

1 Article

2

A-Kinase Anchoring Proteins Diminish TGF- β 1/ 3 Cigarette Smoke-Induced Epithelial-to-Mesenchymal 4 Transition

5 **Haoxiao Zuo^{1,3}, Irene H. Heijink^{2,4,5}, Christina H.T.J. van der Veen¹, Laura Hesse^{2,4}, Klaas Nico
6 Faber⁶, Wilfred J. Poppinga^{1,2}, Harm Maars Singh⁷, Viacheslav O. Nikolaev^{3,8} and Martina
7 Schmidt^{1,2*}**8 ¹ University of Groningen, Department of Molecular Pharmacology, Groningen, The Netherlands;9 ; haoxiao zuo1212@gmail.com (H.Z.), c.h.t.j.van.der.veen@rug.nl (C.H.T.J.v.d.Veen),10 wilfredpoppinga@gmail.com (W.J.P.), m.schmidt@rug.nl (M.S.)11 ² University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma
12 and COPD, GRIAC, Groningen, The Netherlands; haoxiao zuo1212@gmail.com (H.Z.), l.hesse@umcg.nl
13 (L.H.), m.schmidt@rug.nl (M.S.)14 ³ Institute of Experimental Cardiovascular Research, University Medical Centre Hamburg-Eppendorf, 20246
15 Hamburg, Germany; haoxiao zuo1212@gmail.com (H.Z.), v.nikolaev@uke.de (V.O.N.)16 ⁴ University of Groningen, University Medical Center Groningen, Department of Pathology and Medical
17 Biology Groningen, The Netherlands; h.i.heijink01@umcg.nl (I.H.H.), l.hesse@umcg.nl (L.H.)18 ⁵ University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen,
19 The Netherlands; h.i.heijink01@umcg.nl (I.H.H.)20 ⁶ Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center
21 Groningen, Groningen, The Netherlands; k.n.faber@umcg.nl (K.N.F.);22 ⁷ Palm Beach Atlantic University, Lloyd L. Gregory School of Pharmacy, Department of Pharmaceutical
23 Sciences, West Palm Beach, FL, USA; HARM_MAARSINGH@pba.edu (H.M.);24 ⁸ German Center for Cardiovascular Research (DZHK), 20246 Hamburg, Germany, v.nikolaev@uke.de
25 (V.O.N.).26 ^{*} Correspondence: m.schmidt@rug.nl Tel.: +31503633322 (M.S.) orcid.org/0000-0003-3075-063028 **Abstract:** Epithelial-to-mesenchymal transition (EMT) plays a role in chronic obstructive
29 pulmonary diseases (COPD). Cyclic adenosine monophosphate (cAMP) can inhibit transforming
30 growth factor- β 1 (TGF- β 1) mediated EMT. Although compartmentalization via A-kinase anchoring
31 proteins (AKAPs) is central to cAMP signaling, functional studies on their therapeutic value in the
32 lung EMT process are lacking. Bronchial epithelial (BEAS-2B, primary HAE cells) were exposed to
33 TGF- β 1. Epithelial (E-cadherin, ZO-1) and mesenchymal markers collagen I (mRNA, protein) were
34 analyzed. St-Ht31 disrupted AKAP-PKA interactions. TGF- β 1 release was measured by ELISA. TGF-
35 β 1-sensitive AKAPs Ezrin, AKAP95 and Yotiao were silenced using siRNA. Cell migration was
36 analyzed by wound healing assay, xCELLigence, Incucyte. Prior to TGF- β 1, dibutyryl-cAMP
37 (dbcAMP), fenoterol, rolipram, cilostamide, forskolin were used to elevate intracellular cAMP. TGF-
38 β 1 induced morphological changes, decreased E-cadherin but increased collagen I and cell migration,
39 a process reversed by PF-670462. TGF- β 1 altered (mRNA, protein) expression of Ezrin, AKAP95 and
40 Yotiao. St-Ht31 decreased E-cadherin (mRNA, protein), but counteracted TGF- β 1-induced collagen I
41 upregulation. Cigarette smoke (CS) increased TGF- β 1 release, activated TGF signaling, augmented
42 cell migration and reduced E-cadherin expression, a process blocked by TGF- β 1 neutralizing

43 antibody. Silencing of Ezrin, AKAP95 and Yotiao diminished TGF- β 1-induced collagen I expression,
44 as well as TGF- β 1-induced cell migration. Fenoterol, rolipram, and cilostamide, in AKAP silenced
45 cells pointed to distinct cAMP compartments. We conclude that Ezrin, AKAP95 and Yotiao promote
46 TGF- β 1-mediated EMT, linked to a TGF- β 1 release by CS. AKAP members define the ability of
47 fenoterol, rolipram and cilostamide to modulate the EMT process, and are potential relevant targets
48 in the treatment of COPD.

49

50 **Keywords:** epithelial-to-mesenchymal transition; TGF- β 1; cAMP; A-kinase anchoring protein;
51 Ezrin; AKAP95; Yotiao; cigarette smoke; COPD

52 1. Introduction

53 Chronic obstructive pulmonary disease (COPD), which is primarily induced by cigarette smoke
54 (CS), is characterized by irreversible airflow limitation that is linked to subepithelial airway fibrosis
55 [1]. A vital player during organ fibrosis is epithelial-to-mesenchymal transition (EMT), a process in
56 which epithelial cells gradually lose their epithelial phenotype and undergo transition to typical
57 mesenchymal characteristics, featuring increased mitogenic capacity and enhanced extracellular
58 matrix production [2-5]. Recent evidence suggests that EMT is involved in the fibrotic processes in
59 the large and small airways during the pathogenesis of COPD as well as lung cancer [6-8].
60 Importantly, studies have provided evidence that EMT is an active process in the airways of
61 smokers, particularly in those current-smoking COPD patients, indicating that CS-induced EMT
62 contributes to COPD pathogenesis [6,7].

63 Transforming growth factor- β 1 (TGF- β 1) is another well-known inducer of EMT [5,9]. The cyclic
64 adenosine monophosphate (cAMP) signaling pathway is one of multiple pathways that are
65 implicated in the regulation of EMT [10-13]. A-kinase anchoring proteins (AKAPs) are a group of
66 structurally diverse proteins localized at specific subcellular sites. They play a critical role in
67 maintaining subcellular compartmentalization of cAMP by generating spatially discrete signaling
68 complexes, which create local gradients of cAMP [14,15]. As scaffolding proteins, AKAPs bind
69 protein kinase A (PKA) and a diverse subset of signaling enzymes, and thereby control cAMP
70 microdomains in a spatio-temporal manner [5,16]. Studies have demonstrated that several AKAPs
71 membranes are involved in TGF- β 1-induced EMT *in vitro*. For instance, suppressing the expression
72 of the AKAP family member Ezrin by small interfering RNA reduced both morphological changes
73 and cell migration during TGF- β 1-induced EMT in human alveolar A549 cells [17]. Knockdown by
74 short hairpin RNA of another AKAP member Yotiao, also known as AKAP9, inhibited TGF- β 1-
75 induced EMT in colorectal cancer cells [18]. Additionally, AKAP9 interacts and co-localizes with E-
76 cadherin at the cell membrane [19]. More importantly, silencing of AKAP9 reduced the functional
77 epithelial barrier, suggesting the possibility of a specific role for AKAP9 in the maintenance of the
78 epithelial barrier [19]. However, the function of AKAPs in regulating TGF- β 1/ CS-induced EMT in
79 human bronchial epithelial cells during is still unclear.

80 In the present study, we hypothesized that AKAPs could regulate TGF- β 1/ CS-induced EMT in
81 human bronchial epithelial BEAS-2B cells. We found that collagen I upregulation induced by TGF-
82 β 1 is diminished when AKAP-PKA interactions were disrupted by st-Ht31, whereas TGF- β 1-
83 induced E-cadherin downregulation was not reversed by st-Ht31, indicating that AKAPs are
84 selectively involved in TGF- β 1-induced collagen I increase. CS exposure increased TGF- β 1 release

85 and activated TGF- β 1 signaling pathway, which was able to be blocked by TGF- β 1 neutralizing
 86 antibodies, therefore, contributing to EMT progression. We observed that mRNA and protein
 87 expression of the three AKAPs members Ezrin, Yotiao and AKAP95 was changed after TGF- β 1
 88 stimulation. The co-silencing of Ezrin, AKAP95 and Yotiao inhibited TGF- β 1-induced cell migration
 89 in BEAS-2B cells and primary human airway epithelial cells. In addition, co-silencing of Ezrin,
 90 AKAP95 and Yotiao specifically accelerated the β_2 -adrenergic receptor (β_2 -AR)-induced reduction
 91 in TGF- β 1-induced collagen I upregulation. Effects of cilostamide and rolipram were largely left
 92 unchanged pointing to AKAP defined cAMP sub-compartments.
 93

94 2. Materials and Methods

95 2.1 Chemicals and antibodies

96 Recombinant human TGF- β 1 protein was from R&D systems (Abingdon, UK). Fenoterol was
 97 purchased from Boehringer Ingelheim (Ingelheim, Germany). Rolipram, cilostamide, and bovine
 98 serum albumin (BSA) were from Sigma-Aldrich (St-Louis, MO, USA). Forskolin was from Tocris
 99 Bioscience (Bristol, UK). InCELlectTM AKAP St-Ht31 inhibitor peptide was purchased from Promega
 100 (Leiden, the Netherlands). Transfect reagent lipofectamine RNAiMax was purchased from Invitrogen
 101 (Bleiswijk, Netherlands). Control siRNA, Ezrin siRNA, AKAP95 siRNA and Yotiao siRNA were
 102 obtained from Santa Cruz Biotechnology (Heidelberg, Germany). All other chemicals were of
 103 analytical grade. The origin and dilution of the antibodies used are listed in Table 1.
 104

105 **Table 1. Antibodies used in western blotting and immunofluorescence**

Antibody	Dilution	Company
Anti-E-cadherin	Western blotting, 1:1,000 Immunofluorescence, 1:100	BD Biosciences
Anti-ZO-1	Immunofluorescence, 1:100	Invitrogen
Anti-type I collagen-UNLB	Western blotting, 1:1,000 Immunofluorescence, 1:20;	SouthernBiotech
Anti-α-SMA	Western blotting, 1:1,000	Sigma
Anti-Fibronectin	Western blotting, 1:1,000	Santa Cruz Biotechnology
Anti-Ezrin	Western blotting, 1:500	Abcam
Anti-AKAP95	Western blotting, 1:500	Santa Cruz Biotechnology
Anti-Yotiao	Immunofluorescence, 1:50	BD Biosciences
Anti-p-Smad2	Western blotting, 1:1,000	Cell Signaling Technology
Anti-p-Smad3	Western blotting, 1:1,000	Cell Signaling Technology
anti-total Smad2/3	Western blotting, 1:3,000	Santa Cruz Biotechnology
Anti-GAPDH	Western blotting, 1:10,000	Sigma

106

107 2.2 Cell culture

108 The human bronchial epithelial cell line BEAS-2B was maintained in RPMI 1640 supplemented with
 109 10% v/v heat-inactivated fetal bovine serum (FBS) and antibiotics (penicillin 100 U/ ml, streptomycin
 110 100 μ g/ml) in a humidified atmosphere of 5% (v/v) CO₂ at 37°C. Cells were dissociated from T75
 111 flasks with trypsin/EDTA and seeded in appropriate cell culture plates. Cells were maintained in 1%

112 v/v FBS medium 24 hours before and during stimulation, since a serum-free medium induced cell
113 death.

114 Primary human airway epithelial (HAE) cells were isolated from residual tracheal and main stem
115 bronchial tissue, from lung transplant donors post-mortem, within 1-8 h after lung transplantation,
116 using the selection criteria for transplant donors according to the Eurotransplant guidelines. The
117 tracheal tissue was collected in a Krebs-Henseleit buffer (composition in mM: NaCl 117.5, KCl 5.6,
118 MgSO₄ 1.18, CaCl₂ 2.5, NaH₂PO₄ 1.28, NaHCO₃ 25 and glucose 5.5) and primary HAE cells were
119 collected by enzymatic digestion as described previously [20]. In short, airway epithelial cells were
120 gently scraped off the luminal surface, washed once, and submerged cultured on petri-dishes which
121 were pre-coated with a combination of fibronectin (10 µg/ml), bovine type I collagen (30 µg/ml), and
122 bovine serum albumin (10 µg/ml) in PBS, using a keratinocyte serum free medium (Gibco, CA, USA)
123 supplemented with 25 µg/ml bovine pituitary extract, 0.2 ng/ml epidermal growth factor and 1 µM
124 isoproterenol for 4-7 days until they reached confluence, and then were trypsinized and seeded into
125 6-well plates for silencing experiments.

126

127 2.3 Cell stimulation

128 BEAS-2B cells were grown to confluence and then starved by exchange of complete medium to 1%
129 v/v FBS medium for 24 hours. Cells were treated with 1 ng/ml, 3 ng/ml and 10 ng/ml for 24 hours, 48
130 hours and 72 hours. Based on gene and protein expression of EMT markers, 3 ng/ml TGF-β1
131 treatment for 24 hours was used in current study. Cells were pretreated for 30 minutes before
132 stimulation with TGF-β1 for 24 hours with st-Ht31 (50 µM) to disrupt AKAP-PKA interaction [21] or
133 with the casein kinase 1δ/ε inhibitor PF-670462 (1 and 10 µM) [22] to confirm that TGF-β1-induced
134 EMT could be reversed in BEAS-2B cells. The β₂-agonist fenoterol (0.001– 10 µM), the
135 phosphodiesterase (PDE)4 inhibitor rolipram (1 or 10 µM), the PDE3 inhibitor cilostamide (10 µM)
136 and adenylyl cyclase agonist forskolin (10 µM) were added 30 minutes before 24 hours TGF-β1
137 stimulation. Different concentrations of CS extract were used to stimulate cells for 24 hours and
138 supernatant was collected to measure TGF-β1 production by ELISA and to incubate basal BEAS-2B
139 cells for 1 hour.

140

141 2.4 Transfection

142 Cells were grown to 80% confluence and were then transfected using lipofectamine RNAiMax
143 reagent in a 1:1 reagent: siRNA ratio in complete growth medium without antibiotics. Cells were
144 transfected with 40 nM control siRNA, 40 nM Ezrin siRNA, 40 nM AKAP95 siRNA and 40 nM Yotiao
145 siRNA for 48 hours before TGF-β1 treatment. After TGF-β1 treatment for 24 hours, the cells were
146 lysed for real-time quantitative PCR and western blotting analysis.

147

148 2.5 Real-time quantitative PCR

149 Total RNA was extracted from cells using the Maxwell 16 LEV simplyRNA Tissue Kit (Promega,
150 Madison, WI, USA) according to the manufacturer's instructions. The total RNA yield was
151 determined by NanoDrop 1000 Spectrophotometer (Thermo Fisher Scientific, Wilmington, DE, USA).
152 Equal amounts of RNA were used to synthesize cDNA. An Illumina Eco Real-Time PCR system was
153 used to perform real-time qPCR experiments. PCR cycling was performed with denaturation at 94 °C
154 for 30 sec, annealing at 59 °C for 30 sec and extension at 72 °C for 30 sec for 45 cycles. RT-qPCR data

155 was analyzed by LinRegPCR software [23]. To analyze RT-qPCR data, the amount of target gene was
 156 normalized to the reference genes 18S ribosomal RNA, SDHA and RPL13A. Primer sequences are
 157 listed in Table 2.

158 **Table 2. Primer sequences**

Primers	Species	Forward sequence 5'- 3'	Reverse sequence 5'- 3'
18s	Homo sap.	CGCCGCTAGAGGTGAAATT	TTGGCAAATGCTTCGCTC
SDHA	Homo sap.	GGGAAGACTACAAGGTGCGG	CTCCAGTGCTCCTCAAAGGG
RPL13A	Homo sap.	ACCGCCCTACGACAAGAAAA	GCTGTCACTGCCTGGTACTT
E-cadherin	Homo sap.	TGCCAGAAAATGAAAAAGG	GTGTATGTGCAATGCGTTC
Collagen 1 α 1	Homo sap.	AGCCAGCAGATCGAGAACAT	TCTTGTCCCTGGGTTCTG
AKAP1	Homo sap.	CCAGTGCAGGAGGAAGAGTATG	CTCCCTGACACCTCTATCCT
AKAP5	Homo sap.	GACGCCCTACGTTGATCT	GAAATGCCAGTTCTATG
AKAP11	Homo sap.	CCGGGCTAGTTCTGAATGGG	TGCTCCGACTTCACATCCAC
AKAP12	Homo sap.	CAAGCACAGGAGGAGTTACAG	CTGGTCTTCAAACAGACAATG
AKAP95	Homo sap.	ATGCACCGACAATTCCGACT	CATAGGACTCGAACGGCTGG
Yotiao	Homo sap.	AACCTGAAGATGTGCCCTCTG	CTGGAGTGCATAACCTTTC
Ezrin	Homo sap.	GCTTTTGATCAGGTGGTAAAGACT	TCCACATAGTGGAGGCCAAAGT

159

160 *2.6 Western blotting*

161 Cells were lysed in a lysis buffer and homogenized protein concentration was measured by BCA
 162 protein assay (Pierce). Equal amounts of the total proteins were loaded into 10% SDS-polyacrylamide
 163 gel electrophoresis. After being transferred to a nitrocellulose membrane, membranes were blocked
 164 with Roti-Block (Carl Roth, Karlsruhe, Germany). Primary antibodies (**Table 1**) were incubated at
 165 4°C overnight, followed by a secondary antibody (anti-mouse IgG, 1: 5,000, anti-rabbit IgG, 1: 5,000
 166 or anti-goat IgG, 1:5000, Sigma) incubation at room temperature for two hours. Protein bands were
 167 developed on film using a Western detection ECL-plus kit (PerkinElmer, Waltman, MA). ImageJ
 168 software was used for band densitometry analysis.

169

170 *2.7 Immunofluorescence*

171 50,000 cells were seeded on coverslips (12 mm) and stimulated with different reagents for a certain
 172 period as described previously. Then, the cells were fixed with 1:1 methanol/acetone in at -20°C for
 173 20 minutes. After 3 times washing with PBS, the cells were then blocked using 1% (w/v) BSA/PBS
 174 with 2% donkey serum for one hour. Primary antibodies (**Table 1**) were applied overnight at 4°C,
 175 after which secondary antibody Alexa Fluor 488 nm donkey anti-goat and CyTM3 AffiniPure donkey
 176 anti-mouse (Jackson, Cambridgeshire, UK) were incubated for 2 hours. Finally, slides were mounted
 177 with a mounting medium containing DAPI (Abcam, Cambridge, UK). Images were captured with a
 178 Leica DM4000b Fluorescence microscope (Leica Microsystems, Germany) equipped with a Leica DFC
 179 345 FX camera.

180

181 *2.8 Cigarette smoke extract (CSE) preparation*

182 CSE preparation was prepared as previously described [21]. Two 3R4F research cigarettes
 183 (University of Kentucky, Lexington, USA) without a filter were combusted into 25 ml 1% v/v FBS
 184 medium using a peristaltic pump (45 rpm, Watson Marlow 323E/D, Rotterdam, The Netherlands).

185 This medium was designated as 100% CSE and was diluted to certain concentrations in different
186 experiments.

187

188 *2.9 Wound healing assay*

189 Cells were grown to confluence and were scratched with a pipette tip. After being washed once to
190 remove the detached cells, cells were allowed to migrate into the wound area in the absence or
191 presence of TGF- β 1 and different siRNAs. The wound area was photographed immediately after a
192 scratch and then after 24 hours of stimulation.

193

194 *2.10 xCELLigence transwell migration*

195 Cell migration was further tested using the label-free and real-time xCELLigence transwell
196 migration system CIM-16 plates (RTCA DP, ACEA Biosciences, San Diego, CA). A 10% v/v FBS
197 growth medium was applied as a chemoattractant in the lower chamber. 25 μ l of 1% v/v FBS medium
198 was added to the top chamber and plates were placed in the system for equilibration. Cells were
199 passaged and 90,000 cells were seeded on the top chamber in 1% v/v FBS medium containing TGF-
200 β 1 or CS extract. Cells were then placed back in the system for future monitoring for 24 hours at 37°C
201 in a 5% (v/v) CO₂ humidified atmosphere. The system was set to take a cell index measurement at 15
202 min intervals.

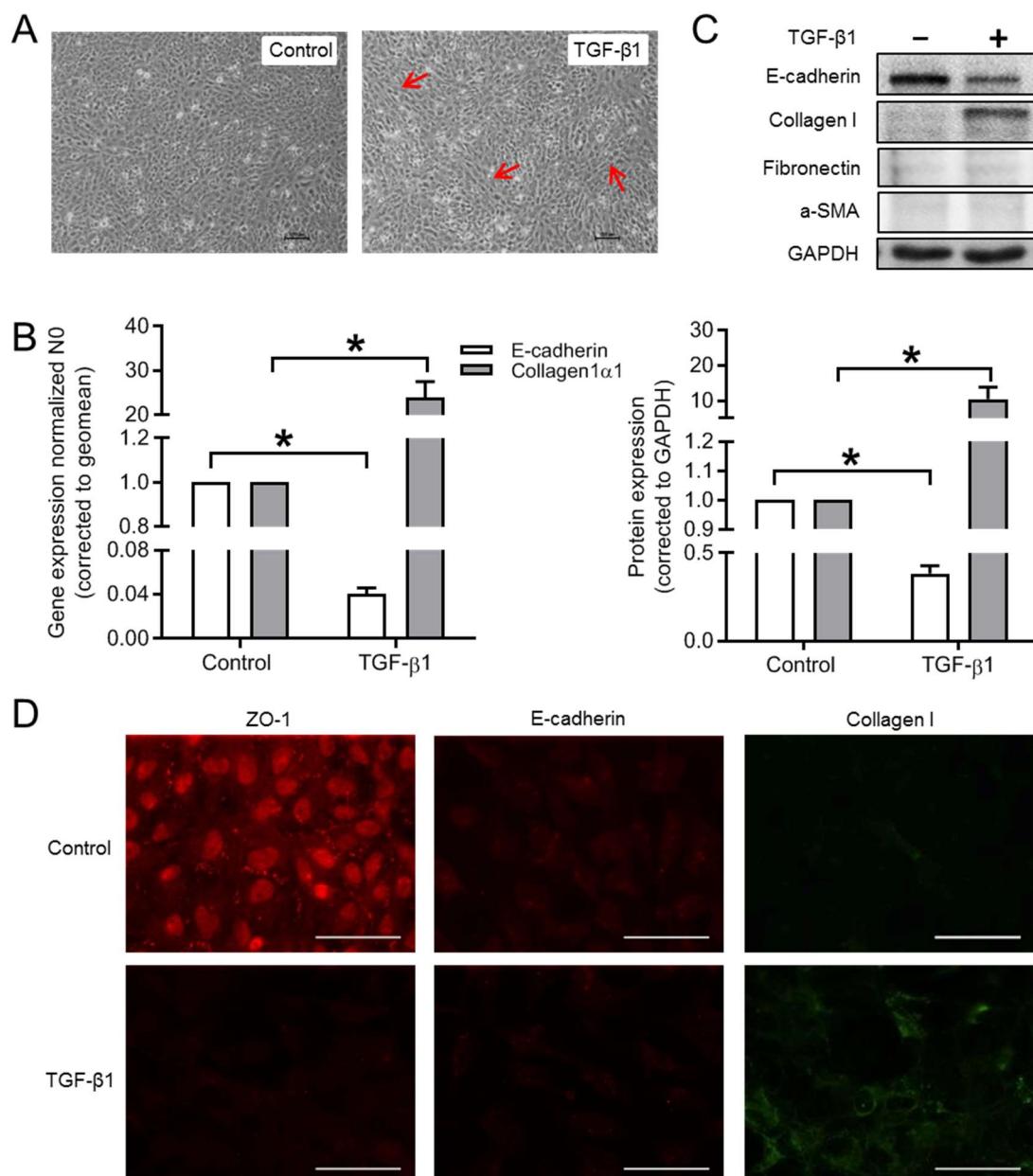
203

204 *2.11 Incucyte*

205 BEAS-2B cells were transduced with NucLight Red lentivirus (Essen Bioscience, Ann Arbor, MI) to
206 produce red fluorescent proteins which label the BEAS-2B cell nucleus according to the product
207 instruction. Red-labeled BEAS-2B cells (10,000 per well) were plated on 96-well ImageLock cell
208 migration plates (Essen Bioscience, Ann Arbor, MI) and incubated overnight. After silencing with a
209 combination of Ezrin, AKAP95 and Yotiao siRNA, the cell monolayer was scratched with a 96-pin
210 WoundMaker (Essen Bioscience), and the cells washed with PBS (phosphate-buffered saline) before
211 adding 3 ng/ml TGF- β 1 or diluted CS extract. Cell migration and proliferation were monitored by a
212 microscope gantry inside a cell incubator, which was connected to a networker external controller
213 hard drive that gathered and processed image data (Incucyte, Essen Bioscience, Ann Arbor, MI).

214

215 *2.12 Statistics*

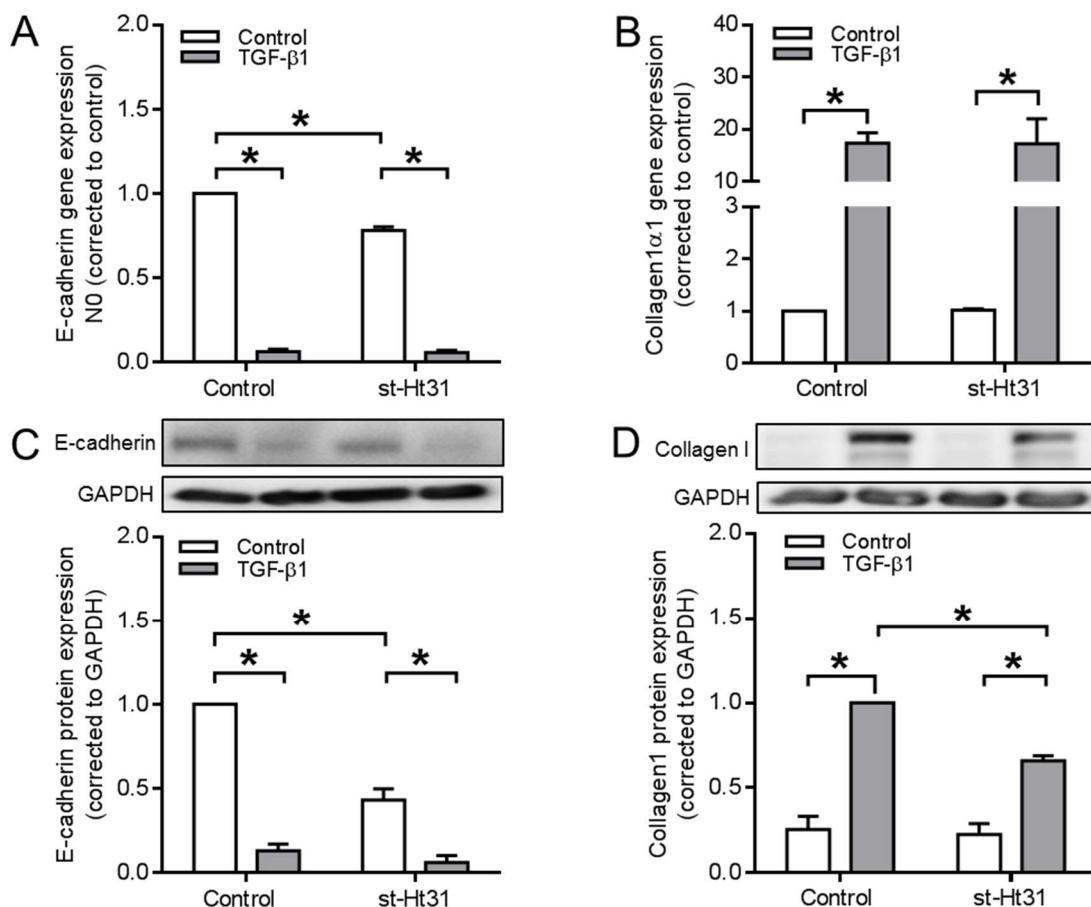

216 All data were analyzed by GraphPad Prism (GraphPad Software, Inc.) and expressed as mean \pm
217 SEM. At least 3 independent experiments were conducted for each treatment. The exact repeats are
218 indicated in the figure legends. Normal data distribution was determined by Shapiro-Wilk test. The
219 statistical significance was performed using unpaired Student's t-test or ANOVA test for multiple
220 comparisons. For non-Gaussian distributed data, the significance was determined using a non-
221 parametric one-way ANOVA with a *post hoc* Kruskal-Wallis multiple comparisons test. P < 0.05 was
222 considered statistically significant.

223

224 **3. Results**

225 *3.1 Effect of TGF- β 1 on cell morphology and phenotype markers in BEAS-2B cells*

226 As shown in **Fig. 1A**, TGF- β 1 stimulation for 24 hours changed the morphology of BEAS-2B cells
 227 from a typical epithelial shape to an elongated and spindle-like morphology. The mRNA expression
 228 of *E-cadherin* was significantly decreased in TGF- β 1 stimulated cells compared to the control cells,
 229 whereas TGF- β 1 dramatically up-regulated *collagen I* mRNA expression (**Fig. 1B**). Protein levels of
 230 multiple epithelial and mesenchymal markers were analyzed by western blotting, including collagen
 231 I, fibronectin, and α -smooth muscle actin (α -SMA) (**Fig. 1C**). Following the effect of mRNA levels,
 232 TGF- β 1 strongly decreased *E-cadherin*, while increasing *collagen I* protein levels (**Fig. 1C**). Signals of
 233 fibronectin and α -SMA were weaker and more variable compared to *collagen I*. Thus, *collagen I* and
 234 *E-cadherin* were from this point used as markers for the mesenchymal and epithelial phenotype
 235 makers, respectively. In addition, immunofluorescence images showed that the protein expression of
 236 another epithelial marker ZO-1 was significantly decreased after TGF- β 1 stimulation, whereas
 237 *collagen I* protein expression was clearly enhanced (**Fig. 1D**). The immunofluorescent staining of *E-*
 238 *cadherin* was not as obvious as that of ZO-1, however, a clear decrease in the protein expression of
 239 *E-cadherin* was observed after TGF- β 1 stimulation (**Fig. 1D**).

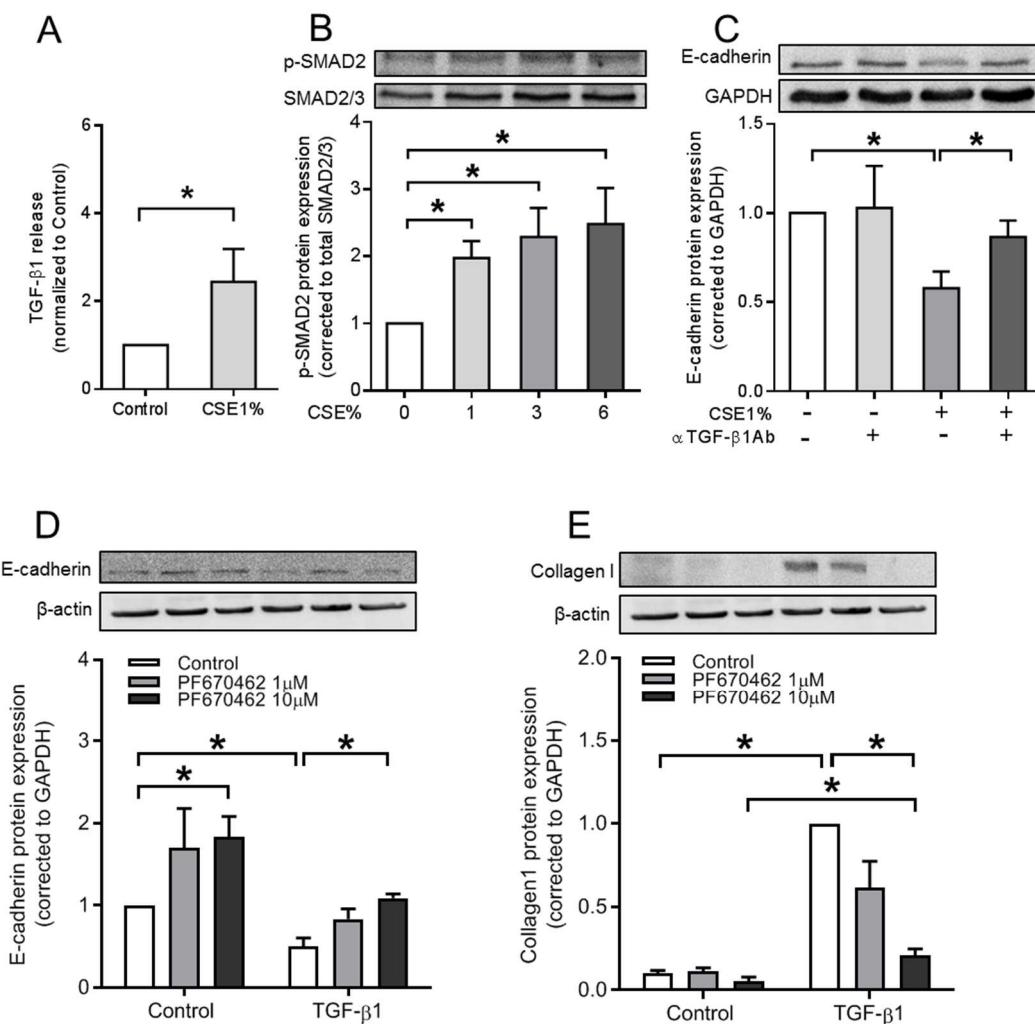

241 **Figure 1.** Effects of TGF- β 1 on cell morphology and EMT markers. (A) Morphological changes of
 242 BEAS-2B cells after stimulated with TGF- β 1 (3 ng/ml) for 24 hours. Spindle-like cells were indicated
 243 with red arrow. (B-C) Gene (B) and protein (C) expressions of E-cadherin and collagen I were
 244 analyzed in BEAS-2B cells with or without TGF- β 1 stimulation using real-time quantitative PCR and
 245 western blotting, respectively. Representative western blotting images of E-cadherin and collagen I
 246 were shown in figure C. (D) Immunofluorescence images of ZO-1, E-cadherin and collagen I after 24
 247 hours stimulation of TGF- β 1. Scale bar represents 100 μ m. Data represent 3-6 independent
 248 experiments. Data are expressed as mean \pm SEM, *: $p<0.05$; significant difference between indicated
 249 groups.

250

251 *3.2 Disruption of AKAP-PKA interaction diminishes TGF- β 1-induced collagen I upregulation*

252 To determine the role of the physical interaction between AKAP and PKA in the TGF- β 1-induced
 253 EMT, the effect of the cell-permeable PKA-anchoring disruptor peptide, st-Ht31, on gene and protein
 254 expression of EMT markers was examined. As shown in **Fig. 2A**, treatment with 50 μ M st-Ht31 alone
 255 significantly decreased *E-cadherin* gene expression and this effect was even more pronounced at the
 256 protein level (**Fig. 2C**).

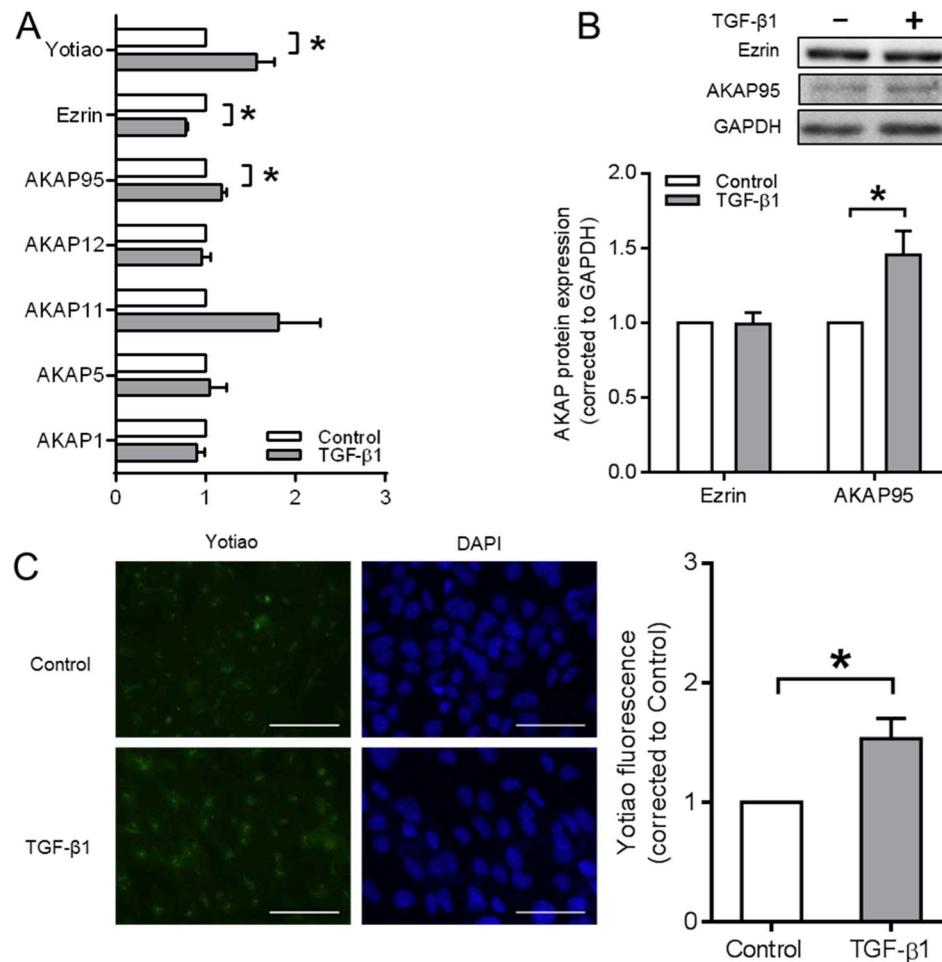
257 Surprisingly, st-Ht31 pre-treatment did not prevent the TGF- β 1-induced downregulation of E-
 258 cadherin (**Fig. 2A, 2C**). In contrast, st-Ht31 significantly decreased collagen I protein expression in
 259 TGF- β 1-stimulated cells (**Fig. 2D**), leaving mRNA levels unchanged (**Fig. 2B**).



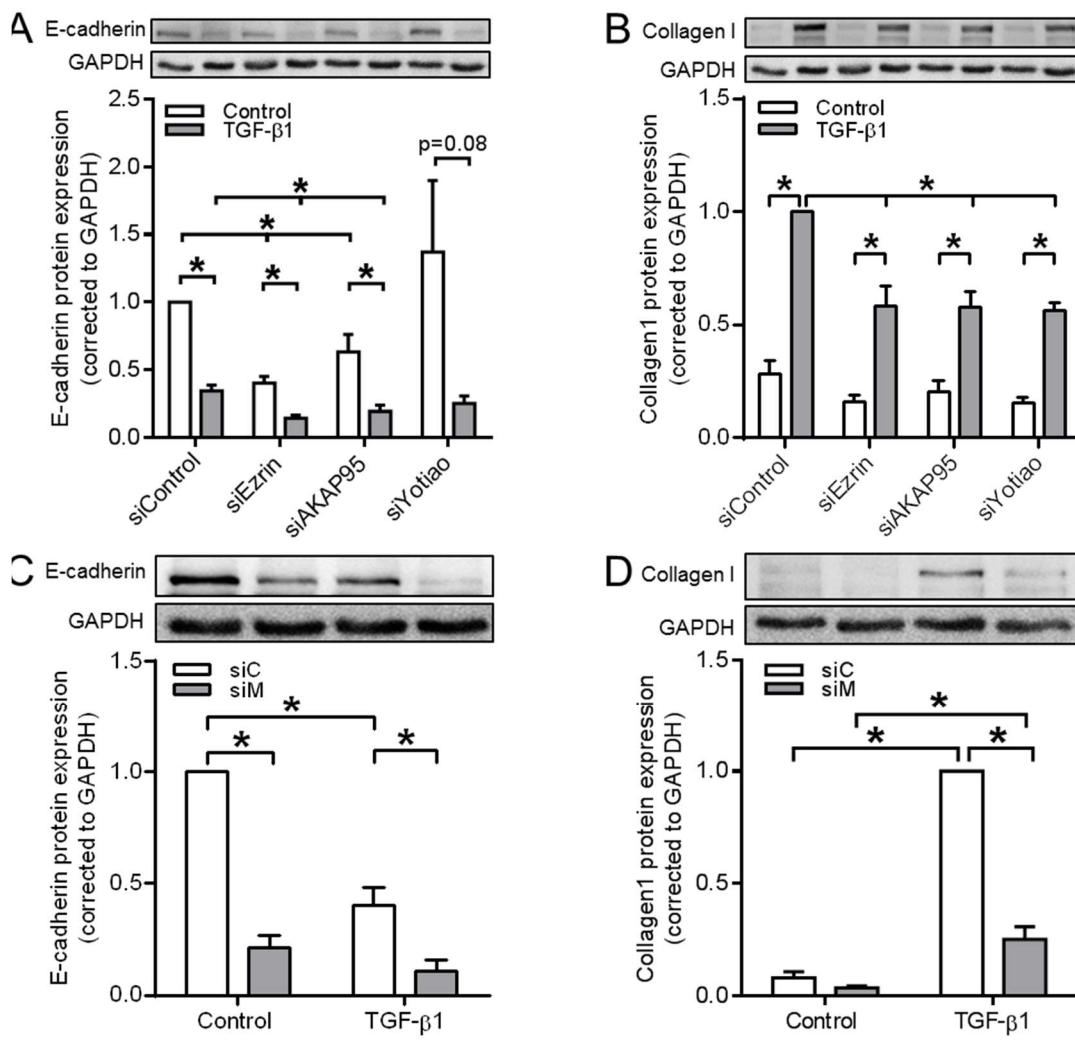
260

261 **Figure 2.** Role of st-Ht31 on EMT markers in BEAS-2B cells. BEAS-2B cells were pre-incubated with
 262 50 μ M st-Ht31 for 30 minutes, following stimulated with 3 ng/ml TGF- β 1 for 24 hours. Gene (A, C)
 263 and protein (B, D) expressions of E-cadherin (A-B) and collagen I (C-D) were examined using real-
 264 time quantitative PCR and western blotting, respectively. Data represent 3 independent experiments.
 265 Data are expressed as mean \pm SEM, *: $p < 0.05$; significant difference between indicated groups.
 266

267 3.3 CSE activates TGF- β 1 signaling pathway


268 It has been demonstrated that cigarette smoke (CS) exposure induces TGF- β 1 release [6,24] and may
 269 therefore contribute to EMT in lung epithelial cells. Indeed, we confirmed that CSE exposure
 270 significantly increases TGF- β 1 release by BEAS-2B cells used in this study (Fig. 3A). Moreover,
 271 phosphorylation of SMAD2 (Fig. 3B) and SMAD3 (data not shown) was increased by CSE exposure.
 272 To confirm that CSE-induced EMT depends on TGF- β 1 release we next used TGF- β neutralizing
 273 antibodies to block TGF- β 1 signaling. A 24 h exposure of BEAS-2B cells to 1% CSE significantly
 274 decreased E-cadherin protein levels, which was reversed when TGF- β neutralizing antibodies were
 275 added 30 minutes prior the TGF- β challenge (Fig. 3C). To test whether the TGF- β 1-induced E-
 276 cadherin decrease could be modulated in BEAS-2B cells, these cells were exposed to a selective
 277 inhibitor of the δ - and ϵ -isoforms of casein kinase I, PF-670462, as it was shown before to reverse TGF-
 278 β 1-induced EMT in A549 cells [22]. Indeed, pretreatment of BEAS-2B cells with PF-670462 dose-
 279 dependently prevented TGF- β 1-induced E-cadherin loss and collagen I gain (Fig. 3E-F).

281 **Figure 3.** The effect of CS extract on TGF- β 1 release, TGF- β 1 signaling and TGF- β 1 induced EMT in
 282 BEAS-2B cells. Effect of the δ/ϵ casein kinase I isoform inhibitor PF-670462. (A) TGF- β 1 release was
 283 measured by ELISA using the supernatant after 24 hours 1% CSE exposure. (B) Representative
 284 western blotting images and quantification of phospho-SMAD2 in BEAS-2B cells treated with 24
 285 hours CS extract-incubated medium for 1 hour. (C) BEAS-2B cells were pre-incubated with 10 ng/ml
 286 TGF- β neutralizing antibody for 30 minutes, following stimulated with 1% CSE for 24 hours.
 287 Representative western blotting images and quantification of E-cadherin were shown. BEAS-2B cells
 288 were pre-incubated with 1 μ M or 10 μ M PF670462 for 30 minutes, following stimulated with 3ng/ml
 289 TGF- β 1 for 24 hours. Protein (D-E) expressions of E-cadherin (D) and collagen I (E) were examined
 290 by western blotting. Data represent 3-6 independent experiments. Data are expressed as mean \pm SEM,
 291 *: p<0.05; significant difference between indicated groups.
 292


293 **3.4 Ezrin, AKAP95 and Yotiao are involved in TGF- β 1-induced EMT**

294 Next we studied which member(s) of the AKAP family exert sensitivity to TGF- β 1 in BEAS-
 295 2B cells. TGF- β 1 selectively and significantly down-regulated the mRNA levels of *Ezrin*,
 296 whereas the mRNA expression of *AKAP95* and *Yotiao* was enhanced. *AKAP1*, *AKAP5*,
 297 *AKAP11* and *AKAP12* mRNA levels were not affected by TGF- β 1 (Fig. 4A). We observed an
 298 increase in *AKAP95* protein, but not *Ezrin* (Fig. 4B). Immunofluorescence microscopy
 299 staining showed that TGF- β 1 significantly increased the protein expression of *Yotiao* (Fig.
 300 4C).

302 **Figure 4.** Effect of TGF- β 1 on gene and protein expression of AKAPs in BEAS-2B cells. (A)
303 Gene expressions of *AKAP1*, *AKAP5*, *AKAP11*, *AKAP12*, *AKAP95*, *Ezrin* and *Yotiao* were
304 studied by real-time quantitative PCR. (B) Representative western blotting images and
305 quantification of Ezrin and AKAP95. (C) Immunofluorescence images of Yotiao after 3
306 ng/ml TGF- β 1 stimulation for 24 hours. Scale bar represents 100 μ m. Data represent 5-7
307 independent experiments. Data are expressed as mean \pm SEM, *: p<0.05; significant
308 difference between indicated groups.
309

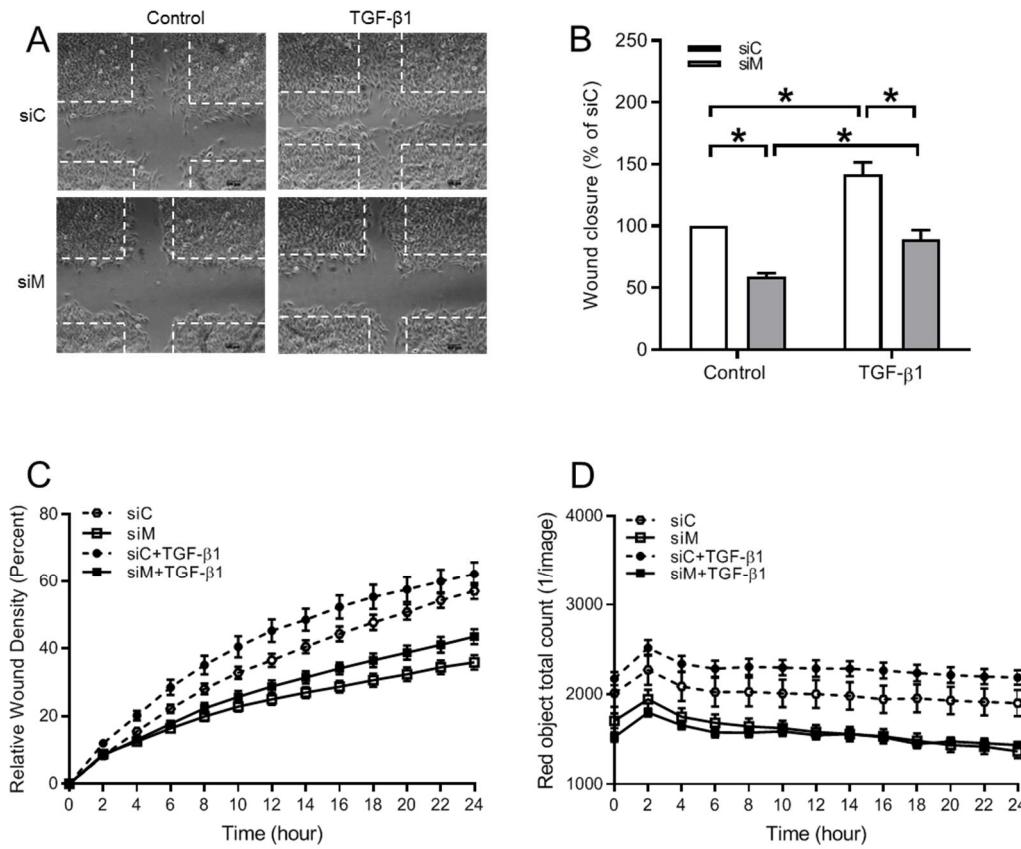
310 Since TGF- β 1 modulated the expression of Ezrin, AKAP95 and Yotiao, we hypothesized
311 that these factors might be involved in TGF- β 1-induced EMT. To study this, we silenced the
312 expression of Ezrin, AKAP95 and Yotiao in BEAS-2B cells using small interfering RNAs
313 (siRNA). Real-time quantitative PCR confirmed the siRNA-mediated reduction of *Ezrin*,
314 *AKAP95* and *Yotiao* ($29.4 \pm 7.4\%$, $34.4 \pm 6.8\%$; and $43.4 \pm 15.3\%$, respectively;), which was
315 accompanied with similar reductions in the corresponding proteins (Ezrin, $25.1 \pm 0.1\%$;
316 AKAP95 $51.2 \pm 3.7\%$; **Supplementary Fig. S1**). We observed 40% and 63% decreased E-
317 cadherin protein levels in Ezrin- or AKAP95-silenced cells, respectively, an effect which was
318 even more pronounced in TGF- β 1-treated cells (**Fig. 5A, Table 3**). Silencing of Yotiao did
319 not reduce the E-cadherin expression (**Fig. 5A**). Silencing of Ezrin, AKAP95 or Yotiao
320 suppressed the TGF- β 1-induced upregulation of the mesenchymal marker collagen I by
321 about 40% (**Fig. 5B, Table 3**). We then questioned whether co-silencing of Ezrin, AKAP95
322 and Yotiao would further alter the expression of the EMT markers. Co-silencing of all 3
323 factors (siM) reduced the protein levels of E-cadherin after TGF- β 1 stimulation to 11% (**Fig.**
324 **5C, Table 3**), as compared to ~40% when the factors were silenced individually (**Fig. 5A**).
325 More importantly, collagen I protein levels were reduced to 25% after triple-silencing in
326 TGF- β 1-stimulated cells when compared to ~60% after single-silencing (**Fig. 5D**, compared
327 to **Fig 5B, Table 3**). We therefore performed the next experiments in cells with co-silenced
328 Ezrin, AKAP95 and Yotiao.

329

330 **Figure 5.** Silencing of Ezrin, AKAP95 and Yotiao diminished TGF- β 1-induced collagen I
 331 upregulation. (A-B) Representative western blotting images and quantification of E-cadherin (A) and
 332 collagen I (B) in cells transfected with the siRNA of Ezrin, AKAP95 or Yotiao in combination with
 333 TGF- β 1 treatment. (C-D) Representative western blotting images and quantification of E-cadherin (C)
 334 and collagen I (D) in cells transfected with a combination siRNA of Ezrin, AKAP95 and Yotiao
 335 together with TGF- β 1 treatment. Data represent 4-6 independent experiments. Data are expressed as
 336 mean \pm SEM, *: p<0.05; significant difference between indicated groups.

337

338 Table 3. The comparison of E-cadherin and Collagen I protein expression in signal and multiple AKAPs
 339 silencing and the pretreatment of st-Ht31.

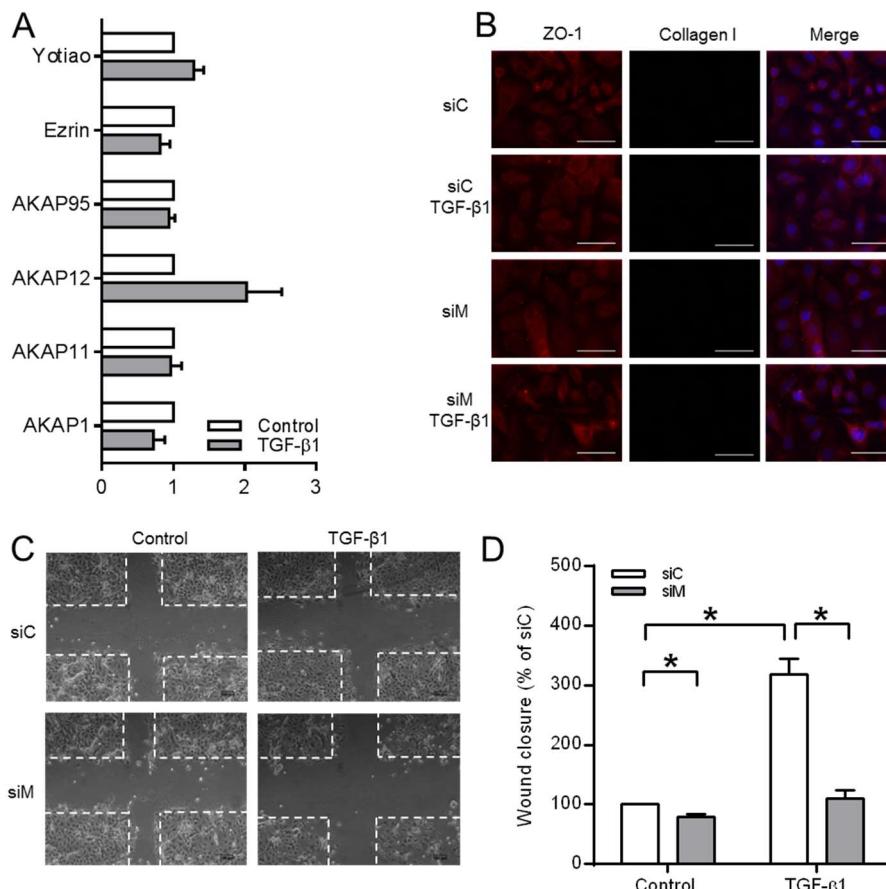

Treatment	E-cadherin		n	Treatment	Collagen I		n
	-TGF- β 1	+TGF- β 1			-TGF- β 1	+TGF- β 1	
siControl	1.00 \pm 0.00	0.35 \pm 0.04	6	siControl	0.28 \pm 0.06	1.00 \pm 0.00	6
siEzrin	0.40 \pm 0.05	0.14 \pm 0.02	6	siEzrin	0.16 \pm 0.03	0.58 \pm 0.09	6
siAKAP95	0.63 \pm 0.13	0.19 \pm 0.05	6	siAKAP95	0.20 \pm 0.05	0.58 \pm 0.07	6
siYotiao	1.37 \pm 0.53	0.25 \pm 0.06	4	siYotiao	0.15 \pm 0.02	0.56 \pm 0.04	4

siControl	1.00±0.00	0.40±0.08	5	siControl	0.08±0.03	1.00±0.00	5
siMultiple	0.21±0.06	0.11±0.05	5	siMultiple	0.04±0.01	0.25±0.06	5
Control	1.00±0.00	0.13±0.02	3	Control	0.26±0.08	1.00±0.00	3
st-Ht31	0.43±0.04	0.06±0.02	3	st-Ht31	0.23±0.06	0.66±0.03	3

340

341 *3.5 Ezrin, AKAP95 and Yotiao are required for TGF-β1-induced cell migration*

342 As expected, TGF-β1 stimulation increased BEAS-2B cell motility compared to control cells, as
343 analyzed in scratch assays (**Fig. 6A-B**). Co-silencing of Ezrin, AKAP95 and Yotiao profoundly
344 reduced cell migration and normalized cell migration of TGF-β1-stimulated cells back to control
345 levels (**Fig. 6A-B**). In a real time assay for cell migration using the xCELLigence platform, TGF-β1
346 increased cells migration in the early phase, which was reduced in cells co-treated with the siRNA of
347 Ezrin, AKAP95 and Yotiao, even though no significance was observed (data not shown).
348 Additionally, cell migration was also monitored by another real-time system Incucyte. The migration
349 of cells with co-silenced Ezrin, AKAP95 and Yotiao upon wounding was significantly slowed down
350 both at baseline and upon treatment with TGF (**Fig. 6C**). In silenced cells, TGF-β1 increased cell
351 migration was significantly slower compared to cells. Additionally, we found that the cell
352 proliferation within 24 hours in each treatment was quite limited, indicating that the wound closure
353 was due to migration instead of proliferation (**Fig. 6D**). Even though the effects were much less
354 pronounced and more variable, we found that CSE exposure enhanced cell migration in the early
355 phase, which was examined by xCELLigence transwell system. Co-silencing of Ezrin, AKAP95 and
356 Yotiao tended to decrease CS-induced cell migration, even though no significance was observed (data
357 not shown). The effect of CS extract exposure on activating cell migration was further confirmed by
358 the real time monitoring system Incucyte (**Supplementary Fig. S2 A-B**).


359
360

361 **Figure 6.** Role of Ezrin, AKAP95 and Yotiao in TGF- β 1-induced cell migration using BEAS-2B cells.
 362 (A) Representative images of wound healing assay of BEAS-2B cells after 24 hours post scratch. The
 363 white dotted line indicated borders of scratches at 0 hour. (B) Quantification of wound closure of
 364 TGF- β 1 treated cells in co-cultured with combined knockdown of Ezrin, AKAP95 and Yotiao. (C) Cell
 365 migration was monitored every two hours in a 96-well plate using a real time system Incucyte. (D)
 366 Cell proliferation was monitored by Incucyte. Data represent 3-5 independent experiments. Data are
 367 expressed as mean \pm SEM, *: $p < 0.05$; significant difference between indicated groups.
 368

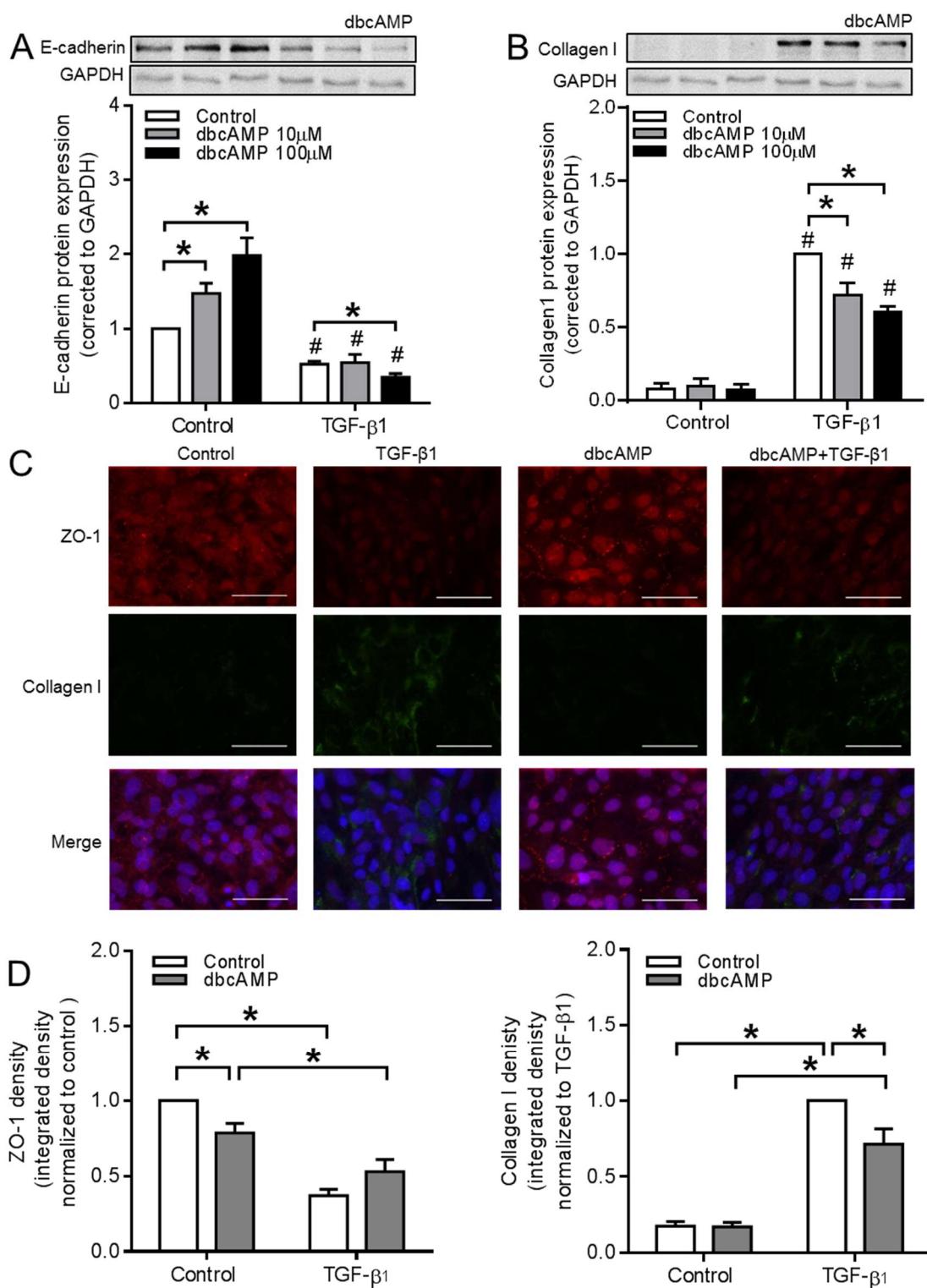
369 *3.6 The role of AKAPs in primary HAE cells*

370 To translate our findings obtained using the BEAS-2B cells to clinically more relevant cell types, we
 371 applied identical treatments to primary human airway epithelial (HAE) cells. As shown in **Fig. 7A**,
 372 even though the measures did not reach significance, TGF- β 1 tended to change the expression of
 373 *Yotiao*, *Ezrin*, *AKAP12*. In addition, we found that TGF- β 1 was able to decrease cell-cell interaction,
 374 which was observed in immunofluorescence staining of ZO-1 (**Fig. 7B**). Additionally, to confirm the
 375 findings in BEAS-2B cells, we also investigated whether silencing three AKAP genes could affect the
 376 cell migration using primary HAE cells. As shown in **Fig. 7C**, similar results were observed in
 377 primary HAE cells, even though the overall migration in primary HAE cells was much less compared
 378 with that in BEAS-2B cells. Importantly, in cells silenced Ezrin, AKAP95 and Yotiao, TGF- β 1 was no
 379 long able to promote cell migration. Of note was that in primary epithelial cells silencing of the TGF-
 380 β 1 sensitive AKAPs did not interfere with the basal migration capacity.

Primary human airway epithelial cells

381
382

383 **Figure 7.** The effect of TGF- β 1 on AKAPs expression and role of Ezrin, AKAP95 and Yotiao in TGF-
384 β 1-induced cell migration using pHAE cells. (A) Gene expressions of AKAP1, AKAP11, AKAP12,
385 AKAP95, Ezrin and Yotiao were studied by real-time quantitative PCR. (B) Representative
386 immunofluorescence images of EMT markers in pHAE cells after TGF- β 1 stimulation for 24 hours.
387 (C) Representative images of wound healing assay after 24 hours post scratch. The white dotted line
388 indicated borders of scratches at 0 hour. (D) Quantification of wound closure of TGF- β 1 treated cells
389 in co-cultured with combined knockdown of Ezrin, AKAP95 and Yotiao. Data represent 5
390 independent experiments. Data are expressed as mean \pm SEM, *: $p < 0.05$; significant difference
391 between indicated groups.

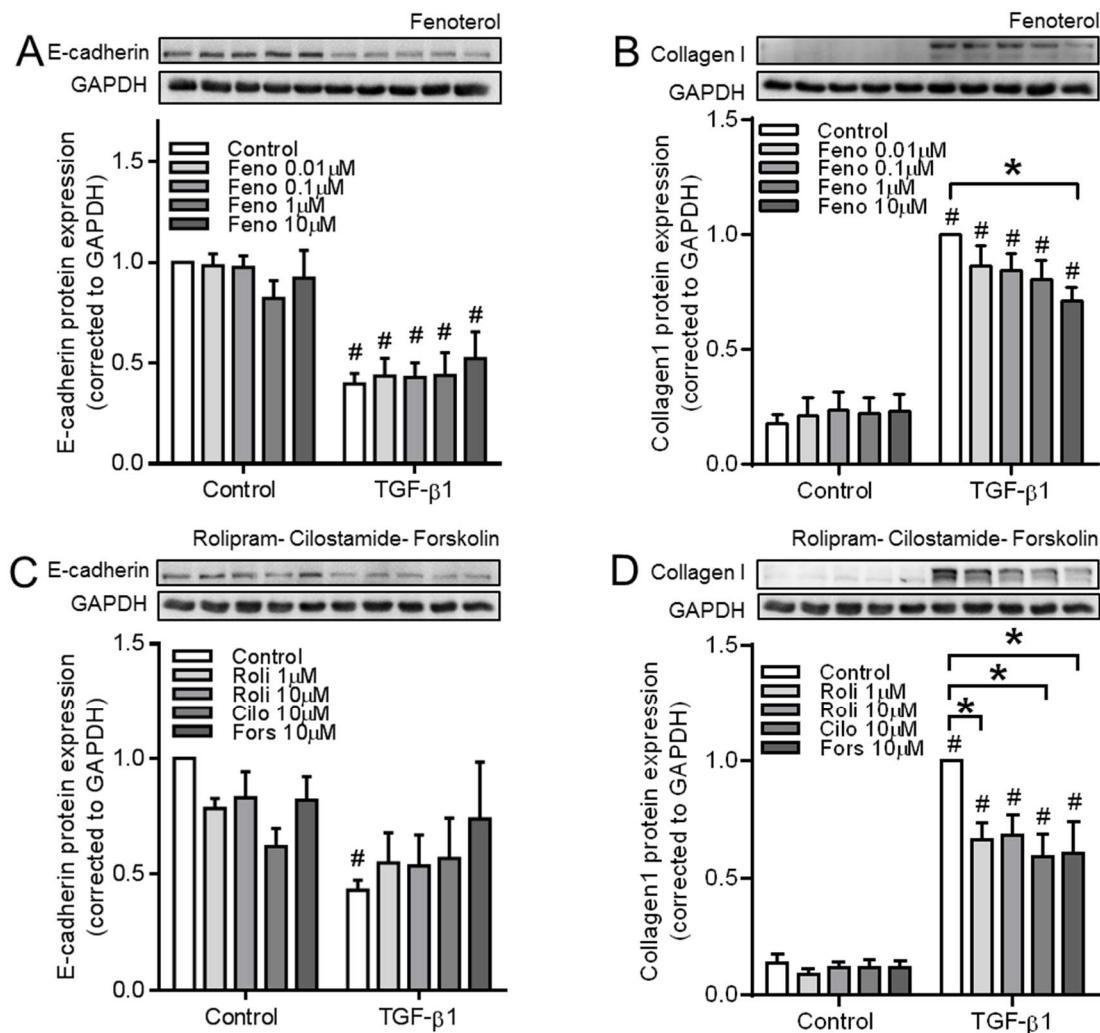

392

3.7 cAMP donors decrease TGF- β 1-induced collagen I upregulation

394 To further study the role of compartmentalized cAMP, the cell-membrane permeable cAMP
395 derivative dbcAMP was used to disrupt cAMP compartmentalization in BEAS-2B cells. We found
396 that dbcAMP dose-dependently increased the protein expression of epithelial marker E-cadherin in
397 control BEAS-2B cells, without affecting the reduced levels of E-cadherin in TGF- β 1-treated cells (Fig.
398 8A). In contrast, TGF- β 1-induced collagen I upregulation was significantly decreased by dbcAMP in
399 a dose-dependent manner, while leaving the basal levels unaffected (Fig. 8B). Immunofluorescence
400 microscopy analyses revealed that dbcAMP slightly reduced the basal expression of ZO-1 in BEAS-
401 2B cells, while leaving the TGF- β 1-induced reduction largely unaffected (Fig. 8C-D). Moreover, TGF-

402 β 1-induced collagen I expression was reduced by dbcAMP in these cells, without affecting basal
403 levels (Fig. 8C-D).

404


405

406 **Figure 8.** Effect of dbcAMP on TGF- β 1-induced EMT markers expression in BEAS-2B cells. (A-B)
407 protein expressions of E-cadherin (A) and collagen I (B) were analyzed in BEAS-2B cells pre-
408 incubated with 10 μ M or 100 μ M dbcAMP for 30 minutes before TGF- β 1 stimulation. (C-D)
409 Immunofluorescence images (C) and quantification (D) of ZO-1 and collagen I after TGF- β 1
410 stimulation for 24 hours. Scale bar represents 100 μ m. Data represent 4-6 independent experiments.

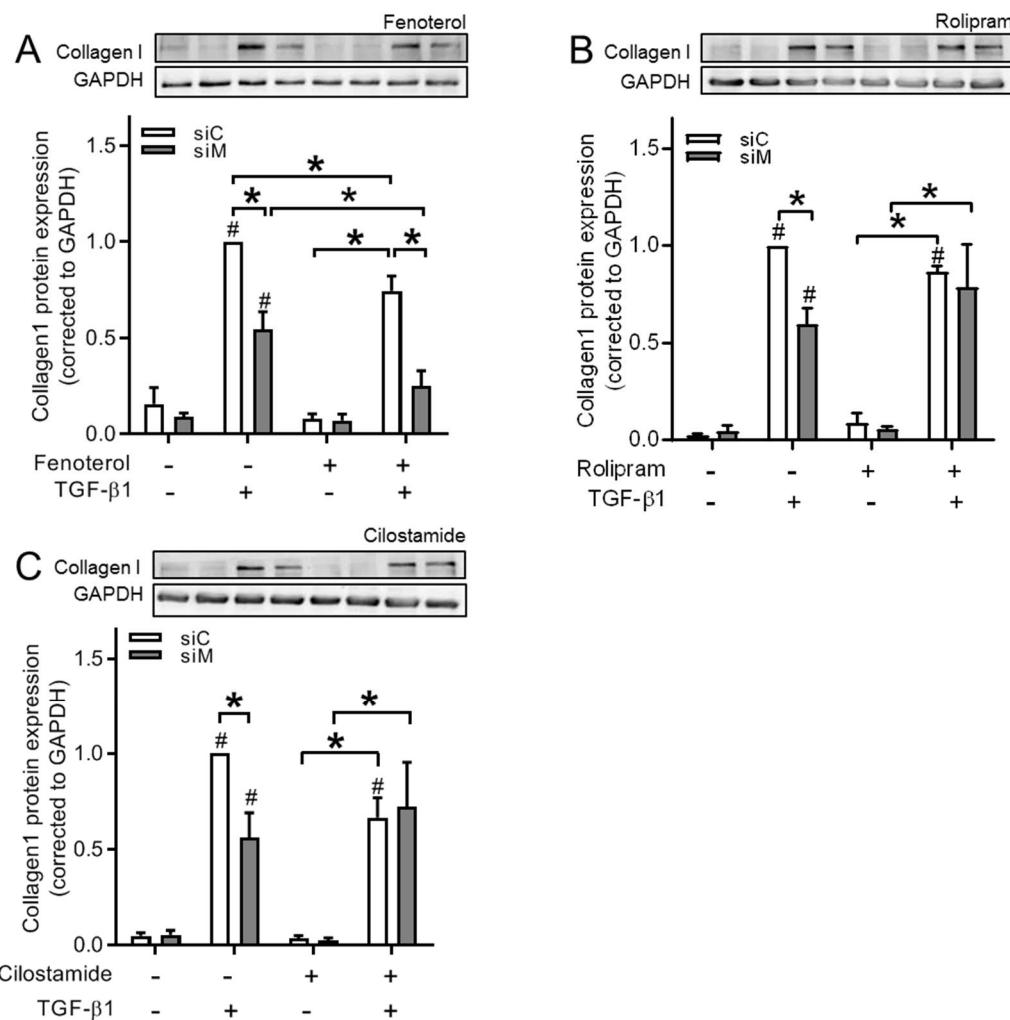
411 Data are expressed as mean \pm SEM, *: p<0.05; significant difference between indicated groups; #: p<0.05; significant difference between with or without TGF- β 1 treatment.

412
413 To further evaluate if cAMP compartmentalization contributed to the EMT process in our model,
414 the effect of the β_2 -agonist fenoterol, the PDE4 inhibitor rolipram, the PDE3 inhibitor cilostamide, and
415 the adenylyl cyclase activator forskolin were studied. Although none of these compounds affected
416 basal levels of E-cadherin or the reduction induced by TGF- β 1 (Fig. 9A, 9C), they each suppressed
417 TGF- β 1-induced collagen I upregulation (Fig. 9B, 9D).

418

419
420

421 **Figure 9.** Effect of fenoterol, rolipram, cilostamide and forskolin on TGF- β 1-induced EMT markers
422 using BEAS-2B cells. (A-D) Representative western blotting images and quantification of E-cadherin
423 (A, C) and collagen I (B, D) in cells pre-incubated with fenoterol (A-B) or rolipram, cilostamide and
424 forskolin (C-D) before TGF- β 1 treatment. Data represent 5-6 independent experiments. Data are
425 expressed as mean \pm SEM, *: p<0.05; significant difference between indicated groups. #: p<0.05;
426 significant difference between with or without TGF- β 1 treatment.


427

428 3.8 Ezrin, AKAP95 and Yotiao differentially contribute to cAMP compartments

429 In order to study to which extent defined cAMP compartments might contribute to the TGF- β 1-
430 induced EMT process in BEAS-2B cells, we tested the effects of fenoterol, rolipram and cilostamide

431 in Ezrin-AKAP95-Yotiao (siM) co-silenced cells. We found that fenoterol further decreased siM-
 432 induced collagen I downregulation from $54.5 \pm 9.1\%$ to $24.9 \pm 8.0\%$ (Fig. 10A, Table 4). On the contrary,
 433 rolipram and cilostamide were unable to further reduce collagen I protein expression (Fig. 10B-C,
 434 Table 4), indicating that Ezrin, AKAP95 and Yotiao were associated with β_2 -AR in decreasing TGF-
 435 $\beta 1$ -induced collagen I upregulation, but not with PDE3 or PDE4.

436

437

438

439 **Figure 10.** Combined Ezrin, AKAP95 and Yotiao silencing differentially blunted reduction of TGF-
 440 $\beta 1$ -induced collagen I elevation by fenoterol, rolipram and cilostamide in BEAS-2B cells. (A-C)
 441 Representative western blotting images and quantification of collagen I in cells pre-incubated with
 442 fenoterol (A) rolipram (B) or cilostamide (C) before TGF- $\beta 1$ treatment. Data represent 4 independent
 443 experiments. Data are expressed as mean \pm SEM, *: $p < 0.05$; significantly different between indicated
 444 groups. #: $p < 0.05$; significant difference compared to control groups.

445

446

447 Table 4. The comparison of Collagen I protein expression in co-silencing multiple AKAPs with or
 without cAMP donors.

Treatment	Collagen I		
	Control	siControl	siMultiple

	-TGF- β 1	+TGF- β 1	-TGF- β 1	+TGF- β 1	-TGF- β 1	+TGF- β 1
Control	0.18 \pm 0.04	1.00 \pm 0.00				
Fenoterol 10 μ M	0.23 \pm 0.07	0.71 \pm 0.06				
Rolipram 10 μ M	0.11 \pm 0.03	0.68 \pm 0.09				
Cilostamide 10 μ M	0.11 \pm 0.03	0.59 \pm 0.10				
		0.08 \pm 0.03	1.00 \pm 0.00	0.04 \pm 0.01	0.25 \pm 0.06	
Control		0.16 \pm 0.09	1.00 \pm 0.00	0.09 \pm 0.02	0.54 \pm 0.09	
Fenoterol 10 μ M		0.08 \pm 0.02	0.75 \pm 0.08	0.07 \pm 0.03	0.25 \pm 0.08	
Control		0.02 \pm 0.06	1.00 \pm 0.00	0.04 \pm 0.02	0.59 \pm 0.08	
Rolipram 10 μ M		0.08 \pm 0.05	0.76 \pm 0.05	0.05 \pm 0.01	0.75 \pm 0.22	
Control		0.04 \pm 0.01	1.00 \pm 0.00	0.05 \pm 0.02	0.55 \pm 0.13	
Cilostamide 10 μ M		0.03 \pm 0.01	0.86 \pm 0.29	0.02 \pm 0.01	0.72 \pm 0.23	

448

449 **4. Discussion**

450 In this study, we investigated the role of AKAPs in TGF- β 1/CS-induced EMT in normal human
 451 bronchial epithelial BEAS-2B cells and primary HAE cells. We show that the physical interaction
 452 between AKAP and PKA is required for TGF- β 1-induced EMT, a process characterized by reduced
 453 E-cadherin and increased collagen I expression. Relevant to the pathophysiology of COPD, CSE
 454 similarly induced EMT by stimulation the release of TGF- β 1 and subsequent activation of TGF- β 1
 455 signaling, which was needed to induce EMT. We found that gene and protein expression of Ezrin,
 456 AKAP95 and Yotiao were specifically altered by TGF- β 1. Indeed, single knockdown of Ezrin,
 457 AKAP95 or Yotiao diminished TGF- β 1-induced collagen I upregulation, which was further
 458 suppressed when they were simultaneously knocked down. Functionally, we report that co-silencing
 459 of Ezrin, AKAP95 and Yotiao inhibited TGF- β 1-induced cell migration. In addition, co-silencing of
 460 Ezrin, AKAP95 and Yotiao further accelerated the effect of the β_2 -AR but not of PDE3 or PDE4 on
 461 TGF- β 1-induced collagen I upregulation.

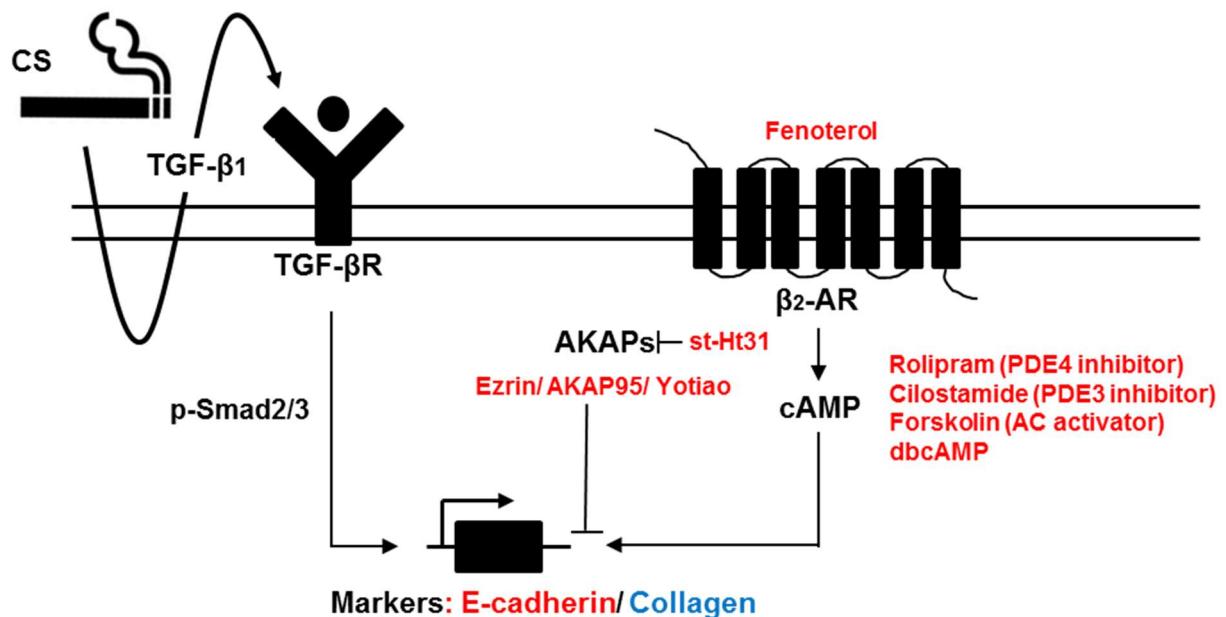
462 Cigarette smoke, as one of the most important inducing factors in COPD, activates the EMT process,
 463 which contributes to COPD progression. Sohal et al. demonstrated that reticular basement membrane
 464 fragmentation, a key indicator of EMT *in vivo*, was significantly increased in current smokers with or
 465 without COPD as compared to never-smoking control subjects, which also positively correlated with
 466 smoking history [7]. Further investigation using immunohistochemistry indicated that fibroblast
 467 specific protein S100A4 was significantly increased in reticular basement membrane clefts in smokers,
 468 highlighting the active EMT process in the fragmented reticular basement membrane of smokers and
 469 COPD patients [7]. This finding was further confirmed by another *in vivo* study, in which significant
 470 upregulation of mesenchymal marker vimentin was observed within the small airway epithelium of
 471 smokers and COPD subjects [25]. In addition, Milara et al. showed that EMT was increased in primary

472 bronchial epithelial cells of the small bronchi of smokers and COPD patients as compared to the small
473 bronchi of non-smoking control subjects, indicating that EMT was induced by CS exposure [6].
474 However, the mechanism of CS-induced EMT in airway epithelial cells is still poorly understood. We
475 show that CS exposure increases TGF- β 1 release, which is consistent with a previous study [6]. Also,
476 we demonstrate that CS exposure enhanced phosphorylation of SMAD2 and SMAD3 (not shown),
477 which are the key downstream effectors in TGF- β signaling. Also, CS extract-induced E-cadherin loss
478 was inhibited by pre-treatment with a TGF- β neutralizing antibody. CS exposure also activated cell
479 migration in BEAS-2B cells, which could be decreased when Ezrin, AKAP95 and Yotiao were co-
480 silenced. This indicates that Ezrin, AKAP95 and Yotiao are involved in CS-promoted EMT.

481 It has been demonstrated that the membrane-cytoskeleton linker Ezrin plays a vital role in cell
482 migration and invasion by modulating the assembly of cytoskeleton elements through Rho GTPase
483 signaling to regulate cytoskeletal organization and cellular phenotypical alterations [26-28]. Recent
484 studies have shown that regulation of Ezrin might be altered in pulmonary diseases. The protein
485 expression of Ezrin was unaltered in the bronchoalveolar lavage fluid of COPD patients [29], while
486 Ezrin protein expression was higher in the epithelium samples from COPD patients compared to the
487 samples from healthy individuals [30]. Additionally, Ezrin protein was decreased in asthmatic
488 exhaled breath condensate and serum compared to non-asthmatic control subjects [31]. Importantly,
489 it was pointed out by several studies that the subcellular location of Ezrin, rather than its expression
490 levels correlates with its function [32,33]. Such aspects were not studied in BEAS-2B cells yet. Ezrin
491 overexpression was associated with enhanced tumor aggressiveness, while knockdown of Ezrin
492 expression reduced proliferation, migration and invasion of cancer cells [34-36]. Suppression of Ezrin
493 expression by siRNA prevented the morphological changes, actin filament remodeling and E-
494 cadherin loss induced by TGF- β 1 in alveolar epithelial A549 cells [17]. Surprisingly in our study,
495 knockdown of Ezrin decreased TGF- β 1-induced collagen I upregulation, while it did not prevent
496 TGF- β 1-induced E-cadherin decrease in BEAS-2B cells, which contrasts to the earlier-mentioned
497 studies using A549 cells [17]. It is important to note that A549 cells are human alveolar basal epithelial
498 cells, while BEAS-2B cells are normal human epithelial cells localizing in bronchus. The specific
499 location in the tissue may partly explain the different observation regarding the function of Ezrin in
500 TGF- β 1-induced E-cadherin decrease between our study and those reported earlier.

501 AKAP95, also known as AKAP8, resides in the nucleus and is involved in DNA replication and
502 controls expression of several proteins that regulate the cell cycle [15,37]. TGF- β 1 has been found to
503 increase cell proliferation in the lung structural cells [38,39]. In the current study, we observed that
504 knockdown of AKAP95 decreased TGF- β 1-induced collagen I production. It is tempting to speculate
505 that this process might be linked to the fact that silencing of AKAP95 inhibited TGF- β 1-induced cell
506 proliferation in BEAS-2B cells.

507 Yotiao, also known as AKAP9, is involved in the development and metastasis of several cancers,
508 including breast cancer [40], lung cancer [41], melanomas [42], thyroid carcinomas [43,44], and
509 colorectal cancer [18]. Knockdown of Yotiao by short hairpin RNA inhibited tumor growth in mice,
510 which was partly due to the fact that Yotiao knockdown induced an increase in the epithelial marker
511 E-cadherin and decreased mesenchymal markers N-cadherin and vimentin, indicating that Yotiao
512 plays a crucial role in EMT [18]. We found that siRNA-mediated knockdown of Yotiao significantly
513 decreased TGF- β 1-induced upregulation of the mesenchymal marker collagen I, indicating that


514 Yotiao acts as a potential target to prevent EMT. Surprisingly, TGF- β 1-induced suppression of E-
515 cadherin was further decreased when Yotiao was silenced, which seemed to be conflicting with
516 previous observations [18]. However, earlier we showed that Yotiao and E-cadherin co-localize at the
517 cell membrane of human bronchial epithelial 16HBE cells, highlighting the importance of Yotiao on
518 epithelial barrier function [19]. Together with this finding, our observation in BEAS-2B cells
519 emphasized the importance of Yotiao on cell membrane maintenance.

520 In the current study, distinct cAMP compartments were differentially activated by the β_2 -agonist
521 fenoterol, the PDE4 inhibitor rolipram, the PDE3 inhibitor cilostamide and dbcAMP. We found that
522 TGF- β 1-induced collagen I upregulation was suppressed when cAMP donors were applied.
523 Moreover, co-silencing of Ezrin-AKAP95-Yotiao further decreased TGF- β 1-induced collagen I
524 upregulation, implicating that these AKAPs may act in concert with the β_2 -AR in diminishing TGF-
525 β 1-induced collagen I induction. β_2 -AR binds to the ezrin/radixin/moesin-binding phosphoprotein 50
526 (also referred to as NHERF) complex through their PDZ motifs in airway epithelial cells, highlighting
527 the association between Ezrin and β_2 -AR, which is in line with our findings [45]. Intriguingly, co-
528 silencing of Ezrin-AKAP95-Yotiao silencing did not alter the effects of the PDE4 inhibitor rolipram
529 and the PDE3 inhibitor cilostamide on collagen I protein expression, strongly suggesting that
530 distinctly AKAP-defined compartments determine the functional outcome of the β_2 -AR compared to
531 PDE3 and PDE4 in the TGF- β 1-induced EMT process (shown in **Fig. 11**). More investigations are
532 needed to study the difference between β_2 -AR, PDE3 and PDE4. In addition, chronic lung diseases
533 such as COPD are discussed in the context of a spectrum of EMT states [46], which would be reflected
534 in our current study by the selective role of Ezrin-AKAP95-Yotiao in diminishing TGF- β 1-induced
535 collagen I deposition, without restoration of E-cadherin.

536 5. Conclusion

537 Our study demonstrates that the AKAP family members Ezrin, AKAP95 and Yotiao play essential
538 roles in TGF- β 1-induced EMT. The co-silencing of Ezrin, AKAP95 and Yotiao inhibits TGF- β 1-
539 induced collagen I production in human bronchial epithelial BEAS-2B cells. Functionally, we show
540 that Ezrin, AKAP95 and Yotiao are required for TGF- β 1-induced cell migration. Importantly, Ezrin,
541 AKAP95 and Yotiao seem to act in concert with the β_2 -AR but not PDE3 or PDE4 in decreasing TGF-
542 β 1-induced collagen I upregulation. CS, as an important risk factor for COPD, induces TGF- β 1
543 release, thereby activating the TGF- β 1 signaling pathway, which contributes to EMT progression.
544 Thus, Ezrin, AKAP95 and Yotiao, represent promising therapeutic targets to inhibit bronchial EMT
545 in COPD, possibly in combination with already existing therapies such as β_2 -agonists and PDE4
546 inhibitors.

547

574 **References**

575 1. Vogelmeier, C.F.; Criner, G.J.; Martinez, F.J.; Anzueto, A.; Barnes, P.J.; Bourbeau, J.; Celli, B.R.; Chen, R.; Decramer, M.; Fabbri, L.M., et al. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease 2017 Report. GOLD Executive Summary. *Am J Respir Crit Care Med* **2017**, *195*, 557-582. [[CrossRef](#)]

576 2. Kalluri, R.; Neilson, E.G. Epithelial-mesenchymal transition and its implications for fibrosis. *J Clin Invest* **2003**, *112*, 1776-1784. [[CrossRef](#)]

577 3. Kim, K.K.; Kugler, M.C.; Wolters, P.J.; Robillard, L.; Galvez, M.G.; Brumwell, A.N.; Sheppard, D.; Chapman, H.A. Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. *Proc Natl Acad Sci U S A* **2006**, *103*, 13180-13185. [[CrossRef](#)]

578 4. Zeisberg, M.; Neilson, E.G. Biomarkers for epithelial-mesenchymal transitions. *J Clin Invest* **2009**, *119*, 1429-1437. [[CrossRef](#)]

579 5. Zuo, H.; Cattani-Cavalieri, I.; Valenca, S.S.; Musheshe, N.; Schmidt, M. Function of cAMP scaffolds in obstructive lung disease: Focus on epithelial-to-mesenchymal transition and oxidative stress. *Br J Pharmacol* **2019**, *176*, 2402-2415. [[CrossRef](#)]

580 6. Milara, J.; Peiro, T.; Serrano, A.; Cortijo, J. Epithelial to mesenchymal transition is increased in patients with COPD and induced by cigarette smoke. *Thorax* **2013**, *68*, 410-420. [[CrossRef](#)]

581 7. Sohal, S.S.; Reid, D.; Soltani, A.; Ward, C.; Weston, S.; Muller, H.K.; Wood-Baker, R.; Walters, E.H. Reticular basement membrane fragmentation and potential epithelial mesenchymal transition is exaggerated in the airways of smokers with chronic obstructive pulmonary disease. *Respirology* **2010**, *15*, 930-938. [[CrossRef](#)]

582 8. Sohal, S.S.; Walters, E.H. Epithelial mesenchymal transition (EMT) in small airways of COPD patients. *Thorax* **2013**, *68*, 783-784. [[CrossRef](#)]

583 9. Kalluri, R.; Weinberg, R.A. The basics of epithelial-mesenchymal transition. *J Clin Invest* **2009**, *119*, 1420-1428. [[CrossRef](#)]

584 10. Bartis, D.; Mise, N.; Mahida, R.Y.; Eickelberg, O.; Thickett, D.R. Epithelial-mesenchymal transition in lung development and disease: does it exist and is it important? *Thorax* **2014**, *69*, 760-765. [[CrossRef](#)]

585 11. Jansen, S.R.; Poppinga, W.J.; de Jager, W.; Lezoualc'h, F.; Cheng, X.; Wieland, T.; Yarwood, S.J.; Gosens, R.; Schmidt, M. Epac1 links prostaglandin E2 to beta-catenin-dependent transcription during epithelial-to-mesenchymal transition. *Oncotarget* **2016**, *7*, 46354-46370. [[CrossRef](#)]

586 12. Jolly, M.K.; Ware, K.E.; Gilja, S.; Somarelli, J.A.; Levine, H. EMT and MET: necessary or permissive for metastasis? *Mol Oncol* **2017**, *11*, 755-769. [[CrossRef](#)]

587 13. Nieto, M.A. The ins and outs of the epithelial to mesenchymal transition in health and disease. *Annu Rev Cell Dev Biol* **2011**, *27*, 347-376. [[CrossRef](#)]

588 14. Beene, D.L.; Scott, J.D. A-kinase anchoring proteins take shape. *Curr Opin Cell Biol* **2007**, *19*, 192-198. [[CrossRef](#)]

589 15. Skroblin, P.; Grossmann, S.; Schafer, G.; Rosenthal, W.; Klussmann, E. Mechanisms of protein kinase A anchoring. *Int Rev Cell Mol Biol* **2010**, *283*, 235-330. [[CrossRef](#)]

615 16. Poppinga, W.J.; Munoz-Llancao, P.; Gonzalez-Billault, C.; Schmidt, M. A-kinase anchoring
616 proteins: cAMP compartmentalization in neurodegenerative and obstructive pulmonary
617 diseases. *Br J Pharmacol* **2014**, *171*, 5603-5623. [[CrossRef](#)]

618 17. Chen, M.J.; Gao, X.J.; Xu, L.N.; Liu, T.F.; Liu, X.H.; Liu, L.X. Ezrin is required for epithelial-
619 mesenchymal transition induced by TGF-beta1 in A549 cells. *Int J Oncol* **2014**, *45*, 1515-1522.
620 [[CrossRef](#)]

621 18. Hu, Z.Y.; Liu, Y.P.; Xie, L.Y.; Wang, X.Y.; Yang, F.; Chen, S.Y.; Li, Z.G. AKAP-9 promotes
622 colorectal cancer development by regulating Cdc42 interacting protein 4. *Biochim Biophys
623 Acta* **2016**, *1862*, 1172-1181. [[CrossRef](#)]

624 19. Oldenburger, A.; Poppinga, W.J.; Kos, F.; de Bruin, H.G.; Rijks, W.F.; Heijink, I.H.; Timens,
625 W.; Meurs, H.; Maarsingh, H.; Schmidt, M. A-kinase anchoring proteins contribute to loss of
626 E-cadherin and bronchial epithelial barrier by cigarette smoke. *Am J Physiol Cell Physiol* **2014**,
627 *306*, C585-597. [[CrossRef](#)]

628 20. van Wetering, S.; van der Linden, A.C.; van Sterkenburg, M.A.; Rabe, K.F.; Schalkwijk, J.;
629 Hiemstra, P.S. Regulation of secretory leukocyte proteinase inhibitor (SLPI) production by
630 human bronchial epithelial cells: increase of cell-associated SLPI by neutrophil elastase. *J
631 Investig Med* **2000**, *48*, 359-366.

632 21. Poppinga, W.J.; Heijink, I.H.; Holtzer, L.J.; Skroblin, P.; Klussmann, E.; Halayko, A.J.; Timens,
633 W.; Maarsingh, H.; Schmidt, M. A-kinase-anchoring proteins coordinate inflammatory
634 responses to cigarette smoke in airway smooth muscle. *Am J Physiol Lung Cell Mol Physiol*
635 **2015**, *308*, L766-775. [[CrossRef](#)]

636 22. Keenan, C.R.; Langenbach, S.Y.; Jativa, F.; Harris, T.; Li, M.; Chen, Q.; Xia, Y.; Gao, B.;
637 Schuliga, M.J.; Jaffar, J., et al. Casein Kinase 1delta/epsilon Inhibitor, PF670462 Attenuates the
638 Fibrogenic Effects of Transforming Growth Factor-beta in Pulmonary Fibrosis. *Front
639 Pharmacol* **2018**, *9*, 738. [[CrossRef](#)]

640 23. Ruijter, J.M.; Ramakers, C.; Hoogaars, W.M.; Karlen, Y.; Bakker, O.; van den Hoff, M.J.;
641 Moorman, A.F. Amplification efficiency: linking baseline and bias in the analysis of
642 quantitative PCR data. *Nucleic Acids Res* **2009**, *37*, e45. [[CrossRef](#)]

643 24. Mihailichenko, D.; Pertseva, T. Influence of tobacco-smoking on serum level of transforming
644 growth factor (TGF) beta 1 in COPD patients. *Eur. Respir. J.* **50**, PA3602 **2017**.

645 25. Wang, Q.; Wang, Y.; Zhang, Y.; Zhang, Y.; Xiao, W. The role of uPAR in epithelial-
646 mesenchymal transition in small airway epithelium of patients with chronic obstructive
647 pulmonary disease. *Respir Res* **2013**, *14*, 67. [[CrossRef](#)]

648 26. Fehon, R.G.; McClatchey, A.I.; Bretscher, A. Organizing the cell cortex: the role of ERM
649 proteins. *Nat Rev Mol Cell Biol* **2010**, *11*, 276-287. [[CrossRef](#)]

650 27. Ivetic, A.; Ridley, A.J. Ezrin/radixin/moesin proteins and Rho GTPase signalling in
651 leucocytes. *Immunology* **2004**, *112*, 165-176. [[CrossRef](#)]

652 28. Tsukita, S.; Yonemura, S. ERM (ezrin/radixin/moesin) family: from cytoskeleton to signal
653 transduction. *Curr Opin Cell Biol* **1997**, *9*, 70-75. [[CrossRef](#)]

654 29. Pastor, M.D.; Nogal, A.; Molina-Pinelo, S.; Melendez, R.; Salinas, A.; Gonzalez De la Pena,
655 M.; Martin-Juan, J.; Corral, J.; Garcia-Carbonero, R.; Carnero, A., et al. Identification of
656 proteomic signatures associated with lung cancer and COPD. *J Proteomics* **2013**, *89*, 227-237.
657 [[CrossRef](#)]

658 30. Li, Q.; Li, N.; Liu, C.Y.; Xu, R.; Kolosov, V.P.; Perelman, J.M.; Zhou, X.D. Ezrin/Exocyst
659 complex regulates mucin 5AC secretion induced by neutrophil elastase in human airway
660 epithelial cells. *Cell Physiol Biochem* **2015**, *35*, 326-338. [[CrossRef](#)]

661 31. Jia, M.; Yan, X.; Jiang, X.; Wu, Y.; Xu, J.; Meng, Y.; Yang, Y.; Shan, X.; Zhang, X.; Mao, S., et al.
662 Ezrin, a Membrane Cytoskeleton Cross-Linker Protein, as a Marker of Epithelial Damage in
663 Asthma. *Am J Respir Crit Care Med* **2019**, *199*, 496-507. [[CrossRef](#)]

664 32. Perez, P.; Aguilera, S.; Olea, N.; Allende, C.; Molina, C.; Brito, M.; Barrera, M.J.; Leyton, C.;
665 Rowzee, A.; Gonzalez, M.J. Aberrant localization of ezrin correlates with salivary acini
666 disorganization in Sjogren's Syndrome. *Rheumatology (Oxford)* **2010**, *49*, 915-923. [[CrossRef](#)]

667 33. Sarrio, D.; Rodriguez-Pinilla, S.M.; Dotor, A.; Calero, F.; Hardisson, D.; Palacios, J. Abnormal
668 ezrin localization is associated with clinicopathological features in invasive breast
669 carcinomas. *Breast Cancer Res Treat* **2006**, *98*, 71-79. [[CrossRef](#)]

670 34. Huang, H.Y.; Li, C.F.; Fang, F.M.; Tsai, J.W.; Li, S.H.; Lee, Y.T.; Wei, H.M. Prognostic
671 implication of ezrin overexpression in myxofibrosarcomas. *Ann Surg Oncol* **2010**, *17*, 3212-
672 3219. [[CrossRef](#)]

673 35. Li, Q.; Gao, H.; Xu, H.; Wang, X.; Pan, Y.; Hao, F.; Qiu, X.; Stoecker, M.; Wang, E.; Wang, E.
674 Expression of ezrin correlates with malignant phenotype of lung cancer, and in vitro
675 knockdown of ezrin reverses the aggressive biological behavior of lung cancer cells. *Tumour
676 Biol* **2012**, *33*, 1493-1504. [[CrossRef](#)]

677 36. Saito, S.; Yamamoto, H.; Mukaisho, K.; Sato, S.; Higo, T.; Hattori, T.; Yamamoto, G.; Sugihara,
678 H. Mechanisms underlying cancer progression caused by ezrin overexpression in tongue
679 squamous cell carcinoma. *PLoS One* **2013**, *8*, e54881. [[CrossRef](#)]

680 37. Han, B.; Poppinga, W.J.; Schmidt, M. Scaffolding during the cell cycle by A-kinase anchoring
681 proteins. *Pflugers Arch* **2015**, *467*, 2401-2411. [[CrossRef](#)]

682 38. Chen, G.; Khalil, N. TGF-beta1 increases proliferation of airway smooth muscle cells by
683 phosphorylation of map kinases. *Respir Res* **2006**, *7*, 2. [[CrossRef](#)]

684 39. Yue, X.; Shan, B.; Lasky, J.A. TGF-beta: Titan of Lung Fibrogenesis. *Curr Enzym Inhib* **2010**, *6*.
685 [[CrossRef](#)]

686 40. Frank, B.; Wiestler, M.; Kropp, S.; Hemminki, K.; Spurdle, A.B.; Sutter, C.; Wappenschmidt,
687 B.; Chen, X.; Beesley, J.; Hopper, J.L., et al. Association of a common AKAP9 variant with
688 breast cancer risk: a collaborative analysis. *J Natl Cancer Inst* **2008**, *100*, 437-442. [[CrossRef](#)]

689 41. Truong, T.; Sauter, W.; McKay, J.D.; Hosgood, H.D., 3rd; Gallagher, C.; Amos, C.I.; Spitz, M.;
690 Muscat, J.; Lazarus, P.; Illig, T., et al. International Lung Cancer Consortium: coordinated
691 association study of 10 potential lung cancer susceptibility variants. *Carcinogenesis* **2010**, *31*,
692 625-633. [[CrossRef](#)]

693 42. Kabbarah, O.; Nogueira, C.; Feng, B.; Nazarian, R.M.; Bosenberg, M.; Wu, M.; Scott, K.L.;
694 Kwong, L.N.; Xiao, Y.; Cordon-Cardo, C., et al. Integrative genome comparison of primary
695 and metastatic melanomas. *PLoS One* **2010**, *5*, e10770. [[CrossRef](#)]

696 43. Caria, P.; Vanni, R. Cytogenetic and molecular events in adenoma and well-differentiated
697 thyroid follicular-cell neoplasia. *Cancer Genet Cytogenet* **2010**, *203*, 21-29. [[CrossRef](#)]

698 44. Lee, J.H.; Lee, E.S.; Kim, Y.S.; Won, N.H.; Chae, Y.S. BRAF mutation and AKAP9 expression
699 in sporadic papillary thyroid carcinomas. *Pathology* **2006**, *38*, 201-204. [[CrossRef](#)]

700 45. Naren, A.P.; Cobb, B.; Li, C.; Roy, K.; Nelson, D.; Heda, G.D.; Liao, J.; Kirk, K.L.; Sorscher,
701 E.J.; Hanrahan, J., et al. A macromolecular complex of beta 2 adrenergic receptor, CFTR, and
702 ezrin/radixin/moesin-binding phosphoprotein 50 is regulated by PKA. *Proc Natl Acad Sci U
703 S A* **2003**, *100*, 342-346. [[CrossRef](#)]

704 46. Jolly, M.K.; Ward, C.; Eapen, M.S.; Myers, S.; Hallgren, O.; Levine, H.; Sohal, S.S. Epithelial-
705 mesenchymal transition, a spectrum of states: Role in lung development, homeostasis, and
706 disease. *Dev Dyn* **2018**, *247*, 346-358. [[CrossRef](#)]