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A unified electro-gravity (UEG) theory, which has been successfully used for modeling an elemen-
tary particle, is applied in this paper to model gravitation in spiral galaxies. The new UEG model
would explain the “flat rotation curves” commonly observed in the spiral galaxies, without need for
any hypothetical dark matter. The UEG theory is implemented in a somewhat different manner for
a spiral galaxy, as compared to the simple application of the UEG theory to an elementary particle.
This is because the spiral galaxy, unlike the elementary particle, is not spherically symmetric. The
UEG constant γ, required in the new model to support the galaxies’ flat rotation speeds, is esti-
mated using measured data from a galaxy survey, as well as for a selected galaxy for illustration.
The estimates are compared with the γ derived from the UEG model of an elementary particle. The
UEG model for the galaxy is shown to explain the empirical Tully-Fisher Relationship (TFR), is
consistent with the Modified Newtonian Dynamics (MOND), and is also independently supported by
measured trends of galaxy thickness with surface brightness and rotation speed.
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I. INTRODUCTION

Rotation curves of spiral galaxies [1] have been sus-
pected not to confirm to gravitational forces due to galax-
ies’ visible mass as per the Newton’s Law of gravitation,
which is known to work well in our day-to-day experience
on earth as well for planetary orbits in our solar system.
In order to explain the observed rotation curves, it has
been proposed and long believed that there is significant
amount of invisible “dark matter” surrounding almost all
spiral galaxies. There was no other existing theory which
could explain the rotation behavior in a satisfactory man-
ner, although modification of the laws of Newtonian dy-
namics has been proposed [2]. Recently, a new unified
electro-gravity (UEG) theory is established, which has
been successfully applied to model an elementary parti-
cle and the Casimir Effect [3], where a new gravitational
force proportional to electromagnetic energy density, is
introduced. In this paper, the simple UEG theory of
[3], applicable for the spherically symmetric structure of
an elementary particle, would be extended for the non-
spherical structure of a spiral galaxy. The energy den-
sity due to star lights in the galaxy would contribute to
a new gravitational force, which could support the ob-
served stellar rotation around the galaxy. A constant ro-
tation speed beyond certain radial distance would require
a 1/r-dependent gravitational acceleration, in the given
region. When the UEG theory of [3] is properly mod-
ified for the non-spherical structure of a spiral galaxy,
the required 1/r-dependent acceleration may result, al-
though the stellar light radiation from the galaxy exhibit
an approximate 1/r2 dependence, in the given region.
This is possible, because the energy density of the actual
light radiation may need to be redistributed, based on
the physical asymmetry of the spiral galaxy. The UEG
field may be defined in proportion to the redistributed,
effective energy density.

The required UEG constant γ of proportionality, be-
tween the UEG field and the associated effective energy

density, may be deduced from the new UEG model using
measured data from galaxy survey as well as data for se-
lected individual galaxies. The results may be compared
with the UEG constant deduced from [3], for validation
or verification of the new UEG model. The functional
trends established from the new UEG model may be com-
pared, for validation of the model, with those from the
empirical Tully-Fisher Relation (TFR) [4] and the Mod-
ified Newtonian Dynamics (MOND) model [2, 5]. The
trends predicted from the UEG model would explicitly
depend upon the spiral galaxy’s aspect ratio (ratio of
the scale lengths in radius and thickness), because the
new model is formulated based on the spherical asymme-
try of the galaxy. This is distinct from the the MOND
model, where there may not be such definitive interrela-
tion between the galaxy’s aspect ratio and the rotation
speed. The functional dependence of the galaxy’s aspect
ratio on the surface brightness and rotation velocity, as
required for the UEG galaxy model to reproduce the ro-
tation curves, may be compared with available relevant
measurements, for another independent validation of the
basic UEG galaxy model.

As mentioned earlier, the galaxy’s UEG force field is
to be defined in proportion to an effective distribution of
energy density, not the actual energy density of stellar
radiation as was the case in [3] for a spherical structure.
The effective energy density may be obtained by suitable
redistribution of the galaxy’s light radiation, in propor-
tion to the distribution of the Newtonian gravitation po-
tential of the galaxy, as discussed in the following section.
The divergence of the resulting UEG force field surround-
ing the galaxy would be equivalent to having a fictitious
“dark-matter” distribution [6], on the basis of the conven-
tional Newtonian gravitation, which may be needed in or-
der to explain the observed rotation behavior of the spiral
galaxies, as well as formation and evolution of the galax-
ies. Beyond a sufficiently large radial distance from the
galactic center, the galaxy would “look” like a point body
with a spherically symmetric distribution of the Newto-
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nian potential, and with a 1/r2 dependence of its light in-
tensity. In this far region the radial UEG field would also
be spherically symmetric, and therefore the field would
be directly proportional to the 1/r2-dependent light’s en-
ergy density, without any need for redistribution of the
energy density as per the proposed model. This spheri-
cally symmetric, 1/r2-dependent radial UEG field in the
far region is associated with zero field divergence, and
therefore with no dark matter. In contrast, the interme-
diate region where the conventional Newtonian potential
exhibits strong spherical asymmetry, the UEG field (with
the expected 1/r dependence) would be associated with a
strong divergence, which would emulate heavy presence
of the dark-matter in the region. The UEG field in the
innermost region, where the spherical symmetry of the
Newtonian potential is generally restored, would be as-
sociated with only minimal presence of the dark-matter,
much smaller in magnitude than the intermediate region.
The intermediate region of heavy dark-matter presence
would at least include the smallest spherical region which
encloses most of the galaxy’s mass and light sources, and
may extend much farther.

Section II presents the theoretical concepts and an an-
alytical formulation of the theory. The results for flat
rotation velocity deduced from the model are validated
with measured data for a galaxy survey as well as for an
individual galaxy, in sections III, IV. The Tully-Fisher
Relation (TFR) and the Modified Newtonian Dynamics
(MOND) model are studied in section V, in relation to
the present UEG galaxy model, for further validation of
the model. This is followed by discussion and general
conclusion from the study.

II. THEORY

A. The UEG Theory of a Non-Spherical Radiating
Body

As per the UEG theory, there exists a new gravita-
tional force-field which is dependent on the electromag-
netic energy density. This is in addition to the con-
ventional Newtonian gravitation. For a simple spheri-
cal body, the new UEG field at any particular location
is proportional to the energy density at the given loca-
tion, and is directed toward the gravitational center of
the body [3]. For completeness of understanding, a brief
theory of [3] for an elementary particle is presented in
the Appendix, in order to introduce the new UEG the-
ory and to estimate the required constant of proportion-
ality γ between the UEG field and the energy density.
The UEG theory of [3] has been successfully applied to
model an electron, as well as predict the fine-structure
constant and the Casimir effect, establishing significant
confidence to the new theory. Therefore, in order to be
scientifically consistent, a similar additional gravitational
field must be included as well for a galaxy, dependent on
the radiation energy density associated with the galaxy’s

FIG. 1.

light distribution. However, the simple, direct relation-
ship between the UEG field and the energy density, which
is applicable for the spherically symmetric structure of an
electron in [3], may not be valid in its simple form for the
non-spherical structure of a galaxy.

Instead, the radial UEG field for the galaxy is expected
to be proportional to a suitable distribution of an ef-
fective energy density, with the UEG constant γ [3] as
the constant of proportionality. A reasonable proposi-
tion would be to define the effective energy density at
any given location, by redistribution of the actual energy
density of the galaxy’s stellar radiation on a spherical
surface passing through the location, in proportion to the
galaxy’s conventional Newtonian potential on the spher-
ical surface. The redistribution would maintain the total
integral of the actual and effective energy densities on the
spherical surface to be equal, which is a definite measure
of the equivalent UEG mass (dark-mass) enclosed inside
the sphere. For the special case of a spherically symmet-
ric body, the effective energy density would be equal to
the actual energy density, in consistency with the simple
UEG model [3] of an electron presented in the Appendix.

B. Analytical Model for a Spiral Galaxy

The light radiation from a spherically distributed
source, like a single isolated star for example, exhibits
a 1/r2 dependence of its radiation energy density with
radial distance r, external to the spherical source. Such
1/r2 dependence of radiation may also be seen for a non-
spherical source, in an approximate form, outside of a
spherical region of certain threshold radius. For a spi-
ral galaxy, such a spherical region may be identified with
a threshold radius equal to the galaxy’s scale radius R.
This means, the radiation of the galaxy establishes an
approximate spherical symmetry beyond the radius R.
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A spherical source is defined by spherical equi-potential
surfaces, which means all points on a spherical surface of
radius r have the same potential. In contrast, the spiral
galaxy may be represented as a thin disk of an average
thickness z0, with the z0 much smaller than its disk ra-
dius ∼ R. The equi-potential surfaces (as per Newtonian
gravity) for the disk structure would be thin disk-like sur-
faces in the vicinity enclosing the source disk (see Fig.1).
Such equi-potential surfaces exhibit spherical asymmetry
inherent in the disk structure, and such asymmetry in the
Newtonian potential distribution may effectively extend
well beyond the scale radius R. This is unlike the light’s
energy density discussed above, which establishes a fairly
spherical symmetry beyond the galaxy’s scale radius.

Now, consider a spherical surface of radius r, with a
common center as the disk galaxy, as shown in Fig.1.
The distribution of the Newtonian gravitational poten-
tial on this surface would in general be non-uniform, with
stronger potential values near the plane of the disk over
a constant thickness ∼ z0 (independent of r), and weaker
values in the rest of the spherical surface. As a first-order
model, one may approximate the potential distribution to
be uniform over its strong region of area ∼ 2πrz0 (Fig.1),
and be negligible over the rest of the spherical surface.
A uniform energy density Wτ of light radiation over the
surface may be redistributed in proportion to the po-
tential distribution, as approximated above, resulting in
a stronger effective energy density Wτe near the galaxy
plane. The radial UEG force is proposed to be propor-
tional to this effective energy density Wτe, not the actual
energy density Wτ . In accordance with the above princi-
ple, the two energy densities would in principle be equal if
the potential was spherically symmetric, with a uniform
value everywhere on the spherical surface of Fig.1.

[Wτ (r)× 4πr2] = [Wτe(r)× (∼ 2πrz0)],

Wτe(r) ∝ r
z0
×Wτ (r);

Wτ (r) ∼ 1
r2
, Wτe(r) ∼ 1

r , r > R. (1)

The original energy density Wτ with a ∼ 1/r2 depen-
dence would transform into an effective energy density
Wτe with a ∼ 1/r dependence on the galaxy plane.

The gravitational potential distribution would exhibit
closer spherical symmetry as one approaches towards the
center, resulting in the effective density Wτe to be close
to the actual energy density Wτ in the central region.
Accordingly, as a first-order estimate, the effective and
actual energy densities may be assumed to be equal to
each other for r < R. Based on this assumption and
the above modeling (1), the effective and actual energy
densities may be expressed as follows.

Wτe(r) = Wτ (r), r < R;

Wτ (r) = Wτ (r = R)R
2

r2
,

Wτe(r) = Wτ (r = R)Rr , r > R. (2)

The energy density Wτ for r > R may be approximated
using the total luminosity L and the speed of light c, and
assuming that the total light radiates in a spherically
symmetric manner in the region, as if it radiates from a
point source at the galaxy center. The total luminosity
may be expressed using the surface density µ, which may
be modeled with an exponential profile with amplitude
µ0 and scale radius R.

Wτ (r) ' L
4πr2c

=
µ0R

2

2r2c
, Wτ (r = R) ' µ0

2c , µ(r) = µ0e
−r/R,

L =
∞∫
0
µ(r)2πrdr =

∞∫
0
µ0e
−r/R2πrdr = 2πµ0R

2. (3)

The approximate energy density Wτ at r = R can
then be related to the light surface density µ at r = R,
with e/(2c) as the proportionality factor. For conve-
nience of reference, the effective energy density function
Wτe(r > R) may be defined proportional to an equivalent
effective surface density function µe(r), with the same
above factor e/(2c) of proportionality. Using the relation
(2) between the Wτe function and Wτ (r = R) in the pro-
posed definition, the effective surface density function µe
may be related to the actual surface-density function µ.

Wτ (r = R) ' µ0
2c =

eµ(r=R)
2c ,

Wτe(r > R) =
eµe(r)

2c = Wτ (r = R)Rr

' eµ(r=R)×R
2cr = ea

2cr ,

a = µ(r = R)×R, µe(r) = a
r =

µ(r=R)×R
r . (4)

The effective surface density function µe(r) may be
viewed as a 1/r-functional fit to the actual surface sur-
face density function µ(r), such that they are equal to
each other at r = R. As mentioned above, the surface
density function µ(r) is modeled as an exponential distri-
bution with an amplitude µ0 and a scale radius R. The
amplitude a of the µe distribution may be related to the
parameters µ0 and R. Consequently, the total luminosity
L in (3) may be expressed in terms of the parameters a
and R.

µ(r) = µ0e
−r/R; µ(r = R) = a

R = µ0e
−1, µ0 = ea

R ,

L = 2πµ0R
2 = 2πeaR. (5)

If the amplitude µ0 is maintained to be approximately
constant, then a would be proportional to R, or equiva-
lently the luminosity L would be proportional to a2. This
may be the case for a large group of high surface bright-
ness (HSB) galaxies, which were believed to confirm to
the Freeman’s Law [7] of having an approximately con-
stant central brightness µ0.

µ0 ∼ constant (Freeman′s Law, HSB Galaxy),

a ∝ R, L ∝ a2. (6)
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The radial UEG field Egu may now be expressed pro-
portional to the equivalent energy density Wτe, with the
constant of proportionality equal to the UEG constant γ.
The potential function associated with the above radial
field could be obtained by integrating the field in the ra-
dial variable r, from which the θ component of the field
may also be derived (in principle) as the θ-derivative of
the potential function. However, we are interested here
only on the radial UEG field, which completely deter-
mines the orbital acceleration on the central plane of the
galaxy, because the θ− component of the UEG field on
this plane would be zero. The magnitude Egu of the ra-
dial UEG field on the central galaxy plane would be equal
to the orbital acceleration v2/r. The Egu (for r > R) is
proportional to the effective surface density µe(r) = a/r,
having the same 1/r dependence as the orbital accelera-
tion. Accordingly, the rotation velocity v would exhibit
a “flat” behavior for r > R, with v2 equal to the constant
amplitude ‘a’.

Ēgu = −r̂Egu = −r̂γWτe = −r̂ γeµe2c ,

Egu(r) =
γeµe(r)

2c = γea
2cr = v2

r ,

v2 = γea
2c , r > R. (7)

Combining (7,5), the luminosity L may be expressed in
terms of the velocity v, radius R, and the UEG constant
γ.

L = 2πeaR = 4πRv2c
γ , γ = 4πRv2c

L . (8)

Accordingly, the UEG constant γ may be estimated
from (8) using measured values of the L, v and R, avail-
able from a galaxy survey [8]. Alternatively, the ampli-
tude a for the effective surface density µe(r) may be esti-
mated directly from a measured surface-brightness pro-
file µ(r) for a selected individual galaxy, and then the
γ be estimated using the a and the measured flat ro-
tation velocity v, as per (7,4). The estimation directly
using measured data of an individual galaxy would com-
plement the estimation from the galaxy survey, providing
an explicit illustration of the UEG model. However, the
estimation using an averaged data from the galaxy survey
can, in principle, be more reliable than that using data
for individual galaxies. Inaccuracies from astronomical
measurements of individual galaxy parameters, as well as
uncertainty due to deviation of individual galaxy charac-
teristics from any ideal theoretical assumptions, can often
be significant. The resulting inaccuracy or uncertainty in
the estimation of the γ is expected to be minimized by us-
ing an “average” or a central data point among a survey
of large number of sample galaxies.

III. ESTIMATION OF γ USING MEASURED
DATA FROM GALAXY SURVEY

We first estimate the γ based on (8), using an average
data point from the I-band measurement of the galaxy
survey [8]. As suggested above, the data point is located
approximately at the statistical center of the survey sam-
ples.

(I-band data):

L = 1010.4L0 = 3.828× 1036.4W, v = 105.2m/s,

R = 100.5kpc = 100.5 × 3.086× 1019m,

γ(I-band) = γI = 4π×3×3.086×101.5
3.828

= 0.96× 103[(ms-2)/(Jm-3)]. (9)

Similarly, we estimate the γ from the K-band measure-
ment of [8]. Note that an effective radius, Re, is provided
in [8] for the K-band measurements. The effective radius,
defined as the radius of a sphere that encloses half of the
total luminosity, would be 1.678 times the scale radius
R used in our modeling, assuming an exponential light
profile.

(K-band data) :

L = 1010.8L0 = 3.828× 1036.8W, v = 105.2m/s,

Re = 100.6kpc = 100.6 × 3.086× 1019m, R = Re/1.678 ,

γ(K-band) = γK = 4π×3×3.086×101.2
3.828×1.678

= 0.29× 103[(ms-2)/(Jm-3)]. (10)

Measurements in the K-band overestimates the lumi-
nosity and the energy density, leading to underestimation
of the γ. On the other hand, measurements in the I-band
underestimates the energy density, leading to overestima-
tion of the γ. Accordingly, the above results estimate a
useful range for the value of the γ, which is consistent
with the value of the γ = 0.6 × 103 (ms−2)/(Jm−3) de-
duced from the UEG model [3] in the Appendix for an
elementary particle.

0.29× 103 < γ < 0.96× 103[(ms-2)/(Jm-3)],

γ = 0.6× 103[(ms-2)/(Jm-3)]. (11)

The best estimate for γ is assumed to be the average
of the two estimates in the I− and K− bands.

γ ' (γI+γK )
2 =0.63× 103[(ms-2)/(Jm-3)]. (12)

The above estimate closely agrees with the γ from the
particle model [3] in the Appendix. Considering that we
used a first-order approximation in the UEG modeling
of (1,2), such agreement is remarkable. This means that
the ideal conditions we assumed in the first-order UEG
modeling of (1,2) are remarkably valid for the central
data point of [8] used in our estimation.
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FIG. 2.

IV. ESTIMATION OF γ USING MEASURED
DATA OF AN INDIVIDUAL GALAXY

Measured data for the surface brightness distribution
µ(r) of a specific galaxy is first properly fitted with an
exponential, and then an effective surface brightness dis-
tribution µe(r), as defined in (4). The data using mixed
units, such as magnitude, arcsec, light-years, may be con-
verted to suitable standard units. The µe distribution
can then be related to the rotation velocity v using (7).

Wτe = eµe
2c =

s0×6.61×10−13

r J/m3,

UEG Acceleration(m/s2) = Egu

= γWτe =
γs0×6.61×10−13

r

= v2×1010
rm

= v2

r×d×4.6×106 ; v(105m/s),

1(lin-mag/arcsec2)v = 1.46× 104(W/m2),

r(arcsec)=r× d× 4.6× 1016(m)

= rm(m), at distance d(MLyr). (13)

The UEG constant γ is deduced using the amplitude
a, or its equivalent parameter s0, of the effective surface
brightness distribution µe(r), the flat rotation velocity v

and the distance d of the galaxy. Suitable correction fac-
tors may be needed to relate the K- and U-band measured
magnitudes to a common reference of solar bolometric
magnitude of 4.83. This assumes the solar magnitudes in
the K- and U-bands are 3.28 and 5.56, respectively.

γ = v2×107

s0d×6.61×4.6 = v2×106

s0d×3.04 [(ms-2)/(Jm-3)] (Visible),

γ = ∆u×v2×106

s0d×3.04 [(ms-2)/(Jm-3)] (U-Band),

γ =
∆k×v

2×106

s0d×3.04 [(ms-2)/(Jm-3)] (K-Band);

v(105m/s), d(MLyr),

∆k = 10(4.83−3.28)/2.5

= 4.17 = K-Band correction factor,

∆u = 10(4.83−5.56)/2.5

= 0.51 = U-Band correction factor. (14)

Using the U-band (assumed ' U’-band) surface-
brightness data [9] for the galaxy NGC-2403, presented
in Fig.2, we estimate the amplitude parameter s0 = 32.9.
This parameter, together with the galaxy’s distance d =

11.4MLyr [10] and flat rotation velocity v = 1.35×105m/s
[11], would provide an estimate for the γu = 0.81 × 103

(ms−2)/(Jm−3), using the above relation (14). Similarly,
using the K-band data [12] for the same galaxy NGC-
2403, presented in Fig.3, we estimate the amplitude pa-
rameter s0 = 430. This would provide an estimate for the
γk = 0.51 × 103 (ms−2)/(Jm−3), using (14). An average
of these two estimates for the γ would lead to the best
estimate for the γ = 0.66 × 103 (ms−2)/(Jm−3) from the
available data for the galaxy NGC-2403. This is close
to the γ = 0.63 × 103 (ms−2)/(Jm−3) deduced from the
galaxy survey in (12) or the γ = 0.60×103 (ms−2)/(Jm−3)

from particle model [3] in the Appendix. Such remark-
able agreement implies that any deviation from the basic
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FIG. 3.

model of (1-4) due to differences in the surface brightness
µ0 (see section V)) of the individual galaxy NGC-2403
from the “average” galaxy used in the estimation (12),
is minimal. The µ0,k are estimated to be roughly equal

to 16.75 (mag/arcsec2) in both cases ([8], Fig.3), which is
consistent with the above expectation.

NGC-2403:

γu=0.81× 103(ms-2)/(Jm-3) (U-Band),

γk=0.51× 103(ms-2)/(Jm-3)(K-Band),

γ = (γv + γk)/2

= 0.66× 103(ms-2)/(Jm-3) (Best Estimate). (15)

V. THE TULLY-FISHER RELATION (TFR)
AND THE MODIFIED NEWTONIAN

DYNAMICS (MOND) MODEL, DERIVED FROM
THE UEG MODEL

Combining (5,7) and assuming an approximately con-
stant µ0, a Tully-Fisher Relation (TFR) [4] may be de-
duced, where the total luminosity L would be propor-
tional to the fourth power of the flat rotation velocity v.
As mentioned before, the above condition of an approx-
imately constant µ0 is satisfied by a large group of high
surface brightness (HSB) galaxies that were believed to
confirm to the Freeman’s Law [7].

L = 2πµ0R
2 = 2πe2a2

µ0
= 8πv4c2

µ0γ
2 , µ0 = ea

R ,

L ∝ v4 (TFR),

µ0 ∼ constant (Freeman′s Law, HSB Galaxy). (16)

However, the Freeman’s Law is no longer believed to
strictly valid, and galaxies are measured to exhibit a
broad range of amplitudes µ0 covering variations among
the HSB galaxies as well as extending to low surface
brightness (LSB) galaxies with lower values of µ0. For
a general treatment to closely model the variation in the
amplitude µ0, we may introduce a new parameter α for
fitting the 1/r profile of µe with the exponential profile
of µ in (4). The unit reference value of α is expected to
apply for an “average” HSB galaxy, as assumed in the
basic model of (4) and in the estimations of (12,15). The
µe may be adjusted to a smaller or larger value, relative
to the µ(r = R), with a proportional adjustment of the
parameter α, which would represent a smaller or large
value of the UEG force, respectively, as per (7).

The variable factor α is accommodated in the gravita-
tional potential model of (1,2), Fig.1, by recognizing the
galaxy thickness z0 to be an active variable, like the scale
radius R or the surface brightness µ0, for parametrization
of galaxy characteristics. In the potential model of (1),
an approximately uniform (spherically) potential would
be established for all radial distances less than a variable
threshold radius Rt, dependent on a variable thickness
z0, not less than the ideal fixed threshold radius r = R

assumed in (2). Accordingly, the effective energy density
Wτe would match with the actual energy density Wτ for
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all the radial distances less than the variable threshold
radius, not the ideal reference threshold r = R assumed
in (2). Consequently, the Wτe(r = R) would no longer
be equal to Wτ (r = R) as ideally assumed in (2), but
now be equal to αWτ (r = R), with the variable factor α
proportional to the normalized galaxy thickness R/z0.

The model of (1,2) may be revised as follows, as ex-
plained above.

Wτe ∝Wτ × r
z0

= Wτ × r
R ×

R
z0

; Wτe ∼ 1
r , Wτ ∼ 1

r2
.

Wτe(r) ∝Wτ (r = R)× R
r ×

R
z0
, r > R;

Wτe = Wτ , r < Rt ∝ z0. (17)

Using the above revisions and (3), the relation (4) be-
tween the surface density µ and effective surface density
µe, and the resulting expression for the luminosity L (5)
using (7), may also be revised.

µe(r) = a
r = α× µ(r=R)R

r , α ∝ R
z0
,

a
R = α× µ(r = R) = αµ0e

−1, µ0 = ea
αR ,

L = 2πµ0R
2 = 2πe2a2

α2µ0
= 8πv4c2

α2µ0γ
2 . (18)

The TFR (16), which was established based on the sim-
ple assumption of an approximately constant µ0, would
still be valid for a range of different surface brightness µ0,
if µ0α

2 in (18) is approximately a constant. This condi-
tion, of having a larger value of the α for a lower µ0,
means there would be relatively more contribution from
the UEG force as the surface brightness µ0 reduces. This
trend better represents observed characteristics among
the HSB galaxies, extending to LSB galaxies as well. The
higher UEG contribution for a lower surface brightness
µ0 would be equivalent to having relatively more “dark
matter” contribution for a LSB galaxy [13], as per the
current dark-matter paradigm.

L ∝ v4 (MOND, TFR),

µ0α
2 = constant, α ∝ 1√

µ0
; α ∝ R

z0
, µ0 ∝ (

z0
R )

2
,

α (LSB Galaxy) > α (HSB Galaxy) ∼ 1,

Dark Matter (LSB) > Dark Matter (HSB),
z0
R (LSB) <

z0
R (HSB). (19)

The above TFR of having the luminosity proportional
to the fourth power of the velocity v, is also consistent
with prediction from an alternate model using a modified
Newtonian dynamics (MOND) [2, 5].

As derived in (17,18), the parameter α, which propor-
tionately represents the equivalent distribution Wτe or
µe, is proportional to the normalized galaxy scale R/z0.
Accordingly, the condition (19) of a constant factor µ0α

2,
required for the validity of the TFR or MOND, would
be satisfied if the normalized scale parameter (z0/R) is

proportional to the square-root of the surface brightness
µ0. This general trend, of having the normalized galaxy
thickness z0/R to be smaller for a lower surface bright-
ness µ0, may seem to be a sensible characteristic. The
specific required relationship between the galaxy thick-
ness and the surface brightness may be compared and
verified with the measured data in [14].

Using the above required relationship (19) between the
µ0 and the normalized scale z0/R in (18,7) would trans-
late to another galaxy scaling relationship between the
absolute thickness z0 (not normalized to R) and the flat
rotation velocity v.

µ0 = ea
αR , v

2 = γea
2c =

γµ0αR
2c =

γ(µ0α
2)R

2cα ∝ z0,

µ0α
2 = constant, α ∝ R

z0
. (20)

Accordingly, the galaxy thickness z0 is required to be
proportional to the square of the flat rotation velocity
v. This required relationship is clearly verified from the
measured data of [14]. It is significant to note that the
above two required relations (a) between the galaxy nor-
malized thickness z0/R and the surface brightness µ0, and
(b) between the thickness z0 and the flat rotation veloc-
ity v, are independently predicted from the UEG model
of (17,18), based on the observed TFR (19,16), but could
not have been anticipated either from the TFR of [4] or
the MOND [2, 5]. Verification of the above predictions
from [14] is a significant development, which strongly val-
idates the new UEG model of (1,17), as applied to the
non-spherical structure of a galaxy.

A. Refinement in the Tully-Fisher Relation

Some refinement in the above TFR (19) may be
needed, in order to confirm to the measured data [4, 8]
more accurately, where the luminosity seems to be pro-
portional to a smaller exponent (than the ideal value of
4 in (19)) of the velocity v. This trend may be empir-
ically established from (19) by having the factor µ0α

2

to be weakly dependent on the velocity v (proportional
to a relatively small exponent of v), instead of the ideal
constant factor µ0α

2 suggested above. This may be rep-
resented by suitable refinement in the required relation in
(19) between the galaxy normalized thickness z0/R and
the surface brightness µ0.

µ0α
2 ∼ vb, 0 < b < 0.5;

L ∼ v4−b = vd, 3.5 < d < 4 . (21)

However, this refined TFR does not confirm to the
MOND, where the luminosity is definitively required to
be proportional to the fourth power of the velocity v. It
is not clear if the above refinement (21) is really funda-
mental or is simply due to selection bias in the measure-
ments of [4, 8], resulting in a limited range in the data
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over which the exponent d is estimated with a smaller
value d < 4.

The total luminosity and surface brightness profile are
usually proportional to the total baryonic mass and its
mass distribution, respectively, in which case the TFR
would work as well if the luminosity is interchanged
with the baryonic mass. The proportionality between
the baryonic mass and the luminosity may not, however,
strictly extend to all LSB galaxies, having smaller lumi-
nosity and rotation velocity. In this case, the measured
data follow a TFR more accurately, if the total baryonic
mass Mb is used in the relation (19,21), instead of the
total luminosity L. The revised relation is referred to
as the Baryonic Tully-Fisher Relation (BTFR) [15]. The
baryonic mass Mb would be proportional either to the
fourth power or to a smaller exponent of the velocity, if
the baronic mass substitutes the luminosity in the TFR
versions (19) or (21), respectively. The former version
of the BTFR is consistent with MOND which, to fun-
damentally begin with, relates the baryonic mass to the
fourth power of the velocity v.

The deviation from the original TFR may be partly
attributed to the larger contribution to the rotation ve-
locity v from the Newtonian gravity due to the propor-
tionately larger regular mass (baryonic), in the lower-
luminosity LSB galaxies. More significantly, the revised
trend may be empirically accommodated by properly ad-
justing the parameter α in (18) to be dependent on both
the surface brightness µ0 and an equivalent baryonic sur-
face mass density Ab of the galaxy. This would be consis-
tent with the basic principles of the present UEG model
in (1- 5,17), where the gravitational potential function
that determines the redistribution of the energy density
Wτ into the effective density Wτe (see Fig.1) may be rec-
ognized to depend upon both the Newtonian gravitation
(related to mass profile) as well as the UEG field due to
the light profile of a galaxy. However, more specific phys-
ical explanation behind such an empirical trend, leading
to the preference of the baryonic mass over the luminos-
ity in the BTFR, is at this point unclear, and is beyond
the scope of the present work.

Mb = L× Mb
L = 8πv4c2

α2µ0γ
2 ×

Mb
L

= 8πv4c2

α2(µ0
2/Ab)γ

2 ,
Mb
L =

Ab
µ0
,

Mb ∝ v
4, α2 × (µ0

2/Ab) = constant. (22)

Accordingly, for a given surface luminosity µ0, a larger
value of the baryonic mass density Ab is expected to result
in a tighter confinement of the gravitational potential
near the galaxy surface (smaller z0), resulting in a larger
α. The two refinements (21,22) may need to be studied
together, which may be associated with interdependent
and/or mutually compensating physical effects.

VI. CONCLUSION

The estimate of the UEG constant γ from measured
data from a galaxy survey [8], based on the new UEG
model, agrees well with an accurate value derived from
the UEG model in the Appendix for an elementary parti-
cle [3]. This is based on a statistically average data point
from the survey samples. Direct analysis of measured
brightness profile and rotation curve of a specific selected
galaxy is also illustrated to provide a similar estimate for
the γ, that is consistent with the estimate from the galaxy
survey. Further, the UEG galaxy model confirms to the
TFR [4, 15] for varying range of galaxy amplitudes, and
is consistent with results from a modified Newtonian dy-
namics (MOND) [2, 5] model. The required condition
for the agreement between the UEG model, TFR and
MOND is supported by measured relations of the galaxy
thickness with the surface brightness and the rotation ve-
locity [14], which may be considered as an independent
validation of the UEG model. The above studies strongly
support validity of the new UEG model, established for
the non-spherical structure of a disk galaxy. The UEG
theory is intended to serve as a theoretical substitute for
the current “dark-matter” hypothesis.

The UEG theory, which has been successfully applied
for elementary particles [3], and is now supported as well
for galaxy modeling, may provide a new unified theo-
retical paradigm for a broad range of physical concepts,
covering both small and large size scales of nature, and
spherically symmetric as well as asymmetric structures.

Appendix A: A Unified Electro-Gravity Theory,
Applied to an Elementary Charged Particle

A Unified Electro-Gravity (UEG) theory is established
based on the following basic principles:

(a) The mass m and its associated energy W = mc2 of a
given body is assumed to be inversely proportional to the
relative permittivity εr, or directly proportional to the
inverse-relative permittivity εr = 1/εr, of the surrounding
medium. This is in consistency with the energy W =
q2

8πεrq
of a spherical surface charge q of radius rq, placed

in a medium with permittivity ε = ε0εr. The ε0 is the
permittivity of an “ideal free-space” having an ideal unit
relative permittivity εr = 1, which is assumed to exist far
away from any gravitating body r̄ →∞.

Using the above concept of mass, a gravitational force
F (r̄) at a given location r̄, and its associated field Eg(r̄) =

F (r̄)/m0 defined as the gravitational force applied on a
unit free-mass m0, may be modeled in terms of the gra-
dient of the inverse-relative permittivity function εr(r̄).

Eg = F
m0

=
−∇W (r̄)
m0

=
−∇[m(r̄)c2]

m0

=
−∇[m0εr(r̄)c2]

m0
= −c2∇εr(r̄). (A1)
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(b) The gravitational field, conventionally defined by the
Newton’s Law of gravitation, needs to be modified by
adding a new part which is a function of the energy
density Wτ associated with an electromagnetic field at
a given location. As a simple first-order approximation,
the new gravitational field Egu, referred to as the UEG
field, is assumed to be directly proportional to the energy
density, with the proportionality constant γ referred to
as the unified electro-gravity (UEG) constant. The pro-
posed modification would maintain the Newtonian grav-
itational field as the total field for an electrically-neutral,
non-radiating massive body (like planet earth), in the ex-
ternal region where the electromagnetic energy density is
zero. It would, however, change the nature of gravitation
for an electrically-charged body (like an electron), or a
radiating body (like a star or galaxy), where the energy
density associated with the electrical charge or light ra-
diation is non-zero. Similarly, it would also change the
nature of gravitation in the internal region of an elec-
trically neutral body (like a neutron or neutrino,) which
is assumed to consist of internal charged substructures.
The modified theory may be alternately interpreted by
not modifying the Newton’s Law of gravitation, but re-
defining the energy density in an electromagnetic field,
such that the total energy/mass of a neutral body re-
mains unchanged.

The modified theory will fundamentally shape the
physical structure of any charged particle, such as an
electron. The new electro-gravitational field would de-
termine the inverse-relative permittivity function εr(r̄)

around an electron, as per the relation (A1). We may
further assume that the new gravitational field Egu =

−γWτ r̂, directed toward the center along −r̂, is much
stronger than the conventional Newtonian gravitational
field, and therefore would essentially be equal to the total
gravitational field Eg.

Eg = −c2∇εr(r̄) ' Egu = −γWτ r̂. (A2)

1. Energy Density in a Non-Linear Medium

In the above unified electro-gravity (UEG) model, the
permittivity distribution of the free-space is dependent
upon the energy density distribution, which is dependent
upon the source charge. This is unlike a linear dielectric
medium where the permittivity function is independent
of the field strength or the source charge. Having the
permittivity distribution to be a function of the source
charge, is equivalent to having the electric field distri-
bution to be a non-linear function of the source charge.
The energy density in such a non-linear medium needs to
be properly modeled, using a general expression for the
energy density.

The electric field E and the electric flux density D pro-
duced due to a spherical surface charge q of radius rq, at

a distance r from the center of the charge, in the pres-
ence of a permittivity distribution ε(r) = 1/ε(r), may be
expressed using the Coulomb’s Law.

E = q

4πr2ε(r)
r̂, D = q

4πr2
r̂, E = D

ε(r)
= ε(r)D. (A3)

The total energy W and the associated mass m = W/c2 of
the charge may be calculated by integrating the energy
density Wτ in its electric field over the spherical volume
τ outside of the charge r > rq. The electric field, and the
associated energy density, in the spherical region with
r < rq would be zero. The Wτ may be expressed in (A4)
in terms of the flux density D = εE due to the charge
q, and its incremental value dD due to an incremental
change dq of the charge. This expression of the energy
density would be valid for a general non-linear medium,
which may be simplified as Wτ = (1/2)ε|D|2 for a linear
medium.

W =
∫ ∫ ∫

τ Wτdτ =
∫ ∫ ∫

τ (
q∫

q=0
dWτ )dτ = m0c

2,

Wτ =
q∫

q=0
dWτ =

q∫
q=0

εD · dD = 1
2 ε
′|D|2,

ε′ = 2
q2

q∫
q=0

ε(q)qdq =
2ε0
q2

q∫
q=0

εr(q)qdq = ε0ε
′
r. (A4)

In equivalency to a conventional definition of the en-
ergy density for a linear medium, it would be useful to
define a new variable ε′ for a non-linear medium. The
conventional expression of the energy density for a linear
medium, with the inverse-permittivity ε for the linear
medium simply substituted by the new equivalent vari-
able ε′, would be valid as well for a non-linear medium.

Now, combining (A4,A3) with (A2), a governing re-
lationship for the inverse-relative permittivity function
εr(r̄) is established.

c2∇εr(r̄) ' γWτ r̂ = γr̂

16π2r4ε0

q∫
0
qεr(q, r)dq. (A5)

2. Series Solution for the Inverse-Relative
Permittivity Function εr(r̄)

The inverse-relative permittivity function εr(r) may be

solved by expanding it as power-series of r−i with un-
known coefficients bi, i = 0, 1, 2, · · · , and then finding the
coefficients in order to satisfy the above UEG relation
(A5). This would be possible by establishing an itera-
tive process, relating a coefficient bi with an increasingly
higher index i to those with a lower index, starting with
the known value for the lowest coefficient b0. In the limit
of large distance r, the εr(r) would approach unity, fixing
the coefficients b0 = 1.
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The governing relationship (A5) for εr(r) would require
the series solution with non-zero values of the coefficients
bi only for i = 0, 3, 6, 9, · · · . Accordingly, the series solu-
tion for the εr(r) may be conveniently expressed as a
power series of a normalized variable t = (rµ/r)

1.5, with
even powers of t. The normalization parameter rµ is to
be determined from (A5), which may be shown to be pro-

portional to γ1/3. We need not present the detailed steps,
as prescribed above, to derive the individual coefficients
for the series. The final solution for εr(r) is expressed in
(A6), which may simply be substituted in (A5) to verify
its validity. The series (A6) may be recognized as the
zeroth-order Bessel function J0(t).

εr(r) ' 1− t2

22[1!]2
+ t4

24[2!]2
− t6

26[3!]2
+ · · · ; t = (rµ/r)

1.5,

rµ = ( γq2

24π2c2ε0
)1/3 = 5.14× 10−16γ1/3 . (A6)

3. Particle Energy and Mass, as a Function of the
Charge Radius

Once the inverse-relative permittivity function εr(r) is
solved, the energy density can be expressed in terms of
the εr(r) using (A4), which can then be integrated over
the total volume outside the charge radius (there is no
field inside the charge radius) to obtain the total energy
or the equivalent mass m = m0 of the particle.

m = m0 = W
c2

= 1
4πc2ε0

∞
∫
r

1
r2

q
∫
0
qεr(q, r)dqdr

= mµ
∞∑
k=0

(−1)kt
(2k+ 2

3 )

22k(k!)2(k+1)(3k+1)
,

mµ = q2

8πc2ε0rµ
= 2.49× 10−30γ−1/3. (A7)

The charge radius in (A7) is maintained as a general
variable (=r). The general mass function m(r) in (A7)
would also represent the equivalent energy (=c2m(r))
contained in the field external to a sphere of radius r,
produced due to the charge placed at any radius less than
r.

Fig.4 plots the normalized mass m/mµ of (A7) as a
function of the normalized radius rµ/r, showing an oscil-
latory behavior of the mass function. Any of the mini-
mum points of the mass function would correspond to a
possible stable particle with the particular charge radius
r = rq.

The smallest possible stable mass deduced from the os-
cillatory mass of (A7) (Fig.4) is expected to be the mass
of an electron (or a positron) without any spin. This is
referred to as the static UEG mass m′e of an electron. We
will assume that the static UEG mass m′e of an electron
is about half of the total electron mass me, that includes
additional mass/energy due to the electron’s spin. This

FIG. 4.

factor of about 2 between the m′e and me is suggested by
recognizing that the electron’s spin g-factor is approxi-
mately equal to 2. The same conclusion may also be sug-
gested by observing that the orbital magnetic moment of
an atomic electron with an orbital angular momentum
~ is approximately equal to the magnetic moment of a
spinning electron with spin angular momentum ~/2.

With the assumption of m′e = me/2 for the minimum
stable mass in Fig.4, the value of the normalization con-
stant mµ can be calculated, from which the value of the
UEG constant γ is estimated.

m′e
mµ

= me
2mµ

= 1.5425,

mµ = me
3.085 = 2.49× 10−30γ−1/3,

γ1/3 = 3.085× 2.49× 10−30/me,

γ = 5.997× 102(m/s2)/(J/m3). (A8)

As per the UEG theory of the electron, the constant γ
is declared to be a new natural constant, which is equal
to a new gravitational acceleration in m/s2 toward the
center of gravity, produced due to one J/m3 of energy
density.

4. General Relationship Between the UEG
Constant γ, the Particle Mass and Classical Radius

The above estimate of the value of the UEG constant
γ is associated the actual value of the UEG static mass
m′e of the electron, and carries a specific dimensional unit
of (m/s2)/(J/m3). More fundamentally, a dimension-less
relationship between the smallest stable UEG static mass
m′e of any elementary particle, the corresponding classical
radius r′e, and the UEG constant γ required to produce
the mass m′e, can be derived based on the expressions for
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the reference mass mµ (A7) and reference radius rµ (A6)
used in the above analysis.

(
mµ
m′e

)3 = 3q4

64πc4ε20γm
′
e
3 =

3r′e
2
π

γm′e
,

γm′e
r′e

2 = 3π(
m′e
mµ

)3, m′e = q2

8πε0r
′
ec

2 . (A9)

The value of the ratio m/mµ = 1.5425 from the Fig.4,
for the smallest possible stable mass m = m′e. Using
this value, the γ, m′e and r′e may be related in term of a
dimensionless constant.

γm′e
r′e

2 = 3π(
m′e
mµ

)3 = 34.590 . (A10)

If we simply assume the total mass me of the elementary
particle with spin to be twice the UEG mass m′e, and the
classical radius re associated with me half of that (= r′e)
with m′e, the γ, me and re may be related using a new
dimensionless constant, which would be eight times the
above constant.

γme
r2e

= 24π(
m′e
mµ

)3 = 8× 34.590 = 276.720 . (A11)

Notice that the above constant is close to twice the
inverse-fine structure constant 1/α = 137.036, and the
earlier constant in (A10) is one fourth of the 1/α, with
less than one percent of difference. The small difference
may be due to lack of generality or rigor of the basic UEG
static theory for the particle, presented in this paper with
assumption of a simple UEG function in (A2), and with-
out including the particle’s spin. The small difference
may perhaps be related to the small difference between
the actual value of the g-factor and its ideal value of 2

as discussed before. This may point to possible physical
origin of the g-factor associated with the spin, governed
by a more rigorous version of the new UEG theory.

Leaving aside any small difference due to lack of gener-
ality or rigor of the basic UEG model, the close relations
of the above dimensionless constant (A10 or A11) to the
fine-structure constant is intriguing. The very existence
of a dimensionless constant based on the UEG theory,
and its intriguing close numerological relationship with
the known fine-structure constant α, may strongly sug-
gest certain fundamental basis and significance of the new
UEG theory. The theory is further validated in [3] by suc-
cessfully modeling the Casimir effect, and would be ap-
plied in this paper to model gravitation in spiral galaxies
and reconfirm the estimate for the UEG constant γ.
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