

1                   **Preparation and Application of a Xylan-Based**  
2                   **Antibacterial Additive Agent against *Escherichia Coli***  
3                   **Bacteria**

4 Guibin Xu<sup>a</sup>, Tao Song<sup>a,\*</sup>, Bei He<sup>a</sup>, Minmin Chang<sup>a</sup>, Junli Ren<sup>b,\*</sup>

<sup>5</sup> <sup>a</sup> State Key Laboratory of Pulp and Paper Engineering, South China University of Technology,  
<sup>6</sup> Guangzhou, 510640, China

<sup>7</sup> <sup>b</sup> School of Light Industry and Engineering, South China University of Technology, Guangzhou,  
<sup>8</sup> 510340, China

<sup>9</sup> Correspondence to: T. Song (E-mail: songt@scut.edu.cn) and J. Ren (E-mail: renjunli@scut.edu.cn)

10  
11 **Abstract:** In this work, a xylan-based antimicrobial additive agent was prepared and  
12 aimed for uses in paper products against *Escherichia coli* bacteria. The derived  
13 Cationic-Xylan-grafted-PHGH (CX-g-PHGH) was successfully synthesized by graft  
14 copolymerization of cationic-xylan with guanidine polymer (PHGH) using ceric  
15 ammonium nitrate as initiator. The obtained CX-g-PHGH had maximum PHGH  
16 grafting ratio of 18.45% and efficiency of 58.45%, and showed good viscosity and  
17 thermal stability. Furthermore, the paper samples prepared in this work were reinforced  
18 obviously with the addition of CX-g-PHGH by improved mechanical properties.  
19 Compared to the reference paper without any of the xylan-derivatives, the index of  
20 tensile, tear, burst and folding endurance of the paper had increases up to 20.07%,  
21 25.31%, 30.20% and 77.78%, respectively. Moreover, the prepared CX-g-PHGH paper  
22 exhibited an efficient antimicrobial activity against *E. coli* bacterial, by which a lot of

23 applications based on the new xylan-derived additive agent obtained in this work could  
24 be found, especially in field of antimicrobial paper products against *E. Coli* bacteria  
25 from contaminated food.

26

27 **Keywords:** antimicrobial additive agent; cationic-xylan; *Escherichia coli*; mechanical  
28 properties; paper products; PHGH; thermal stability

29

30 **1. Introduction**

31 For a long term, the control of harmful bacterial infection has been receiving  
32 large amounts of concerns, especially with the increasing quality demand of living  
33 environment and working condition in current society <sup>[1]</sup>. Pathogenic *Escherichia coli*  
34 (abbreviated as *E. coli*) are naturally occurring bacteria found in environment, foods  
35 and mostly in intestines of people and animals, which are an important zoonotic  
36 bacterial pathogen and could cause a variety of intestinal and extra-intestinal diseases,  
37 such as diarrhea, urinary tract infections, septicemia, and neonatal meningitis, and other  
38 illnesses <sup>[2-6]</sup>. Contamination of food, specifically meat, with pathogenic *E. coli* can  
39 occur during evisceration and harvest of meat, making it one of the most common  
40 causes of food-borne diseases <sup>[7, 8]</sup>. Moreover, contact of pathogenic *E. coli* to human  
41 body via different kinds of residing platforms such as food-related paper products, e.g.  
42 packaging paper, baking paper, napkin paper, pulp molded tableware, etc. is also a  
43 common pathway caused human health problem. Therefore, using antimicrobial  
44 products for food-related applications is one of the most efficient and popular ways to

45 reduce the infection from the daily eating.

46 The antimicrobial products based on various raw materials after modification has  
47 been extensively studied in the world [9-12]. Especially in recent years, antimicrobial  
48 products based on biological macromolecules from biomass including lignin, pectin,  
49 different kinds of polysaccharides (e.g. cellulose, starch and hemicellulose) have  
50 obtained great interests due to many superior properties of these kinds of  
51 macromolecules such as innocuousness to human health, biodegradability, good  
52 biocompatibility and bioactivity, wide range of resources, easy modification and so on  
53 [13-15]. For instance, composites of silver-nanoparticles/bacterial-cellulose exhibited  
54 significant antibacterial activities against *Escherichia coli* and other bacteria [16].  
55 Antimicrobial nanostructured films based on starch has an antimicrobial activity against  
56 *Staphylococcus aureus* and other bacteria [17].

57 Food-related cellulosic products, such as food packaging paper, baking paper,  
58 napkin paper and so on, are important products in our daily life due to many superior  
59 properties of them such as light-weight, easy to modify and use, renewable,  
60 biodegradable and so on. However, cellulosic products originally do not have any  
61 antimicrobial activity. Bacteria can multiply rapidly in the products if proper conditions  
62 were fulfilled. Therefore, there have been many different kinds of natural and synthetic  
63 polymers or materials widely studied and used as antibacterial additive agents on these  
64 paper products [18-21]. Additive of antimicrobial agents especially the agents based on  
65 biodegradable biomass on the paper products is a promising way to introduce  
66 antimicrobial property to the required materials efficiently and sustainably.

67 Xylan are the second dominating naturally occurring carbohydrate polymers in  
68 plant biomass world after cellulose. They are the most common hemicelluloses in  
69 angiosperms, grasses and cereals, where they exist in different composition and  
70 structures [22]. The content of xylan varies in different species, but it constitutes up to  
71 35% in sugarcane bagasse and 50% in straws [23, 24]. Similar to cellulose, xylan are also  
72 poly-hydroxyl polymers with xylose as main sugar unit linked by glycosidic bonds and  
73 function as supporting material in the cell wall [25]. Xylan are readily available from  
74 pulp refining and cereal processing industries, and are at the same time environmentally  
75 friendly, renewable, sustainable, biodegradable and biocompatible. Xylan have been  
76 found with many potential applications in food, papermaking, textile, plastic industries  
77 and biomedical applications [26-28]. Moreover, xylan also have great potential to be  
78 applied as antimicrobial materials after modification and have received increasing  
79 attentions. Recently, the importance of xylan-based macromolecules [29-32] and  
80 materials [33-35] have obtained increasing focus, including antimicrobial modification of  
81 xylan used in the fields of packaging film, food preservative as well as in biomedical  
82 areas [36-39]. There have been many ways reported to prepare xylan-based antimicrobial  
83 materials. For example, a novel food preservative was prepared by co-heating xylan  
84 with chitosan which exhibited excellent antimicrobial activity against *Escherichia coli*  
85 and *Staphylococcus aureus* [28]. Chitosan-xylan/cellulose nanowhiskers (CNW)  
86 nanocomposite films with antibacterial and antioxidant properties were successfully  
87 prepared where CNW was used as nanofillers [40]. Carboxymethylated xylan was  
88 blended with Agar (Ag), Ammonium zirconium carbonate (AZC) and linoleic acid (LA)

89 to produce edible films with antimicrobial activity<sup>[41]</sup>. Even though, the studies of xylan  
90 for high-value added applications are still insufficient. As one of the important subjects,  
91 the exploring of possibilities for xylan to be used as antimicrobial additive agent in  
92 paper products against *E. Coli* have been focused by researchers.

93 Same to cellulose, xylan originally do not have antimicrobial activity either,  
94 which also requires modification of it to endow the property. Polyhexamethylene  
95 guanidine hydrochloride (PHGH) is one kind of water-soluble polycations that has an  
96 antimicrobial activity against both Gram positive and Gram-negative bacteria, and low  
97 mammalian toxicity<sup>[15]</sup>. The introduction of PHGH could endow macromolecule with  
98 efficient antimicrobial activity<sup>[42, 43]</sup> which also offers a potential pathway of endowing  
99 xylan with antimicrobial ability against *E. Coli* bacteria.

100 Therefore, in this work, we prepared a new antimicrobial additive agent based on  
101 a xylan-derivative by graft polymerization of PHGH with xylan using ceric ammonium  
102 nitrate as initiator. The optimal condition for xylan-derivative preparation was firstly  
103 determined by evaluating the whole preparation process. The obtained xylan derivatives  
104 were characterized by its structure, thermal stability as well as the rheological behavior  
105 determined by Fourier Transform Infrared Spectroscopy (FTIR), Carbon Nuclear  
106 Magnetic Resonance Spectroscopy (<sup>13</sup>C NMR), Thermogravimetric Analyser (TGA),  
107 Elemental Analyser (EA), and rheology meter. Moreover, mechanical property is also  
108 important aspect for the food-related paper products which needs to be concerned.  
109 Therefore, the antimicrobial activity against *E. coli* of the xylan-derivative obtained at  
110 the optimal condition as well as its ability as strengthening agent to improve mechanical

111 properties of paper sheet were systematically investigated. This work found a new way  
112 to modify xylan, and investigated its applications as a new antimicrobial additive agent  
113 against *E. Coli* bacteria and mechanical enhancing agent for paper products. The  
114 obtained antimicrobial additive agent product would find great potential applications in  
115 many areas, especially for food-related paper products, such as packaging paper, baking  
116 paper, napkin paper and so on.

117

118 **2. Materials and methods**

119

120 *2.1. Materials*

121

122 Xylan ( $M_w$  49000 g/mol, purity 85%) extracted from sugarcane bagasse was  
123 obtained from Shanghai Yuanye Bio-Technology Co., Ltd (Shanghai, China).  
124 Pretreated waste newspaper pulp (mainly American waste paper) was provided by local  
125 paper company (Guangzhou Paper Group Ltd., China). Ceric ammonium nitrate (CAN)  
126 (99.0%, AR) was purchased from Tianjin Damao Chemical Reagent Factory (Tianjin,  
127 China). 2, 3-Epoxypropyltrimethylammonium chloride (ETA) (95%), hexamethylene  
128 diamine (98%, AR), guanidine hydrochloride (99%, AR), dimethyl sulfoxide ( $\geq 99\%$ ,  
129 AR) and glycidyl methacrylate (GMA) (97%, AR) were purchased from Shanghai  
130 Macklin Biochemical Co., Ltd (Shanghai, China). Acetone was purchased from  
131 Nanjing Chemical Reagent Co., Ltd (Nanjing, China). NaOH (95%, AR) and Ethanol  
132 (99%, AR) were purchased from Guangzhou Chemical Reagent Factory (Guangzhou,  
133 China). Gram negative bacteria (*E. coli*, ATCC 25922) were purchased from Shanghai

134 Beinuo Bio-Technology Co., Ltd (Shanghai, China). Chemicals used in this study were  
135 all analytical reagent grade and used without any purification. Deionized water was  
136 used in all experiments. Polyhexamethylene guanidine hydrochloride (PHGH) was  
137 prepared by condensation polymerization of hexamethylene diamine and guanidine  
138 hydrochloride as described in previous work [19].

139

140 *2.2. Preparation of cationic-xylan*

141

142 Cationic-xylan (CX) was prepared based on the procedure described in our  
143 previous work with minor changes [44]. Briefly, a solution of 3 g xylan in 90 mL  
144 deionized water was prepared in a 250 mL flask, and followed, 0.736 g NaOH (the  
145 molar ratio of NaOH and xylose unit in xylan was 0.8) was added for alkalization of  
146 xylan for 1 hour. Afterwards, the flask was placed in a microwave reactor (400W)  
147 (GAS-800, Beijing Xianghu Science and Technology Development Reagent Co.,  
148 Ltd., Beijing, China) and 20.907 g of ETA (the molar ratio of ETA and xylose unit in  
149 xylan was 6) was added into the flask when the temperature of microwave reactor was  
150 reached to 70°C. After reaction of 40 min, the precipitate was formed in 100% ethanol  
151 and fractionated by filtration with three times the volume of ethanol. The precipitate  
152 was washed by filtration again with 70% ethanol for a few times until there was no  
153 white precipitate formed in the ethanol filtrates by titration with silver nitrate. The  
154 washed precipitate was dissolved in deionized water and dialyzed with membrane of  
155 molecular weight cut-off of 3500 in DI-water for 5 days until the pH of the dialyzed  
156 liquid reached to neutral. The CX was finally obtained after drying in a vacuum oven

157 under 50°C for 24 h. The degree of substitution (DS) of the prepared CX was 0.38 which  
158 was determined by elemental analysis method [45].

159

160 *2.3. Preparation of cationic-xylan-grafted-PHGH*

161

162 Unsaturated double bonds were introduced to PHGH by reacting with GMA  
163 where the molar ratio of amino and epoxy groups was kept at 1.0 [42]. The reaction was  
164 carried on at room temperature for 6 h. The obtained products were precipitated and  
165 washed with acetone to remove unreacted GMA. The washed products were dissolved  
166 in appropriate amount of methanol, followed by precipitation and wash with acetone  
167 again. The same treatment was performed 3 times, and the final purified GMA-  
168 modified PHGH product was obtained after drying in vacuum under 25°C for 12 h.

169 A solution of 0.33 g CX in 25 mL deionized water was prepared in a three-necked  
170 round flask (250 mL) under stirring and purging with nitrogen for 20 min. Then 5 mL  
171 CAN solution was added into the flask with purging of nitrogen continuously for  
172 another 10 min. Subsequently, 10 mL GMA-modified PHGH was added into the CX  
173 solution and kept stirring with a slow stream of nitrogen for 4 h. The solution was then  
174 dialyzed for 3 days, and the CX-grafted-PHGH (CX-g-PHGH) was finally obtained  
175 after drying in a vacuum oven at 50°C for 24 h. All conditions of preparing the CX-g-  
176 PHGH were listed in Table 1.

177

178

179

180 **Table 1.** Influence of the synthesis conditions on CX-g-PHGH

| Sample number | Temperature (°C) | PHGH Concentration (mol/L) | Initiator Concentration (mmol/L) | Time (h) | Graft ratio (%) | Graft Efficiency (%) |
|---------------|------------------|----------------------------|----------------------------------|----------|-----------------|----------------------|
| 1             | 60               | 0.039                      | 3                                | 4        | 15.54           | 52.54                |
| 2             | 60               | 0.039                      | 4                                | 4        | 18.45           | 58.45                |
| 3             | 60               | 0.039                      | 5                                | 4        | 16.9            | 56.69                |
| 4             | 60               | 0.039                      | 6                                | 4        | 15.93           | 53.35                |
| 5             | 60               | 0.020                      | 4                                | 4        | 7.27            | 56.65                |
| 6             | 60               | 0.078                      | 4                                | 4        | 16.01           | 53.21                |
| 7             | 60               | 0.117                      | 4                                | 4        | 15.26           | 40.73                |
| 8             | 60               | 0.156                      | 4                                | 4        | 15.03           | 36.58                |
| 9             | 50               | 0.039                      | 4                                | 4        | 15.66           | 49.60                |
| 10            | 70               | 0.039                      | 4                                | 4        | 16.82           | 53.28                |
| 11            | 80               | 0.039                      | 4                                | 4        | 16.24           | 51.44                |
| 12            | 60               | 0.039                      | 4                                | 2        | 13.56           | 50.26                |
| 13            | 60               | 0.039                      | 4                                | 3        | 14.18           | 53.47                |
| 14            | 60               | 0.039                      | 4                                | 5        | 17.21           | 57.56                |
| 15            | 60               | 0.039                      | 4                                | 6        | 16.52           | 55.48                |

181 Grafting ratio and efficiency of the as-prepared polymers were determined based  
 182 on the equations of Eq. (1) and (2), and the mean value of the results obtained from  
 183 three parallel samples under each condition was reported on Table 1:

184 The grafting ratio =  $(W_g - W_0)/W_0 \times 100\%$  (1)

185 The grafting efficiency =  $(W_g - W_0)/W_p \times 100\%$  (2)

186 where  $W_0$  is the weight of CX;  $W_g$  is the weight of CX-g-PHGH; and  $W_p$  is the  
 187 weight of functional PHGH.

188

189 *2.4. Characterizations of the prepared products*

190

191 Xylan, CX and CX-g-PHGH were dried in an infrared drying oven before  
 192 characterization for their structures and properties. Fourier Transform Infrared (FT-IR)  
 193 spectra was obtained with Fourier Transform Spectrophotometer (Nicolet 750,  
 194 ThermoFisher Scientific, Waltham, FL, USA) appended with Attenuated Total

195 Reflectance (ATR) technique. A total of 32 scans were accumulated in the transmission  
196 mode, with a resolution of 4 cm<sup>-1</sup>. The spectrum was obtained from a range of 4000 cm<sup>-</sup>  
197 <sup>1</sup> to 400 cm<sup>-1</sup>.

198 The solution-state <sup>13</sup>C-NMR spectra was recorded on a Bruker DRX-400  
199 spectrometer (Bruker, Karlsruhe, Germany) at 25°C after 15000 scans. The sample (80  
200 mg) was dissolved in 1 mL D<sub>2</sub>O. The running parameters were: 30° pulse flipping angle,  
201 9.2 μs pulse width, 1.36 s acquisition time with 2 s relaxation delay.

202 Element analysis (EA) is for quantitative determination of specific elements of  
203 the samples. Specimens weighing approximately 3-5 mg were heated in a Vario EL  
204 Elemental Analyzer (Elementar, Germany) under oxygen atmosphere and elements of  
205 C, H and N in xylan, CX and CX-g-PHGH were determined.

206 The molecular weights of xylan, CX and CX-g-PHGH were determined by GPC  
207 on a PL aquagel-OH 60 column (300 mm × 7.5 mm, Agilent, USA) and calibrated with  
208 PL pullulan polysaccharide standard (average peak molecular weights of 783, 12200,  
209 100000, 1600000 g/mol). A flow rate of 0.5 mL/min was maintained with ultrapure  
210 water as eluent. Samples were dissolved in ultrapure water to reach a concentration of  
211 0.1% before characterization.

212 Dynamic rheological properties of CX and CX-g-PHGH were determined by a  
213 sandwich rheometer (AR2000, TA Instruments, New Castle, DE, USA). All samples  
214 were dissolved in water with a magnetic stirrer for 30 min to form stable solutions. The  
215 solutions were then dropped on Brookfield D VIII instrument panel. A software (Rheo  
216 2000) provided by the manufacturer with the instrument was used to setup the

217 parameter, perform rheometer control and collect data. The data of shear rate, frequency,  
218 viscosities, storage modulus ( $G'$ ) and the loss modulus ( $G''$ ) of all samples were  
219 collected.

220 Thermal stability analysis was used to determine thermodynamic properties of  
221 xylan, CX and CX-g-PHGH. The analysis was carried out using thermogravimetric  
222 analysis (TGA) and differential thermal analysis (DTA) on a simultaneous  
223 thermalgravimetric analyzer (TGA Q500, TA Instruments, New Castle, USA). About 5  
224 mg samples were heated to 700°C from room temperature with the heating rate of  
225 10°C/min in a nitrogen atmosphere.

226

227 *2.5. Preparation and mechanical properties tests of CX-g-PHGH paper sheets*

228

229 Five sheets with grammage (weight per unit area) of  $\sim 55$  g/m<sup>2</sup> were prepared  
230 based on norms GB2828-81 (Chinese Technical Association of Pulp and Paper). The  
231 mass ratio of CX-g-PHGH and the waste newspaper pulp was 3~15:1000. Briefly, CX-  
232 g-PHGH and the waste newspaper pulp were homogenized under stirring for 10 min  
233 before forming paper sheets. The sheets were formed via a fast papermaking machine  
234 (MESSMER 255, USA) and dried. The obtained sheets were cut to a certain shape and  
235 placed in humidity room at 25°C for 24 h before mechanical tests. As comparison, CX  
236 paper sheets were also produced via the same preparation process. A Chinese Standard  
237 (Chinese Technical Association of Pulp and Paper) was applied for mechanical tests of  
238 the sheets. The tests were carried out 10 times for each sample, and the mean value of  
239 the mechanical tests was reported in this work.

240

241 2.6. *Antimicrobial tests of the xylan derivatives*

242

243 The antimicrobial activity was tested against Gram negative bacteria (*E. coli*,  
244 ATCC 25922). The *E. coli* bacteria were cultured and grown in Luria Bertani (LB)  
245 liquid medium (10 g/L peptone, 5 g/L yeast extract, 10 g/L NaCl, and at pH 7.0) for 12  
246 h at 37°C. The bacteria were further diluted with NaCl solution (0.85%, w/v) to get  
247 concentration of about 10<sup>5</sup> CFU/mL. The diluted suspensions (0.1 mL) of *E. coli* were  
248 then distributed homogeneously onto the LB agar medium (10 g/L peptone, 5 g/L yeast  
249 extract, 10 g/L NaCl, and 15 g/lagar). The obtained paper sheets with xylan-derivatives  
250 in diameter of 6-mm was prepared and placed in the plate culture medium that was  
251 coated with the bacteria suspension. The antimicrobial ability of the xylan-derivatives  
252 was evaluated by measuring the diameter of the inhibition zones to *E. coli* on the paper  
253 sheets.

254

255 **3. Results and Discussion**

256

257 3.1. *Synthesis determination of CX-g-PHGH*

258

259 The Ce<sup>4+</sup> in ceric ammonium nitrate could attack and convert the hydroxyl groups  
260 of CX to free radicals, which could have activity to further react with modified PHGH  
261 and form CX-g-PHGH [46]. The synthesis procedure was proposed in Scheme I.



264 There are many factors in the reaction such as the concentration of initiator, amounts  
 265 of PHGH addition, reaction temperature and time that could affect clearly the grafting  
 266 ratio and grafting efficiency of the final products. The influences of initiator  
 267 concentration on grafting ratio and grafting efficiency of the CX-g-PHGH are shown in  
 268 Figure 1a and detailed values were shown in Table 1.



269

270 **Figure 1.** Influences of conditions on grafting ratio and efficiency of CX-g-PHGH, a)  
271 initiator concentration; b) PHGH concentration; c) temperature; and d) time.

272 As it is shown that grafting ratio and efficiency increased drastically with the  
273 increase of initiator concentration until 4 mmol/L, valued up to about 18.45% and 58.45%  
274 for grafting ratio and efficiency, respectively. However, when higher initiator  
275 concentration than 4 mmol/L was applied, both the grafting ratio and efficiency  
276 decreased. This phenomenon was in accordance to previous finding by Qian, which  
277 was probably because the excess initiator started to participate in the termination step  
278 of the growing chains and subsequently initiated the homopolymerization of PHGH  
279 [18].

280 The influence of PHGH concentration on the grafting ratio and grafting  
281 efficiency was shown in Figure 1b. It is very clear to see that the grafting ratio and  
282 efficiency increased sharply up to 18.45% and 58.45%, respectively, when the PHGH  
283 concentration was lower than 0.04 mol/L. However afterwards, the grafting ratio and  
284 efficiency decreased rapidly which was probably caused by the self-polymerization  
285 resulted from high PHGH concentration [15].

286 The increase of reaction temperature may lead to multiple effects, including  
287 increasing the diffusion of CX and PHGH; facilitating redox initiator system and  
288 enhancing the chain propagation, but likely increasing the rate of termination and  
289 homopolymerization in bulk phase [47, 48]. Therefore, when the temperature was lower  
290 than 60°C, there was a sharp increase for both grafting ratio and efficiency reached to  
291 maximum value of 18.45% and 58.45%, respectively (Figure 1c). However, the grafting

292 ratio and efficiency decreased when the reaction temperature was higher than 60°C  
293 which was due to the domination of homopolymerization caused by high temperature.

294 Furthermore, the reaction time also had important impact on the grafting ratio  
295 and efficiency of CX-g-PHGH as it is shown in Figure 1d. When the reaction time  
296 increased, the grafting ratio and the efficiency firstly increased and then decreased.  
297 Reaction time of 4 h was the optimal time for the grafting ratio and efficiency with  
298 maximum value of 18.45% and 58.45%, respectively. This can be explained by the  
299 decrease of PHGH concentration and free radicals in the system as the increase of  
300 reaction time, which resulted in the leveling off of the grafting ratio and efficiency [49].

301 It can be concluded from above that the optimal condition for preparing CX-g-  
302 PHGH were: initiator concentration 4 mmol/L; PHGH concentration 0.039 mol/L;  
303 reaction temperature 60°C and reaction time 4 hours. Therefore, in the following studies,  
304 the CX-g-PHGH (sample number 2, as CX-g-PHGH-1) obtained at the optimal  
305 condition with maximal grafting ratio of 18.45% was used for characterizations and  
306 tests.

307

308 *3.2. FTIR Spectra*

309

310 In order to confirm the successful grafting of PHGH on CX, several analyses,  
311 including spectra of FTIR and  $^{13}C$ -NMR, element analysis and average molecular  
312 weight, were performed.

313 The FTIR spectra of xylan, CX and CX-g-PHGH-1 are illustrated in Figure 2.

314 The signals at 3433  $\text{cm}^{-1}$ , 2918  $\text{cm}^{-1}$ , 1637  $\text{cm}^{-1}$ , 1464  $\text{cm}^{-1}$ , 1033  $\text{cm}^{-1}$  and 897  $\text{cm}^{-1}$  in

315 the spectrum represent the transmittance peaks of molecular bonds for xylan. The  
 316 transmittance band at  $2918\text{ cm}^{-1}$  is assigned to the C-H stretching vibration of alkane in  
 317 xylan. The transmittance peak of  $1044\text{ cm}^{-1}$  is ascribed to the C-O-C stretching of the  
 318 ether groups [44].



319

320 **Figure 2.** FTIR spectra of (a) xylan and CX; (b) CX and CX-g-PHGH-1.

321 As we can see from Figure 2a, in the FTIR spectra of CX, an enhancement in the  
 322 transmittance intensity of ether bond at  $1044\text{ cm}^{-1}$  was found compared with the  
 323 spectrum of xylan, indicating that more ether bonds were introduced to xylan. The  
 324 transmittance intensity around  $1388\text{ cm}^{-1}$  increased due to stretching vibration of C-N.  
 325 The stretching vibration of  $-\text{CH}_2$  and  $-\text{CH}_3$  on the quaternary ammonium group  
 326 enhanced the intensity of the transmittance at  $1483\text{ cm}^{-1}$ . All these changes in  
 327 transmittance peaks indicated that cationic groups were introduced to xylan  
 328 successfully [50].

329 In Figure 2b, compared with the spectrum of CX, enhancement in the intensities  
 330 of transmittance at  $1383\text{ cm}^{-1}$  and  $1637\text{ cm}^{-1}$  was discovered in the FTIR spectra of CX-  
 331 g-PHGH, corresponding for the stretching vibration transmittance peaks of C-N, C=N,  
 332 respectively which confirmed the successful introduction of PHGH to CX [42].

333

334 3.3.  $^{13}\text{C}$ -NMR spectra

335

336 The molecular structures of xylan, CX and CX-g-PHGH-1 were further  
 337 characterized by  $^{13}\text{C}$ -NMR (Fig. 3). In the spectrum of xylan (Fig. 3a), the main (1 $\rightarrow$ 4)-  
 338 linked  $\beta$ -D-xylp units are obviously characterized by the signals at  $\delta$  of 102 ppm, 72.9  
 339 ppm, 4.3 ppm, 75.9 ppm and 63.1 ppm, which are attributed to C-1, C-4, C-3, C-2 and  
 340 C-5 of  $\beta$ -D-xylopyranosyl units, respectively<sup>[50]</sup>.



341

342 **Figure 3.**  $^{13}\text{C}$ -NMR spectra of a) xylan, b) CX and c) CX-g-PHGH-1.

343 Compared with the spectrum of xylan, the spectrum of the CX (Fig. 3b) had great  
 344 changes in both amounts and positions of the strong signals. The most intensive signal  
 345 was appeared at 54.1 ppm which is assigned to carbons of the quaternary ammonium

346 moiety and the signal at 68.1 ppm is attributed to the carbon C (CH<sub>2</sub>) [51]. This proved  
347 that the cationic groups were introduced successfully onto xylan. In <sup>13</sup>C-NMR spectrum  
348 of CX-g-PHGH-1 (Fig. 3c), some new peaks appeared in comparison with CX. The  
349 peaks at 28.0 ppm, 41.1 ppm and 168 ppm are attributed to the signal peaks of -CH<sub>2</sub>-,  
350 C-N and ester group carbon [52], respectively, which indicated that PHGH was grafted  
351 onto CX successfully.

352

353 *3.4. Element analysis*

354

355 The element analysis of xylan, CX and CX-g-PHGH-1 are showed in Table 2.  
356 The contents C, H and N in xylan were 40.36%, 6.91% and 0.00%, respectively, while  
357 they became 40.36%, 7.43% and 2.16% after the cationic modification of xylan,  
358 indicating that cationic groups were grafted on xylan.

359 **Table 2.** The element analysis of xylan, CX and CX-g-PHGH-1.

| Sample    | C (%) | H (%) | N (%) |
|-----------|-------|-------|-------|
| Xylan     | 40.36 | 6.91  | 0     |
| CX        | 40.36 | 7.43  | 2.16  |
| CX-g-PHGH | 40.88 | 7.79  | 9.46  |

360 Furthermore, the contents of C, H and N in CX-g-PHGH-1 were 40.88%, 7.79%  
361 and 9.46%, respectively. The increase in the N content confirmed the presence of  
362 nitrogenous compounds (PHGH) in CX-g-PHGH-1.

363

364 *3.5. Average Molecular Weight*

365

366 Average molecular weight is also a promising factor that can confirm the

367 successful conversion of xylan to its derivatives. The molecular weight and molecular  
368 weight distribution of xylan, CX and CX-g-PHGH-1 are shown in Table 3.

369 **Table 3.** The molecular weight and molecular weight distribution of xylan, CX and  
370 CX-g-PHGH-1.

| Sample      | $M_w$ (g/mol) | $M_w/M_m$ |
|-------------|---------------|-----------|
| xylan       | 49000         | 4.59      |
| CX          | 37500         | 1.99      |
| CX-g-PHGH-1 | 1477129       | 1.15      |

371 As it is shown obviously, the molecular weight of CX was lower than that of  
372 xylan, which was probably caused by the degradation of xylan during chemical reaction  
373 under alkaline conditions. As expected, the molecular weight of CX-g-PHGH-1 was  
374 higher, being about 30-40 folds than that of xylan and CX, which indicated the  
375 successful copolymerization of xylan and CX with PHGH. In addition, CX and CX-g-  
376 PHGH-1 had a relatively low index of polydispersity (1.14-1.99) than xylan (4.59),  
377 which indicated that the molecular chain length distribution of CX and CX-g-PHGH-1  
378 was more uniform than the one of xylan.

379

380 *3.6. Rheological properties*

381

382 Properties of xylan, CX, CX-g-PHGH-1 as well as their influences to paper  
383 products were tested in order to fulfill the requirements used as additive agent for  
384 antimicrobial paper products.

385 The tests of rheological behavior for xylan, CX and CX-g-PHGH-1 would  
386 provide better understandings of the physico-chemical properties of the polymers and  
387 consequently discover their potential applications, e.g. as coating additive agent to

388 paper products. The rheological behavior of xylan, CX and CX-g-PHGH-1 are shown  
 389 in Figures 4 and 5.



390  
 391 **Figure 4.** Shear rate dependence of viscosity for (a) xylan, (b) CX and (c) CX-g-PHGH-  
 392 1 at different concentrations.

393 As it can be seen from Figure 4, viscosities of xylan, CX and CX-g-PHGH-1 all  
 394 decreased with the increase of shear rate, exhibited pseudoplastic or shear-thinning  
 395 behavior of these solutions in the range of shear rates tested, which was due to the  
 396 damage of network structure of xylan and its derivatives<sup>[45]</sup>. Accordingly, with a certain  
 397 additive speed, xylan, CX and CX-g-PHGH-1 would be easily applied as coating agent  
 398 on the surface of materials such as paper materials. Furthermore, the viscosity of CX-  
 399 g-PHGH-1 solution was higher than that of xylan and CX solutions in the whole shear

400 rates range when the concentrations were 5% and 10% as well as for higher shear rate  
 401 than  $10 \text{ s}^{-1}$  when the concentration was 15%. This can be suggested that CX-g-PHGH-  
 402 1 solution had stronger intermolecular interactions than other two solutions [53].



403  
 404 **Figure 5.** Frequency dependent modulus of the solutions of xylan (X), CX and CX-g-  
 405 PHGH-1 (a) at 5% concentration; (b) at 15% concentration.

406 In Figure 5, the rheological properties (storage modulus  $G'$  and loss modulus  $G''$ )  
 407 of xylan, CX and CX-g-PHGH-1 are illustrated. When the concentration was 5%, the  
 408 storage modulus in the whole frequency region of xylan and CX-g-PHGH-1 solutions  
 409 was lower than the loss modulus, exhibiting a viscous behavior. For CX solution with  
 410 concentration of 5% in the range of  $10^{-1}$  to  $10^0 \text{ Hz}$ , the storage modulus was higher than  
 411 the loss modulus, showing stronger elastic properties due to stronger molecule  
 412 entanglement of CX than xylan and CX-g-PHGH-1 [45]. When the concentration of  
 413 solution was 15%, all storage modulus of xylan, CX and CX-g-PHGH-1 in the whole  
 414 frequency region were lower than that of loss modulus, showing a viscous behavior. In  
 415 addition, when the concentration of solution was 15%, the storage and loss modulus of  
 416 CX-g-PHGH-1 was higher than the modulus of xylan and CX, indicating a greater

417 viscosity behavior for CX-g-PHGH-1 than xylan and CX.

418 These results can be explained by the influence of molecular weight and  
419 functional groups of macromolecule chains [45]. Higher molecular weight and guanidine  
420 group caused more chain segments needed for the movement of the viscous flow, thus  
421 increased the frictional resistance and showed a greater viscosity behavior. On the other  
422 hand, lower molecular weight as well as cationic groups on the polymer chain may  
423 reduce or prevent the associative interactions among themselves in solutions, and thus  
424 changed the dynamic shear rheological properties of CX [54]. The studies above not only  
425 further confirmed the successful grafting of PHGH to xylan, but also indicated that the  
426 xylan-derivative obtained in this work is a promising candidate as coating additive  
427 agent which can be applied for paper products.

428

429 *3.7. Thermal stability analysis*

430

431 The thermal stability analysis of the samples could facilitate the application of  
432 xylan-derivative in more scopes. The typical TGA/DTA curves of xylan, CX and CX-  
433 g-PHGH-1 are displayed in Figure 6. There was a weight loss starting from 200°C  
434 which corresponded to the evaporation of water from the samples.



435

436 **Figure 6.** The TGA/DTA curves of xylan, CX and CX-g-PHGH-1.

437 It can be seen that the substantial weight loss of xylan occurred at 250-320°C,  
438 which could be attributed to backbone scission and following fragmentation of xylan  
439 [52]. The CX exhibited a similar thermal stability pattern to that of xylan, but its  
440 decomposition temperature was lower, indicating that CX was more unstable than xylan.  
441 This is the fact that the hydrogen bonds and molecular structure were destroyed to a  
442 certain extent after cationization, and the grafted cationic groups were not stable [44, 49].  
443 Similar to the TGA curves of xylan and CX, there was also a slight loss below 200°C  
444 for the CX-g-PHGH-1 which was attributed to surface water evaporation. A substantial  
445 weight loss of CX-g-PHGH-1 was found in the range of 230-320°C which was due to  
446 the thermal decomposition of xylan. A substantial weight loss of CX-g-PHGH-1 was  
447 also occurred in the range of 320-470°C which was attributed to the thermal  
448 decomposition of PHGH. Above 470°C, the polymer began to carbonize and the weight

449 of matter tends to be constant gradually [55]. As a whole, the derivatization of xylan with  
450 PHGH endowed the new xylan-derivative with sufficient thermal stability which is  
451 beneficial for it to be used under high temperature, such as producing paper and  
452 container products, baking foods, packaging hot foods and so on.

453

454 *3.8. Influence of xylan-derivatives addition on mechanical properties of paper sheets*

455

456 The mechanical properties of the paper products are important in the aspect of  
457 applications in packaging, baking, cleaning and so on. The influences of xylan, CX and  
458 CX-g-PHGH-1 addition on mechanical properties of the paper sheets are shown in  
459 Table 4, 5 and 6, respectively.

460 **Table 4.** Mechanical properties of paper sheets after addition of xylan.

| Amount of xylan (wt %) | Tear index (mN·m <sup>2</sup> /g) | Burst index (kPa·m <sup>2</sup> /g) | Tensile index (Nm/g) | Folding endurance (times) |
|------------------------|-----------------------------------|-------------------------------------|----------------------|---------------------------|
| 0                      | 6.36                              | 2.02                                | 35.67                | 9                         |
| 0.3                    | 6.39                              | 2.10                                | 36.83                | 9                         |
| 0.5                    | 6.42                              | 2.18                                | 37.26                | 10                        |
| 1.0                    | 6.45                              | 2.33                                | 39.17                | 12                        |
| 1.5                    | 6.40                              | 2.24                                | 38.23                | 11                        |

461 Table Footnote: Quantitative of each sheet was approximately 55 g/m<sup>2</sup>, the stirring time  
462 of pulp after addition of xylan was 10 min.

463 It is obviously to see from Table 4, that addition of xylan had only a little effect  
464 on all mechanical properties of the paper sheets listed in the table. When the amount of  
465 xylan was 1.0 wt% in paper sheet, compared to the mechanical properties of reference  
466 paper without xylan addition, the index of tensile, tear and burst were increased by  
467 9.81%, 1.42% and 15.35%, respectively. Meanwhile, there was also a minor increase  
468 for the folding endurance after addition of xylan.

469 **Table 5.** Mechanical properties of paper samples after addition of CX.

| Amount of Cationic-xylan (wt %) | Tear index (mN·m <sup>2</sup> /g) | Burst index (kPa·m <sup>2</sup> /g) | Tensile index (Nm/g) | Folding endurance (times) |
|---------------------------------|-----------------------------------|-------------------------------------|----------------------|---------------------------|
| 0                               | 6.36                              | 2.02                                | 35.67                | 9                         |
| 0.3%                            | 6.44                              | 2.26                                | 37.45                | 9                         |
| 0.5%                            | 6.65                              | 2.38                                | 38.89                | 10                        |
| 1.0%                            | 7.12                              | 2.51                                | 40.48                | 14                        |
| 1.5%                            | 6.89                              | 2.31                                | 39.06                | 12                        |

470 Table Footnote: Quantitative of each paper was approximately 55 g/m<sup>2</sup>, the stirring time  
 471 of pulp after addition of CX was 10 min.

472 The addition of CX also improved the mechanical properties of the paper sheets  
 473 but to a larger extent than addition of xylan which can be seen from Table 5. This was  
 474 probably because the cationic groups in CX could absorb the anionic groups (-OH) on  
 475 the fibers, which could improve the combined forces among fibers, thereby increased  
 476 the mechanical properties of sheets <sup>[56]</sup>. Compared to the reference paper sheet, when  
 477 the amount of CX was 1.0 wt %, the index of tensile, tear and burst were increased by  
 478 13.48%, 11.95% and 24.26%, respectively, and folding endurance was increased by  
 479 55.55%. The mechanical properties of paper sheets became lower when the addition of  
 480 CX was over 1.0 wt%. This was probably caused by excessive addition of cationic  
 481 group in CX which prevented hydrogen bonding between cellulose fibers,  
 482 correspondingly resulted in the decrease of the paper strength <sup>[43]</sup>.

483 When CX-g-PHGH was added into the paper sheets, there were obvious  
 484 improvements to the mechanical properties of the paper sheets which was affected not  
 485 only by the amount of addition but also the grafting ratios of PHGH (Table 6).

486 **Table 6.** Mechanical properties of paper samples after addition of CX-g-PHGH.

| Grafting Ratio (%) | Amount of CX-g- | Tear index (mN·m <sup>2</sup> /g) | Burst index (kPa·m <sup>2</sup> /g) | Tensile index | Folding endurance |
|--------------------|-----------------|-----------------------------------|-------------------------------------|---------------|-------------------|
|--------------------|-----------------|-----------------------------------|-------------------------------------|---------------|-------------------|

| PHGH<br>(wt %) |     |      |      | (Nm/g) | (time) |
|----------------|-----|------|------|--------|--------|
| 0              | 0   | 6.36 | 2.02 | 35.67  | 9      |
| 14.27          | 1   | 7.35 | 2.48 | 40.96  | 12     |
| 15.54          | 1   | 7.84 | 2.59 | 41.97  | 15     |
| 16.90          | 1   | 7.73 | 2.60 | 42.00  | 15     |
| 18.45          | 1   | 7.97 | 2.63 | 42.83  | 16     |
| 18.45          | 0.3 | 6.71 | 2.22 | 40.35  | 13     |
| 18.45          | 0.5 | 7.35 | 2.57 | 40.97  | 14     |
| 18.45          | 1.5 | 7.26 | 2.55 | 41.23  | 12     |

487 Table Footnote: Quantitative of each paper was approximately 55 g/m<sup>2</sup>, the stirring time  
 488 of pulp after addition of CX-g-PHGH-1 was 10 min.

489 As it is shown clearly in Table 6, CX-g-PHGH with higher grafting ratio led to  
 490 higher mechanical properties of paper. When CX-g-PHGH-1 (the highest grafting ratio  
 491 18.45% obtained at optimal condition) was added, compared with the reference paper  
 492 sheet, the index of tensile, tear, burst and folding endurance increased by 20.07%,  
 493 25.31%, 30.20% and 77.78%, respectively. It is also well-known that paper strength is  
 494 dependent on the fiber strength as well as primarily the hydrogen bonding force among  
 495 fibers. PHGH contains guanidine group with positive charge which endows PHGH  
 496 ability to adsorb onto fibers with anionic group <sup>[15]</sup>. Therefore, the improvements of  
 497 mechanical properties were explained probably by such: when CX-g-PHGH was added  
 498 into the paper pulp, CX-g-PHGH filled or adhered to the space between fibers which  
 499 resulted in the increase of the bonding point and bonding area between fibers,  
 500 correspondingly improved the mechanical properties of sheets <sup>[57]</sup>. Moreover, the  
 501 guanidine group and cationic groups of CX-g-PHGH adsorbed negative charge of fibers,  
 502 which thereby resulted in the increase of fiber retention, improvement of the bond  
 503 between fibers and correspondingly improved the mechanical properties of paper sheets  
 504 <sup>[56]</sup>. The mechanical properties of the paper samples were improved as the increase of

505 CX-g-PHGH-1 addition. Furthermore, the amount of added CX-g-PHGH-1 also  
506 affected the mechanical properties of the paper samples. However, the mechanical  
507 properties of paper began to decrease when the amount of added CX-g-PHGH-1 was  
508 over 1.0 wt%. This can be explained that the excessive NH<sub>2</sub> brought from CX-g-PHGH-  
509 1 prevented the hydrogen bonding between cellulose fibers, which resulted in the  
510 decrease of the paper strength [43].

511  
512 *3.9. Antimicrobial test of the paper sheets with addition of CX and CX-g-PHGH*  
513  
514 In this work, the antimicrobial activity of the paper sheets with addition of the  
515 xylan-derivatives was evaluated against *E. coli* bacteria by inhibition zone method and  
516 shown in Figure 7. As comparison, the antimicrobial activity tests for CX-g-PHGH  
517 (sample number 1 in Table 1, as CX-g-PHGH-2) obtained with lower initiator  
518 concentration and a relative lower grafting ratio of 15.54% was also studied.



519

520 **Figure 7.** The antimicrobial activity of the paper samples with the addition of CX, CX-  
521 g-PHGH-1, CX-g-PHGH-2 against *E. coli* bacteria.

522 Inhibition zone method is the most used method for antimicrobial activity tests  
523 of materials. By using this method, the growth of bacterial was inhibited in the  
524 formation of transparent circles by diffusion of antimicrobial agents in agar plates. The  
525 antimicrobial ability of the agents was evaluated by the size of the inhibition circle.  
526 Guanidino groups of guanidine polymers adsorbed the anions on the cell surface of *E.*  
527 *Coli* bacterial by electrostatic action which following destroyed normal metabolism and  
528 surface structure of the living bacterial cells, sequentially inhibited the growth of  
529 bacteria effectively [18].

530 It can be seen that addition of CX and CX-g-PHGH endowed paper sheet  
531 antimicrobial property. CX paper sample showed weaker antimicrobial ability than CX-  
532 g-PHGH samples with smaller inhibition zone diameter of 7 mm. The diameter of  
533 inhibition zone for the paper of CX-g-PHGH-1 (grafting ratio 18.45%) and CX-g-  
534 PHGH-2 (grafting ratio 15.54%) against *E. coli* enlarged from 6 mm to 10 and 8 mm,  
535 respectively, which suggested that the CX-g-PHGH paper had excellent antimicrobial  
536 activity against *E. coli* and the antimicrobial activity was improved by the increase of  
537 PHGH contents grafted on the CX.

538

539 **4. Conclusions**

540

541 In present study, a novel xylan-based antimicrobial additive agent was

542 successfully prepared and applied in cellulosic paper sheets with improved mechanical  
543 properties and antimicrobial activity against *E. Coli* bacteria. The derived xylan,  
544 cationic xylan-grafted-PHGH (CX-g-PHGH), was successfully synthesized by graft  
545 copolymerization of cationic xylan (CX) with guanidine polymer (PHGH) using ceric  
546 ammonium nitrate (CAN) as initiator. The optimal reaction parameters for obtain  
547 efficiently the CX-g-PHGH were 4 h at 60°C with PHGH concentration of 0.039 mol/L  
548 and initiator concentration of 4 mmol/L, by which the maximum grafting ratio and  
549 efficiency of 18.45% and 58.45% were reached, respectively. Furthermore, the  
550 mechanical properties of the paper sheets with addition of CX-g-PHGH had obvious  
551 improvements. Compared to the mechanical properties of paper sheet without any  
552 addition of the xylan derivatives, the addition of CX-g-PHGH improved the mechanical  
553 properties of the sheets by up to 20.07% (tensile index), 25.31% (tear index), 30.20%  
554 (burst index) and 77.78% (folding endurance). Meanwhile, the paper sheet with  
555 addition of CX-g-PHGH exhibited improved viscosity, thermal stability as well as  
556 excellent antimicrobial activity against *E. Coli* bacterial which was inherited from the  
557 antimicrobial activity of guanidine in CX-g-PHGH.

558 The present work found a new way of synthesizing xylan-derivative and used it  
559 as antimicrobial additive agent against *E. Coli* bacteria in paper product. The obtained  
560 paper product with highly improved mechanical strength, antimicrobial property as  
561 well as biodegradable and renewable properties would find great potential applications  
562 especially in food-related areas, e.g. packaging, baking and napkin paper, as well as  
563 other areas such as pharmaceuticals, cosmetics and so on, which expanded the

564 applications of xylan in more high value-added areas.

565

566 **Author Contributions:** Guibin Xu, Bei He and Minmin Chang performed the  
567 laboratory work; Guibin Xu wrote the main manuscript text; Tao Song and Junli Ren  
568 supervised and revised the manuscript.

569 **Funding:** This work was financially supported by State Key Laboratory of Pulp and  
570 Paper Engineering, grants number 2017C02 and 201714, Science and Technology  
571 Planning Project of Guangdong Province, grant number 2017A010103032, The  
572 Guangdong Program for Support of Top-notch Young Professionals, grant number  
573 2016TQ03Z585, the Fundamental Research Funds for the Central Universities of  
574 SCUT, grants number 2017ZD081 and 2017MS080, Guangdong Provincial Natural  
575 Science Foundation Project, grant number 2018A030313211 and Guangdong Province  
576 Science Foundation for Cultivating National Engineering Research Center for Efficient  
577 Utilization of Plant Fibers, grant number 2017B090903003.

578 **Conflicts of Interest:** The authors declare no conflict of interest.

579

580 **References**

581

582 1. Yang, R.C.; Qu, X.Y.; Xiao, S.Y.; Li, L.; Xu, B.J.; Fu, J.Y.; Lv, Y.J.; Amjad, N.; Tan,  
583 C.; Kim, K.S.; Chen, H.C.; Wang, X.R. Meningitic *Escherichia coli*-induced  
584 upregulation of PDGF-B and ICAM-1 aggravates blood-brain barrier disruption and  
585 neuroinflammatory response. *J. Neuroinflamm.* **2019**, 16, 101-116.

586 2. Kim, K.S. Pathogenesis of bacterial meningitis: From bacteraemia to neuronal injury.

587 *Nat. Rev. Neurosci.* **2003**, 4, 376-385.

588 3. Conrad, C.C.; Stanford, K.; McAllister, T.A.; Thomas, J.; Reuter, T. Further

589 development of sample preparation and detection methods for O157 and the top 6

590 non-O157 STEC serogroups in cattle feces. *J. Microbiol. Methods.* **2014**, 105, 22-

591 30.

592 4. Wang, X.; Maruvada, R.; Morris, A.J.; Liu, J.O.; Wolfgang, M.J.; Baek, D.J.;

593 Bittman, R.; Kim, K.S. Sphingosine 1-phosphate activation of EGFR as a novel

594 target for meningitic *Escherichia coli* penetration of the blood-brain barrier. *Plos.*

595 *Pathog.* **2016**, 12, e1005926.

596 5. Karmali, M.A. Emerging public health challenges of Shiga toxin-producing

597 *Escherichia coli* related to changes in the pathogen, the population, and the

598 environment. *Clin. Infect. Dis.* **2017**, 64, 371-376.

599 6. Liu, W.T.; Lv, Y.J.; Yang, R.C.; Fu, J.Y.; Liu, L.; Wang, H.; Cao, Q.; Tan, C.; Chen,

600 H.C.; Wang, X.R. New insights into meningitic *Escherichia coli* infection of brain

601 microvascular endothelial cells from quantitative proteomics analysis. *J.*

602 *Neuroinflamm.* **2018**, 15, 291-310.

603 7. Manage, D.P.; Lauzon, J.; Jones, C.M.; Ward, P.J.; Pilarski, L.M.; Pilarski, P.M.;

604 McMullen, L.M. Detection of pathogenic *Escherichia coli* on potentially

605 contaminated beef carcasses using cassette PCR and conventional PCR. *BMC*

606 *Microbiologi.* **2019**, 19, 175-186.

607 8. Lin, L.; Agyemang, K.; Abdel-Samie, M.A.; Cui, H.Y. Antibacterial mechanism of

608 *Tetrapleura tetraplera* extract against *Escherichia coli* and *Staphylococcus aureus*

609 and its application in pork. *J. Food. Safety.* **2019**, e12693

610 9. Poverenov, E.; Shemesh, M.; Gulino, A.; Cristaldi, D.A.; Zakin, V.; Yefremov, T.;

611 Granit, R. Durable contact active antimicrobial materials formed by a one-step

612 covalent modification of polyvinyl alcohol, cellulose and glass surfaces. *Colloids.*

613 *Surf. B: Biointerfaces.* **2013**, 112, 356-361.

614 10. Shaer, A.E.; Hanson, P.; Worthington, T.; Lambert, P.; Mohammed, A.R.

615 Preparation and characterization of amino acids-based trimethoprim salts.

616 *Pharmaceutics* **2012**, 4, 179-196.

617 11. Demetrescu, I.; Dumitriu, C.; Totea, G.; Nica, C.; Dinischiotu, A.; Ionita, D.

618 Zwitterionic cysteine drug coating influence in functionalization of implantable

619 Ti50Zr alloy for antibacterial, biocompatibility and stability properties.

620 *Pharmaceutics* **2018**, 10, 220.

621 12. Diaz-García, D.; Ardiles, P.R.; Prashar, S.; Rodriguez-Diéguex, A.; Páez, P.L.;

622 Gómez-Ruiz, S. Preparation and study of the antibacterial applications and oxidative

623 Stress induction of copper maleamate-functionalized mesoporous silica

624 nanoparticles. *Pharmaceutics* **2019**, 11, 30.

625 13. Dutta, P.K.; Tripathi, S.; Mehrotra, G.K.; Dutta, J. Perspectives for chitosan based

626 antimicrobial films in food applications. *Food. Chem.* **2009**, 114, 1173-1182.

627 14. Kang, Z.Z.; Zhang, B.; Jiao, Y.C.; Xu, Y.H.; He, Q.Z. High-efficacy antimicrobial

628 cellulose grafted by a novel quaternarized N-halamine. *Cellulose* **2013**, 20, 885-893.

629 15. Guan, Y.; Qian, L.Y.; Xiao, H.N.; Zheng, A. Preparation of novel antimicrobial-

630 modified starch and its adsorption on cellulose fibers: Part I. Optimization of  
631 synthetic conditions and antimicrobial activities. *Cellulose* **2008**, 15, 609-618.

632 16. Wu, J.; Zheng, Y.D.; Song, W.H.; Luan, J.B.; Wen, X.X.; Wu, Z.G.; Chen, X.H.;  
633 Wang, Q.; Guo, S.L. In situ synthesis of silver-nanoparticles/bacterial cellulose  
634 composites for slow-released antimicrobial wound dressing. *Carbohyd. Polym.* **2014**,  
635 102, 762-771.

636 17. Abreu, A.S.; Oliveira, M.; Sá, A.D.; Rui, M.R.; Cerqueira, M.A.; Vicente, A.A.;  
637 Machado, A.V. Antimicrobial nanostructured starch based films for packaging.  
638 *Carbohyd. Polym.* **2015**, 129, 127-134.

639 18. Qian, L.Y.; Guan, Y.; He, B.H.; Xiao, H.N. Synergy of wet strength and  
640 antimicrobial activity of cellulose paper induced by a novel polymer complex. *Mater.*  
641 *Lett.* **2008**, 62, 3610-3612.

642 19. Qian, L.Y.; Xiao, H.N.; Zhao, G.L.; He, B.H. Synthesis of modified guanidine-  
643 based polymers and their antimicrobial activities revealed by AFM and CLSM. *ACS*  
644 *Appl. Mater. Inter.* **2011**, 3, 1895-1901.

645 20. Qian, L.Y.; Li, X.; Sun, S.L.; Xiao, H.N. Preparation of guanidine polymer and its  
646 complex as dual-functional agent for cellulose fibre-based hygiene products. *J.*  
647 *Biobased. Mater. Bio.* **2011**, 5, 219-224.

648 21. Sun, S.L.; An, Q.Z.; Li, X.; Qian, L.Y.; He, B.H.; Xiao, H.N. Synergistic effects of  
649 chitosan-guanidine complexes on enhancing antimicrobial activity and wet-strength  
650 of paper. *Bioresource. Technol.* **2010**, 101, 5693-5700.

651 22. Ebringerová, A.; Heinze, T. Xylan and xylan derivatives-biopolymers with

652 valuable properties. I. Naturally occurring xylans structures, isolation procedures  
653 and properties. *Macromol. Rapid. Comm.* **2015**, 21, 542-556.

654 23. Zyl, C.V.; Prior, B.A.; Preez, J.C.D. Production of ethanol from sugar cane bagasse  
655 hemicellulose hydrolyzate by *Pichia stipitis*. *Appl. Biochem. Biotech.* **1988**, 17, 357-  
656 369.

657 24. Sun, R.C. Cereal straw as a resource for sustainable biomaterials and biofuels.  
658 Elsevier, The Netherlands Linacre House, Jordan Hill, Oxford, UK. 2010.

659 25. Horton, D. Advances in Carbohydrate Chemistry: Volume 21: M.L. Wolfrom and  
660 R. S. Tipson. Academic Press Inc., New York. 1968.

661 26. Hromádková, Z.; Kováčiková, J.; Ebringerová, A. Study of the classical and  
662 ultrasound-assisted extraction of the corn cob xylan. *Ind. Crops. Products.* **1999**, 9,  
663 101-109.

664 27. Ünlü, C.H.; Günister, E.; Atıcı, O. Synthesis and characterization of NaMt  
665 biocomposites with corn cob xylan in aqueous media. *Carbohyd. Polym.* **2009**, 76,  
666 585-592.

667 28. Li, X.X.; Shi, X.W.; Wang, M.; Du, Y.M. Xylan chitosan conjugate-a potential food  
668 preservative. *Food. Chem.* **2011**, 126, 520-525.

669 29. Petzold, K.; Schwikal, K.; Heinze, T. Carboxymethyl xylan-synthesis and detailed  
670 structure characterization. *Carbohyd. Polym.* **2006**, 64, 292-298.

671 30. Ren, J.L.; Sun, R.C.; Liu, C.F.; Cao, Z.N.; Luo, W. Acetylation of wheat straw  
672 hemicelluloses in ionic liquid using iodine as a catalyst. *Carbohyd. Polym.* **2007**, 70,  
673 406-414.

674 31. Ren, J.L.; Xu, F.; Sun, R.C.; Peng, B.; Sun, J.X. Studies of the lauroylation of wheat  
675 straw hemicelluloses under heating. *J. Agric. Food Chem.* **2008**, *56*, 1251-1258.

676 32. Schwikal, K.; Heinze, T.; Ebringerová, A.; Petzold, K. Cationic xylan derivatives  
677 with high degree of functionalization. *Macromol. Symp.* **2010**, *232*, 49-56.

678 33. Goksu, E.I.; Karamanlioglu, M.; Bakir, U.; Yilmaz, L.; Yilmazer, U. Production  
679 and characterization of films from cotton stalk xylan. *J. Agric. Food Chem.* **2007**,  
680 *55*, 10685-10691.

681 34. Hansen, N.M.L.; Plackett, D. Sustainable films and additives from hemicelluloses:  
682 a review. *Biomacromolecules* **2008**, *9*, 1493-1505.

683 35. Lindblad, M.S.; Ranucci, E.; Albertsson, A.C. Biodegradable polymers from  
684 renewable sources. new hemicellulose - based hydrogels. *Macromol. Rapid. Comm.*  
685 **2001**, *22*, 962-967.

686 36. Melosilveira, R.F.; Fidelis, G.P.; Telles, C.B.S.; Dantassantos, N.; Elias, S.D.O.;  
687 Ribeiro, V.B.; Barth, A.L.; Macedo, A.J.; Leite, E.L. In vitro antioxidant,  
688 anticoagulant and antimicrobial activity and in inhibition of cancer cell proliferation  
689 by xylan extracted from corn cobs. *Int. J. Mol. Sci.* **2011**, *13*, 409-426.

690 37. Pristov, J.B.; Mitrović, A.; Spasojević, I. A comparative study of antioxidative  
691 activities of cell-wall polysaccharides. *Carbohydr. Res.* **2011**, *346*, 2255-2259.

692 38. Ren, J.L.; Wang, S.Y.; Gao, C.D.; Chen, X.F.; Li, W.Y.; Peng, F. TiO<sub>2</sub>-containing  
693 PVA/xylan composite films with enhanced mechanical properties, high  
694 hydrophobicity and UV shielding performance. *Cellulose* **2015**, *22*, 593-602.

695 39. Wang, X.Y.; Liu, B.; Ren, J.L.; Liu, C.F.; Wang, X.H.; Wu, J.; Sun, R.C.

696 Preparation and characterization of new quaternized carboxymethyl  
697 chitosan/rectorite nanocomposite. *Compos. Sci. Technol.* **2010**, 70, 1161-1167.

698 40. Bao, Y.P.; Zhang, H.; Luan, Q.; Zheng, M.M.; Tang, H.; Huang, F.H. Fabrication  
699 of cellulose nanowhiskers reinforced chitosan-xylan nanocomposite films with  
700 antibacterial and antioxidant activities. *Carbohydr. Polym.* **2018**, 184, 66-73.

701 41. Queirós, L.C.C.; Sousa, S.C.L.; Duarte, A.F.S.; Domingues, F.C.; Ramos, A.M.M.  
702 Development of carboxymethyl xylan films with functional properties. *J. Food.*  
703 *Sci. Technol.* **2017**, 54, 9-17.

704 42. Guan, Y.; Xiao, H.N.; Sullivan, H.; Zheng, A. Antimicrobial-modified sulfite pulps  
705 prepared by in situ copolymerization. *Carbohydr. Polym.* **2007**, 69, 688-696.

706 43. Liu, K.; Xu, Y.G.; Lin, X.X.; Chen, L.H.; Huang, L.L.; Cao, S.L.; Li, J. Synergistic  
707 effects of guanidine-grafted CMC on enhancing antimicrobial activity and dry  
708 strength of paper. *Carbohydr. Polym.* **2014**, 110, 382-387.

709 44. Peng, X.W.; Ren, J.L.; Zhong, L.X.; Sun, R.C. Synthesis and characterization of  
710 amphoteric xylan-type hemicelluloses by microwave irradiation. *J. Agric. Food*  
711 *Chem.* **2012**, 60, 1695.

712 45. Peng, X.W.; Ren, J.L.; Sun, R.C. An efficient method for the synthesis of  
713 hemicellulosic derivatives with bifunctional groups in butanol/water medium and  
714 their rheological properties. *Carbohydr. Polym.* **2011**, 83, 1922-1928.

715 46. Raj, S.B.; Kumar, V.; Soni, P.L. Ceric ammonium nitrate - initiated graft  
716 copolymerization of acrylamide onto Cassia tora gum. *J. Appl. Polym. Sci.* **2010**, 86,  
717 3250-3255.

718 47. Singh, V.; Tiwari, A.; Tripathi, D.N.; Sanghi, R. Microwave assisted synthesis of  
719 Guar-g-polyacrylamide. *Carbohyd. Polym.* **2004**, 58, 1-6.

720 48. Wang, L.L.; Xu, Y.S. Preparation and characterization of graft copolymerization of  
721 ethyl acrylate onto hydroxypropyl methylcellulose in aqueous medium. *Cellulose*  
722 **2006**, 13, 191-200.

723 49. Xu, G.B.; Kong, W.Q.; Liu, C.F.; Sun, R.C.; Ren, J.L. Synthesis and Characteristic  
724 of Xylan-grafted-polyacrylamide and Application for Improving Pulp Properties.  
725 *Materials* **2017**, 10, 971-982.

726 50. Kong, W.Q.; Ren, J.L.; Wang, S.Y.; Li, M.F.; Sun, R.C. A promising strategy for  
727 preparation of cationic xylan by environment-friendly semi-dry oven process. *Fiber.*  
728 *Polym.* **2014**, 15, 943-949.

729 51. Katsura, S.; Isogai, A.; Onabe, F.; Usuda, M. NMR analyses of polysaccharide  
730 derivatives containing amine groups. *Carbohyd. Polym.* **1992**, 18, 283-288.

731 52. Tanodekaew, S.; Channasanon, S. Xylan/polyvinyl alcohol blend and its  
732 performance as hydrogel. *J. Appl. Polym. Sci.* **2010**, 100, 1914-1918.

733 53. Eutamene, M.; Benbakhti, A.; Khodja, M.; Jada, A. Preparation and Aqueous  
734 Properties of Starch - grafted Polyacrylamide Copolymers. *Starch - Stärke.* **2010**,  
735 61, 81-91.

736 54. Yoo, D.; Kim, C.; Yoo, B. Steady and Dynamic Shear Rheology of Rice Starch -  
737 Galactomannan Mixtures. *Starch-Starke.* **2005**, 57, 310-318.

738 55. Maschio, G.; Koufopanos, C.; Lucchesi, A. Pyrolysis, a promising route for  
739 biomass utilization. *Bioresource. Technol.* **1992**, 42, 219-231.

740 56. Ren, J.L.; Peng, F.; Sun, R.C.; Kennedy, J.F. Influence of hemicellulosic  
741 derivatives on the sulfate kraft pulp strength. *Carbohyd. Polym.* **2009**, *75*, 338-342.

742 57. Lima, D.U.; Oliveira, R.C.; Buckeridge, M.S. Seed storage hemicelluloses as wet-  
743 end additives in papermaking. *Carbohyd. Polym.* **2003**, *52*, 367-373.