

1 Article

2 Non-Scientific University Students Training in 3 General Science Using an Active-Learning Merged 4 Pedagogy: Gamification in a Flipped Classroom

5 Francisco Zamora-Polo ^{1,2*}, Mario Corrales-Serrano ³, Jesús Sánchez-Martín ⁴ and Luis Espejo-
Antúnez ⁵

6 ¹ Departamento de Ingeniería del Diseño, Escuela Politécnica Superior, Universidad de Sevilla, Sevilla
7 (España); fzpolo@us.es (F.Z.-P.).

8 ² Departamento de Ingeniería Mecánica, Energética y de los Materiales, Universidad de Extremadura,
9 Badajoz (España).

10 ³ Departamento de Didáctica de las Ciencias Sociales, Lengua y Literatura, Facultad de Educación,
11 Universidad de Extremadura, 06006 Badajoz, España; mariocorralesserrano@gmail.com (M.C.-S.).

12 ⁴ Departamento de Didáctica de las Ciencias Experimentales y Matemáticas, Facultad de Educación,
13 Universidad de Extremadura, 06006 Badajoz, España; jsanmar@unex.es (J.S.-M.)

14 ⁵ Departamento de Terapeútica Médico-Quirúrgica, Facultad de Medicina, Universidad de Extremadura,
15 06006 Badajoz, España; luisea@unex.es (L.E.-A.).

16 * Correspondence:fzpolo@us.es

17

18 **Abstract:** Innovative teaching strategies are designing a new and promising landscape in
19 education. They fill up the lessons with creativity and imagination either for the students and
20 teachers. This article addresses an attempt to make easier the approach to science in a non-scientific
21 environment: primary education at university level. Gamification methodologies were combined
22 with flipped classroom in order to free up in-class time and engage the students with the taught
23 courses. A qualitative study was merged with quantitative measures of emotional and
24 motivational parameters. These results were improved with four semi-structured interviews. The
25 results clearly showed a raise in the students' motivational level, an acknowledgment of good
26 teaching practice and an evident enhancement of felt positive emotions toward science teaching
27 and scientific issues.

28 **Keywords:** Gamification; Science Education; Flipped classroom; Active Learning Methods; Higher
29 Education.

30 **1. Introduction**

31 The need for an integral education in and outside the school is a clear claim nowadays. In this
32 context, academic aspects and others such as civic education for a responsible citizenship should be
33 considered [1–5]. Educators (at any level) should take education into account as a
34 whole-comprehensive process, where the individual courses such as mathematics, literature or
35 plastic arts should be no longer seen as unlinked containers, but pieces of a single puzzle. In this
36 sense, there are many aspects that traditionally have played marginal roles from the structural point
37 of view, but relevant ones if considered from an intrinsic point of view. This is the case of
38 motivation, emotions, affective domain and so on [6].

39 Innovative methodologies are trending topic within the education spheres. Methodologies like
40 flipped classroom, problem-based learning, design thinking or gamification are widely spread and
41 many scholars are working on them, either at primary school level [7], high school [8] or higher
42 education[5,9–14]. Despite the relative novelty of such initiatives, obviously all of them respond to a
43 very old question that is already stated out from a long time: How to engage more and better the
44 students in the education process, making it a real excellent event?

45 In this sense, we agree with Fried when he stated out that[15]:

46 *"In too many classrooms we see the sound and smoke of note-taking, answer-giving,
47 homework-checking, test-taking, and forgetting that so quickly follows. In the end, there is creativity
48 and excitement for the few, compliance and endurance for the most, rebellion and failure for some; but
49 not very much work of high quality is being produced, and not much intense engagement of the mind
50 and spirit takes place."*[15] (pp. 2-3)

51 And some pages further: "The game of School is very pervasive, and its rituals are deeply
52 entrenched in the actions and expectations of students and teachers. But it is not immutable. It can
53 and must be changed" [15](p. 105) .

54 These and other reasons, most of them linked to the new socioeconomic paradigm, make the
55 innovation within the educative general picture a real emergency, in order to obtain better results in
56 terms of integral education. In this sense, it is not absurd to take some relevant precautions. We
57 agree with Yowel in her statements about the adequacy of schools for experimenting[16]. Schools are
58 not the place for testing new methodologies, she recently declared. Nevertheless, innovation must be
59 implemented, and its results must be contrasted. This is the reason we think innovative strategies
60 must be put into scene in higher education levels and dealing with those courses that, on one hand,
61 usually have more difficulties to understand and pass some matters; on the other hand, they are
62 those who will probably teach scientific concepts to children in the next years. For these reasons, our
63 study is focused on prospective primary teachers in a general science course.

64 1.1. How to overcome the Doing-The-Same paradigm: some strategies and considerations

65 The basis of this work is we want (we need) to make science easier, closer to the students'
66 interests and clearer. To this end, we began including gamification inside the standard lessons of
67 General Science, with a relative success [17], but we wanted to go further and we discovered
68 students liked playing. For this reason, in order to free up time from classes, we inverted the
69 classroom by including flipping methodologies inside the gamification strategy.

70 1.1.1. Gamification

71 When talking about gamification, we assume this methodology as a modern technique for
72 promoting the learning of almost every course. There are many approaches to a gamification
73 definition; depending on the specific field it is applied. In a general way, we agree with De-Marcos et
74 al. when they stated out that: "Gamification is the use of game elements and game-design techniques
75 in non-game contexts, to engage people and solve problems" [18] (p. 82).

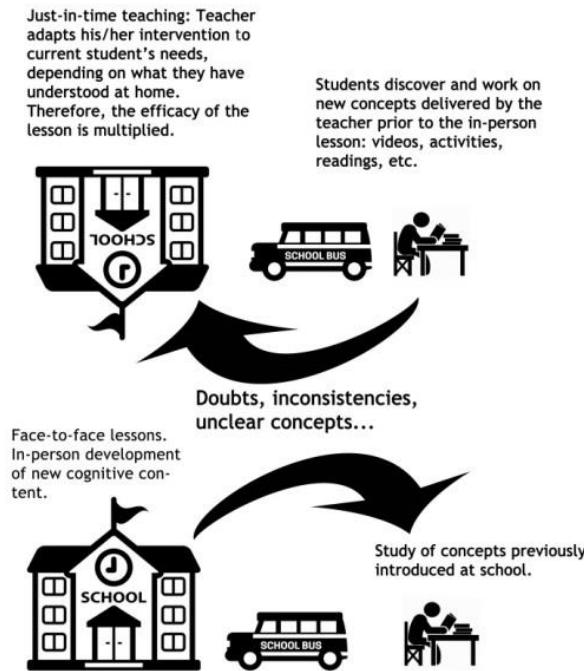
76 It is remarkable that gamification, according to this definition, is not constricted to educational
77 areas. Moreover, gamification seems to be born for financial, marketing, economical areas. Some
78 authors from these disciplines have attempted however very good approaches to educational
79 gamification. This is the case of Zichermann and Cunningham when they stated the following:

80 *"Games aligning entertainment and education like Civilization© and SimCity© have taught
81 millions of people history lessons and the basics of urban planning. These are not pedagogical games.
82 They weren't designed to be educational. But they use history and real city schema as a backdrop to
83 explain ideas; thus, education becomes a byproduct of fun... So, can children learn from games?
84 Absolutely. Research by Dr. Arne May at Germany's University of Regensburg clearly showed that
85 learning a new task produces a demonstrable increase in the brain's gray matter in mere weeks. And
86 brain scientists the world over agree that games' challenge-achievement-reward loop promotes the
87 production of dopamine in the brain, reinforcing our desire to play."* [19] (p. 4)

88 Educational gamification can add an external motivation factor in the learning process [20],
89 mainly due to the fact that an alternative framework for the educational challenge is built up on the
90 basis of creativity behavior. Students should face the academic subject not only as a job to do, but as
91 a game to play. And a game must be funny [21]. Gamification connects directly with the student's
92 interest center and generates a positive attitude towards the study task. When asked about previous
93 positive academic or instructional experiences, it is very common obtaining responses from students

94 like 'That teacher was great, (s)he taught us as it was a game', 'We learned as we were playing.' or
95 'His lessons were as he was telling us a tale'. The bases of the gamification were found long time ago,
96 in a more or less explicit way, and in almost every subject. It is not a simple fortunate coincidence
97 that a reference author as Robert Fried entitled a central chapter of his main work More ways to
98 change the game of School [15]. One can find suggestive statements such as 'It means helping them
99 (the students) begin each course, each unit, and each class as players, not as spectators' [15](p. 125).

100 1.1.2. Flipped classroom


101 Once educators realized that the engagement method for current students is no longer the
102 traditional exposition (merely oral) or the common activities such as reading aloud, solving
103 problems (by the teacher) on the blackboard or rapid question-answer dynamic where no debate or
104 discussion is possible, others teaching strategies arose in the recent years. One of them is called
105 flipped classroom and it is defined by González-Gómez et al. as follows[22]:

106 "Flipped classroom teaching methodology is a type of blended learning in which the traditional class
107 setting is inverted. Lecture is shifted outside of class, while the classroom time is employed to solve
108 problems or doing practical works through the discussion/peer collaboration of students and
109 instructors."

110 It is remarkable that this mechanism allows the teacher to free up time inside the classroom
111 (that is, the period while students are together with the instructor and amongst them) in order to
112 invest the classroom for doing interesting things. Obviously, this methodology is much more than
113 pushing the studying materials out from the physical classroom, it includes several elements that
114 make teaching process more efficient. Some of them are the following ones:

- 115 1. When flipping a course, as a teacher you do not simply ask the students to read and study
116 alone, at home, some materials. You select the most appropriate materials for understanding
117 the contents; sometimes even you generate them (video tutorials, podcasts, documents, etc.).
118 This requires you to choose attractive formats for the students. E.g., it has no sense asking them
119 to watch a 45-minutes video when some studies have proposed that novelty disappear within
120 10 minutes [23,24].
- 121 2. If you achieve the students catch the dynamic of preparing the classes before the lesson, you can
122 ask them to make their doubts and problems with the content prior the face to face session, so it
123 allows you to make a just-in-time teaching [25]. This means adapting the exact teaching process
124 and strategy to the current needs of the students.
- 125 3. One of the most struggling aspects of the flipped classroom is the fact that it implies a
126 non-circular method for developing the content, so teachers are initially unable to check the
127 knowledge acquisition. Despite this drawback, it can be overcome by implementing
128 gamification measures (such giving rewards) or forcing the students to participate in the
129 just-in-time teaching by asking questions or exposing what was not clear enough.
- 130 4. Once students are involved with this process, their participation with the course development
131 increases highly, so usually the global academic marks are increased as well.

132 In a graphical way, Figure 1 presents the main differences between the classical oral-based
133 lessons and the flipped methodology. As can be appreciated, this strategy demands higher level of
134 students' implication, but allows to generate a more creative and exciting learning environment at
135 school.

136

137 **Figure 1.** Flipped classroom model vs. traditional oral-based teaching model. Source: own
 138 elaboration from González-Gómez[22]. Icon credits: Emoji One, CC BY-SA 4.0 and
 139 www.onlinewebfonts/icon CC BY 3.0.

140 **1.5. Teaching and learning science for non-scientific audience: a current challenge**

141 If teaching in a more efficient way is, in general, a challenge for educators, making it when
 142 dealing with some specific issues can be even harder. This is the case of science, technology,
 143 engineering and mathematics subjects, namely STEM issues. It is commonly accepted that STEM
 144 subjects usually make negative or disgusting emotions to arise in those individuals that have
 145 experienced difficult in their learning [26] and this is worrying because that evidences that a bad
 146 emotional experience, in a high percentage, connects with a general rejection of science issues. The
 147 case of primary teachers is even more relevant because their negative experiences can be shifted to
 148 their students, children that probably will receive the same negative messages about science and
 149 science education [27]. This creates a vicious circle (Figure 2). The student had a bad experience with
 150 the subjects STEM in primary or secondary school, (s)he faced negatively at the University. Finally,
 151 (s)he transmits this experience to his students. Therefore, the circle is closed.

152

153 **Figure 2.** Vicious circle. Source: own elaboration. Icon credits: www.onlinewebfonts/icon CC BY 3.0

154 The current trends in science education are aware of such importance of emotions, because
155 there is no way of engaging students without taking their emotional performance into account,
156 understood as the emotional response, positive or negative, experienced by a student when facing a
157 particular course [28,29]. If this is relevant for teaching and learning whatever subject, it can be
158 considered as a crucial aspect when teaching science, because usually science teachers begin from
159 students' more difficult emotional position [30].

160 There is, consequently, a search for good emotions in science teaching. It is also known that the
161 loss of these good feelings toward science takes place during the instruction process: children
162 usually feel good when dealing with initial science issues (one just have to remember how (s)he felt
163 when the teacher brought a plastic yoghurt glass filled up with cotton and a bean seed), but this
164 feeling rapidly disappear once the years go ahead [31]. Gamification and flipped classroom are
165 teaching methodologies that look for recovering this initial surprise and good feeling amongst
166 university non-scientific students.

167 In the last few years, the use of gamification and flipped classroom is increasing substantially at
168 different stages of education, however, the combination of the two has been least explored to date.
169 The main objective of this research is to analyse the combined use of gamma and inverted class in
170 science education in order to determine whether their combined use can have a positive effect on the
171 development of teaching-learning process.

172 2. Methodology

173 This research has been carried out by merging several methodologies. Some of them are
174 quantitative, measuring through surveys the students' motivation level. In order to obtain more
175 information, a qualitative study based on the interview of selected students has been developed.
176 Regarding ethical procedures, the participants who were interviewed gave us consent to be
177 recorded, and to use their answers for our research with academic purposes. In order to maintain
178 anonymity, all names used in the article purely fictitious.

179 2.1. Sample qualitative description

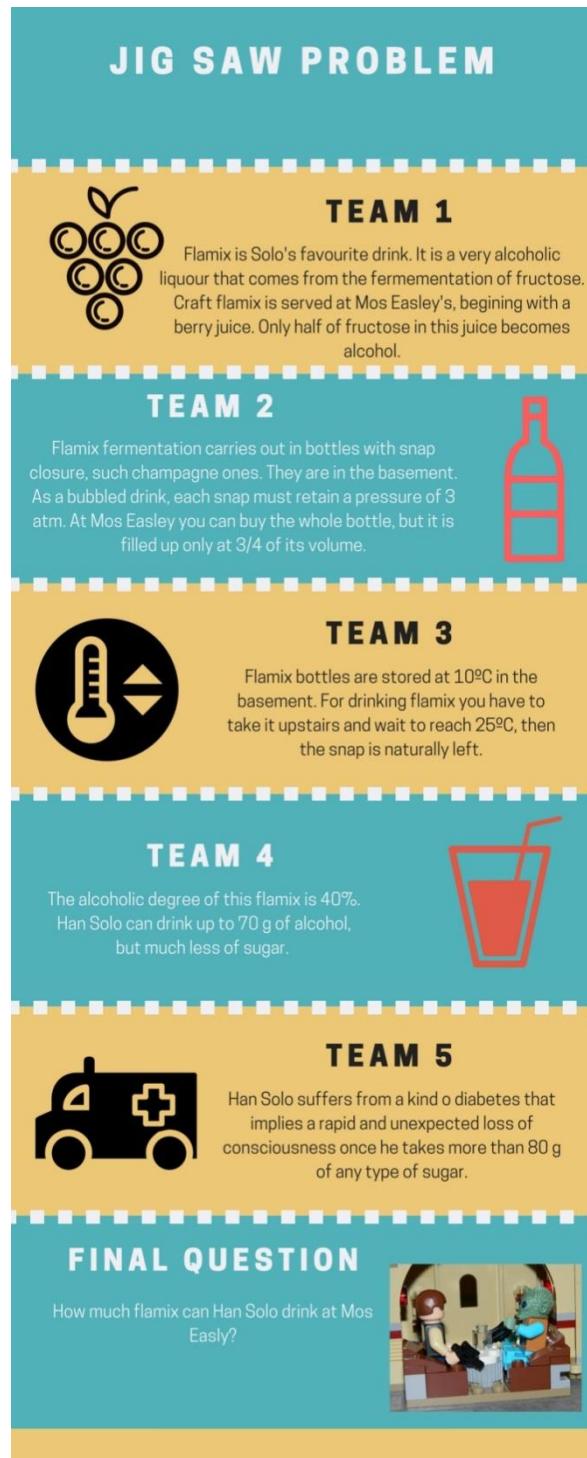
180 The study sample consists of 18 students, 10 females and 8 males, aged between 19 and 25. Most
181 of them are 19-20 years old, the corresponding age for studying this 2nd year of pre-service primary
182 teachers. They study in an Education faculty (not Science one or similar) makes this sample
183 relatively different from others. The students are part of group number 4 (afternoon time). Usually,
184 the size of this group is smaller than the groups taught in the morning. The low number of students
185 (18) allows to introduce innovative actions. These actions, properly analyzed, can be replicated, with
186 their corresponding adaptations, to larger groups.

187 The general profile of the standard student of this course deserves a specific description, based
188 not only on quantitative data, but also and above all on personal and direct observation:

- 189 1. As Jeong et al. recently pointed out [32], the academic background of the students in this grade
190 is mainly linked to social science or arts studies. Additionally, they do not identify the studies
191 for becoming a Primary teacher as science discipline and obviously not many scientific contents
192 are known for being a good primary teacher.
- 193 2. As a result of the previous item; traditionally linked to the scientific education values, for
194 example: curiosity, observation, surprise, and so forth, are not present by default in the sample
195 students. Even more, the initial emotions toward science issues in this kind of students are
196 nearer to rejection rather than the personal interest [33].
- 197 3. The academic structure of the syllabus for Primary Teacher Grade includes a huge number of
198 different subjects, belonging to a large variety of academic fields (arts, literature, physical
199 education, music, history, geography, science, and so on) This has a direct influence in the
200 importance and relevance students give to each matter. We observe that science education,
201 since it is not an interesting subject for the students in this Grade, is put in the last place in
202 importance order.

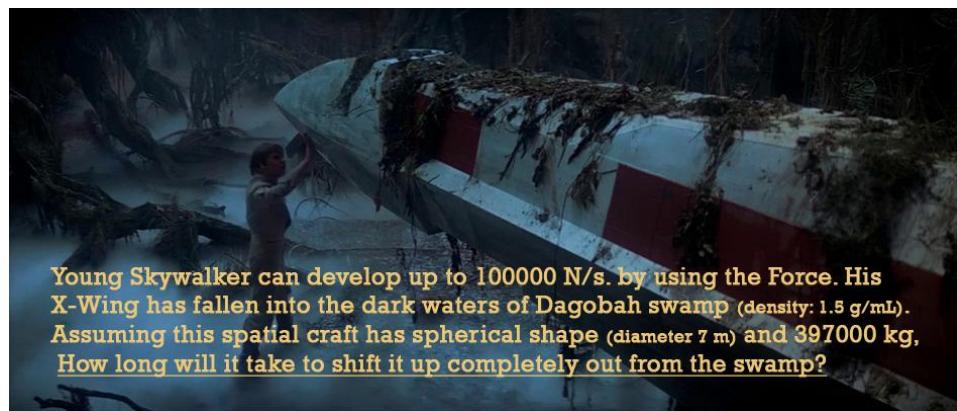
203 4. As a result of these circumstances, science education subjects are passed by the students with a
204 relatively low academic marks [22].

205 *2.2. Gamifying and flipped classroom activities*


206 The general vision of the course included gamification activities. This was reported during the
207 first days of the course. The general gamification proposal is fully described elsewhere [17], with a
208 narrative linked to Star Wars™. The course included 30 sessions (90 minutes) that were
209 systematically organized in the following way:

- 210 • The first 20 minutes were focused on discussing and clarifying doubts that could arise during
211 the flipped period (before the face to face lesson). This corresponds to just-in-time teaching.
- 212 • Then, the teacher developed new content in an oral-based methodology for no longer than 20
213 minutes.
- 214 • The flipped and the classroom content were applied by doing some cooperative activity
215 (problems, little research, etc.)
- 216 • Finally, a game-based activity was implemented for generating good feelings.

217 As can be appreciated, the students get into the lessons with a high level of participation. The
218 oral exposition was constricted to a minimum time within the 90 minutes the classes took. This was
219 made in order to engage the students to attend the classes, as the attendance is not mandatory at
220 university.


221 Some game-based activities for playing inside the classroom were the following ones:

- 222 1. Classical board games such as Taboo™ or Time's up!™ where the themes have been changed
223 into those linked to the course's contents. For example, with Time's up!™ the definitions must
224 deal with the universe and students must play describing concepts such as Terminal Shock,
225 Heliosphere, Comet or Big Crunch.
- 226 2. Other proposals included little tricks for forcing the students to read, understand and study
227 some concepts. This is the case of Match and Find, where the Presentation Slides and the
228 corresponding explanation in comments were split off and students must put them together
229 again.
- 230 3. An educative Escape Room experience, where students were confined in a classroom and
231 several scientific and non-scientific challenges should be faced and solved for get it out.
- 232 4. Competitive questionnaires on and off-line: Kahoot™, Socrative™, Quizziz™ and other
233 proposals were performed sequentially for checking out the knowledge acquisition.
- 234 5. Scientific coffee: Students were received at classroom with a free coffee and a paper napkin in
235 their sites. Then, a very difficult problem with its corresponding solution was given, one
236 different to each student. The purpose of this scientific coffee is to provoke a scientific talk (each
237 student must explain his or her problem to the classmate sitting next) inside a relatively
238 non-formal situation. The explanation, therefore, must be written down on the napkin.
- 239 6. Collaborative problems Jig-Saw: Several proposals of puzzles were given during the course.
240 The entire problem was segmented into four or five parts that must be put together for facing
241 the problem. Each part was given to a different student's team, so their collaboration was
242 absolutely needed for the success of the whole group. An example of such activity is given in
243 Figure 3.

244

245 **Figure 3.** Jig Saw activity scheme. Each team has only its corresponding piece of problem. Han Solo
246 and other characters belong to Disney™ and Lego™.247 A resources-based game structured the whole course, so students were able to obtain points
248 that could be changed by benefits and advantages at the final exam. To this end, although those
249 points could be gained during the in-person lessons, a parallel game based on working in teams
250 outside the class was proposed. In this methodology, difficult problems involving the scientific
251 concepts taught at class were proposed to be solved (out of class). An example of such proposals is
252 given in Figure 4.

253

254 **Figure 4.** Presentation of a game-based problem for teaching Archimede's principle in gas fluids. The
255 picture copyright belongs to LucasTM and DisneyTM.

256 The flipped classroom materials consisted on a series of video-tutorials (made ad hoc) focusing
257 on the most relevant points of each chapter: Archimedes' Principle, solutions and concentrations,
258 moles and Avogadro's number and so on. Additionally, some aspects were developed by using
259 written documents (no more than two pages each one) or other external links. The main goal of
260 flipped classroom is to release part of the classroom time in order to use it to develop the most
261 complex concepts (just in time teaching). Hence, time with professor can be leveraged and better
262 academic results can be obtained. This methodology helps students to focus their attention in those
263 relevant aspects that should be clearly understood. For guaranteeing the pre-work at home, students
264 were rewarded with game points or other advantages if the post-survey (one for each flipped
265 session) was filled out. Most students gave satisfactory feedback in these surveys and this
266 participation rate reported the level of students' implication.

267 **2.3. Quantitative data collection: the surveys**

268 With the aim of collecting quantitative data, the whole experience involved the use of several
269 surveys. Some of them were made in the classroom (written down) and some others were web
270 supported (by using Google FormsTM).

271 These surveys can be summarized into the following categories:

- 272 1. General surveys on participation level, regarding the flipped classroom activities. These were
273 simply questionnaires that must be filled out prior to the face to face lesson. In them, teacher
274 asked the students about doubts and feelings on the course they were working on then. An
275 example of this kind of survey is given in Table 1.
- 276 2. Motivational surveys made before and after of the educational Escape Room). This has the
277 purpose of checking a motivational raise in the general studies for pre-service teacher and for
278 the current course (Didactics of Matter and Energy). In these surveys, students were asked to
279 express their own level of motivation (1-10 scale) towards a) any class from the Degree, b) This
280 specific class of Didactics of Matter and Energy and c) The next class of this course.
- 281 3. Emotional performance and science vision survey. A final evaluation of the subject, considering
282 the active methodology. This included some quantitative items about the perceived difficulty in
283 the subject itself and an evaluation about the active methodology. In addition, some questions
284 were proposed for inquiring about the best and worst aspect in the subject development and
285 about the way the student will remember the subject, both items as open-response questions.
286 These last ones were considered as qualitative aspects (section 3.2).

287 **Table 1.** Pre-class questionnaire (example).

Pre-class questionnaire on pure and compound substances

Name

Please give the name of three pure substances and explain the reason of such classification

Which aspect of the video-tutorial was most clear for you?

Which concept or idea was not clear enough with the explanation?

Please evaluate the video-tutorial with a mark (0-10)

Finally, send me an urgent doubt (something you do not understand well)

288 2.4. *Semi-structured interviews*

289 In order to improve the study, quantitative research was complemented with qualitative one.
290 This consisted on semi-structured interviews to four selected students. The selection was made
291 considering the combination of two variables: initial motivation toward science subjects and initial
292 basic scientific knowledge, so the four students presented the total feasible combinations as Table 2
293 presents.

294 **Table 2.** Selected students for qualitative interviews.

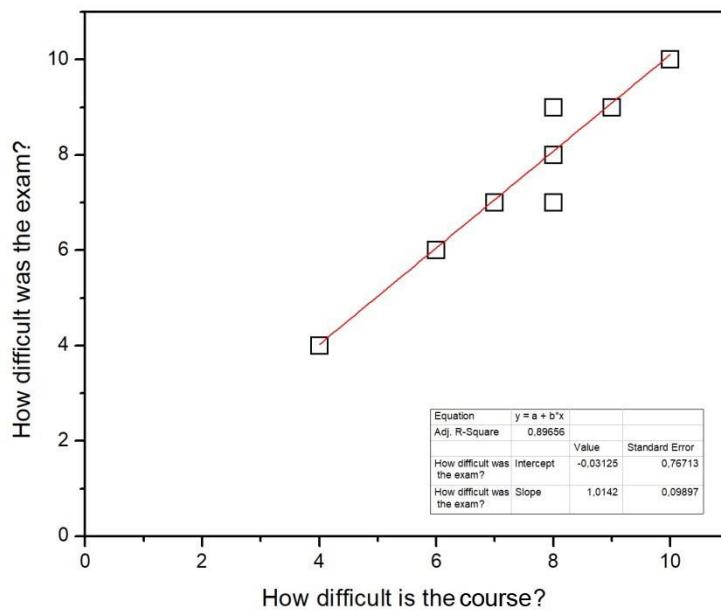
Student's fictitious name	Initial motivation	Initial science knowledge
Ana	High	Low
Roberto	Low	High
Marta	Low	Low
Blanca	High	High

295

296 The interviews were conducted through five main open questions (many others arose during
297 the interview) that brought the opportunity for talking about the subject itself, about the science
298 teaching and about the method the teacher carried out during the semester. These initial questions
299 were the following:

300 • How did you feel when the subject was just started, at the beginning of the semester?
301 • Did you like science prior to studying them at university?
302 • What do you think about the method the teacher has followed with this subject? Do you think it
303 is different from the rest of the subjects?
304 • Do you think this method motivates the student to study better? Why?
305 • Does the teaching method influence in the way the content is received by the student? In which
306 way?

307 As this qualitative researching method recommends Patton [34], the interviews lasted for 30
308 minutes and then they were transcribed. The analyzed data were carried out on these transcriptions.

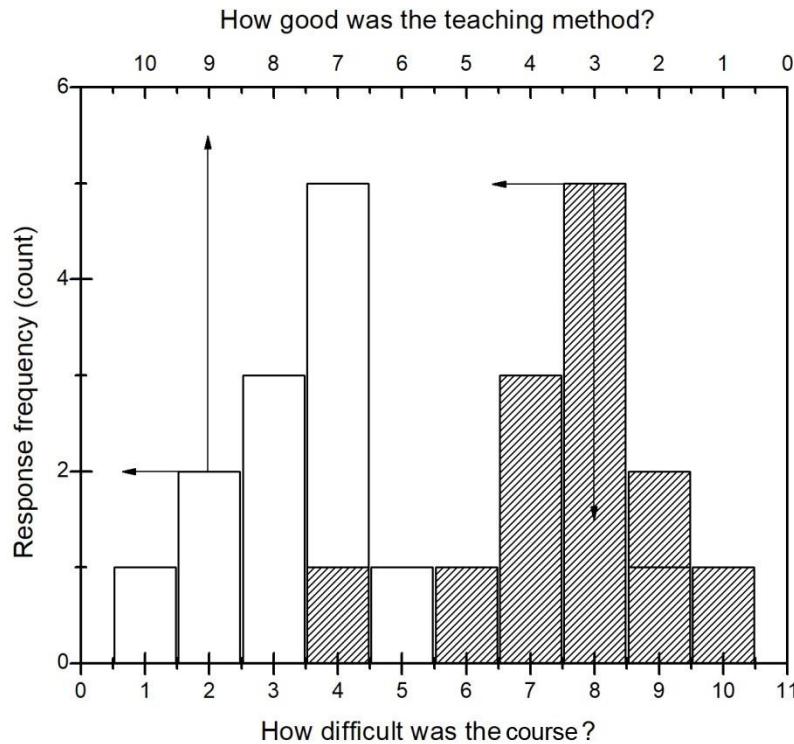

309 **3. Results and Discussion**

310 Data were processed by using statistical software package SPSS v.14 for Windows [35]. Due to
311 the number of involved individuals (18 students attending), the results are a descriptive data
312 landscape. In addition, their study together with qualitative interviews gave a consistent response to
313 the working hypothesis.

314 3.1. *Quantitative results*

315 3.1.1. A difficult science vision

316 Students were asked about the perceived difficult of the course itself and the difficult of the
317 exam. A quantitative 0-10 scale was given for choosing. The course was considered difficult (an
318 average consigned value of 7.61) as well as the exam (with an average value of 7.65). In addition, the
319 responses were correlated and a very high correlation factor (r^2 of 0.86). This means the whole
320 consideration of the course, including the evaluation final test, was in agreement with those
321 preconceptions about science and science teaching that other authors already reported [26,27].
322 Graphically, these results can be appreciated in Figure 5.

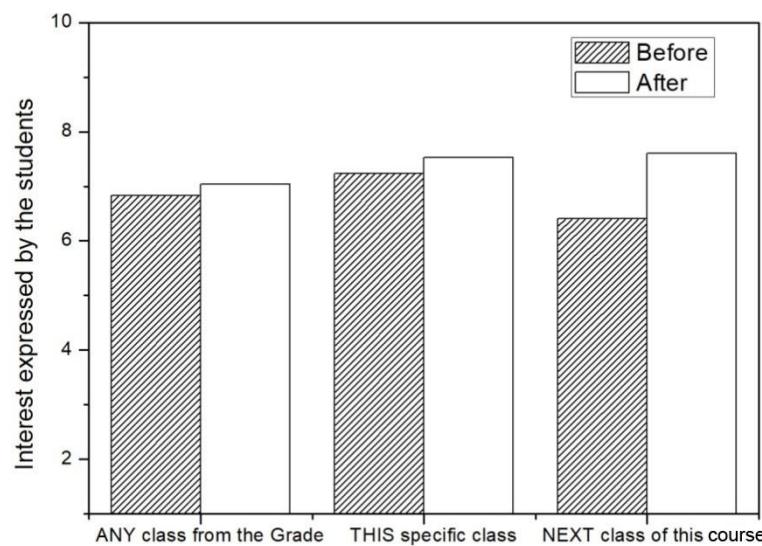


323

324 **Figure 5.** Correlation graphic between the perceived difficulty in the course itself (Didactics of Matter
325 and Energy) and in the final exam. Right lower case: statistics of the fitting correlation.

326 3.1.2. The relevance of the teaching method

327 Although students did not experience the subject or the exam as easy, they were asked about
328 the teaching method afterwards (that is, once the subject and the exam is over). The responses were
329 again high enough for considering them as positive (average of 7.3). In order to compare the two
330 assessments (teaching method and course difficulty) Figure 6 was built up. In it, the response
331 frequency to both questions is showed, although the axes are inverted to make the comparison
332 easier. As it clearly depicts, students responded with a high similarity to both questions and high
333 rates are reached in them. There are only a couple of responses out of the 7-10 range. This means the
334 students considered the teaching method as a good choice for science education, although we cannot
335 distinguish whether they also consider these strategies advisable for prospective teachers.



336

337 **Figure 6.** Responses frequency to the questions about the course difficulty and the teaching method.

338 3.1.3. Motivational raise due to innovative teaching methods

339 Figure 7 presents the motivational raise expressed by the implementation of the educative
340 escape room, as part of a general innovation program in the course. The results confirm that students
341 are more motivated towards the science classes after a gamified activity with a high level of
342 participation, hands-on and funny aspects. As can be clearly seen, the motivation level raises for the
343 three categories, but especially for the next class of Didactics of Matter and Energy. This confirms
344 that, for this group of students, these kinds of activities enhance the motivation for the general
345 studies (the whole degree) and above all for the science involved subject. These results are consistent
346 with other experiences analyzing escape rooms [36–38].

347

348 **Figure 7.** Motivational raise towards general classes in the degree and especially towards the subject
 349 classes before and after the Educational Escape Room activity.

350 3.2. Qualitative results

351 3.2.1. Open-ended answers

352 As section 2.3 presented, the last survey included two questions that should be answered with
 353 an open paragraph by each student. For this, they were asked to fill in the best and the worst aspect
 354 about the subject classes. Almost everyone agreed in pointing out the methodology (gamification,
 355 applied science, innovative teaching method) as the best practice, whereas the worst aspect was the
 356 perceived difficult of the subject and the problem solving.

357 Regarding the second question (How will you remember these classes?), the positive aspects of
 358 the teaching method were pointed out in a general way. Textually, students responded like the
 359 following:

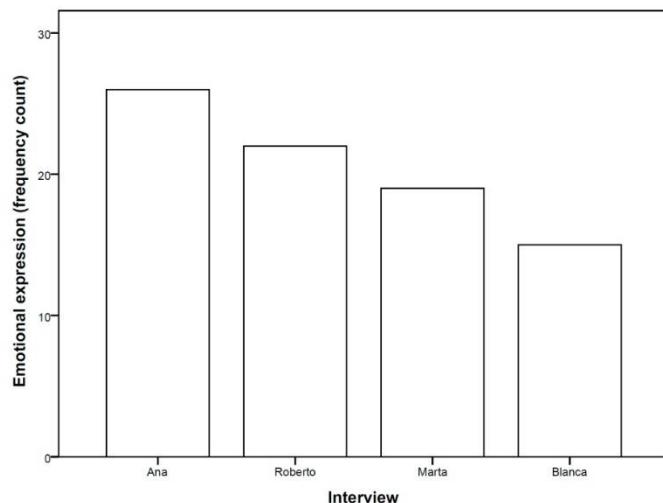
360 'I will remember these classes as the best in the degree because of the methodology, but also as some of
 361 the most difficult ones.'

362 'Intense'

363 'A coffee with science'

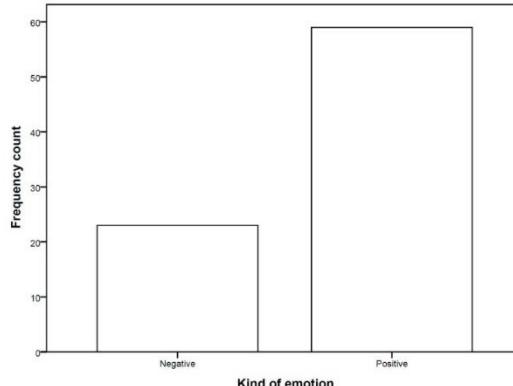
364 In general, the way the students expressed their ideas about the perception of the subject shows
 365 that innovative methodologies improve the emotional performance in the students, since it does not
 366 remove the difficulty, they detect in the science issues, but makes it more acceptable.

367 3.2.2. The interviews


368 The interviews were a great source of qualitative data. The first analysis of this material was
 369 made through data categorization. The transcriptions were coded for identifying four data
 370 categories: student, emotional expression, kind of emotion (positive or negative) and reason for such
 371 feeling. The descriptive results of the four interviews are presented in the following section.

372 a) Descriptive data

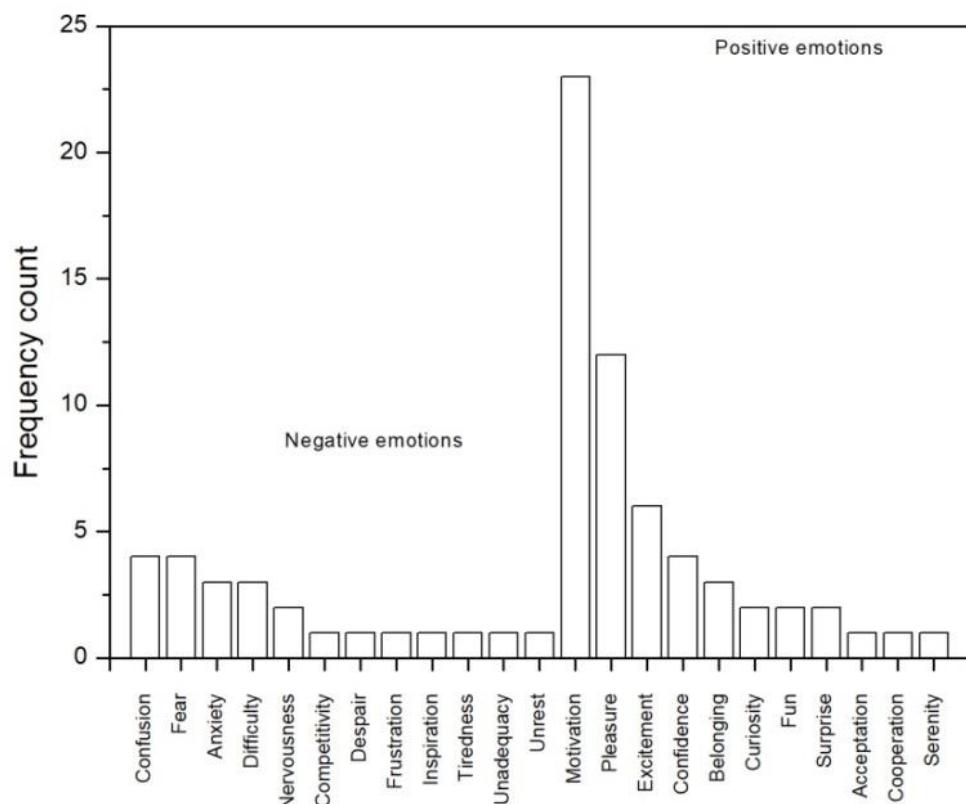
373 At a first glance, one must identify the frequency the students talked about their emotional
 374 experiences during the classes. Expressions like "I feel confused when facing the problem solving"
 375 or "From the first moment I felt curiosity. What was that called 'gamification'?" were coded as


376 emotional references. The first one could be coded as negative feeling, whereas the second one was
 377 considered a positive emotion.

378 The total count on emotional references according to the different interviews is presented in
 379 Figure 8. Clearly, positive emotions are more frequent than negative ones (Figure 9). This is
 380 consistent with previously published work in the literature, for example Bujacz et al.[39] obtained a
 381 correlation of positive emotions with creative activities, Suwal and Singh [40] found mainly positive
 382 emotions in the use of the Building Information Modelling (BIM) methodology using an online
 383 platform, Jeong et al. proposed that active learning methodologies [12] and flipped classroom [13,32]
 384 cause positive emotions in students. On the contrary, Zamora et al. found a plane emotional
 385 performance in a project-based learning activity developed using BIM in the university context [11].

386

387 **Figure 5.** Responses frequency related to emotional references during the interviews.


388

389 **Figure 9.** Kind of emotions (positive/negative) expressed by the students during the interviews.

390 In Figure 8 is shown categorized by students. A clear trend in the data cannot be observed. The
 391 student who used more emotional expressions correspond with a student with a high initial
 392 motivation and a low initial science knowledge (Ana); in the second place, a student with low initial
 393 motivation and a high initial science knowledge (Roberto). On the other hand, the student who used
 394 less emotional expressions is Blanca, a student who had initially a high motivation and science
 395 knowledge. These results seem to indicate that emotional outcomes depend more on the
 396 teaching-learning process than on the preconditions of the students.

397 Figure 10 shows the frequency account of different emotions. As can be seen from the graph, the
 398 three more positive emotions cited by students are motivation (22 times, 28%), pleasure (12 times,
 399 14.6%) and excitement (6 times, 7.3%); on the other hand the three more negative emotions cited by

400 students are fear (4 times, 5%), confusion (4 times, 5%) and anxiety (3 times, 3.7%). As can be seen,
 401 the generated emotions are clearly positive; the number of times that motivation appears is more
 402 than 5 times greater than fear or confusion. This fact clearly confirms the hypothesis 1, the
 403 methodology used enhance the students' emotional performance. These results are consistent with
 404 other studies than relate innovative methods with an increase in students' motivation [22,41].

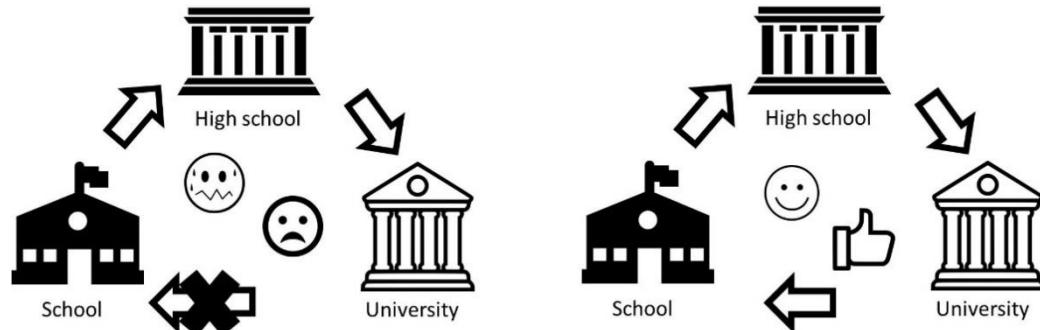
405

406 **Figure 6.** Emotions expressed by the students during the interviews.

407 Regarding the second hypothesis, two specific questions were asked in the interviews with the
 408 students: Do you think that what you have learned in class can help you in your professional future?
 409 Could you apply it to your classes?

410 Student number 1 (Ana) answered: "Yes, I think so, I would certainly like that. These
 411 methodologies are interesting and motivating. They make the classes easier, they are a good option"

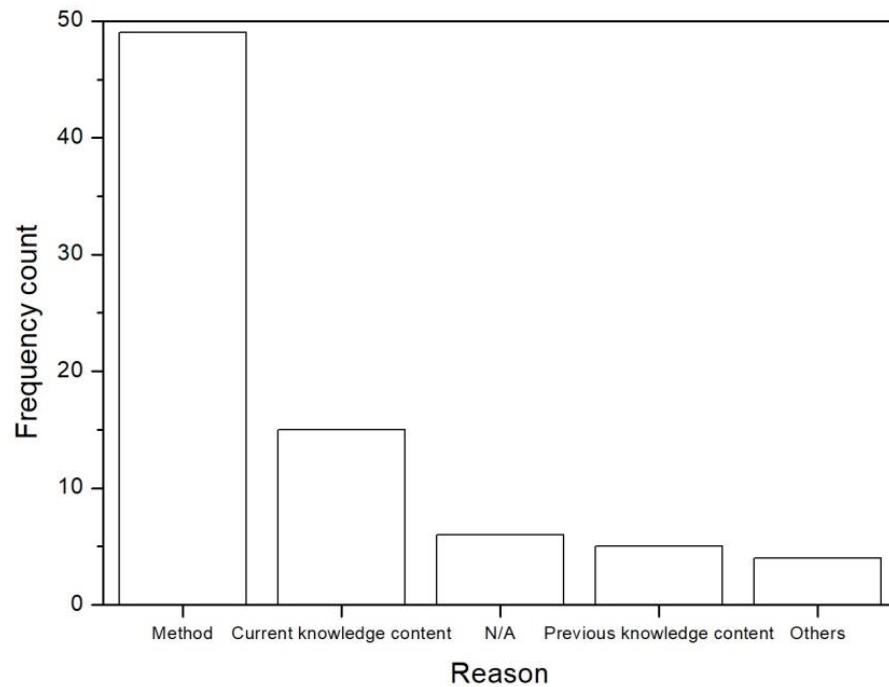
412 Student number 2 (Roberto): "It depends on the students, for elementary school students I think
 413 it is a good option, the proposal should be designed and adapted for them; however, I would not
 414 apply these methodologies for adults."


415 Student number 3 (Marta): "Yes, I think so, yes. I really liked the games; cooperative learning is
 416 very interesting too. I think you can learn more from others than working alone."

417 Student number 4 (Blanca): "Of course! We have learned many methodologies. It is better to
 418 teach using an active methodology than using only theoretical classes. These contents should be
 419 introduced as soon as possible. Obviously, they should be tailored to students' age."

420 These answers show that students have acquired psycho-pedagogical skills alongside purely
 421 scientific skills. They have learned new methodologies and they are willing to apply them in the
 422 future with their students. These results confirm hypothesis number 2; students develop new skills
 423 that will allow them to become better teachers in the future.

424 These results are very important, they show how the vicious circle shown in section 1.3 is
 425 broken, creating a virtuous circle (Figure 11). Students faced STEM subjects with positive emotions.


426 They have a better predisposition to teach STEM subjects and are trained to introduce
 427 methodological improvements in the classroom in their work as future primary teachers.

428

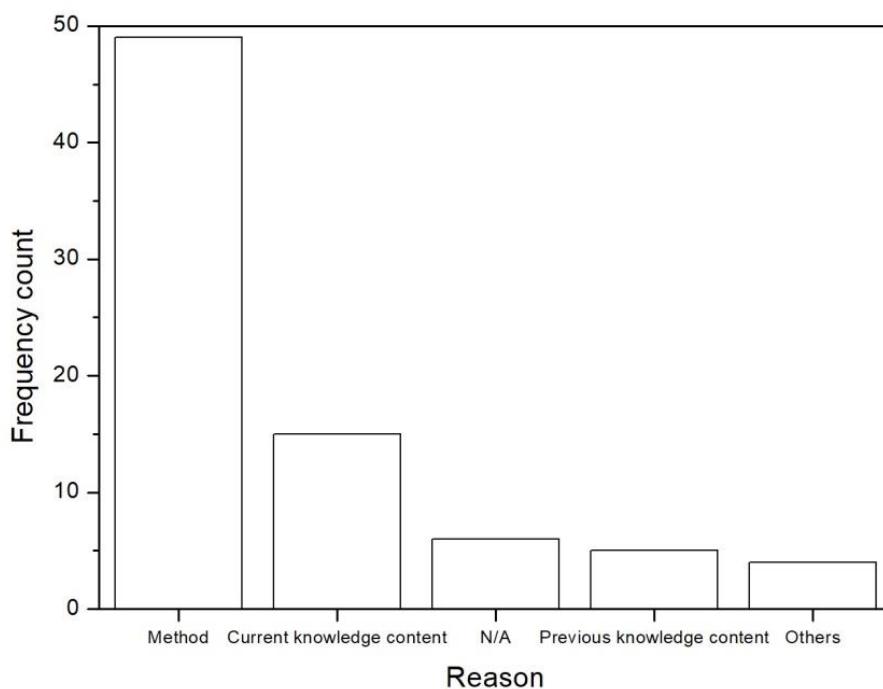
429 **Figure 11.** From vicious circle to virtuous circle. Source: own elaboration. Icon credits:
 430 www.onlinewebfonts/icon CC BY 3.0.

431 Finally, Figure 12 shows student's reasons related to their feelings, the more frequent are
 432 methodology (49 times, 59.8%) and current knowledge content (16 times, 19.5%).

433

434 **Figure 7.** Reasons attributed by the students to their own feelings.

435 b) Inferential analysis


436 In order to get deeper in the analysis of the reasons for feeling one kind of emotion or another
 437 one, that is, to clarify whether the negative emotions are linked to a specific reason and vice versa
 438 with the positive ones, an inferential analysis was carried out. The relevance of the emotional factor
 439 and affective domain has been discussed elsewhere [42]. To this end, we crossed the category Kind
 440 of emotion (which could be Positive or Negative) with the category Reason for feeling (which could
 441 be Current knowledge content, Previous knowledge content, Method, Not answered or Others).
 442 Table 3 shows the results of such crossing data, according to a χ^2 hypothesis test. As can be observed,
 443 34% of negative emotions can be related with current knowledge content. On the other hand,

444 positive emotions are associated with methodology in a 73%. This is statistically significant (p-value
 445 0.00) and a high value of contingency coefficient (0.505) is reached.

446 **Table 3.** Inferential analysis of Reasons for emotions and Kind of felt emotions.

Kind of emotions (K)	Reasons				
	Current knowledge content	Method	Others	Previous knowledge content	N/A
Negative (%) inside K)	8(34.8%)	6(26.1%)	5(21.7%)	4(17.5%)	0(0%)
Positive (%) inside K)	8(13.6%)	43(72.9%)	6(7.3%)	5(6.1%)	6(7.3%)

447
 448 Secondly, the relationship between kind of emotion and student has been studied using χ^2
 449 hypothesis test. There is no significant evidence to prove a relationship between the type of emotions
 450 and the student (1, 2, 3 or 4). This is consistent with the description of

451
 452 Figure 7. Reasons attributed by the students to their own feelings. and could show there is not
 453 relationship between previous experience and emotions; and therefore, new methodologies cause
 454 positive emotions regardless of previous experience.

455 **4. Conclusions**

456 In this study we have studied an educational innovation experience combining gamification and
 457 flipped classroom. For the analysis of the experience, qualitative and quantitative techniques have
 458 been used, using interview and surveys.

459 The following conclusions can be drawn from the results of the study:

- 460 1. Students still find science difficult. However, the use of innovative techniques improves their
 461 perception and motivation towards this discipline.
- 462 2. Students have learned new techniques that they can use in their future professional activity.
 463 This aspect means that the innovations developed in the university context have a multiplier
 464 effect because they can affect future generations.

465 Although the experience has been developed in a small group of students (18), the results show that
466 it would be interesting to be able to apply it, with appropriate adaptations, in larger groups. In
467 future studies we will analyze the application of this technique in these groups.

468 **Author Contributions:** Conceptualization, F.Z.-P., J.S.-M., and L.E.-A.; methodology, F.Z.-P and J.S.-M.; formal
469 analysis, F.Z.-P. and J.S.-M.; investigation, F.Z.-P., J.S.-M., and L.E.-A.; data curation, F.Z.-P. and J.S.-M.;
470 writing—original draft preparation, F.Z.-P., J.S.-M., and L.E.-A.; writing—review and editing, F.Z.-P., J.S.-M.,
471 M.C.-S., and L.E.-A.; visualization, F.Z.-P., J.S.-M., and M.C.-S.; funding acquisition, J.S.-M..

472 **Funding:** This work was partially supported by the Spanish Government (Economy and Competitiveness
473 Ministry) under EDU2016-77007-R (AEI/FEDER, UE) project, IB16068 (Junta de Extremadura / Fondo Europeo
474 de Desarrollo) as well as by the Regional Government of Extremadura (GR15009) and by the Researching
475 Group DEPROFE, from University of Extremadura.

476 **Acknowledgments:** Authors are most grateful to the students from Didactics of Matter and Energy (Group 4,
477 Primary Teacher Degree) and especially to those 4 that actively participated as interviewed subjects and due to
478 the anonymity cannot be mentioned.

479 **Conflicts of Interest:** The authors declare no conflict of interest.

480 References

- 481 1. Román-Suero, S.; Sánchez-Martín, J.; Zamora-Polo, F. Opportunities given by final degree dissertations
482 inside the EHEA to enhance ethical learning in technical education. *Eur. J. Eng. Educ.* **2013**, *38*, 149–158.
- 483 2. Sánchez-Martín, J.; Zamora-Polo, F.; Moreno-Losada, J.; Parejo-Ayuso, J.P. Innovative education tools
484 for developing ethical skills in university science lessons. The case of the moral cross dilemma. *Ramon
485 Llull J. Appl. Ethics* **2017**, 225–245.
- 486 3. Zamora-Polo, F.; Sánchez-Martín, J.; Corrales-Serrano, M.; Espejo-Antúnez, L. What Do University
487 Students Know about Sustainable Development Goals? A Realistic Approach to the Reception of this
488 UN Program Amongst the Youth Population. *Sustainability* **2019**, *11*, 3533.
- 489 4. Zamora-Polo, F.; Sánchez-Martín, J. Teaching for a Better World. Sustainability and Sustainable
490 Development Goals in the Construction of a Change-Maker University. *Sustainability* **2019**, *11*, 4224.
- 491 5. Ríos, I.D.L.; Cazorla, A.; Díaz-Puente, J.M.; Yagüe, J.L. Project-based learning in engineering higher
492 education: Two decades of teaching competences in real environments. In Proceedings of the Procedia -
493 Social and Behavioral Sciences; 2010; Vol. 2, pp. 1368–1378.
- 494 6. Hargreaves, A. The Emotions of Teaching and Educational Change. *Extending Educ. Chang.* **2005**.
- 495 7. Hewitt, D.; Tarrant, S. *Innovative Teaching and Learning in Primary Schools*; SAGE, 2015; ISBN 1473917379.
- 496 8. Harvey, E. *Secondary education: perspectives, global issues and challenges*; Nova Science: New York, USA,
497 2016; Vol. 87;
- 498 9. Christensen, C.M.; Eyring, H.J. *The Innovative University: Changing the DNA of Higher Education from the
499 Inside Out*; John Wiley and Sons: Londons (United Kingdom), 2012; ISBN 9781118063484.
- 500 10. Abad, E.; Gil, J.; Suárez, P. A game-based educational method relying on student-generated questions.
501 *Int. J. Eng. Educ.* **2017**, *33*, 1786–1797.

502 11. Zamora-Polo, F.; Martínez Sánchez-Cortés, M.; Reyes-Rodríguez, A.M.; García Sanz-Calcedo, J.
503 Developing Project Managers' Transversal Competences Using Building Information Modeling. *Appl.*
504 *Sci.* **2019**, *9*, 4016.

505 12. Jeong, J.S.; González-Gómez, D.; Cañada-Cañada, F.; Gallego-Picó, A.; Bravo, J.C. Effects of active
506 learning methodologies on the students' emotions, self-efficacy beliefs and learning outcomes in a
507 science distance learning course. *J. Technol. Sci. Educ.* **2019**, *9*, 217.

508 13. Jeong, J.; Cañada-Cañada, F.; González-Gómez, D. The Study of Flipped-Classroom for Pre-Service
509 Science Teachers. *Educ. Sci.* **2018**, *8*, 163.

510 14. Zhang, J.; Xie, H.; Li, H. Project based learning with implementation planning for student engagement
511 in BIM classes. *Int. J. Eng. Educ.* **2018**, *35*, 310–322.

512 15. Fried, R.L. *The passionate teacher: A practical guide*; Beacon Press, 2001; ISBN 0807031437.

513 16. Yowel, C. Primary schools are not a good place for testing new methodologies. *El País* 2017.

514 17. Sánchez-Martín, J.; Cañada-Cañada, F.; Dávila-Acedo, M.A. Just a game? Gamifying a general science
515 class at university: Collaborative and competitive work implications. *Think. Ski. Creat.* **2017**, *26*, 51–59.

516 18. De-Marcos, L.; Domínguez, A.; Saenz-De-Navarrete, J.; Pagés, C. An empirical study comparing
517 gamification and social networking on e-learning. *Comput. Educ.* **2014**, *75*, 82–91.

518 19. Zichermann, G.; Cunningham, C. *Gamification by design: Implementing game mechanics in web and mobile*
519 *apps*; O'Reilly Media, Inc.: Sebastopol, California, 2011; ISBN 1449315399.

520 20. Buckley, P.; Doyle, E. Gamification and student motivation. *Interact. Learn. Environ.* **2014**, *24*, 1162–1175.

521 21. Koster, R. *Theory of fun for game design*; Paraglyph press: Scottsdale, Arizona, 2005; ISBN 1449363199.

522 22. González-Gómez, D.; Jeong, J.S.; Airado Rodríguez, D.; Cañada-Cañada, F. Performance and Perception
523 in the Flipped Learning Model: An Initial Approach to Evaluate the Effectiveness of a New Teaching
524 Methodology in a General Science Classroom. *J. Sci. Educ. Technol.* **2016**, *25*, 450–459.

525 23. Fidalgo-Blanco, A.; Martínez-Nuñez, M.; Borrás-Gene, O.; Sanchez-Medina, J.J. Micro flip teaching – An
526 innovative model to promote the active involvement of students. *Comput. Human Behav.* **2017**, *72*,
527 713–723.

528 24. Medina, J.J. *Brain rules: 12 principles for surviving and thriving at work, home, and school*. Seattle,
529 Wash 2008.

530 25. Novak, G.M.; Patterson, E.T.; Gavrin, A.D.; Christian, W. *Just-in-time teaching : blending active learning*
531 *with web technology*; Prentice Hall series in educational innovation: Saddle River, 1999; ISBN 0130850349
532 (pbk.).

533 26. Brígido, M.; Borrachero, A.B.; Bermejo, M.L.; Mellado, V. Prospective primary teachers' self-efficacy

534 and emotions in science teaching. *Eur. J. Teach. Educ.* **2012**, *36*, 200–217.

535 27. Borrachero, A.B.; Brígido, M.; Gomez, R.; Bermejo, M.L.; Mellado, V. Emotions in prospective
536 secondary teachers on the science learning and teaching process (Las emociones de los futuros
537 profesores de secundaria sobre el aprendizaje y la enseñanza de las ciencias). *Int. J. Dev. Educ. Psicol.*
538 **2011**, *23*, 521–530.

539 28. Sánchez-Martín, J.; Álvarez-Gragera, G.J.; Dávila-Acedo, M.A.; Mellado, V. What do K-12 students feel
540 when dealing with technology and engineering issues? Gardner's multiple intelligence theory
541 implications in technology lessons for motivating engineering vocations at Spanish Secondary School.
542 *Eur. J. Eng. Educ.* **2017**, *42*, 1330–1343.

543 29. Sánchez-Martin, J.; Alvarez-Gragera, G.J.; Davila-Acedo, M.A.; Mellado, V. Teaching technology: From
544 knowing to feeling enhancing emotional and content acquisition performance through Gardner's
545 Multiple Intelligences Theory in technology and design lessons. *J. Technol. Sci. Educ.* **2017**, *7*, 58.

546 30. Mellado, V.; Borrachero, A.B.; Brígido, M.; Melo, L.V.; Dávila, M.A.; Cañada, F.; Conde, M.C.; Costillo,
547 E.; Cubero, J.; Esteban, R.; et al. Emotions in science teaching | Las emociones en la enseñanza de las
548 ciencias. *Enseñanza las Ciencias* **2014**, *32*, 11–36.

549 31. Brígido, M.; Couso, D.; Gutiérrez, C.; Mellado, V. The emotions about teaching and learning science: a
550 study of prospective primary teachers in three Spanish universities. *J. Balt. Sci. Educ.* **2013**, *12*.

551 32. Jeong, J.S.; González-Gómez, D.; Cañada-Cañada, F. Students' Perceptions and Emotions Toward
552 Learning in a Flipped General Science Classroom. *J. Sci. Educ. Technol.* **2016**, *25*, 747–758.

553 33. Dávila Acedo, M.A.; Borrachero Cortés, A.B.; Cañada-Cañada, F.; Martinez Borreguero, G.; Sánchez
554 Martín, J. Evolution of the emotions experienced by prospective primary teachers, focused on didactics
555 of matter and energy. *Eureka sobre Enseñanza y Divulg. las Ciencias* **2015**, *12*, 550–564.

556 34. Patton, M.Q. *Qualitative evaluation and research methods*, 2nd ed.; 1990; ISBN 0-8039-3779-2 (Hardcover).

557 35. SPSS *SPSS 14.0 Developer's guide*; IBM: Chicago, Illinois (USA), 2005;

558 36. Borrego, C.; Fernández, C.; Blanes, I.; Robles, S. Room escape at class: Escape games activities to
559 facilitate the motivation and learning in computer science. *J. Technol. Sci. Educ. Vol 7, No 2 9th Int. Conf.*
560 *Univ. Teach. Innov. Learn. Teach. Innov. impactsDO - 10.3926/jotse.247* **2017**.

561 37. Clarke, S.; Arnab, S.; Keegan, H.; Morini, L.; Wood, O. Escaped: Adapting live-action, interactive games
562 to support higher education teaching and learning practices. In Proceedings of the Lecture Notes in
563 Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
564 Bioinformatics); 2016.

565 38. Eukel, H.N.; Frenzel, J.E.; Cernusca, D. Educational Gaming for Pharmacy Students - Design and
566 Evaluation of a Diabetes-themed Escape Room. *Am. J. Pharm. Educ.* **2017**, *81*, 6265.

567 39. Bujacz, A.; Dunne, S.; Fink, D.; Gatej, A.R.; Karlsson, E.; Ruberti, V.; Wronska, M.K. Why do we enjoy

568 creative tasks? Results from a multigroup randomized controlled study. *Think. Ski. Creat.* **2016**, *19*,
569 188–197.

570 40. Suwal, S.; Singh, V. Assessing students' sentiments towards the use of a Building Information
571 Modelling (BIM) learning platform in a construction project management course. *Eur. J. Eng. Educ.* **2018**,
572 *43*, 492–506.

573 41. Yang, Y.; Asaad, Y.; Dwivedi, Y. Examining the impact of gamification on intention of engagement and
574 brand attitude in the marketing context. *Comput. Human Behav.* **2017**, *73*, 459–469.

575 42. Sánchez-Martin, J.; Cañada-Cañada, F.; Dávila-Acedo, M.A. Emotional responses to innovative Science
576 teaching methods: Acquiring emotional data in a General Science teacher education class. *J. Technol. Sci.*
577 *Educ.* **2018**, *8*, 346.

578