of basis waveforms formulation of muscle synergies [100]. To the
481 authors' knowledge, no studies have regressed unmeasured muscle activations using a reduced
482 number of wearable sensors. In this formulation, the function being identified in the regression would
483 effectively model the synergistic relationship between muscles. Such an approach might enable
484 estimated activations to inform a complete set of Hill-type muscle models crossing the joint of interest
485 to estimate muscle force. Wang and Buchannan (2002) tried a similar approach wherein a neural
486 network was trained to learn the muscle activation dynamics (intramuscular EMG to muscle
487 activation model) using estimated torque error to drive parameter adaptation in the learning process
488 [101]. However, they estimated activations only for those muscles with measured intramuscular
489 EMG. Thus, advances in modeling the observed synergistic behavior of muscle activations may prove
490 useful for improving estimation of biomechanical time-series with a minimal number of wearable
491 sensors.

492 The muscle synergy hypothesis suggests that an observed set of muscle activation or sEMG
493 time-series carries redundant information and can be explained by a lower dimensional structure
494 (e.g. less than the number of sensors available). Regularization is a common technique in machine
495 learning used to reduce model complexity and prevent overfitting, usually at the expense of training
496 error. Reducing the number of inputs by removing redundant information also reduces model
497 complexity and the muscle synergy hypothesis may provide a physiological basis for this
498 phenomenon. Clancy et al. (2012) compared ridge regression to their *pseudo-inverse* based
499 regularization wherein the reciprocals of singular values below some threshold were replaced with
500 zero [45]. The best ridge regression results were similar to the *pseudo-inverse* regularization,
501 however, optimal fits were less sensitive to changes in *pseudo-inverse* tolerances near the optimum
502 than they were to changes in the ridge penalty hyperparameter suggesting the *pseudo-inverse*
503 technique may be easier to tune. This technique, also used in [91] and [92], along with self-organizing
504 maps [74] and principal component analysis [53,58,76,78,81,95,102] are examples of unsupervised
505 feature reduction techniques. Chen et al. (2018) found that using a *deep belief* network to reduce 10
506 inputs to three outperformed the PCA approach for the same dimensionality reduction task [95]. This
507 might be considered a supervised dimensionality reduction (as would lasso regression [57]) as the
508 determination of the weights in the hidden neurons of the *deep belief* network are optimized so that
509 the final output best approximates the training set targets. Thus, although feature reduction is
510 common in machine learning for improving generalizability, it may be further justified on a
511 physiological basis given the assumption that a lower dimensional structure of the inputs exists.

512 4.3.2. Towards a Hybrid Approach

513 A general conclusion from these observations is that clever incorporation of domain knowledge
514 in regression techniques may improve performance. In the papers we reviewed, this was mostly by
515 way of sensor signal pre-processing, feature engineering, and model structure (e.g. feedback or
516 dynamic). Incorporation of domain knowledge in regression has been suggested for other
517 biomechanics applications [103], and as shown in [36], a good understanding of system dynamics can
518 directly inform kernel structure in Gaussian process regression. For these reasons, hybrid methods
519 using both physics-based and machine learning techniques in concert are being proposed in other
520 fields including climate sciences [104], GPS-inertial navigation [105], and general chaotic processes
521 [106]. As noted in a recent editorial [107] concerning climate modeling, “The hybrid approach makes
522 the most of well-understood physical principles such as fluid dynamics, incorporating deep learning
523 where physical processes cannot yet be adequately resolved.” The general approach observed in
524 many of these techniques are generalizable and applicable beyond specific scientific disciplines and
525 thus may prove beneficial for remote patient monitoring. One approach might be to regress an
526 unobserved internal state for which the physical relationship with observed measurements is either
527 not well understood or not fully informed (e.g. not enough sensors) and then to drive a physical
528 model using the estimated internal state variable. For example, this was done in [101] where the
529 authors’ chose to model muscle activation dynamics using a neural network since they determined
530 these dynamics to be the least well understood. A second approach might be the fusion of a regression
531 estimate and a physical model estimate. Along these lines, if uncertainties are modeled, the
532 parameters of the regression (or the physical model) may be adapted in real-time. Gui et al. (2019)
533 use a similar approach to remove the need to calibrate an EMG-torque model [108]. In the proposed
534 context this could be especially useful as it may be interpreted as real-time subject specification from
535 a general model. Further, it may enable the adaptation of a model to time-varying signal
536 characteristics (e.g. due to electrode displacement, changes in skin conductivity, specific spatial
537 position of inertial sensors) which may negatively affect estimation [57]. Future developments in
538 hybrid methods that take advantage of the strengths of both physical models and machine learning
539 may help realize the maximum potential of remote patient monitoring.

540 5. Conclusion

541 Regression techniques present an alternative approach to physical models for estimating
542 biomechanical time-series using wearable sensor data. These methods could be transformative for
543 personalizing healthcare interventions as they allow the monitoring of a patient’s biomechanics
544 continuously and in unconstrained environments. The aim of this review was to summarize relevant
545 regression techniques in this context to imply directions for future research concerning practical
546 implementation and improving estimation performance. Several reviewed studies found that
547 incorporating some form of domain knowledge resulted in better estimation accuracy. Advances in
548 this area along with open-source algorithms, validation in impaired populations, and consideration
549 of practical hardware limitations (e.g. battery capacity and memory) may expedite future
550 developments to make clinical implementation a reality. In summary, future work should consider
551 the following:

- 552 ▪ Development of methods using hardware specifications that can be implemented remotely
553 and for a full 24-hour capture
- 554 ▪ Development of subject-general models or real-time calibration
- 555 ▪ Development of hybrid machine learning and physics-based estimation
- 556 ▪ Open-source algorithms
- 557 ▪ Development of regression models for estimating muscle forces and joint contact forces
- 558 ▪ Validation of models on impaired populations

Table 2 Overview of the 46 reviewed papers.

Reference (year)	Sensors (f_s , max number)	Variable (location): plane(s)	Tasks	Inputs	Model	Performance Summary
Koike and Kawato [60] (1995)	sEMG (2 kHz, 10)	τ (elbow): S τ (shoulder): F	ISO, OC	TS	NN (FB)	CD: 0.89
Suryanarayanan et al. [44] (1996)	sEMG (2 kHz, 1)	θ (elbow): S	OC	TS	NN (dyn)	RMSE \leq 15%
Shih and Patterson [70] (1997)	sEMG (900 Hz, 4)	τ (elbow): S τ (wrist): S τ (shoulder): S θ (elbow): S θ (wrist): S θ (shoulder): S	WCP	TS	NN	RMSE: 0.67 – 5.76 Nm, 0.64 – 5.62 Nm RMSE: 4.78 – 13.76°, 4.73 – 14.33°
van Dieën and Visser [84] (1999)	sEMG (600 Hz, 6)	τ (lumbo-sacral): S	ISO, LOC	TS	\mathbb{P}^1 (dyn)	RMSE: 26 – 54 Nm, 49 – 160 Nm
Au and Kirsch [71] (2000)	sEMG (500 Hz, 6)	θ (shoulder): S, F, T θ (elbow): S $\dot{\theta}$ (shoulder): S, F, T $\dot{\theta}$ (elbow): S	OC, LOC	TS	NN (dyn)	RMSE: 14.2 – 19.6° RMSE: 8 – 17.2° (impaired subjects)
Dipietro et al. [82] (2003)	sEMG (1 kHz, 5)	p (hand): T	OC	TS	NN (FB)	RMSE: 7.3 – 11.5%
Song and Tong [46] (2005)	sEMG (1 kHz, 3) goni (1 kHz, 2)	τ (elbow): S	LOC	TS	NN (FB)	nRMSE: 4.53 – 8.45% nRMSE: 10.56 – 16.20% (sEMG only)
Clancy et al. [35] (2006)	sEMG (4096 Hz, 8)	τ (elbow): S	ISO	TS	\mathbb{P}^1 (dyn)	MAE: 7.3%
Došen and Popović [72] (2008)	2D ACC (200 Hz, 4)	θ (ankle): S θ (knee): S θ (hip): S \ddot{p} (hip joint center): S	MSW	TS	NN (dyn)	RMSE: 1.19 – 3.60°, 1.18 – 2.62° RMSE: 0.26 – 0.39 m/s ² , 0.29 – 0.46 m/s ² CC (θ): 0.97 – 0.998, 0.97 – 0.998 CC (p̄): 0.96 – 0.99, 0.91 – 0.99
Findlow et al. [63] (2008)	IMU (100 Hz, 4)	θ (ankle): S θ (knee): S θ (hip): S	Normal Walk	TS	NP (KS)	MAE: 1.69 – 2.30°, 4.91 – 9.06° CC: 0.93 – 0.99, 0.70 – 0.89 CC: 0.87 – 0.99 (reduced sensor array)
Goulermas et al. [64] (2008)	IMU (–, 4)	θ (ankle): S θ (knee): S θ (hip): S	MSW	TS	NP (KS)	CC: 0.97, 0.96, 0.83
Hahn and O'Keefe [73] (2008)	sEMG (1 kHz, 7)	τ (ankle): S τ (knee): S τ (hip): S	Normal Walk	TS	NN	CD: 0.54 – 0.84 (sEMG only) CD: 0.77 – 0.92 (sEMG with demographics & anthropometrics)
Mijovic et al. [59] (2008)	2D ACC (50 Hz, 2)	$\ddot{\theta}$ (forearm): S	OC	TS	NN (RBF)	CD: 0.841 – 0.998, 0.75 – 0.99, 0.03 – 0.88
Delis et al. [74] (2009)	sEMG (1744.25 Hz, 2)	θ (knee): S	Normal Walk	DISC (TD)	NN (SOM)	CC: 0.59 – 0.84

Jiang et al. [75] (2009)	sEMG (1 kHz, 8)	CF (hand)	ISO	DISC (TD)	1) NN 2) \mathbb{P}^1	1) CD: 0.86 2) CD: 0.78
Youn and Kim [47] (2010)	sEMG (1 kHz, 2) MMG (1 kHz, 2)	CF (hand)	ISO	DISC (TD)	NN	nRMSE \leq 16% (MMG only) nRMSE \leq 13% (sEMG only) nRMSE \leq 10% (sEMG + MMG)
Ziai and Menon [57] (2011)	sEMG (1 kHz, 8)	τ (wrist): S	ISO	TS	1) \mathbb{P}^1 2) \mathbb{P}^1 (lasso) 3) \mathbb{P}^1 (LWPR) 4) NP (SVR) 5) NN (2L)	1) nRMSE: 2.88% 2) nRMSE: 2.83% 3) nRMSE: 3.03% 4) nRMSE: 2.85% 5) nRMSE: 2.82%
Nielsen et al. [76] (2011)	sEMG (1024 Hz, 7)	CF (hand)	ISO	DISC (TD)	NN	RMSE: 0.16 N RMSE: 0.10 N (impaired subjects) CD: 0.93 CD: 0.82 (impaired subjects)
de Vries et al. [68] (2012)	MIMU (50 Hz, 4) sEMG (1 kHz, 13)	ISF (SC): S, F, T ISF (AC): S, F, T ISF (shoulder): S, F, T	LOC, ADL	TS	NN	nRMSE: 7 – 17%
Jiang et al. [77] (2012)	sEMG (2048 Hz, 7)	θ (wrist): S, F, T	OC	DISC (TD)	NN	CD: 0.74 – 0.78
Muceli and Farina [78] (2012)	HD-sEMG 128 (2048 Hz, 2)	θ (wrist): S, F, T	OC	TS	NN	CD: 0.79 – 0.89
Howell et al. [49] (2012)	FSR (118 Hz, 12)	τ (ankle): S τ (knee): S, F	Normal Walk	TS	\mathbb{P}^1	nRMSE: 5.9 – 17.1% CC: 0.82 – 0.97
Clancy et al. [45] (2012)	sEMG (4096 Hz, 2)	τ (elbow): S	ISO	TS	\mathbb{P}^1 , \mathbb{P}^2 , \mathbb{P}^3 , \mathbb{P}^4 (dyn)	nMAE: 4.65 – 6.38% nMAE: 5.55 – 7.97 % (reduced training set)
Kamavuako et al. [79] (2013)	sEMG (10 kHz, 6)	τ (wrist): S, T	ISO	DISC (TD)	NN	nRMSE: 6.1 – 13.5% CD: 0.87 – 0.91
Jiang et al. [80] (2013)	sEMG (2048 Hz, 7)	τ (wrist): S, F, T	OC	DISC (TD)	NN	CD: 0.63 – 0.86, 0.34 – 0.74 CD: 0.61 – 0.77, 0.46 – 0.59 (impaired subjects)
Farmer et al. [54] (2014)	sEMG (1 kHz, 4)	θ (ankle): 4	Normal Walk	TS	NN (FB, dyn)	RMSE: 1.2 – 5.4°
Ngeo et al. [62] (2014)	sEMG (2 kHz, 8)	θ (MCPs): S	OC	TS DISC (TD)	1) NN (dyn) 2) NP (GPR, dyn)	1) CC: 0.71 (TS inputs only) 2) CC: 0.84 (TS inputs only)
Hahne et al. [58] (2014)	HD-sEMG 192 (2048 Hz, 1)	θ (wrist): S, F	OC	DISC (TD)	1) \mathbb{P}^1 (ridge) 2) \mathbb{P}^1 3) NN 4) NP (KRR)	4) CD: 0.8 (reduced sensor array) CD: 0.8 – 0.9 (range across all models)
Jacobs and Ferris [50] (2015)	FSR (1 kHz, 8) Load Cell (1 kHz, 1)	τ (ankle): S	MSW, Calf Raises	TS	NN	nRMSE: 7.04 – 13.78% nRMSE: 8.72 – 16.52% (FSR only) nRMSE: 20.47 – 46.02% (Load Cell only)
de Vries et al. [69] (2016)	MIMU (50 Hz, 4) sEMG (1 kHz, 13)	ISF (shoulder): S, F, T	LOC, ADL	TS	NN	nSEM: 4 – 1 % nSEM: 3 – 21% (reduced sensor array)

Wouda et al. [65] (2016)	MIMU (240 Hz, 5)	θ (ankle): S, F, T θ (knee): S, F, T θ (hip): S, F, T θ (shoulder): S, F, T θ (elbow): S, F, T θ (wrist): S, F, T θ (spine): S, F, T	OC, ADL, MSW, MSR, sport	TS	1) NN 2) NP (k-NN)	1) Mean Error: 7° 2) Mean Error: 8°
Michieletto et al. [56] (2016)	sEMG (1 kHz, 8)	θ (knee): S	Seated Kick	TS	\mathbb{P}^1 (GMR)	Custom error statistic (see paper)
Xiroyannis et al. [48] (2017)	sEMG (–, 5) MMG (–, 5)	$\dot{\theta}$ (MCPs): S	OC, ADL, ISO	TS	1) \mathbb{P}^1 (FB) 2) NP (GPR, FB)	1) CC: 0.54 2) CC: 0.79, 0.62, 0.67 (sEMG only)
Zhang et al. [81] (2017)	sEMG (1 kHz, 8)	θ (shoulder): S, F, T θ (elbow): S	OC	DISC (TD)	NN	CD: 0.90 – 0.91, 0.86 – 0.87
Ding et al. [83] (2017)	sEMG (2 kHz, 8)	θ (elbow): S θ (humerus): S, F, T	OC, ADL	TS	1) NN 2) NN (FB) 3) NN (FB, UKF)	1) RMSE: 11 – 14 %, CC: 0.88 – 0.90 2) RMSE: 11 – 15 %, CC: 0.87 – 0.89 3) RMSE: 7 – 9 %, CC: 0.95 – 0.96
Clancy et al. [91] (2017)	sEMG (2048 Hz, 16)	CF (hand): S, F τ (wrist): T	ISO	TS	\mathbb{P}^1	RMSE: 6.7 – 10.6%, 11.0 – 15.7 (4 sensors)
Xia et al. [52] (2018)	sEMG (2 kHz, 5)	p (hand): S, F, T	OC	DISC (FD) DISC (TD)	1) NN (CNN) 2) NN (C-LSTM, FB)	1) CD: 0.78 2) CD: 0.90
Wouda et al. [67] (2018)	MIMU (240 Hz, 3)	θ (knee): S	MSR	TS	NN	RMSE: 2.27 – 8.41 %, 6.29 – 25.05° CC: 0.98 – 0.99, 0.77 – 0.99
Sun et al. [66] (2018)	sEMG (16 kHz, 1)	CF (forearm)	ISO	DISC (MUAP-TD)	\mathbb{P}^1	CD: 0.72 – 0.89
Chen et al. [95] (2018)	sEMG (1.2 kHz, 10)	θ (ankle): S θ (knee): S θ (hip): S	MSW	TS	NN (DBN)	RMSE: 2.45 – 3.96° CC: 0.95 – 0.97
Xu et al. [53] (2018)	HD-sEMG 128 (1 kHz, 1)	CF (forearm)	ISO	TS	1) NN (CNN) 2) NN (LSTM, FB) 3) NN (C-LSTM, FB)	1) nRMSE: 7.33 – 10.93% 2) nRMSE: 6.16 – 9.33% 3) nRMSE: 5.95 – 9.74%
Wang et al. [51] (2019)	sEMG (1.6 kHz, 5)	θ (knee): S	LOC	DISC (FD)	NN (FB)	nRMSE: 3.55 – 5.13%
Dai and Hu [93] (2019)	HD-sEMG 160 (2048 Hz, 1)	θ (MCPs): S	OC	TS, DISC (MUAP-FD)	\mathbb{P}^2	CD: 0.66 – 0.81 (TS inputs) CD: 0.69 – 0.86 (MUAP-FD inputs)
Dai et al. [92] (2019)	sEMG (2048 Hz, 16)	CF (hand): S, F τ (wrist): T	ISO	TS	\mathbb{P}^1 (dyn)	RMSE: 7.3 – 9.2%, 11.5 – 13.0% (4 sensors)
Kapelner et al. [102] (2019)	HD-sEMG 192 (2048 Hz, 3)	θ (wrist): S, F, T	OC	DISC (TD, MUAP-TD)	\mathbb{P}^1	CD: 0.77 (MUAP-TD inputs) CD: 0.70 (TD inputs)
Stetter et al. [37] (2019)	IMU (1.5 kHz, 2)	ISF (knee): S, F, T	MSW, MSR, sport	TS	NN (2L)	nRMSE: 14.2 – 45.9% CC: 0.25 – 0.94

Sensors: f_s : sampling frequency (– indicates f_s not reported); ACC: accelerometer; IMU: inertial measurement unit (accelerometer + gyroscope); MIMU: IMU with magnetometer, HD-sEMG N : high density grid of N surface electromyography electrodes, FSR: force sensitive resistors (instrumented insole); MMG: mechanomyography; goni: electrogoniometer

Variables: τ : net joint (muscle) moment; $\theta, \dot{\theta}, \ddot{\theta}$: joint/segment angular position, velocity, acceleration; p, \dot{p}, \ddot{p} : segment position, velocity, acceleration; ISF: joint intersegmental force; CF: joint/segment contact force, AC: acromio-clavicular joint, SC: sterno-clavicular joint, MCPs: one or several of the metacarpophalangeal joints

Tasks: ISO: isometric; OC, LOC: open-chain, loaded open-chain; MSW: multi-speed walking; ADL: activities of daily living (brushing teeth, drinking, etc.); MSR: multi-speed running; sport: sport related movements (e.g. jumping, kicking, throwing)

Inputs: TS: time-series; DISC: discrete; TD, FD: time-domain, frequency domain; MUAP: sEMG data were first decomposed into motor unit action potentials from which discrete features were extracted

Model: FB: model exhibits output and/or internal state variable feedback (includes *autoregression*); dyn: dynamic (dependent on previous inputs); \mathbb{P}^n : mixture of n -th order polynomials; GMR: Gaussian mixture regression; NN: neural network; RBFN: radial basis function network; SOM: self-organizing map; DBN: deep belief network; NP: nonparametric regression; KS: kernel smoother; GPR: Gaussian process regression; SVR: support vector regression; KRR: kernel ridge regression; k -NN: k nearest neighbors regression; UKF: unscented Kalman filter; CNN: convolutional neural network, LSTM: long-short term memory network, C-LSTM: CNN in series with LSTM; 2L: two hidden layers

Performance Summary: RMSE: root mean square error; nRMSE: normalized RMSE (e.g. RMSE in physical units normalized by maximum); MAE: mean absolute error; nMAE: normalized mean absolute error (see nRMSE); nSEM: normalized standard error of measurement; CC: correlation coefficient; CD: coefficient of determination; *italic performance metrics* indicate results for task extrapolation (e.g. *trained on normal walking data, tested on fast walking data*), **bold performance metrics** indicate results for subject extrapolation (all data in the test set were associated with different subjects than were data in the training set)

560

561

562 **Author Contributions:** Conceptualization, R.G. and R.M.; methodology, R.G. and R.M.; formal
563 analysis, R.G, R.M. and N.C.; data curation, R.G.; writing—original draft preparation, R.G.; writing—
564 review and editing, R.G, R.M, and N.C.; visualization, R.G.; supervision, R.M.; project administration,
565 R.M.; funding acquisition, R.G. and R.M.

566 **Funding:** This research was funded in part by the Vermont Space Grant Consortium.

567 **Conflicts of Interest:** The authors declare no conflict of interest.

568 **References**

- 569 1. Coravos, A.; Khozin, S.; Mandl, K.D. Developing and adopting safe and effective digital
570 biomarkers to improve patient outcomes. *npj Digital Medicine* **2019**, *2*.
- 571 2. Frechette, M.L.; Meyer, B.M.; Tulipani, L.J.; Gurchiek, R.D.; McGinnis, R.S.; Sosnoff, J.J. Next
572 Steps in Wearable Technology and Community Ambulation in Multiple Sclerosis. *Curr Neurol
573 Neurosci Rep* **2019**, *19*, 80.
- 574 3. Espay, A.J.; Bonato, P.; Nahab, F.B.; Maetzler, W.; Dean, J.M.; Klucken, J.; Eskofier, B.M.; Merola,
575 A.; Horak, F.; Lang, A.E.; et al. Technology in Parkinson's disease: Challenges and
576 opportunities: Technology in PD. *Movement Disorders* **2016**, *31*, 1272–1282.
- 577 4. McGinnis, E.W.; McGinnis, R.S.; Muzik, M.; Hruschak, J.; Lopez-Duran, N.L.; Perkins, N.C.;
578 Fitzgerald, K.; Rosenblum, K.L. Movements indicate threat response phases in children at-risk
579 for anxiety. *IEEE J Biomed Health Inform* **2017**, *21*, 1460–1465.
- 580 5. McGinnis, R.S.; McGinnis, E.W.; Hruschak, J.; Lopez-Duran, N.L.; Fitzgerald, K.; Rosenblum,
581 K.L.; Muzik, M. Rapid detection of internalizing diagnosis in young children enabled by
582 wearable sensors and machine learning. *PLOS ONE* **2019**, *14*, e0210267.
- 583 6. McGinnis, R.S.; Cain, S.M.; Tao, S.; Whiteside, D.; Goulet, G.C.; Gardner, E.C.; Bedi, A.; Perkins,
584 N.C. Accuracy of Femur Angles Estimated by IMUs During Clinical Procedures Used to
585 Diagnose Femoroacetabular Impingement. *IEEE Transactions on Biomedical Engineering* **2015**, *62*,
586 1503–1513.
- 587 7. McGinnis, R.S.; Patel, S.; Silva, I.; Mahadevan, N.; DiCristofaro, S.; Jortberg, E.; Ceruolo, M.;
588 Aranyosi, A.J. Skin mounted accelerometer system for measuring knee range of motion. In
589 Proceedings of the Engineering in Medicine and Biology Society (EMBC), 2016 IEEE 38th
590 Annual International Conference of the; IEEE, 2016; pp. 5298–5302.
- 591 8. Gurchiek, R.D.; Choquette, R.H.; Beynnon, B.D.; Slauterbeck, J.R.; Tourville, T.W.; Toth, M.J.;
592 McGinnis, R.S. Remote Gait Analysis Using Wearable Sensors Detects Asymmetric Gait
593 Patterns in Patients Recovering from ACL Reconstruction. In Proceedings of the 2019 IEEE 16th
594 International Conference on Wearable and Implantable Body Sensor Networks (BSN); 2019; pp.
595 1–4.
- 596 9. Sigward, S.M.; Chan, M.-S.M.; Lin, P.E. Characterizing knee loading asymmetry in individuals
597 following anterior cruciate ligament reconstruction using inertial sensors. *Gait & Posture* **2016**,
598 *49*, 114–119.
- 599 10. Takayanagi, N.; Sudo, M.; Yamashiro, Y.; Lee, S.; Kobayashi, Y.; Niki, Y.; Shimada, H.
600 Relationship between Daily and In-laboratory Gait Speed among Healthy Community-
601 dwelling Older Adults. *Sci Rep* **2019**, *9*, 3496.
- 602 11. Prajapati, S.K.; Gage, W.H.; Brooks, D.; Black, S.E.; McIlroy, W.E. A Novel Approach to
603 Ambulatory Monitoring: Investigation Into the Quantity and Control of Everyday Walking in
604 Patients With Subacute Stroke. *Neurorehabil Neural Repair* **2011**, *25*, 6–14.
- 605 12. Del Din, S.; Godfrey, A.; Galna, B.; Lord, S.; Rochester, L. Free-living gait characteristics in
606 ageing and Parkinson's disease: impact of environment and ambulatory bout length. *J Neuroeng
607 Rehabil* **2016**, *13*, 46.
- 608 13. Richards, R.E.; van den Noort, J.C.; van der Esch, M.; Booij, M.J.; Harlaar, J. Effect of real-time
609 biofeedback on peak knee adduction moment in patients with medial knee osteoarthritis: Is
610 direct feedback effective? *Clinical Biomechanics* **2018**, *57*, 150–158.

611 14. Andriacchi, T.P.; Mündermann, A. The role of ambulatory mechanics in the initiation and
612 progression of knee osteoarthritis: *Current Opinion in Rheumatology* **2006**, *18*, 514–518.

613 15. Carbone, A.; Rodeo, S. Review of current understanding of post-traumatic osteoarthritis
614 resulting from sports injuries. *Journal of Orthopaedic Research* **2017**, *35*, 397–405.

615 16. Delp, S.L.; Loan, J.P.; Hoy, M.G.; Zajac, F.E.; Topp, E.L.; Rosen, J.M. An interactive graphics-
616 based model of the lower extremity to study orthopaedic surgical procedures. *IEEE Trans.
617 Biomed. Eng.* **1990**, *37*, 757–767.

618 17. Cofré Lizama, L.E.; Khan, F.; Lee, P.V.; Galea, M.P. The use of laboratory gait analysis for
619 understanding gait deterioration in people with multiple sclerosis. *Mult. Scler.* **2016**, *22*, 1768–
620 1776.

621 18. van Veen, B.; Montefiori, E.; Modenese, L.; Mazzà, C.; Viceconti, M. Muscle recruitment
622 strategies can reduce joint loading during level walking. *Journal of Biomechanics* **2019**, *109368*.

623 19. Myers, C.A.; Laz, P.J.; Shelburne, K.B.; Judd, D.L.; Winters, J.D.; Stevens-Lapsley, J.E.; Davidson,
624 B.S. Simulated hip abductor strengthening reduces peak joint contact forces in patients with
625 total hip arthroplasty. *Journal of Biomechanics* **2019**, *93*, 18–27.

626 20. Decker, M.J.; Torry, M.R.; Noonan, T.J.; Sterett, W.I.; Steadman, J.R. Gait retraining after anterior
627 cruciate ligament reconstruction. *Arch Phys Med Rehabil* **2004**, *85*, 848–856.

628 21. Sabatini, A.M. Estimating Three-Dimensional Orientation of Human Body Parts by
629 Inertial/Magnetic Sensing. *Sensors* **2011**, *11*, 1489–1525.

630 22. Bergamini, E.; Ligorio, G.; Summa, A.; Vannozzi, G.; Cappozzo, A.; Sabatini, A. Estimating
631 Orientation Using Magnetic and Inertial Sensors and Different Sensor Fusion Approaches:
632 Accuracy Assessment in Manual and Locomotion Tasks. *Sensors* **2014**, *14*, 18625–18649.

633 23. McGinnis, R.S.; Hough, J.; Perkins, N.C. Accuracy of Wearable Sensors for Estimating Joint
634 Reactions. *J. Comput. Nonlinear Dynam.* **2017**, *12*, 041010-041010-10.

635 24. Lloyd, D.G.; Besier, T.F. An EMG-driven musculoskeletal model to estimate muscle forces and
636 knee joint moments in vivo. *Journal of Biomechanics* **2003**, *36*, 765–776.

637 25. Sartori, M.; Reggiani, M.; Farina, D.; Lloyd, D.G. EMG-Driven Forward-Dynamic Estimation of
638 Muscle Force and Joint Moment about Multiple Degrees of Freedom in the Human Lower
639 Extremity. *PLoS ONE* **2012**, *7*, e52618.

640 26. Winters, J.M. Hill-Based Muscle Models: A Systems Engineering Perspective. In *Multiple Muscle
641 Systems: Biomechanics and Movement Organization*; Winters, J.M., Woo, S.L.-Y., Eds.; Springer
642 New York: New York, NY, 1990; pp. 69–93 ISBN 978-1-4613-9030-5.

643 27. Dowling, J.J. The Use of Electromyography for the Noninvasive Prediction of Muscle Forces:
644 Current Issues. *Sports Medicine* **1997**, *24*, 82–96.

645 28. Gurchiek, R.D.; McGinnis, R.S.; Needle, A.R.; McBride, J.M.; van Werkhoven, H. The use of a
646 single inertial sensor to estimate 3-dimensional ground reaction force during accelerative
647 running tasks. *Journal of Biomechanics* **2017**, *61*, 263–268.

648 29. Blemker, S.S.; Pinsky, P.M.; Delp, S.L. A 3D model of muscle reveals the causes of nonuniform
649 strains in the biceps brachii. *Journal of Biomechanics* **2005**, *38*, 657–665.

650 30. Fernandez, J.W.; Buist, M.L.; Nickerson, D.P.; Hunter, P.J. Modelling the passive and nerve
651 activated response of the rectus femoris muscle to a flexion loading: A finite element
652 framework. *Medical Engineering & Physics* **2005**, *27*, 862–870.

653 31. Röhrle, O.; Sprenger, M.; Schmitt, S. A two-muscle, continuum-mechanical forward simulation
654 of the upper limb. *Biomechanics and Modeling in Mechanobiology* **2017**, *16*, 743–762.

655 32. Staudenmann, D.; Roeleveld, K.; Stegeman, D.F.; van Dieën, J.H. Methodological aspects of
656 SEMG recordings for force estimation – A tutorial and review. *Journal of Electromyography and
657 Kinesiology* **2010**, *20*, 375–387.

658 33. Dumas, R.; Barré, A.; Moissenet, F.; Aissaoui, R. Can a reduction approach predict reliable joint
659 contact and musculo-tendon forces? *Journal of Biomechanics* **2019**, *95*, 109329.

660 34. Dorschky, E.; Nitschke, M.; Seifer, A.-K.; van den Bogert, A.J.; Eskofier, B.M. Estimation of gait
661 kinematics and kinetics from inertial sensor data using optimal control of musculoskeletal
662 models. *Journal of Biomechanics* **2019**, *95*, 109278.

663 35. Clancy, E.A.; Bida, O.; Rancourt, D. Influence of advanced electromyogram (EMG) amplitude
664 processors on EMG-to-torque estimation during constant-posture, force-varying contractions.
665 *Journal of Biomechanics* **2006**, *39*, 2690–2698.

666 36. Rasmussen, C.E.; Williams, K.I. *Gaussian Processes for Machine Learning*; The MIT Press:
667 Cambridge, MA, 2006;

668 37. Stetter, B.J.; Ringhof, S.; Krafft, F.C.; Sell, S.; Stein, T. Estimation of Knee Joint Forces in Sport
669 Movements Using Wearable Sensors and Machine Learning. *Sensors* **2019**, *19*, 3690.

670 38. Faisal, A.I.; Majumder, S.; Mondal, T.; Cowan, D.; Naseh, S.; Deen, M.J. Monitoring Methods of
671 Human Body Joints: State-of-the-Art and Research Challenges. *Sensors (Basel)* **2019**, *19*.

672 39. Trinler, U.; Hollands, K.; Jones, R.; Baker, R. A systematic review of approaches to modelling
673 lower limb muscle forces during gait: Applicability to clinical gait analyses. *Gait & Posture* **2018**,
674 *61*, 353–361.

675 40. Ancillao, A.; Tedesco, S.; Barton, J.; O'Flynn, B. Indirect Measurement of Ground Reaction
676 Forces and Moments by Means of Wearable Inertial Sensors: A Systematic Review. *Sensors* **2018**,
677 *18*, 2564.

678 41. Schöllhorn, W.I. Applications of artificial neural nets in clinical biomechanics. *Clinical
679 Biomechanics* **2004**, *19*, 876–898.

680 42. Shull, P.B.; Jirattigalachote, W.; Hunt, M.A.; Cutkosky, M.R.; Delp, S.L. Quantified self and
681 human movement: A review on the clinical impact of wearable sensing and feedback for gait
682 analysis and intervention. *Gait & Posture* **2014**, *40*, 11–19.

683 43. Caldas, R.; Mundt, M.; Potthast, W.; Buarque de Lima Neto, F.; Markert, B. A systematic review
684 of gait analysis methods based on inertial sensors and adaptive algorithms. *Gait & Posture* **2017**,
685 *57*, 204–210.

686 44. Suryanarayanan, S.; Reddy, N.P.; Gupta, V. An intelligent system with EMG-based joint angle
687 estimation for telemanipulation. *Stud Health Technol Inform* **1996**, *29*, 546–552.

688 45. Clancy, E.A.; Liu, L.; Pu Liu; Moyer, D.V.Z. Identification of Constant-Posture EMG–Torque
689 Relationship About the Elbow Using Nonlinear Dynamic Models. *IEEE Trans. Biomed. Eng.*
690 **2012**, *59*, 205–212.

691 46. Song, R.; Tong, K.Y. Using recurrent artificial neural network model to estimate voluntary
692 elbow torque in dynamic situations. *Med. Biol. Eng. Comput.* **2005**, *43*, 473–480.

693 47. Youn, W.; Kim, J. Estimation of elbow flexion force during isometric muscle contraction from
694 mechanomyography and electromyography. *Med Biol Eng Comput* **2010**, *48*, 1149–1157.

695 48. Xiloyannis, M.; Gavriel, C.; Thomik, A.A.C.; Faisal, A.A. Gaussian Process Autoregression for
696 Simultaneous Proportional Multi-Modal Prosthetic Control With Natural Hand Kinematics.
697 *IEEE Trans. Neural Syst. Rehabil. Eng.* **2017**, *25*, 1785–1801.

698 49. Howell, A.M.; Kobayashi, T.; Hayes, H.A.; Foreman, K.B.; Bamberg, S.J.M. Kinetic Gait Analysis
699 Using a Low-Cost Insole. *IEEE Trans. Biomed. Eng.* **2013**, *60*, 3284–3290.

700 50. Jacobs, D.A.; Ferris, D.P. Estimation of ground reaction forces and ankle moment with multiple,
701 low-cost sensors. *J NeuroEngineering Rehabil* **2015**, *12*, 90.

702 51. Wang, J.; Wang, L.; Miran, S.M.; Xi, X.; Xue, A. Surface Electromyography Based Estimation of
703 Knee Joint Angle by Using Correlation Dimension of Wavelet Coefficient. *IEEE Access* **2019**, *7*,
704 60522–60531.

705 52. Xia, P.; Hu, J.; Peng, Y. EMG-Based Estimation of Limb Movement Using Deep Learning With
706 Recurrent Convolutional Neural Networks. *Artificial Organs* **2018**, *42*, E67–E77.

707 53. Xu, L.; Chen, X.; Cao, S.; Zhang, X.; Chen, X. Feasibility Study of Advanced Neural Networks
708 Applied to sEMG-Based Force Estimation. *Sensors* **2018**, *18*, 3226.

709 54. Farmer, S.; Silver-Thorn, B.; Voglewede, P.; Beardsley, S.A. Within-socket myoelectric
710 prediction of continuous ankle kinematics for control of a powered transtibial prosthesis. *J.
711 Neural Eng.* **2014**, *11*, 056027.

712 55. Stulp, F.; Sigaoud, O. Many regression algorithms, one unified model: A review. *Neural Networks*
713 **2015**, *69*, 60–79.

714 56. Michieletto, S.; Tonin, L.; Antonello, M.; Bortoletto, R.; Spolaor, F.; Pagello, E.; Menegatti, E.
715 GMM-Based Single-Joint Angle Estimation Using EMG Signals. In *Intelligent Autonomous*
716 *Systems 13*; Menegatti, E., Michael, N., Berns, K., Yamaguchi, H., Eds.; Springer International
717 Publishing: Cham, 2016; Vol. 302, pp. 1173–1184 ISBN 978-3-319-08337-7.

718 57. Ziai, A.; Menon, C. Comparison of regression models for estimation of isometric wrist joint
719 torques using surface electromyography. *J NeuroEngineering Rehabil* **2011**, *8*, 56.

720 58. Hahne, J.M.; Biebmann, F.; Jiang, N.; Rehbaum, H.; Farina, D.; Meinecke, F.C.; Muller, K.-R.;
721 Parra, L.C. Linear and Nonlinear Regression Techniques for Simultaneous and Proportional
722 Myoelectric Control. *IEEE Trans. Neural Syst. Rehabil. Eng.* **2014**, *22*, 269–279.

723 59. Mijovic, B.; Popovic, M.B.; Popovic, D.B. Synergistic control of forearm based on accelerometer
724 data and artificial neural networks. *Braz J Med Biol Res* **2008**, *41*, 389–397.

725 60. Koike, Y.; Kawato, M. Estimation of dynamic joint torques and trajectory formation from
726 surface electromyography signals using a neural network model. *Biol Cybern* **1995**, *73*, 291–300.

727 61. Hastie, T.; Tibshirani, R.; Friedman, J. *The Elements of Statistical Learning: Data Mining, Inference,*
728 *and Prediction*; 2nd ed.; Springer: NY, 2009;

729 62. Ngeo, J.G.; Tamei, T.; Shibata, T. Continuous and simultaneous estimation of finger kinematics
730 using inputs from an EMG-to-muscle activation model. *J NeuroEngineering Rehabil* **2014**, *11*, 122.

731 63. Findlow, A.; Goulermas, J.Y.; Nester, C.; Howard, D.; Kenney, L.P.J. Predicting lower limb joint
732 kinematics using wearable motion sensors. *Gait & Posture* **2008**, *28*, 120–126.

733 64. Goulermas, J.Y.; Findlow, A.H.; Nester, C.J.; Liatsis, P.; Xiao-Jun Zeng; Kenney, L.; Tresadern,
734 P.; Thies, S.B.; Howard, D. An Instance-Based Algorithm With Auxiliary Similarity Information
735 for the Estimation of Gait Kinematics From Wearable Sensors. *IEEE Trans. Neural Netw.* **2008**,
736 *19*, 1574–1582.

737 65. Wouda, F.; Giuberti, M.; Bellusci, G.; Veltink, P. Estimation of Full-Body Poses Using Only Five
738 Inertial Sensors: An Eager or Lazy Learning Approach? *Sensors* **2016**, *16*, 2138.

739 66. Sun, W.; Zhu, J.; Jiang, Y.; Yokoi, H.; Huang, Q. One-Channel Surface Electromyography
740 Decomposition for Muscle Force Estimation. *Front. Neurorobot.* **2018**, *12*, 20.

741 67. Wouda, F.J.; Giuberti, M.; Bellusci, G.; Maartens, E.; Reenalda, J.; van Beijnum, B.-J.F.; Veltink,
742 P.H. Estimation of Vertical Ground Reaction Forces and Sagittal Knee Kinematics During
743 Running Using Three Inertial Sensors. *Front. Physiol.* **2018**, *9*, 218.

744 68. de Vries, W.H.K.; Veeger, H.E.J.; Baten, C.T.M.; van der Helm, F.C.T. Determining a long term
745 ambulatory load profile of the shoulder joint: Neural networks predicting input for a
746 musculoskeletal model. *Human Movement Science* **2012**, *31*, 419–428.

747 69. de Vries, W.H.K.; Veeger, H.E.J.; Baten, C.T.M.; van der Helm, F.C.T. Can shoulder joint
748 reaction forces be estimated by neural networks? *Journal of Biomechanics* **2016**, *49*, 73–79.

749 70. Shih, P.-S.; Patterson, P.E. Predicting Joint Moments and Angles from EMG Signals. *Biomedical*
750 *Sciences Instrumentation* **1997**, *33*, 191–196.

751 71. Au, A.T.C.; Kirsch, R.F. EMG-based prediction of shoulder and elbow kinematics in able-bodied
752 and spinal cord injured individuals. *IEEE Trans. Rehab. Eng.* **2000**, *8*, 471–480.

753 72. Dosen, S.; Popovic, D.B. Accelerometers and Force Sensing Resistors for Optimal Control of
754 Walking of a Hemiplegic. *IEEE Trans. Biomed. Eng.* **2008**, *55*, 1973–1984.

755 73. Hahn, M.E.; O'Keefe, K.B. A NEURAL NETWORK MODEL FOR ESTIMATION OF NET JOINT
756 MOMENTS DURING NORMAL GAIT. *J. Musculoskelet. Res.* **2008**, *11*, 117–126.

757 74. Delis, A.L.; Carvalho, J.L.A.; da Rocha, A.F.; Ferreira, R.U.; Rodrigues, S.S.; Borges, G.A.
758 Estimation of the knee joint angle from surface electromyographic signals for active control of
759 leg prostheses. *Physiol. Meas.* **2009**, *30*, 931–946.

760 75. Jiang, N.; Englehart, K.B.; Parker, P.A. Extracting Simultaneous and Proportional Neural
761 Control Information for Multiple-DOF Prostheses From the Surface Electromyographic Signal.
762 *IEEE Trans. Biomed. Eng.* **2009**, *56*, 1070–1080.

763 76. Nielsen, J.L.G.; Holmgård, S.; Ning Jiang; Englehart, K.B.; Farina, D.; Parker, P.A.
764 Simultaneous and Proportional Force Estimation for Multifunction Myoelectric Prostheses
765 Using Mirrored Bilateral Training. *IEEE Trans. Biomed. Eng.* **2011**, *58*, 681–688.

766 77. Jiang, N.; Vest-Nielsen, J.L.; Muceli, S.; Farina, D. EMG-based simultaneous and proportional
767 estimation of wrist/hand kinematics in uni-lateral trans-radial amputees. *J NeuroEngineering
768 Rehabil.* **2012**, *9*, 42.

769 78. Muceli, S.; Farina, D. Simultaneous and Proportional Estimation of Hand Kinematics From
770 EMG During Mirrored Movements at Multiple Degrees-of-Freedom. *IEEE Trans. Neural Syst.
771 Rehabil. Eng.* **2012**, *20*, 371–378.

772 79. Kamavuako, E.N.; Scheme, E.J.; Englehart, K.B. Wrist torque estimation during simultaneous
773 and continuously changing movements: surface vs. untargeted intramuscular EMG. *Journal of
774 Neurophysiology* **2013**, *109*, 2658–2665.

775 80. Jiang, N.; Muceli, S.; Graimann, B.; Farina, D. Effect of arm position on the prediction of
776 kinematics from EMG in amputees. *Med Biol Eng Comput* **2013**, *51*, 143–151.

777 81. Zhang, Q.; Liu, R.; Chen, W.; Xiong, C. Simultaneous and Continuous Estimation of Shoulder
778 and Elbow Kinematics from Surface EMG Signals. *Front. Neurosci.* **2017**, *11*, 280.

779 82. Dipietro, L.; Sabatini, A.M.; Dario, P. Artificial neural network model of the mapping between
780 electromyographic activation and trajectory patterns in free-arm movements. *Med. Biol. Eng.
781 Comput.* **2003**, *41*, 124–132.

782 83. Ding, Q.; Han, J.; Zhao, X. Continuous Estimation of Human Multi-Joint Angles From sEMG
783 Using a State-Space Model. *IEEE Trans. Neural Syst. Rehabil. Eng.* **2017**, *25*, 1518–1528.

784 84. van Dieën, J.H.; Visser, B. Estimating net lumbar sagittal plane moments from EMG data. The
785 validity of calibration procedures. *Journal of Electromyography and Kinesiology* **1999**, *9*, 309–315.

786 85. McGinnis, R.S.; Mahadevan, N.; Moon, Y.; Seagers, K.; Sheth, N.; Wright, J.A.; DiCristofaro, S.;
787 Silva, I.; Jortberg, E.; Ceruolo, M.; et al. A machine learning approach for gait speed estimation
788 using skin-mounted wearable sensors: From healthy controls to individuals with multiple
789 sclerosis. *PLOS ONE* **2017**, *12*, 1–16.

790 86. Kern, D.S.; Semmler, J.G.; Enoka, R.M. Long-term activity in upper- and lower-limb muscles of
791 humans. *Journal of Applied Physiology* **2001**, *91*, 2224–2232.

792 87. Tikkanen, O.; Haakana, P.; Pesola, A.J.; Häkkinen, K.; Rantalainen, T.; Havu, M.; Pullinen, T.;
793 Finni, T. Muscle Activity and Inactivity Periods during Normal Daily Life. *PLoS ONE* **2013**, *8*,
794 e52228.

795 88. Finni, T.; Haakana, P.; Pesola, A.J.; Pullinen, T. Exercise for fitness does not decrease the
796 muscular inactivity time during normal daily life: Inactivity time is independent of exercise.
797 *Scand J Med Sci Sports* **2014**, *24*, 211–219.

798 89. Gao, Y.; Melin, M.; Mäkäräinen, K.; Rantalainen, T.; Pesola, A.J.; Laukkanen, A.; Sääkslahti, A.;
799 Finni, T. Children's physical activity and sedentary time compared using assessments of
800 accelerometry counts and muscle activity level. *PeerJ* **2018**, *6*, e5437.

801 90. McGinnis, R.S.; Slauterbeck, J.R.; Tourville, T.W.; Toth, M.J. Wearable Sensors Capture
802 Differences in Muscle Activity and Gait Patterns During Daily Activity in Patients Recovering
803 from ACL Reconstruction. In Proceedings of the Proceedings of the 15th International
804 Conference on Wearable and Implantable Body Sensor Networks; Las Vegas, Nevada, USA,
805 2018; pp. 38–41.

806 91. Clancy, E.A.; Martinez-Luna, C.; Wartenberg, M.; Dai, C.; Farrell, T.R. Two degrees of freedom
807 quasi-static EMG-force at the wrist using a minimum number of electrodes. *Journal of
808 Electromyography and Kinesiology* **2017**, *34*, 24–36.

809 92. Dai, C.; Zhu, Z.; Martinez-Luna, C.; Hunt, T.R.; Farrell, T.R.; Clancy, E.A. Two degrees of
810 freedom, dynamic, hand-wrist EMG-force using a minimum number of electrodes. *Journal of
811 Electromyography and Kinesiology* **2019**, *47*, 10–18.

812 93. Dai, C.; Hu, X. Finger Joint Angle Estimation Based on Motoneuron Discharge Activities. *IEEE
813 J. Biomed. Health Inform.* **2019**.

814 94. Clancy, E.A.; Morin, E.L.; Merletti, R. Sampling, noise-reduction and amplitude estimation
815 issues in surface electromyography. *Journal of Electromyography and Kinesiology* **2002**, *16*.

816 95. Chen, J.; Zhang, X.; Cheng, Y.; Xi, N. Surface EMG based continuous estimation of human lower
817 limb joint angles by using deep belief networks. *Biomedical Signal Processing and Control* **2018**,
818 *40*, 335–342.

819 96. Buchanan, T.S.; Lloyd, D.G.; Manal, K.; Besier, T.F. Neuromusculoskeletal Modeling: Estimation of Muscle Forces and Joint Moments and Movements from Measurements of Neural
820 Command. *Journal of Applied Biomechanics* **2004**, *20*, 367–395.

822 97. Neptune, R.R.; Clark, D.J.; Kautz, S.A. Modular control of human walking: A simulation study. *Journal of Biomechanics* **2009**, *42*, 1282–1287.

824 98. Tresch, M.C.; Jarc, A. The case for and against muscle synergies. *Current Opinion in Neurobiology* **2009**, *19*, 601–607.

826 99. Tresch, M.C.; Cheung, V.C.K.; d'Avella, A. Matrix Factorization Algorithms for the Identification of Muscle Synergies: Evaluation on Simulated and Experimental Data Sets. *Journal of Neurophysiology* **2006**, *95*, 2199–2212.

829 100. Bianco, N.A.; Patten, C.; Fregly, B.J. Can Measured Synergy Excitations Accurately Construct Unmeasured Muscle Excitations? *Journal of Biomechanical Engineering* **2018**, *140*, 011011.

831 101. Lin Wang; Buchanan, T.S. Prediction of joint moments using a neural network model of muscle
832 activations from EMG signals. *IEEE Trans. Neural Syst. Rehabil. Eng.* **2002**, *10*, 30–37.

833 102. Kapelner, T.; Vujaklija, I.; Jiang, N.; Negro, F.; Aszmann, O.C.; Principe, J.; Farina, D. Predicting
834 wrist kinematics from motor unit discharge timings for the control of active prostheses. *J
835 NeuroEngineering Rehabil* **2019**, *16*, 47.

836 103. Gurchiek, R.D.; Rupasinghe Arachchige Don, H.S.; Pelawa Watagoda, L.C.R.; McGinnis, R.S.;
837 van Werkhoven, H.; Needle, A.R.; McBride, J.M.; Arnholt, A.T. Sprint Assessment Using
838 Machine Learning and a Wearable Accelerometer. *Journal of Applied Biomechanics* **2019**, *35*, 164–
839 169.

840 104. Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N.; Prabhat Deep
841 learning and process understanding for data-driven Earth system science. *Nature* **2019**, *566*,
842 195–204.

843 105. Xiong, Y.; Zhang, Y.; Guo, X.; Wang, C.; Shen, C.; Li, J.; Tang, J.; Liu, J. Seamless global
844 positioning system/inertial navigation system navigation method based on square-root
845 cubature Kalman filter and random forest regression. *Review of Scientific Instruments* **2019**, *90*,
846 015101.

847 106. Pathak, J.; Wikner, A.; Fussell, R.; Chandra, S.; Hunt, B.R.; Girvan, M.; Ott, E. Hybrid forecasting
848 of chaotic processes: Using machine learning in conjunction with a knowledge-based model.
849 *Chaos* **2018**, *28*, 041101.

850 107. Artificial intelligence alone won't solve the complexity of Earth sciences. *Nature* **2019**, *566*, 153–
851 153.

852 108. Gui, K.; Liu, H.; Zhang, D. A Practical and Adaptive Method to Achieve EMG-Based Torque
853 Estimation for a Robotic Exoskeleton. *IEEE/ASME Trans. Mechatron.* **2019**, *24*, 483–494.

854