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Abstract: As time progresses and technology improves, biological data sets are continuously 
increasing in size. New methods and new implementations of existing methods are needed to keep 
pace with this increase. In this paper, we present a high performance computing(HPC)-capable 
implementation of Iterative Random Forest (iRF). This new implementation enables the 
explainable-AI eQTL analysis of SNP sets with over a million SNPs. Using this implementation we 
also present a new method, iRF Leave One Out Prediction (iRF-LOOP), for the creation of Predictive 
Expression Networks on the order of 40,000 genes or more. We compare the new implementation 
of iRF with the previous R version and analyze its time to completion on two of the world’s 
fastest supercomputers Summit and Titan. We also show iRF-LOOP’s ability to capture biologically 
significant results when creating Predictive Expression N etworks. This new implementation of iRF 
will enable the analysis of biological data sets at scales that were previously not possible.

Keywords: Random Forest; Iterative Random Forest; gene expression networks; high performance 
computing; X-AI-based eQTL

1. Introduction

Due to innovation in the areas of genome sequencing and ’omics analysis, biological data is
entering the age of big data. As opposed to other fields of research, biological data sets tend
to have large feature quantity, but much smaller sample counts, such as in a GWAS population
where there are typically hundreds to thousands of genotypes, but millions of SNPs. The number of
independent features of biological systems is large, and would require many lifetimes of the entire
scientific community to sufficiently study[1]. The ability to determine which features are influential
to a particular phenotype, be it SNPs, gene expression, or interactions between multiple molecular
pathways, is essential in reducing the full feature space to a subset that is feasible to analyze.

Many methods exist to determine feature importance and feature selection, such as Pearson
Correlation, Mutual Information (MI), Sequential Feature Selection (SFS)[2], Lasso, and Ridge
Regression. Random Forest[3] is a commonly used machine learning method for making predictions,
and while not classically defined as a feature selection method, it is useful in scoring feature importance.
During the training phase, decision trees are built, where a subset of features is examined at each
decision point and the one that best divides the data is chosen. Feature importances are calculated
for each feature based on its location and effectiveness within the tree structures. By using random
subsets of the training data for each tree and considering random features for each decision point,
Random Forest prevents over fitting. Because of the nature of decision trees, the importance of any
chosen feature is inherently conditional on the features that were chosen previously. In this way the
Random Forest is able to account for some of the interconnected dependencies that occur in biological
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systems. As a non-linear model, Random Forest has been applied to a range of biological data problems,
including GWAS, genomic prediction, gene expression networks and SNP imputation[4].

Iterative Random Forest[5] (iRF) is an algorithmic advancement of Random Forest (RF), which
takes advantage of Random Forests ability to produce feature importance and produces a more
accurate model by iteratively creating weighted forests. In each iteration, the importance scores
from the previous iteration are used to weight features for the current forest. Until now, iRF was
implemented solely as an R package[6]. While useful for small projects, it was not designed for big data
analysis. This paper describes the process of implementing a high performance computing enabled
iRF, using MPI (Message Passing Interface)[7]. This new implementation enabled the creation of
Predictive Gene Expression Networks with 40,000 genes and quickly completed the feature importance
calculations for 1.7 million Arabidopsis thaliana SNPs in relation to a gene expression profile, as part of a
genome-wide explainable-AI-based eQTL analysis.

2. Materials and Methods

2.1. Random Forest and Iterative Random Forest Methods

The base learner for the Random Forest (RF) and Iterative Random Forest (iRF) methods is
the decision tree, also known as a binary tree. A decision tree starts with a set of data: samples,
features, and a dependent variable. The goal is to divide the samples, through decisions based on the
features, into subsets containing homogeneous dependent variable values, generally following the
CART (Classification and Regression Trees) method[8], where each decision divides one node into two
child nodes. This is a greedy algorithm which will continue to divide the samples into child nodes,
based on a scoring criteria, until a stopping criteria is met. Decision trees are weak learners and tend
to over-fit to the data provided.

A Random Forest is an ensemble of decision trees. However, the trees in a Random Forest differ
from standard decision trees in that each tree starts with a subset of the samples, chosen via random
sampling with replacement. Also differing from standard decision trees, the features being considered
at each node are a random subset, with the number of features provided by a parameter. Once a forest
has been generated, the importance of each feature can be calculated from node impurity, such as the
Gini index for classification or variance explained for regression, or permutation importance. Unlike a
single decision tree, a Random Forest is a strong learner, because it averages many weak learners and
avoids putting too much weight on outlier decisions. The number of trees in a forest is a parameter
that is chosen by the user and has an effect on the accuracy of the model.

Iterative Random Forest expands on the Random Forest method by adding an iterative boosting
process, producing a similar effect to Lasso in a linear model framework. First, a Random Forest is
created where features are unweighted and have an equal chance of being randomly sampled at any
given node. The resulting importance scores for the features are then used to weight the features in
the next forest, thus increasing the chance that important features are evaluated at any given node.
This process of weighting and creating a new Random Forest is repeated i times, where i is set by the
user. Due to the ability to easily follow the decisions that these models make, they have been deemed
explainable-AI (X-AI)[1], which differs from many standard machine and deep learning methods.

For both Random Forest and Iterative Random Forest, the total number of features, samples, trees,
and iterations (for iRF) all influence run time to differing degrees. Most of the computation time is
spent creating the decision trees, so run time scales with the number of trees. The number of samples
influences the number of decisions within a tree needed to divide the data into homogeneous subsets.
This influences the number of nodes created in a tree, and thus the run time per tree. Further, the
number of features influences the amount of time required to find the feature that best divides the
samples at any given node. Finally, for iRF, a whole new forest must be generated for each iteration,
though the run time for subsequent forests tends to diminish as many feature weights are set to zero.
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The number of iterations allows the user to find a balance between over- and under-parameterization
of the model, by progressively eliminating features.

2.2. Implementation of iRF in C++

We used Ranger[9], an open source Random Forest implementation in C++, as the core of
our iRF implementation. Ranger already implements the decision tree and forest creation aspects,
but implements neither the communication necessary for running on multiple compute nodes of a
distributed HPC system, nor the iterative aspect of iRF.

Within our implementation, each decision tree is initialized with a random subset of the data
sample vectors and is then built in an independent process. Groups of trees (sub-forests) are built
on compute nodes and then sent to a master compute node that aggregates them into a full Random
Forest. This is done by giving each sub-forest a randomly generated seed number which determines
the random subset of data each tree in a sub-forest uses, allowing for a higher likelihood of unique
random data subsets on each tree. Once in the form of a single Random Forest, Ranger’s functions for
forest analysis are used, including feature importance aggregation.

On a distributed system, where parts of the forest are created on different compute nodes, the
aggregation of results requires the majority of the inter-node communication. This process relies on
MPI (the Message Passing Interface), an internode-communication standard for parallel programming,
and Open-MPI[10], an open source C library containing functions that follow the MPI standard.

To implement i iterations, the forest creation and aggregation is performed i times. After the
completion of each iteration, the feature weights are written to a file. At the beginning of the next
iteration, this file is read into an array that is used to create the weighted distribution from which
features are sampled during the decision process at each node on each tree. This process, while
potentially slow due to the file I/O, uses the preexisting functionality of weighted sampling from
Ranger.

2.3. iRF-LOOP: iRF Leave One Out Prediction

Given a data set of n features and m samples, iRF Leave One Out Prediction (iRF-LOOP) starts
by treating one feature as the dependent variable (Y) and the remaining n-1 features as predictor
matrix (X) of size m x n-1. Using an iRF model, the importance of each feature in X, for predicting
Y, is calculated. The result is a vector, of size n, of importance scores (the importance score of Y, for
predicting itself, has been set to zero). This process is repeated for each of the n features, requiring n
iRF runs. The n vectors of importance scores are concatenated into an n x n importance matrix. To keep
importance scores on the same scale across the importance matrix, each column is normalized relative
to the sum of the column. The normalized importance matrix can be viewed as a directional adjacency
matrix, where values are edge weights between features. See figure 1 for a diagram of this process.
Due to the nature of iRF, the adjacency matrix is not symmetric as feature A may predict feature B with
a different importance than feature B predicts feature A.

2.4. Big Data: Showing the scale of iRF with Arabidopsis thaliana SNP Data

A typical use case of iRF, with a matrix of features and a single target vector of outcomes, becomes
comparable to an X-AI-based eQTL analysis, when the matrix of features is a set of single nucleotide
polymorphisms (SNPs) and the dependent variable vector is a gene’s expression measured across
samples. This analysis determines which set(s) of SNPs are important to variation in the gene’s
expression.

We obtained Arabidopsis thaliana SNP data from the Weigel laboratory at the Max Planck Institute
for Developmental Biology, available at https://1001genomes.org/data/GMI-MPI/releases/v3.1/.
We filtered the SNPs using bcftools 1.9[11] to keep only those that were biallelic, had a minor allele
frequency greater than 0.01, and had less than ten percent missing data across the population. This
resulted in a set of 1.71 million SNPs for 1135 samples, from the original 11.7 million SNPs.
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Figure 1. The diagram shows the process of iRF-LOOP for a set of Expression profiles, creating a
Predictive Expression Network. Each gene is independently treated as the target for an iRF run, with all
other genes as predictors. iRF provides importance scores of each predictor gene, and creates network
edge weights between target and predictors. These importance scores are then combined into an
edge matrix, providing a value for each possible connection, from which a network can be generated.
Generally, the weights are thresholded at some value, determined through other means, and only edges
with large enough weights are included in the final network. Due to the inherent directionality of a
prediction, the edges are weighted, and not likely to be symmetric.

We obtained Arabidopsis thaliana expression data[12] from 727 samples and 24175 genes. Of these
727 samples, 666 samples were also present in the SNP data set. The vector of gene expression values
for gene AT1G01010 for those 666 samples was used as the dependent variable for iRF. The feature set
was the full set of 1.71 million SNPs, for the same 666 samples. While this is not a large number of
samples, this is clearly a large number of features.

The C++ iRF code was run using these data as input with five iterations, each generating a forest
containing 1000 trees. The number of trees was chosen as a value close to the square root of the number
of features (a common setting for this parameter), where each feature has a 95% chance of being
included in the feature subset within the first two layers in at least one tree. This helps to guarantee
that all features are considered at least once across an iteration. HPC node quantities of 1, 2, 5, and 10
were used to show run time changes as the amount of resources increases.

Due to the large number of SNPs, the full data could not fit in memory on a standard laptop,
for use in the R iRF program. Instead, small subsets of features of sizes 2,000, 1,000, 500, 100 and 50
features were run, each using the full 666 samples and the same AT1G01010 gene expression dependent
variable. Each feature set was run three times and averaged to account for the inherent stochasticity in
the algorithm. Only one run was performed for each parameter set on Summit with the full data set
due to limited compute time availability.

2.5. Using iRF-LOOP to Create Predictive Expression Networks

Given a matrix of gene expression data, there are a multitude of approaches for inferring which
genes potentially regulate the expression of other genes, ranging in complexity from pairwise Pearson
Correlations to advanced methods such as Aracne[13], Genie3[14], and dynamic Bayesian networks
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(DBNs)[15]. Due to the large number of features and the complexity of the interactions between them,
Random Forest-type approaches are well suited to this task.

We applied iRF-LOOP to a matrix of gene expression data measured in 41,335 genes across 720
genotypes of Populus trichocarpa (Black cottonwood). The RNAseq data [16] from were obtained from
the NCBI SRA database (SRA numbers: SRP097016– SRP097036; www.ncbi.nlm.nih.gov/sra). Reads
were aligned to the Populus trichocarpa v.3.0 reference[17]. Transcript per million (TPM) counts were
then obtained for each genotype, resulting in a genotype- transcript matrix, as referenced in [18]. The
adjacency matrix resulting from iRF-LOOP represents a Predictive Expression Network (PEN) where a
directed edge (AB) between and two genes (A and B) is weighted according to the importance of gene
A’s expression in predicting gene B’s expression, conditional on all other genes in the iRF model. We
removed zeros and produced four thresholded networks, keeping the top 10%, 5%, 1%, and 0.1% of
edges respectively.

To determine the biological significance of the PEN produced by the iRF-LOOP, we compared
each of the four thresholded networks to a network of known biological function, created from Gene
Ontology (GO) annotations. GO is a standardized hierarchy of gene descriptions that captures the
current knowledge of gene function. It is accepted that there is both missing information and some
error, nevertheless it is useful as a broad truth set for large sets of genes. We calculated scores for
each network by intersecting with the GO network. We then evaluated the probability of achieving
such scores relative to random chance by creating null distributions of scores produced by random
permutation of the iRF-LOOP networks and calculated t-statistics for each threshold.

We created a Populus trichocarpa GO network for the Biological Process (BP) GO terms, using
annotations from [19]. Genes are connected if they share one or more GO terms. The edge weight
between two genes equals 1

/
sum(1...n − 1), where n is the number of genes with the shared term. If

two genes share more than one GO term, then the largest weight is used for the edge. In this way, if
two genes share a broad GO term (a less specific function), the value of their connection weight is low.
Conversely, two genes that share a rare GO term (highly specific function) have a higher edge weight.
To avoid edges between very loosely associated genes, only GO terms with less than 1000 genes were
used for this analysis. The resulting network provides the relationship between genes that share some
level of known functionality.

To generate the null distribution of intersect scores for each thresholded PEN, the node labels of
each network were randomly permuted 1000 times, and each random network was scored against the
GO network. From these null distributions, t-statistics were calculated for the score of each thresholded
Predictive Expression Network.

2.6. Comparison of R to C++ Code

To compare the original iRF R code to the new implementation, both were run on a single node
of Summit with a variety of running parameters. These parameters included all combinations of 100,
1000, and 5000 trees and 1, 2, 3, and 4 threads for 1000 features. All combinations were run three times
and the scores were averaged. Due to the R code’s doParallel[20] back-end not being designed for a
HPC system, the R code was limited to a single CPU on a node with up to four independent threads.
For consistency, the new implementation was limited to the same resources. A subset of the Populus
trichocarpa expression data mentioned above was used as the feature set.

2.7. Computational Resources

The computational resources used in this work were Summit, Titan, and a 2015 Macbook Pro
laptop. Summit is an Oak Ridge Leadership Computing Facility (OLCF) supercomputer located at Oak
Ridge National Laboratory (ORNL). It is an IBM system with approximately 4,600 nodes, each with
two IBM POWER9 processors, each with 22 cores (176 hardware threads) and six NVIDIA VOLTAV100
GPUs, and 512 GB of DDR4 memory. Titan was a former OLCF supercomputer, recently decommission,
and was a Cray system that had approximately 18,688 nodes, each with a 16-core AMD Opteron 6274
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processor and 32 GB of DDR3 ECC memory. The 2015 Macbook Pro has a 3.1 Ghz Intel Core i7
Processor and 16 GB of DDR3 memory.

3. Results

3.1. Comparison of the R to C++ Code

Previously, the only published iRF code existed as an R library. This library uses R’s ’doParallel’
functionality, generally allowing for multi-core thread parallelism on shared memory CPUs. However,
this system did not function on Summit, so our analysis was limited to running differences on a single
Summit CPU.

Figure 2. Each of these graphs shows the total run time as the number of threads increases. Both the R
code and C++ code were run on Summit. Note for 5000 trees, the R implementation failed to complete
using less than 4 threads.

To compare the R code to the C++ code, both programs were run on a single CPU on Summit.
While this is a small resource set, it was sufficient in showing trends and making comparisons between
the two implementations. Figure 2 shows the the time to completion as the number of threads increases.
As the number of threads that the runs are spread over increases, both implementations decrease in
run time. However, for the 5000 tree runs for 1, 2, and 3 threads the R code was unable to complete
in the 2 hour time limit set by the Summit system. This is a good indication that these runs were not
efficient enough, as the C++ implementation runs were able to complete. Similarly, as seen in figure 3,
as the number of trees increases, the R code takes significantly longer than the C++ code to complete.
Together, these figures show that in a one-on-one comparison using appropriate resources, the C++
implementation is more efficient than the R implementation, and is able to handle more computations
per unit of time.

Figure 3. These graphs show a different orientation of the data from figure 2. Each graph shows the
total run time as the number of trees increases, while the number of features and number of threads
stays constant. Due to the 5000 tree runs not completing with the R code for 1, 2, or 3 threads, those
graphs are missing points.
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3.2. Scaling Results for Big Data: Arabidopsis thaliana SNPs to Gene Expression

To show how well our implementation of iRF handles large feature sets, a set of 1.7 million SNPs
from Arabidopsis thaliana was used to predict the expression of gene AT1G01010. Figure 4 shows the
times to completion for the four thread quantities tested on Summit (160 threads per compute node).
Our implementation was easily able to handle the data set for all thread quantities and finished in
reasonable amounts of time. It is worth noting that there were diminishing returns as the number of
nodes gets close to 10 (1600 threads) since the number of trees per node at this scale would only be 100
(1000 trees total spread over 10 nodes) and did not utilize the resources to its fullest potential. For a
larger feature set, a larger number of trees would be advised, and a larger number of nodes could be
utilized more efficiently.

Figure 4. The graph shows the run times for four different compute node quantities, each completing
1000 trees for the 1.7 million SNPs.

To try to determine approximately how long this calculation would take on a standard laptop,
multiple smaller runs were completed. Figure 5 shows the run times for multiple feature amounts for
the R iRF code on one cpu of a 2015 MacBook Pro laptop. The linear fit, while not perfect, is accurate
enough for a rough estimate for larger feature sizes. Using the provided equation, the 1.7 million
feature set run on Summit would take approximately 33 days to complete on a laptop, given that the
system had enough memory to contain the data set and results, which most standard laptops do not
have. When compared to the approximately 40 minutes required on 5 nodes of Summit, it is easy to
see what a difference these resources, and programs that can utilize them, can make.

3.3. Predictive Expression Networks

We used iRF-LOOP to produce Predictive Expression Networks for Populus trichocarpa. Figure 6(a)
shows the run time results for the C++ code for all varying numbers of threads and trees, for one of the
approximately 40,000 iRF runs within an iRF-LOOP. Figure 6(b) shows the total run time as the number
of threads increases on Summit and Titan for the C++ code, showing that iRF works comparably on
different system architectures. Due to the architecture differences, Summit nodes can independently
run 160 threads simultaneously while Titan nodes could only do 16 threads. Summit (in red) had
a harder time with larger data on a single thread, but both systems function well as the number of
threads increases to appropriate numbers for general uses cases. The full graph of all parameters
comparing time to completion on Summit and Titan is available in figure S1.

Table 1 shows the number of edges and nodes in the four resulting thresholded PENs. The GO
network that was generated to analyse the PENs contained 16,836 nodes and 3,274,574 edges. Figure 7
shows a small example of the intersected networks with a calculated intersect score.
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Y = -172.84 + 1.6787X
R2= 0.9861 

Figure 5. The graph shows the run time for five different feature sizes, on a single CPU of a standard
MacBook Pro laptop. Each point represents the average of three runs. A linear regression was fit,
with the equation shown. The fit is not perfect, but is enough to indicate that the run time increase
approximately linearly in comparison to the number of features.

(a) (b)

Figure 6. Graph (a) provides the total run time for the C++ code on Summit, with various tree and
thread counts, for 40,000 features. Graph (b) provides a comparison of the C++ code on Summit and
Titan, two HPC systems. For both graphs, run time is in seconds.

Network Nodes Edges Intersect Score Null Dist Mean Null Dist s.d. t-statistic
0.1% PEN 26,617 57,112 59.74 0.9831 0.2597 226.27
1% PEN 38,758 563,887 213.28 9.6930 0.8720 233.47
5% PEN 39,349 2,795,636 484.07 48.1309 2.0784 209.74
10% PEN 39,349 5,846,200 692.08 100.5038 2.9316 201.79

Table 1. The table provides the graph results for the 4 thresholded Predictive Expression Networks.
The listed mean and standard deviation are for the corresponding null distributions, as pictured in
figure 8. The p-values for the listed t-statistics were effectively zero.

Also shown in table 1 are the mean and standard deviation for the null distribution of the random
permutations for each thresholded PEN. The null distribution and intersect score (in red) for two
of the four networks are shown in figure 8. The other two null distributions are available in figure
S2. The t-statistic for each network was calculated from these values, giving the values shown. All
t-statistic values had a p-value of effectively zero, as the iRF intersect scores were all significantly
larger than the null distributions. This result confirms that the PENs created using iRF-LOOP are
biologically significant, with respect to known GO annotations. Quantile-quantile plots for each of the

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 31 October 2019                   doi:10.20944/preprints201910.0360.v1

Peer-reviewed version available at Genes 2019, 10, 996; doi:10.3390/genes10120996

https://doi.org/10.20944/preprints201910.0360.v1
https://doi.org/10.3390/genes10120996


9 of 12

null distributions are provided in figure S3, showing that the null distributions are all close enough to
normal.
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Figure 7. The network shown is a small example from the iRF prediction expression network overlayed
with the GO process network. The nodes represent the genes. The black edges represent the iRF edges,
which are directed from the feature to the predicted target. The colored edges represent different GO
associations between genes, meaning that they share a GO term. Using the provided GO edge weights,
this network has an intersect score of 0.0714, from connections DE and FE having both iRF edges and
GO edge

(a) (b)

Figure 8. Graph (a) shows the null distribution histogram (blue) and the iRF network score (red) for the
top 10 percent of edges. Graph (b) shows the null distribution histogram (blue) and the iRF network
score (red) for the top 0.1 percent of edges. Note that the x-axis is different for the two graphs. Each
distribution was calculated from 1000 random permutations.

4. Discussion

We have presented a high performance computing-capable implementation of Iterative Random
Forest. This implementation uses Ranger, C++, and MPI to utilize the resources available on multi-node
computation resources. We have shown that our implementation can perform X-AI based eQTL-type
analyses with millions of SNPs and have shown its ability to scale with multiple parameters. Using iRF
to complete a whole analysis of the 24,175 gene expression for Arabidopsis thaliana, assuming each run
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took approximately the same time as the shown above, would take approximately 705 days using 5
nodes, or 84,680 compute node hours, or 18 hours using 4,600 Summit nodes. To complete the analysis
for all 24,175 gene expression predictions on a laptop using the R code would take approximately 2,191
years. While this comparison seems impressive, it should also be noted that for a larger feature set and
larger number of trees the large resources will be even more appropriate as the scaling factor will be
even less effected by overhead. For cases where the number of SNPs is 10 million and higher, the code
should be even more efficient on HPC systems. However, as not everyone has access to the fastest
computers in the world this code could still run efficiently on a smaller system using a smaller set of
SNPs.

Using this new implementation, we developed iRF-LOOP and used it to produce Predictive
Expression Networks which were shown to have biologically relevant information. The process
of iRF-LOOP has the potential to be used for a wide variety of data analysis problems. With an
appropriate amount of compute resources, it would be possible to build connected networks for each
level of ’omics data available for a given species. The same concept could also be used to connect
’omics layers to each other as shown by using the SNPs in the X-AI based eQTL analysis. This machine
learning method is not limited to genetics or biology and has uses in other fields where systems can be
represented as a matrix.

Downstream of any iRF analysis, there is the possibility of finding epistatic interactions among
features from the resulting forests, using Random Intersection Trees (RIT) [21]. This method works
regardless of the data type for the features, where it can find sets of SNPs that influence gene expression
or sets of genes that influence other gene’s expression, adding another set of nodes and groups to a
Predictive Expression Network.

5. Software Availability

The Ranger-based Iterative Random Forest code is available at https://github.com/Jromero1208/
RangerBasediRF.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/xx/1/5/,
Figure S1: Runtime on HPC Systems. , Figure S2: Null Distribution Plots, Figure S3: Quantile-Quantile Plots for
the PENs.
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GO Gene Ontology
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