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Abstract: Speech signals are degraded in real life environments, product of background noise or 
reverberation. The processing of such signals for voice recognition and voice analysis systems present 
important challenges. One of the conditions that represent adverse quality difficult to handle in those 
systems are reverberation, produced by the sound wave reflections that travel from the source to 
the microphone in multiple directions.To enhance signals in such adverse condition, several Deep 
Learning-based methods have been proposed and proven to be effective. Recently, recurrent neural 
networks, especially those with short and long term memory (LSTM), have presented surprising 
results in tasks related to time-dependent processing of signals, such as the speech. One of the most 
challenging aspects of LSTM networks is the high computational cost of the training procedure, which 
have represented a limitation for extended experimentation in several references. In this work, we 
present a proposal to evaluate the hybrid models of neural networks to learn different reverberation 
conditions without any previous information. The results show that some combination of LSTM 
and perceptron layers produce good results in comparison to those of pure LSTM networks. The 
evaluation has been made based on quality measurements of the signal’s spectrum, training time of 
the networks and statistical validation of results. Results help to affirm the fact that hybrid networks 
represent an important alternative to this tasks with advantages in efficiency without quality drop.

Keywords: artificial neural network, deep learning, LSTM, speech processing.17

1. Introduction18

In real environments, audio signals are affected by conditions such as additive noise, reverberation,19

and other distortions, due to elements that produce sounds simultaneously or are presented as20

obstacles in the signal path to the microphone. In the case of speech signals, communication devices21

and applications of speech technologies may be affected in their performance [1–4] in the presence of22

such conditions.23

In the last decades, many algorithms have been developed and to enhance degraded speech,24

which tries to suppress or reduce the distortions, as well as preserve or improve the quality of the25

perceived signal [5]. A considerable number of recent algorithms are based on deep neural networks26

(DNN) [6–9]. The most common implementation is based on approximating a mapping function from27

the degraded characteristics of speech with noise, towards the corresponding characteristics of clean28

speech.29

The benefits of achieving this type of speech signal enhancement can be applied to signal30

processing in mobile phone applications, voice over Internet protocol, speech recognition systems and31

devices for people with a decrease in their hearing ability [10].32
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In addition to the classical perceptron model, created in the 1950s, new types of neural networks33

have been developed, for example contemplating recurring connections (RNNs). One of the recent34

types has been Long Short-Term Memory (LSTM) neural networks. In previous references, to enhance35

speech, spectrum-derived characteristics, such as Mel-frequency Cepstrum Coefficients (MFCC), have36

been mapped successfully between clean speech to clean speech [11,12].37

The benefits of using LSTM, as well as other types of RNNs, are the best modeling of the38

dependent nature in speech signals. Among its drawbacks is the high computational cost of its training39

procedures.40

In this work, we extend the previous experiences of experimentation with LSTM by evaluating41

deep neural networks, with three hidden layers, that combine LSTM layers (bidirectional) and simpler42

layers, based on perceptrons.43

Such type of deep neural network algorithms have been successful in overcoming the performance44

of classical methods based on signal processing, which have considered various signal-to-noise45

(SNR) [12–15], or reverberant speech [16–18]. Some recent work has explored the use of Mixed Neural46

Networks to achieve a better performance in different tasks, such as classifying the temporary stages47

of sleep, analyzing the real-time behavior of an online buyer or the suppression of noise in a MEMS48

gyroscope, in which good results were obtained for specific situations and configurations [19], [20], [21].49

In our case, the focus is mainly on efficiency in performing the task of interest. To assess the50

efficiency, we consider different combinations of layers for de-reverberation, intending to accelerate51

the training process. We intend to measure the ability of LSTM networks to improve voice signals52

without prior information on the degradation of the signals.53

For this purpose, several objective measures are used to verify the results, which comparatively54

show the capacity of the LSTM with three layers, and the combination with layers of perception, in55

improving speech conditions of reverberation. The rest of this document is organized as follows: the56

Section 2 provides the background and context of the problem of improving reverberant speech and57

the LSTM, the Section 4 describes the experimental setup, the Section 5 presents the results with a58

discussion, and finally, in the Section 6 conclusions are presented.59

2. Problem statement60

In real-world environments where speech signals are registered with microphones, the presence61

of reverberation is common, which is caused by the reflections of the audio signal in its path to the62

microphone.63

This phenomenon is accentuated when the space is wide and the surfaces favor the reflection of64

the signals. It can be assumed that the reverberated signal x is a degraded version of the clean signal s.65

The relationship between both waves is described by [22]:66

x(n) = hT(n) ∗ s(n), (1)

where h = [h1, h2, . . . , hL]
T is the impulse response of the acoustic channel from the source to the67

microphone, and ∗ the convolution operation.68

The degraded speech signal with reverberation is perceived as distant, as a very short type of echo.69

Consequently, this effect generally increases as the speaker’s distance to the microphone increases.70

Since this effect is not desired for proper recognition and analysis of the speech signal, new71

algorithms have been proposed to minimize it. Mainly, in the last few years, the algorithms based on72

deep learning have stood out.73

By implementing deep neural networks, an approximation to s(n) can be estimated using a74

function f (·) between the data of the reverberated signal and the clean signal:75

ŝ(t) = f (x(t)) . (2)
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The quality of the approximation performed by f (·) usually depends on the amount of data76

and the algorithm selected. For the present work, we take as a base case the estimation of f (·)77

made by BLSTM networks with three hidden layers. In this model, we propose a comparison and78

statistical validation of results with mixed networks, which include combinations of BLSTM layers79

and perceptions.80

3. Autoencoders of BLSTM networks81

Since the appearance of the RNNs, there are new alternatives to model the character dependent82

on the sequential information in applications where this nature of the parameters is relevant. These83

types of neural networks are capable of storing information through feedback connections between84

neurons in their hidden layers or another network that is in the same layer [23,24].85

With the purpose of expanding the capabilities of the RNNs by storing information in the short86

and long term, the LSTM networks shown in [25] introduce a set of gates into the memory cells capable87

of controlling the access, storage and propagation of values across the network. The results obtained88

when using LSTM networks in areas that depend on previous states of information, such as the case of89

voice recognition, musical composition and handwriting synthesis, were encouraging [25–27].90

In addition to the recurring connections between the internal units, each unit in the network has91

additional gates for storing values: an input gate, one for memory clearing, one for output and one for92

activating memory. In this way, it is possible to store values for many steps, or have them available at93

any time [25].94

The gates are implemented using the following equations:95

it = sigma (Wxixt + Whiht−1 + Wcict−1 + bi) (3)

ft = σ
(

Wx f xt + Wh f ht−1 + Wc f ct−1 + b f

)
(4)

ct = ftct−1 + it tanh (Wxcxt + Whcht−1 + bc) (5)

ot = σ (Wxoxt + Whoht−1 + Wcoct + bo) (6)

ht = ot tanh (ct) (7)

where σ is the sigmoid activation function, i is the input gate, f the memory erase gate and or the96

exit gate. c is the activation of memory. Wmn is the matrix that contains the values of the connections97

between each unit and the gates. h is the output of the LSTM memory unit.98

Additional details about the training process and the implications of this implementation can be99

found at [28].100

An additional extension of LSTM networks that has had a greater advantage in tasks related to101

temporal parameter dependence is the bidirectional LSTM network (BLSTM). In this, the configuration102

of the network allows the update of parameters in both directions of the process, as if it were not only103

to convert the input parameters to the reference of the output, but in the opposite direction. In this104

work, these units will be used to make comparisons.105

Training neural networks for the improvement of speech signals and noise reduction became106

a solid idea from its first application in the correction of binary input patterns. Later, this idea was107

used in modeling acoustic coefficients, which were mapped using a single layer. The above due to the108

limitation caused by the capabilities of the computers and the algorithms developed for this purpose109

at the time [14].110

An autoencoder for noise reduction is a neural network architecture that has been successful in111

various tasks related to speech [29]. This architecture consists of an encoder that transforms an input112

vector s into a representation in the hidden layers h through a f mapping. It also has a decoder that113

takes the hidden representation and transforms it back into a vector in the input space.114
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During training, the features of the distorted signal (noise or reverberation) are used as inputs of115

the noise elimination autoencoders, while the features of the clean speech are presented as outputs.116

In addition, to learn the complex relationships between these sets of features, the training algorithm117

adjusts the parameters of the network. Currently, computers and algorithms have the ability to process118

large data sets, as well as networks with several hidden layers.119

4. Experimental setup120

Inputs

MLP Layer

MLP Layer

BLSTM Layer

MLP Layer

MLP Layer

BLSTM Layer

BLSTM Layer

BLSTM LayerBLSTM Layer

Comparison

Outputs OutputsOutputs

MLP Network BLSTM NetworkMixed Network

Figure 1. Sample of three networks compared in this work: The purely multi-layer perceptron(MPL), a
mixed network, and the purely BLSTM network.

To test our proposed mixed neural networks LSTM / Perceptron to enhance reverberated speech,121

the experiment can be summarized in the following steps:122

1. Selection of conditions: Given the large number of impulse responses contemplated in the123

databases, we randomly choose five reverberated speech conditions. Each of the conditions has124

the corresponding clean version in the database.125

2. Extraction of features and input-output correspondence: A set of parameters was extracted from126

the reverberated and clean audio files. Those of the reverberated files were used as inputs to the127

networks, while the corresponding clean functions were the outputs.128

3. Training: During training, the weights of the networks were adjusted as the parameters with129

reverberation and clean were presented to the network. As usual in recurrent neural networks,130

the updating of the values of the internal weights is carried out using the back-propagation131

algorithm through time. A total of 210 expressions were used for each condition (approximately132

70 % of the total database) to train each case. The details and equations of the algorithm followed133

can be found in [30].134

4. Validation: after each training step, the sum of the squared errors within the validation set of135

approximately 20 % of the statements was calculated, and the weights of the network were136

updated in each improvement.137

5. Test: A subset of 50 phrases, selected at random, (about 10 % of the total number of phrases in138

the database) was chosen for the test set, for each condition. These phrases were not part of the139

training process, to provide independence between training and testing.140

In the following subsections, more details of the experimental procedure are provided.141
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4.1. Database142

In our work, we use the Reverberant Voice Database created at the University of Edinburgh [31],143

which was designed to train and evaluate the methods of speech de-reverberation. The reverberated144

speech of the database was produced by convolving the recordings of 56 native English speakers145

with several impulse responses in various university halls. For this work, we randomly choose the146

following conditions: ACE Building Lobby 1, Artificial Room 1, Mardy Room 2, ACE Lecture Room 1147

and ACE Meeting Room 2.148

4.2. Feature extraction149

The audio files of the reverberated and clean voice were down-sampled at a rate of 16 kHz, 16150

bits, to extract the parameters using the Ahocoder [32] system. A window size of 160 samples and a151

window shift of 80 samples were used to extract 39 MFCC, f0 and the energy of each sentence.152

For this work, neural networks were applied only to improve the 39 MFCC coefficients, while the153

rest of the parameters remained invariant.154

4.3. Evaluation155

For the evaluation of the results, the following objective measures were applied:156

• Perceptual evaluation of speech quality (PESQ): This measure uses a model to predict the157

subjective quality of speech, as defined in ITU-T P.862.ITU recommendation. The results are in158

the range [0.5, 4.5], where 4.5 corresponds to the signal enhanced perfectly. PESQ is calculated as159

[33]:160

PESQ = a0 + a1Dind + a2 Aind (8)

where Dind is the average disturbance and Aind the asymmetric perturbation. The ak were chosen161

to optimize PESQ in the measurement of general speech quality.162

• Sum of squared errors (sse): This is the most common metric for the validation set error during163

the training process of a neural network. It is defined as:164

sse(θ) =
T

∑
n=1

( mathb f cx − ĉx)
2 (9)

=
T

∑
n=1

(cx − f (cx))
2 , (10)

where cx is the known value of the outputs and ĉx the approximation made by the network.165

• Time per epoch: Refers to the time it takes for an iteration of the training process.166

Additionally, Friedman’s statistical test has been used to determine the statistical significance of167

the results in the test sets.168

4.4. Experiments169

Figure 1 shows the procedure followed for the comparison between the different architectures170

tested in this work. To analyze all the architectures that can be formed with a mixture of BLSTM layers171

and MLP layers, a total of eight different neural networks were tested for each reverberation condition:172

• BLSTM-BLSTM-BLSTM173

• BLSTM - BLSTM - MLP174

• BLSTM-MLP-BLSTM175
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• BLSTM - MLP - MLP176

• MLP - BLSTM - BLSTM177

• MLP-BLSTM-MLP178

• MLP - MLP - BLSTM179

• MLP - MLP - MLP180

The metrics were applied in each of these possibilities, which constitute all the possibilities that181

can be combined between the BLSTM and MLP layers in three layers.182

5. Results and Discussion183

Table 1 shows the training results for all networks and all possible combinations of three hidden184

layers. The training of each set was repeated or three times, and the average values are reported. By185

following the reports made in works before this article, the network with only BLSTM layers provides186

the best results in most cases of reverberation conditions.187
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Table 1. Efficiency of the different combinations of hidden layers, by the condition of reverberation. *
is the best value of sse in each condition

Condition Network (Hidden layers) sse Time per epoch (s)
MARDY BLSTM-BLSTM-BLSTM 201.34* 50.6

BLSTM - BLSTM - MLP 204.39 33.3
BLSTM-MLP-BLSTM 210.81 33.5
BLSTM - MLP - MLP 218.91 15.9
MLP - BLSTM - BLSTM 204.82 36.1
MLP-BLSTM-MLP 256.32 18.6
MLP - MLP - BLSTM 216.46 18.8
MLP - MLP - MLP 400.34 1.2

Lecture Room BLSTM-BLSTM-BLSTM 213.12 74.9
BLSTM - BLSTM -MLP 214.35 48.8
BLSTM-MLP-BLSTM 221.88 49.3
BLSTM - MLP - MLP 229.22 23.2
MLP - BLSTM - BLSTM 212.34* 52.8
MLP-BLSTM-MLP 226.39 27.7
MLP - MLP -BLSTM 230.85 27.6
MLP-MLP-MLP 360.41 1.8

Artificial Room BLSTM-BLSTM-BLSTM 88.47* 55.5
BLSTM - BLSTM -MLP 90.37 36.5
BLSTM-MLP-BLSTM 93.61 36.6
BLSTM - MLP - MLP 104.23 17.4
MLP - BLSTM - BLSTM 92.18 39.5
MLP-BLSTM-MLP 108.56 20.6
MLP - MLP -BLSTM 111.13 20.5
MLP-MLP-MLP 170.61 1.3

ACE Building BLSTM-BLSTM-BLSTM 207.32* 73.8
BLSTM - BLSTM -MLP 210.17 45.8
BLSTM-MLP-BLSTM 214.29 46.1
BLSTM - MLP - MLP 212.54 21.6
MLP - BLSTM - BLSTM 208.04 49.2
MLP-BLSTM-MLP 221.28 25.6
MLP - MLP -BLSTM 220.13 25.8
MLP-MLP-MLP 333.60 1.7

Meeting Room BLSTM-BLSTM-BLSTM 197.37 69.9
BLSTM - BLSTM -MLP 199.03 45.7
BLSTM-MLP-BLSTM 204.68 45.8
BLSTM - MLP - MLP 217.52 21.6
MLP - BLSTM - BLSTM 196.90* 49.6
MLP-BLSTM-MLP 206.03 25.7
MLP - MLP -BLSTM 214.28 25.9
MLP-MLP-MLP 363.19 1.7
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Table 2. Objective evaluations for the different combinations of hidden layers, by the condition of
reverberation. * is the best value. The p-value was obtained with the Friedman test, with a significance
of 0.05.

Condition Network (Hidden layers) PESQ Significative
difference

p-value

MARDY BLSTM-BLSTM-BLSTM 2.30 - -
BLSTM - BLSTM - MLP 2.31* no 0.715
BLSTM-MLP-BLSTM 2.27 yes 0.003
BLSTM - MLP - MLP 2.19 yes 6.648e-08
MLP - BLSTM - BLSTM 2.28 no 0.147
MLP-BLSTM-MLP 2.08 yes 1.965e-14
MLP - MLP - BLSTM 2.24 yes 0.000
MLP - MLP - MLP 1.94 yes 0.000

Lecture Room BLSTM-BLSTM-BLSTM 2.28* - -
BLSTM - BLSTM - MLP 2.21 no 0.095
BLSTM-MLP-BLSTM 2.22 yes 0.0034
BLSTM - MLP - MLP 2.20 yes 1.729e-07
MLP - BLSTM - BLSTM 2.27 no 0.199
MLP-BLSTM-MLP 2.21 yes 9.635e-05
MLP - MLP - BLSTM 2.20 yes 9.617
MLP - MLP - MLP 2.00 yes 0.000

Artificial Room BLSTM-BLSTM-BLSTM 3.18* - -
BLSTM - BLSTM - MLP 3.17 no 1.000
BLSTM-MLP-BLSTM 3.14 yes 0.002
BLSTM - MLP - MLP 3.12 yes 6.650e-08
MLP - BLSTM - BLSTM 3.17 no 1.000
MLP-BLSTM-MLP 3.06 yes 1.965e-14
MLP - MLP - BLSTM 3.08 yes 2.695e-06
MLP - MLP - MLP 2.90 yes 0.000

ACE Building BLSTM-BLSTM-BLSTM 2.37* - -
BLSTM - BLSTM - MLP 2.35 no 0.068
BLSTM-MLP-BLSTM 2.35 no 0.147
BLSTM - MLP - MLP 2.32 yes 4.22e-05
MLP - BLSTM - BLSTM 2.36 no 0.474
MLP-BLSTM-MLP 2.33 yes 0.026
MLP - MLP - BLSTM 2.33 yes 0.008
MLP - MLP - MLP 2.08 yes 0.000

Meeting Room BLSTM-BLSTM-BLSTM 2.28 - -
BLSTM - BLSTM - MLP 2.29* no 0.147
BLSTM-MLP-BLSTM 2.24 no 0.060
BLSTM - MLP - MLP 2.23 yes 0.002
MLP - BLSTM - BLSTM 2.28 no 0.474
MLP-BLSTM-MLP 2.25 no 0.715
MLP - MLP - BLSTM 2.20 yes 0.001
MLP - MLP - MLP 2.0 yes 1.960e-14

For the five cases of reverberation considered in this paper, the network that stands out as a188

competitive alternative to the three-layer BLSTM network is the MLP-BLSTM-BLSTM configuration.189

In addition to presenting in two cases a better result between all the architectures (under the conditions190

"Lecture Room" and "Meeting Room”), the training time is almost 30% less per epoch in Comparison191

to the BLSTM network. This is one of the main indicators sought in this work.192

In the same Table 1, it is seen how the training times are similar between those configurations193

consisting of two BLSTM layers and one MLP, ayes as between those of only one BLSTM layer and194

two MLP. The MLP-MLP-MLP type networks, despite having very low training times per season, as195

expected, do not present competitive results in comparison to others.196
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In addition to the verification regarding the training efficiency of the networks, Table 2 shows the197

results in terms of the PESQ quality metric. This is of the utmost importance since the analysis of the198

problem of de-reverberation of speech signals is being raised. So improvements in efficiency and sse199

values must also be checked in terms of the quality of the signal achieved.200

In these last table, the differences obtained for the BLSTM-BLSTM-BLSTM base system are201

presented, in terms of statistical significance according to the Friedman test.202

In each of the five reverberation conditions, the results of these tests can be summarized:203

• MARDY, Lecture Room and Artificial Room: Only two of the mixed configurations present204

results that do not differ statistically significantly with the base system. These mixed networks205

are BLSTM-BLSTM-MLP and MLP-BLSTM-BLSTM.206

• Ace Building: In this case, three combinations of hidden layers present results that do not differ207

significantly from the base case.208

• Meeting Room: This is a particular case, because in the combination BLSTM-BLSTM-MLP is209

the one that presents the best result, although the improvement is not significant compared to210

the base system. On the other hand, both MLP-BLSTM-BLSTM and BLSTM-MLP-BLSTM and211

MLP-BLSTM-MLP present results that do not differ significantly.212

In the Figure 2 it can be seen the spectrograms corresponding to clean speech, to speech with213

reverberation and to two of the proposed configurations: That based solely on BLSTM layers, and214

the mixed network that obtained better results (MLP-BLSTM-BLSTM). It is possible to appreciate the215

improvements introduced by the neural networks and the proximity that is perceived visually in this216

representation between the spectrogram of the mixed network in comparison to the base system.217

Figure 2. Spectrograms of a phrase in the database. Upper left: speak clean. Top right: Speak with
reverberation (ACE Building Lobby). Bottom left: Enhancement result with the BLSTM network.
Bottom right: Enhancement result with the mixed MLP-BLSTM-BLSTM network.

Considering the previous efficiency results and how these are reflected in the PESQ metric, it is218

emphasized that there are combinations of mixed networks, especially MLP-BLSTM-BLSTM, which219

reduce the times of training considerably, without significantly sacrificing the quality of results in the220

reverberation of the signals.221
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6. Conclusions222

In this work, the use of mixed neural networks, consisting of combinations of layers formed by223

perceptron units, with BLSTM layers, was proposed as an alternative for the reduction of training time224

of purely BLSTM networks. Training time has represented a limitation for extensive experimentation225

with this type of artificial neural networks in different applications, including some related to the226

improvement of speech signals.227

One of the eight possible combinations of mixed networks presented competitive results in terms228

of the metrics of the training system and results that do not differ significantly from the purely BLSTM229

case in terms of PESQ of the signals. The significance was determined with a statistical test. The230

reduction in training time is of the order of 30 %, in processes that can normally take hours or days,231

depending on the amount of data.232

The results presented open the possibility of simplifying some neural network configurations233

to be able to perform extensive experimentation in different applications where it is required to map234

parameters of such nature, as in the case of autoencoders.235
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