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1 Abstract: Speech signals are degraded in real life environments, product of background noise or
> reverberation. The processing of such signals for voice recognition and voice analysis systems present
s important challenges. One of the conditions that represent adverse quality difficult to handle in those
.  systems are reverberation, produced by the sound wave reflections that travel from the source to

s the microphone in multiple directions.To enhance signals in such adverse condition, several Deep
¢ Learning-based methods have been proposed and proven to be effective. Recently, recurrent neural
»  networks, especially those with short and long term memory (LSTM), have presented surprising
s  results in tasks related to time-dependent processing of signals, such as the speech. One of the most
o  challenging aspects of LSTM networks is the high computational cost of the training procedure, which
10 have represented a limitation for extended experimentation in several references. In this work, we
11 present a proposal to evaluate the hybrid models of neural networks to learn different reverberation
1= conditions without any previous information. The results show that some combination of LSTM
1z and perceptron layers produce good results in comparison to those of pure LSTM networks. The
12 evaluation has been made based on quality measurements of the signal’s spectrum, training time of
15  the networks and statistical validation of results. Results help to affirm the fact that hybrid networks
s  represent an important alternative to this tasks with advantages in efficiency without quality drop.

1z Keywords: artificial neural network, deep learning, LSTM, speech processing.

s 1. Introduction

-

10 In real environments, audio signals are affected by conditions such as additive noise, reverberation,
20 and other distortions, due to elements that produce sounds simultaneously or are presented as
z obstacles in the signal path to the microphone. In the case of speech signals, communication devices
=2 and applications of speech technologies may be affected in their performance [1-4] in the presence of
2 such conditions.

24 In the last decades, many algorithms have been developed and to enhance degraded speech,
2 which tries to suppress or reduce the distortions, as well as preserve or improve the quality of the
26 perceived signal [5]. A considerable number of recent algorithms are based on deep neural networks
2z (DNN) [6-9]. The most common implementation is based on approximating a mapping function from
2s  the degraded characteristics of speech with noise, towards the corresponding characteristics of clean
20 speech.

30 The benefits of achieving this type of speech signal enhancement can be applied to signal
a1 processing in mobile phone applications, voice over Internet protocol, speech recognition systems and
sz devices for people with a decrease in their hearing ability [10].
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33 In addition to the classical perceptron model, created in the 1950s, new types of neural networks
s« have been developed, for example contemplating recurring connections (RNNs). One of the recent
35 types has been Long Short-Term Memory (LSTM) neural networks. In previous references, to enhance
ss  speech, spectrum-derived characteristics, such as Mel-frequency Cepstrum Coefficients (MFCC), have
sz been mapped successfully between clean speech to clean speech [11,12].

38 The benefits of using LSTM, as well as other types of RNNSs, are the best modeling of the
s dependent nature in speech signals. Among its drawbacks is the high computational cost of its training
20 procedures.

a In this work, we extend the previous experiences of experimentation with LSTM by evaluating
.2 deep neural networks, with three hidden layers, that combine LSTM layers (bidirectional) and simpler
a3 layers, based on perceptrons.

s Such type of deep neural network algorithms have been successful in overcoming the performance
4 of classical methods based on signal processing, which have considered various signal-to-noise
s (SNR) [12-15], or reverberant speech [16-18]. Some recent work has explored the use of Mixed Neural
«z  Networks to achieve a better performance in different tasks, such as classifying the temporary stages
s of sleep, analyzing the real-time behavior of an online buyer or the suppression of noise in a MEMS
4 gyroscope, in which good results were obtained for specific situations and configurations [19], [20], [21].
50 In our case, the focus is mainly on efficiency in performing the task of interest. To assess the
s1  efficiency, we consider different combinations of layers for de-reverberation, intending to accelerate
s2 the training process. We intend to measure the ability of LSTM networks to improve voice signals
ss without prior information on the degradation of the signals.

54 For this purpose, several objective measures are used to verify the results, which comparatively
ss show the capacity of the LSTM with three layers, and the combination with layers of perception, in
ss improving speech conditions of reverberation. The rest of this document is organized as follows: the
sz Section 2 provides the background and context of the problem of improving reverberant speech and
ss the LSTM, the Section 4 describes the experimental setup, the Section 5 presents the results with a
s discussion, and finally, in the Section 6 conclusions are presented.

eo 2. Problem statement

o1 In real-world environments where speech signals are registered with microphones, the presence
ez of reverberation is common, which is caused by the reflections of the audio signal in its path to the
es microphone.

6a This phenomenon is accentuated when the space is wide and the surfaces favor the reflection of
es the signals. It can be assumed that the reverberated signal x is a degraded version of the clean signal s.
ss The relationship between both waves is described by [22]:

x(n) =T (n) xs(n), )
o7 where h = [hy, hy, ..., hy]T is the impulse response of the acoustic channel from the source to the
es microphone, and * the convolution operation.
69 The degraded speech signal with reverberation is perceived as distant, as a very short type of echo.
70 Consequently, this effect generally increases as the speaker’s distance to the microphone increases.
7 Since this effect is not desired for proper recognition and analysis of the speech signal, new

=2 algorithms have been proposed to minimize it. Mainly, in the last few years, the algorithms based on
73 deep learning have stood out.

74 By implementing deep neural networks, an approximation to s(n) can be estimated using a
s function f(-) between the data of the reverberated signal and the clean signal:

5() = f (x(1) - @
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76 The quality of the approximation performed by f(-) usually depends on the amount of data
7z and the algorithm selected. For the present work, we take as a base case the estimation of f(-)
7e made by BLSTM networks with three hidden layers. In this model, we propose a comparison and
7 statistical validation of results with mixed networks, which include combinations of BLSTM layers
s and perceptions.

s1 3. Autoencoders of BLSTM networks

82 Since the appearance of the RNNSs, there are new alternatives to model the character dependent
es on the sequential information in applications where this nature of the parameters is relevant. These
s« types of neural networks are capable of storing information through feedback connections between
es neurons in their hidden layers or another network that is in the same layer [23,24].

86 With the purpose of expanding the capabilities of the RNNs by storing information in the short
ez and long term, the LSTM networks shown in [25] introduce a set of gates into the memory cells capable
ss  of controlling the access, storage and propagation of values across the network. The results obtained
s when using LSTM networks in areas that depend on previous states of information, such as the case of
%0 Voice recognition, musical composition and handwriting synthesis, were encouraging [25-27].

01 In addition to the recurring connections between the internal units, each unit in the network has
o2 additional gates for storing values: an input gate, one for memory clearing, one for output and one for
o3 activating memory. In this way, it is possible to store values for many steps, or have them available at
os any time [25].

o5 The gates are implemented using the following equations:
ir = sigma (Wyxt + Wyihy 1 +Weicr 1+ b;) ©)
fi=0 (foxt + Wighe 1 +Wepcrq + bf) (4)
¢t = frcp—1 + i tanh (Wyexy + Wychy_q + be) (5)
ot = 0 (WxoXt + Wioht—1 + Weoct + bo) (6)
hy = o tanh (¢¢) 7)
% where 0 is the sigmoid activation function, i is the input gate, f the memory erase gate and or the

o7 exit gate. c is the activation of memory. Wy, is the matrix that contains the values of the connections
ss between each unit and the gates. 1 is the output of the LSTM memory unit.

% Additional details about the training process and the implications of this implementation can be
100 found at [28].
101 An additional extension of LSTM networks that has had a greater advantage in tasks related to

102 temporal parameter dependence is the bidirectional LSTM network (BLSTM). In this, the configuration
103 Of the network allows the update of parameters in both directions of the process, as if it were not only
10s  to convert the input parameters to the reference of the output, but in the opposite direction. In this
s work, these units will be used to make comparisons.

106 Training neural networks for the improvement of speech signals and noise reduction became
107 a solid idea from its first application in the correction of binary input patterns. Later, this idea was
10s used in modeling acoustic coefficients, which were mapped using a single layer. The above due to the
100 limitation caused by the capabilities of the computers and the algorithms developed for this purpose
10 at the time [14].

111 An autoencoder for noise reduction is a neural network architecture that has been successful in
u2 various tasks related to speech [29]. This architecture consists of an encoder that transforms an input
us  vector s into a representation in the hidden layers / through a f mapping. It also has a decoder that
us takes the hidden representation and transforms it back into a vector in the input space.
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115 During training, the features of the distorted signal (noise or reverberation) are used as inputs of
us the noise elimination autoencoders, while the features of the clean speech are presented as outputs.
1z In addition, to learn the complex relationships between these sets of features, the training algorithm
ue  adjusts the parameters of the network. Currently, computers and algorithms have the ability to process
us large data sets, as well as networks with several hidden layers.

120 4. Experimental setup
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Figure 1. Sample of three networks compared in this work: The purely multi-layer perceptron(MPL), a
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mixed network, and the purely BLSTM network.

121 To test our proposed mixed neural networks LSTM / Perceptron to enhance reverberated speech,
122 the experiment can be summarized in the following steps:

123 1. Selection of conditions: Given the large number of impulse responses contemplated in the
124 databases, we randomly choose five reverberated speech conditions. Each of the conditions has
125 the corresponding clean version in the database.

126 2. Extraction of features and input-output correspondence: A set of parameters was extracted from
127 the reverberated and clean audio files. Those of the reverberated files were used as inputs to the
128 networks, while the corresponding clean functions were the outputs.

120 3. Training: During training, the weights of the networks were adjusted as the parameters with
130 reverberation and clean were presented to the network. As usual in recurrent neural networks,
131 the updating of the values of the internal weights is carried out using the back-propagation
132 algorithm through time. A total of 210 expressions were used for each condition (approximately
133 70 % of the total database) to train each case. The details and equations of the algorithm followed
134 can be found in [30].

135 4. Validation: after each training step, the sum of the squared errors within the validation set of
136 approximately 20 % of the statements was calculated, and the weights of the network were
137 updated in each improvement.

138 5. Test: A subset of 50 phrases, selected at random, (about 10 % of the total number of phrases in
130 the database) was chosen for the test set, for each condition. These phrases were not part of the
140 training process, to provide independence between training and testing.

141 In the following subsections, more details of the experimental procedure are provided.
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w12 4.1. Database

143 In our work, we use the Reverberant Voice Database created at the University of Edinburgh [31],
12a  which was designed to train and evaluate the methods of speech de-reverberation. The reverberated
s speech of the database was produced by convolving the recordings of 56 native English speakers
s With several impulse responses in various university halls. For this work, we randomly choose the
17 following conditions: ACE Building Lobby 1, Artificial Room 1, Mardy Room 2, ACE Lecture Room 1
14 and ACE Meeting Room 2.

1a0  4.2. Feature extraction

150 The audio files of the reverberated and clean voice were down-sampled at a rate of 16 kHz, 16
11 bits, to extract the parameters using the Ahocoder [32] system. A window size of 160 samples and a
12 window shift of 80 samples were used to extract 39 MFCC, fj and the energy of each sentence.

183 For this work, neural networks were applied only to improve the 39 MFCC coefficients, while the
1sa  rest of the parameters remained invariant.

155 4.3. Evaluation

156 For the evaluation of the results, the following objective measures were applied:
157 e Perceptual evaluation of speech quality (PESQ): This measure uses a model to predict the
158 subjective quality of speech, as defined in ITU-T P.862.ITU recommendation. The results are in
159 the range [0.5,4.5], where 4.5 corresponds to the signal enhanced perfectly. PESQ is calculated as
160 [33]
PESQ = ag + a1Djyg + a2 Aing ®)
161 where Dj,,; is the average disturbance and A;;,; the asymmetric perturbation. The a; were chosen
162 to optimize PESQ in the measurement of general speech quality.
163 e Sum of squared errors (sse): This is the most common metric for the validation set error during
164 the training process of a neural network. It is defined as:
d 2
sse(0) = Y (mathbfce — &) )
n=1
a 2
= Z (Cx *f(cx)) ’ (10)
n=1
165 where ¢y is the known value of the outputs and ¢ the approximation made by the network.
166 o Time per epoch: Refers to the time it takes for an iteration of the training process.
167 Additionally, Friedman’s statistical test has been used to determine the statistical significance of
1ee  the results in the test sets.
w0 4.4, Experiments
170 Figure 1 shows the procedure followed for the comparison between the different architectures

i1 tested in this work. To analyze all the architectures that can be formed with a mixture of BLSTM layers
12 and MLP layers, a total of eight different neural networks were tested for each reverberation condition:

173 e BLSTM-BLSTM-BLSTM
174 e BLSTM - BLSTM - MLP
175 e BLSTM-MLP-BLSTM
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176 e BLSTM - MLP - MLP
177 e MLP - BLSTM - BLSTM
178 o MLP-BLSTM-MLP
179 e MLP - MLP - BLSTM
180 e MLP - MLP - MLP
181 The metrics were applied in each of these possibilities, which constitute all the possibilities that
12 can be combined between the BLSTM and MLP layers in three layers.
13 5. Results and Discussion
184 Table 1 shows the training results for all networks and all possible combinations of three hidden

s layers. The training of each set was repeated or three times, and the average values are reported. By
16 following the reports made in works before this article, the network with only BLSTM layers provides
17 the best results in most cases of reverberation conditions.


https://doi.org/10.20944/preprints201910.0376.v1
https://doi.org/10.3390/biomimetics5010001

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 October 2019 d0i:10.20944/preprints201910.0376.v1

7 of 12

Table 1. Efficiency of the different combinations of hidden layers, by the condition of reverberation. *
is the best value of sse in each condition

Condition Network (Hidden layers) sse Time per epoch (s)
MARDY BLSTM-BLSTM-BLSTM 201.34* 50.6
BLSTM - BLSTM - MLP 204.39 33.3
BLSTM-MLP-BLSTM 210.81 33.5
BLSTM - MLP - MLP 218.91 159
MLP - BLSTM - BLSTM 204.82 36.1
MLP-BLSTM-MLP 256.32 18.6
MLP - MLP - BLSTM 216.46 18.8
MLP - MLP - MLP 400.34 1.2
Lecture Room BLSTM-BLSTM-BLSTM 213.12 749
BLSTM - BLSTM -MLP 214.35 48.8
BLSTM-MLP-BLSTM 221.88 49.3
BLSTM - MLP - MLP 229.22 23.2
MLP - BLSTM - BLSTM 212.34* 52.8
MLP-BLSTM-MLP 226.39 27.7
MLP - MLP -BLSTM 230.85 27.6
MLP-MLP-MLP 360.41 1.8
Artificial Room BLSTM-BLSTM-BLSTM 88.47* 55.5
BLSTM - BLSTM -MLP 90.37 36.5
BLSTM-MLP-BLSTM 93.61 36.6
BLSTM - MLP - MLP 104.23 17.4
MLP - BLSTM - BLSTM 92.18 39.5
MLP-BLSTM-MLP 108.56 20.6
MLP - MLP -BLSTM 111.13 20.5
MLP-MLP-MLP 170.61 1.3
ACE Building BLSTM-BLSTM-BLSTM 207.32* 73.8
BLSTM - BLSTM -MLP 210.17 45.8
BLSTM-MLP-BLSTM 214.29 46.1
BLSTM - MLP - MLP 212.54 21.6
MLP - BLSTM - BLSTM 208.04 49.2
MLP-BLSTM-MLP 221.28 25.6
MLP - MLP -BLSTM 220.13 25.8
MLP-MLP-MLP 333.60 1.7
Meeting Room BLSTM-BLSTM-BLSTM 197.37 69.9
BLSTM - BLSTM -MLP 199.03 45.7
BLSTM-MLP-BLSTM 204.68 45.8
BLSTM - MLP - MLP 217.52 21.6
MLP - BLSTM - BLSTM 196.90* 49.6
MLP-BLSTM-MLP 206.03 25.7
MLP - MLP -BLSTM 214.28 25.9

MLP-MLP-MLP 363.19 1.7
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Table 2. Objective evaluations for the different combinations of hidden layers, by the condition of
reverberation. * is the best value. The p-value was obtained with the Friedman test, with a significance

of 0.05.
Condition Network (Hidden layers) PESQ Significative p-value
difference

MARDY BLSTM-BLSTM-BLSTM 2.30 - -
BLSTM - BLSTM - MLP 2.31* no 0.715
BLSTM-MLP-BLSTM 227 yes 0.003
BLSTM - MLP - MLP 2.19 yes 6.648e-08
MLP - BLSTM - BLSTM 2.28 no 0.147
MLP-BLSTM-MLP 2.08 yes 1.965e-14
MLP - MLP - BLSTM 2.24 yes 0.000
MLP - MLP - MLP 1.94 yes 0.000

Lecture Room BLSTM-BLSTM-BLSTM 2.28* - -
BLSTM - BLSTM - MLP 2.21 no 0.095
BLSTM-MLP-BLSTM 222 yes 0.0034
BLSTM - MLP - MLP 2.20 yes 1.729e-07
MLP - BLSTM - BLSTM 2.27 no 0.199
MLP-BLSTM-MLP 2.21 yes 9.635e-05
MLP - MLP - BLSTM 2.20 yes 9.617
MLP - MLP - MLP 2.00 yes 0.000

Artificial Room BLSTM-BLSTM-BLSTM 3.18* - -
BLSTM - BLSTM - MLP 3.17 no 1.000
BLSTM-MLP-BLSTM 3.14 yes 0.002
BLSTM - MLP - MLP 3.12 yes 6.650e-08
MLP - BLSTM - BLSTM 3.17 no 1.000
MLP-BLSTM-MLP 3.06 yes 1.965e-14
MLP - MLP - BLSTM 3.08 yes 2.695e-06
MLP - MLP - MLP 2.90 yes 0.000

ACE Building BLSTM-BLSTM-BLSTM 2.37* - -
BLSTM - BLSTM - MLP 2.35 no 0.068
BLSTM-MLP-BLSTM 2.35 no 0.147
BLSTM - MLP - MLP 2.32 yes 4.22e-05
MLP - BLSTM - BLSTM 2.36 no 0.474
MLP-BLSTM-MLP 2.33 yes 0.026
MLP - MLP - BLSTM 2.33 yes 0.008
MLP - MLP - MLP 2.08 yes 0.000

Meeting Room BLSTM-BLSTM-BLSTM 2.28 - -
BLSTM - BLSTM - MLP 2.29*% no 0.147
BLSTM-MLP-BLSTM 2.24 no 0.060
BLSTM - MLP - MLP 2.23 yes 0.002
MLP - BLSTM - BLSTM 2.28 no 0.474
MLP-BLSTM-MLP 2.25 no 0.715
MLP - MLP - BLSTM 2.20 yes 0.001
MLP - MLP - MLP 2.0 yes 1.960e-14

188 For the five cases of reverberation considered in this paper, the network that stands out as a

10 competitive alternative to the three-layer BLSTM network is the MLP-BLSTM-BLSTM configuration.
10 In addition to presenting in two cases a better result between all the architectures (under the conditions
11 "Lecture Room" and "Meeting Room”), the training time is almost 30% less per epoch in Comparison
102 to the BLSTM network. This is one of the main indicators sought in this work.

103 In the same Table 1, it is seen how the training times are similar between those configurations
e consisting of two BLSTM layers and one MLP, ayes as between those of only one BLSTM layer and
15 two MLP. The MLP-MLP-MLP type networks, despite having very low training times per season, as
16 expected, do not present competitive results in comparison to others.
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107 In addition to the verification regarding the training efficiency of the networks, Table 2 shows the
108 results in terms of the PESQ quality metric. This is of the utmost importance since the analysis of the
100 problem of de-reverberation of speech signals is being raised. So improvements in efficiency and sse
200 values must also be checked in terms of the quality of the signal achieved.

201 In these last table, the differences obtained for the BLSTM-BLSTM-BLSTM base system are
202 presented, in terms of statistical significance according to the Friedman test.

203 In each of the five reverberation conditions, the results of these tests can be summarized:

208 e MARDY, Lecture Room and Artificial Room: Only two of the mixed configurations present
205 results that do not differ statistically significantly with the base system. These mixed networks
206 are BLSTM-BLSTM-MLP and MLP-BLSTM-BLSTM.

207 o Ace Building: In this case, three combinations of hidden layers present results that do not differ
208 significantly from the base case.

200 e Meeting Room: This is a particular case, because in the combination BLSTM-BLSTM-MLP is
210 the one that presents the best result, although the improvement is not significant compared to
211 the base system. On the other hand, both MLP-BLSTM-BLSTM and BLSTM-MLP-BLSTM and
212 MLP-BLSTM-MLP present results that do not differ significantly.

213 In the Figure 2 it can be seen the spectrograms corresponding to clean speech, to speech with

2a  reverberation and to two of the proposed configurations: That based solely on BLSTM layers, and
x5 the mixed network that obtained better results (MLP-BLSTM-BLSTM). It is possible to appreciate the
zne  improvements introduced by the neural networks and the proximity that is perceived visually in this
21z representation between the spectrogram of the mixed network in comparison to the base system.

Figure 2. Spectrograms of a phrase in the database. Upper left: speak clean. Top right: Speak with
reverberation (ACE Building Lobby). Bottom left: Enhancement result with the BLSTM network.
Bottom right: Enhancement result with the mixed MLP-BLSTM-BLSTM network.

218 Considering the previous efficiency results and how these are reflected in the PESQ metric, it is
210 emphasized that there are combinations of mixed networks, especially MLP-BLSTM-BLSTM, which
o reduce the times of training considerably, without significantly sacrificing the quality of results in the
2 reverberation of the signals.

2

N
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222 6. Conclusions

223 In this work, the use of mixed neural networks, consisting of combinations of layers formed by
224 perceptron units, with BLSTM layers, was proposed as an alternative for the reduction of training time
22 of purely BLSTM networks. Training time has represented a limitation for extensive experimentation
226 with this type of artificial neural networks in different applications, including some related to the
227 improvement of speech signals.

220 One of the eight possible combinations of mixed networks presented competitive results in terms
220 Of the metrics of the training system and results that do not differ significantly from the purely BLSTM
230 case in terms of PESQ of the signals. The significance was determined with a statistical test. The
21 reduction in training time is of the order of 30 %, in processes that can normally take hours or days,
22 depending on the amount of data.

233 The results presented open the possibility of simplifying some neural network configurations
23s to be able to perform extensive experimentation in different applications where it is required to map
235 parameters of such nature, as in the case of autoencoders.
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