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Abstract

In this paper, we study the dynamics of following system of nonlinear
difference equations xn+1 = xn−1yn − 1, yn+1 = yn−1zn − 1, zn+1 =
zn 1xn − 1. Especially we investigate the periodicity, boundedness and
stability of related system of difference equations.
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1 Introduction

Over the last years difference equations and systems of difference equations
have been huge attention by scientists and mathematicians. This attention
is particularly related to applications in different fields of science especially
ecology, economy, physics and so on. As long as they achieved more meaningful
and impressive results and applications, this attention continues to increase at
the high level. Several latest results can be found in the following papers:
In [15], Kent et al studied dynamics of difference equation

xn+1 = xnxn−1 − 1.

Further, in [1], Liu et al and in [23], Wang et al obtained some significant
results about related difference equation.
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In [24], Kurbanlıet al investigated positive solutions of system of difference
equations

xn+1 =
xn−1

ynxn−1 + 1
, yn+1 =

yn−1
xnyn−1 + 1

.

In [25], Kurbanlıstudied the solutions of the system of difference equations

xn+1 =
xn−1

ynxn−1 + 1
, yn+1 =

yn−1
xnyn−1 + 1

, zn+1 =
zn−1

ynzn−1 + 1
.

Furthermore, there are many books and papers related to difference equa-
tions see [7] - [23].
In this paper, we investigate the dynamics of following system of nonlinear

difference equations:

xn+1 = xn−1yn − 1, yn+1 = yn−1zn − 1, zn+1 = zn−1xn − 1, n = 0, 1, · · · , (1)

where the all initial conditions are real numbers. Especially, we study equilib-
rium points, stability of solutions, existence of periodic solutions and bounded-
ness of solutions of related system.
Firstly, we give some definitions and theorems which are used during this

study.
Let us introduce a six-dimensional discrete dynamical system of the form

xn+1 = f1 (xn, xn−1, yn, yn−1, zn, zn−1) ,

yn+1 = f2 (xn, xn−1, yn, yn−1, zn, zn−1) , (2)

zn+1 = f3 (xn, xn−1, yn, yn−1, zn, zn−1)

n = 0, 1, ..., where f1 : I21 × I22 × I23 → I1, f2 : I21 × I22 × I23 → I2 and f3 :
I21×I22×I23 → I3 are continuously differentiable functions and I1, I2, I3 are some
intervals of real numbers. Moreover, a solution {(xn, yn, zn)}∞n=−1 of system (2)
is uniquely determined by initial values (xi, yi, zi) ∈ I1× I2× I3 for i ∈ {−1, 0}.

Definition 1 Along with the system (2), we consider the corresponding vector
map

F = {f1, xn, xn−1, f2, yn, yn−1, f3, zn, zn−1} .

A point (x̄, ȳ, z̄) is called an equilibrium point of the system (2) if

x̄ = f1 (x̄, x̄, ȳ, ȳ, z̄, z̄) ,

ȳ = f2 (x̄, x̄, ȳ, ȳ, z̄, z̄) ,

z̄ = f3 (x̄, x̄, ȳ, ȳ, z̄, z̄) .

The point (x̄, ȳ, z̄) is also called a fixed point of the vector map F.

Definition 2 Let (x̄, ȳ, z̄) be an equilibrium point of the system (2).
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(i) An equilibrium point (x̄, ȳ, z̄) of system (2) is called stable if, for every ε > 0,
there exists δ > 0 such that, for every initial value (xi, yi, zi) ∈ I1×I2×I3,
with

0∑
i=−1

|xi − x̄| < δ,

0∑
i=−1

|yi − ȳ| < δ,

0∑
i=−1

|zi − z̄| < δ

implying |xn − x̄| < ε, |yn − ȳ| < ε and |zn − z̄| < ε for n ∈ N.

(ii) An equilibrium point (x̄, ȳ, z̄) of system (2) is called unstable, if it is not
stable.

(iii) An equilibrium point (x̄, ȳ, z̄) of system (2) is called locally asymptotically
stable if it is stable and if, in addition, there exists γ > 0 such that

0∑
i=−1

|xi − x̄| < γ,

0∑
i=−1

|yi − ȳ| < γ,

0∑
i=−1

|zi − z̄| < γ,

and (xn, yn, zn)→ (x̄, ȳ, z̄) as n→∞.

(iv) An equilibrium point (x̄, ȳ, z̄) of system (2) is called a global attractor if
(xn, yn, zn)→ (x̄, ȳ, z̄) as n→∞.

(v) An equilibrium point (x̄, ȳ, z̄) of system (2) is called globally asymptotically
stable if it is stable and a global attractor.

Definition 3 Let (x̄, ȳ, z̄) be an equilibrium point of the map F where f1, f2 and
f3 are continuously differentiable functions at (x̄, ȳ, z̄). The linearized system of
system (2) about the equilibrium point (x̄, ȳ, z̄) is

Xn+1 = F (Xn) = BXn,

where

Xn =


xn
xn−1
yn
yn−1
zn
zn−1


and B is a Jacobian matrix of system (2) about the equilibrium point (x̄, ȳ, z̄).

Definition 4 Assume that Xn+1 = F (Xn) , n = 0, 1, · · · , is a system of dif-
ference equations such that X̄ is a fixed point of F . If no eigenvalues of the
Jacobian matrix B about X̄ have absolute value equal to one, then X̄ is called
hyperbolic. Otherwise, X̄ is said to be nonhyperbolic.

Theorem 5 (Linearized Stability Theorem [26], p.11) Assume that

Xn+1 = F (Xn) , n = 0, 1, · · · ,

is a system of difference equations such that X̄ is a fixed point of F .
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(i) If all eigenvalues of the Jacobian matrix B about X̄ lie inside the open unit
disk |λ| < 1, that is, if all of them have absolute value less than one, then
X̄ is locally asymptotically stable.

(ii) If at least one of them has a modulus greater than one, then X̄ is unstable.

Definition 6 A solution {(xn, yn, zn)}∞n=−1 of system (2) is bounded and per-
sists if there exist constants M , N such that M < N and

M < xn, yn, zn < N , n = −m,−m+ 1, · · · .

Definition 7 A positive solution {(xn, yn, zn)}∞n=−1 of system (2) is periodic
with period p if

xn+p = xn, yn+p = yp, zn+p = zn for all n ≥ −1.

2 Equilibrium Points of System (1)

This section, we find out the equilibrium points of system (1).

Theorem 8 There are two equilibrium points of system (1) which are each
elements of equilibrium points golden ratio or its conjugate. The equilibrium
points of system (1) are:

(x̄1, ȳ1, z̄1) =

(
1 +
√

5

2
,

1 +
√

5

2
,

1 +
√

5

2

)
, (3)

(x̄2, ȳ2, z̄2) =

(
1−
√

5

2
,

1−
√

5

2
,

1−
√

5

2

)
. (4)

Note that all elements of the first equilibrium point equal to 1+
√
5

2 ≈ 1. 618 which
is golden ratio.

Proof. Let xn = x̄, yn = ȳ and zn = z̄ for all n ≥ −1. Then, we obtain
following system from system (1):

x̄ = x̄ · ȳ − 1, (5)

ȳ = ȳ · z̄ − 1, (6)

z̄ = z̄ · x̄− 1. (7)

Therefore, we have easily from (5)-(7):

x =
1 +
√

5

2
, y =

1 +
√

5

2
, z =

1 +
√

5

2
,

x =
1−
√

5

2
, y =

1−
√

5

2
, z =

1−
√

5

2
.

So, the proof completed.
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3 Existence of Periodic Solutions of System (1)

In this here, we study the periodic or non-periodic solutions of system (1).
Moreover we obtain the initial values for the periodic solutions of system.

Theorem 9 There are no two periodic solutions of system (1).

Proof. Let {(xn, yn, zn)}∞n=−1 be a two periodic solution of system (1). There-
fore, x2n = a, x2n−1 = b, y2n = c, y2n−1 = d, z2n = e and z2n−1 = f for all
n ∈ N0, a, b, c, d, e, f ∈ R such that a 6= b, c 6= d and e 6= f . Hence, we have
from system (1)

x2n+1 = x2n−1y2n − 1,

x2n = x2n−2y2n−1 − 1,

y2n+1 = y2n−1z2n − 1,

y2n = y2n−2z2n−1 − 1,

z2n+1 = z2n−1x2n − 1,

z2n = z2n−2x2n−1 − 1.

Thus, we obtain the following equalities:

b = bc− 1, (8)

a = ad− 1, (9)

d = de− 1, (10)

c = cf − 1, (11)

f = fa− 1, (12)

e = eb− 1, (13)

So, we have from (8)-(13),

a = b = c = d = e = f =
1 +
√

5

2
= x̄1 = ȳ1 = z̄1,

a = b = c = d = e = f =
1−
√

5

2
= x̄2 = ȳ2 = z̄2.

Since a 6= b, c 6= d and e 6= f , this is a contradiction. The proof completed.

Theorem 10 System (1) has three periodic solutions with the initial values as

x−1 = −1, x0 = −1, y−1 = −1, y0 = −1, z−1 = −1, z0 = −1, (14)

x−1 = 0, x0 = −1, y−1 = 0, y0 = −1, z−1 = 0, z0 = −1. (15)

Proof. Let {(xn, yn, zn)}∞n=−1 be a three periodic solution of system (1). Hence,
x−1 = a, x0 = b, y−1 = c, y0 = d, z−1 = e and z0 = f for all n ∈ N0,
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a, b, c, d, e, f ∈ R. Therefore, we obtain that:

x1 = x−1y0 − 1 = ad− 1

y1 = y−1z0 − 1 = cf − 1

z1 = z−1x0 − 1 = ea− 1

x2 = x0y1 − 1 = b(cf − 1)− 1 = a (16)

y2 = y0z1 − 1 = d(ea− 1)− 1 = c (17)

z2 = z0x1 − 1 = f(ad− 1)− 1 = e (18)

x3 = x1y2 − 1 = (ad− 1)c− 1 = b (19)

y3 = y1z2 − 1 = (cf − 1)e− 1 = d (20)

z3 = z1x2 − 1 = (ea− 1)a− 1 = f (21)

Thus, we have four cases from solutions of system of equations (16)-(21):

a = b = c = d = e = f = −1, (22)

a = 0, b = −1, c = 0, d = −1, e = 0, f = −1, (23)

a = b = c = d = e = f =
1 +
√

5

2
, (24)

a = b = c = d = e = f =
1−
√

5

2
. (25)

(22) and (23) are three periodic solutions but the other cases aren’t periodic
solutions. Because they are equilibrium solutions. The proof completed.

Remark 11 From (14) and (15), three periodic cycle of system (1) is

{· · · , (−1,−1,−1) , (0, 0, 0), (−1,−1,−1), (−1,−1,−1), · · · } .

Proof. We take the initial values are x−1 = 0, x0 = −1, y−1 = 0, y0 = −1, z−1 =
0, z0 = −1. Therefore, we obtain the followings:

x1 = x−1y0 − 1 = 0 · (−1)− 1 = −1,

y1 = y−1z0 − 1 = 0 · (−1)− 1 = −1,

z1 = z−1x0 − 1 = 0 · (−1)− 1 = −1,

x2 = x0y1 − 1 = (−1) · (−1)− 1 = 0,

y2 = y0z1 − 1 = (−1) · (−1)− 1 = 0,

z2 = z0x1 − 1 = (−1) · (−1)− 1 = 0,

x3 = x1y2 − 1 = (−1) · 0− 1 = −1,

y3 = y1z2 − 1 = (−1) · 0− 1 = −1,

z3 = z1x2 − 1 = (−1) · 0− 1 = −1.

Hence, system (1) has three periodic cycle as:

{· · · , (−1,−1,−1) , (0, 0, 0), (−1,−1,−1), (−1,−1,−1), · · · } .
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4 Boundedness of System (1)

During this section we study the bounded or unbounded solutions of system (1).

Theorem 12 Let xi, yi, zi ∈ (−1, 0) for i ∈ {−1, 0}, then the solutions of sys-
tem (1) are such that xn, yn, zn ∈ (−1, 0) for n ≥ −1.

Proof. Let xi, yi, zi ∈ (−1, 0) for i ∈ {−1, 0}. Thus we obtain from System (1):

x1 = x−1y0 − 1 ∈ (−1, 0),

y1 = y−1z0 − 1 ∈ (−1, 0),

z1 = z−1x0 − 1 ∈ (−1, 0).

Therefore, we have by induction

xn = xn−2yn−1 − 1 ∈ (−1, 0),

yn = yn−2zn−1 − 1 ∈ (−1, 0),

zn = zn−2xn−1 − 1 ∈ (−1, 0)

for n ≥ −1. The proof is completed.

Theorem 13 Let the initial values x−1, x0, y−1, y0, z−1, z0 < −1. Then

x1, y1, z1 > 0,

x2, y2, z2 < −1,

x3, y3, z3 < −1.

Proof. Let the initial values x−1, x0, y−1, y0, z−1, z0 < −1. We have from
System (1):

x1 = x−1y0 − 1 > 0.

Calculations of y1, z1, x2, y2, z2, x3, y3, z3 are similar to x1, so we leave them to
the readers.

Theorem 14 Let {(xn, yn, zn)}∞n=−1 be a solution of system (1). Then,

xn+3 − yn = (yn+2 + 1) (zn+1 + 1)− (xn+1 + 1) (yn + 1) , (26)

yn+3 − zn = (zn+2 + 1) (xn+1 + 1)− (yn+1 + 1) (zn + 1) , (27)

zn+3 − xn = (xn+2 + 1) (yn+1 + 1)− (zn+1 + 1) (xn + 1) . (28)

7
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Proof. Let {(xn, yn, zn)}∞n=−1 be a solution of system (1). Hence, we have from
system (1) and by some calculations:

xn+3 − yn = (xn+1yn+2 − 1)− yn
= xn+1 (ynzn+1 − 1)− 1− yn
= xn+1ynzn+1 − xn+1 − 1− yn
= xn+1yn (zn−1xn − 1)− xn+1 − 1− yn
= xn+1ynzn−1xn − xn+1yn − xn+1 − 1− yn
= xn+1ynzn−1xn − xn+1 (yn + 1)− (yn + 1)

= xn+1ynzn−1xn − zn−1xn + zn−1xn − (yn + 1) (xn+1 + 1)

= zn−1xn (xn+1yn − 1) + zn−1xn − (yn + 1) (xn+1 + 1)

= zn−1xn (yn+2 + 1)− (yn + 1) (xn+1 + 1)

= zn−1xn (yn+2 + 1)− (yn+2 + 1) + (yn+2 + 1)− (yn + 1) (xn+1 + 1)

= (yn+2 + 1) (zn−1xn − 1) + (yn+2 + 1)− (yn + 1) (xn+1 + 1)

= (yn+2 + 1) zn+1 + (yn+2 + 1)− (yn + 1) (xn+1 + 1)

= (yn+2 + 1) (zn+1 + 1)− (xn+1 + 1) (yn + 1) .

Because proofs of (27) and (28) are similar to (26), we leave them to the readers.

Theorem 15 Let {(xn, yn, zn)}∞n=−1 be a solution of system (1). Let the initial
values x−1, x0, y−1, y0, z−1, z0 < −1. Then the following statements are true:

(i)

0 < x1 < z4 < y7 < · · · < x9k+1 < z9k+4 < y9k+7 < · · · ,
0 < y1 < x4 < z7 < · · · < y9k+1 < x9k+4 < z9k+7 < · · · ,
0 < z1 < y4 < x7 < · · · < z9k+1 < y9k+4 < x9k+7 < · · · ,
−1 > x2 > z5 > y8 > · · · > x9k+2 > z9k+5 > y9k+8 > · · · ,
−1 > y2 > x5 > z8 > · · · > y9k+2 > x9k+5 > z9k+8 > · · · ,
−1 > z2 > y5 > x8 > · · · > z9k+2 > y9k+5 > z9k+8 > · · · ,
−1 > x3 > z6 > y9 > · · · > x9k+3 > z9k+6 > y9k+9 > · · · ,
−1 > y3 > x6 > z9 > · · · > y9k+3 > x9k+6 > z9k+9 > · · · ,
−1 > z3 > y6 > x9 > · · · > z9k+3 > y9k+6 > z9k+9 > · · · .

(ii)
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lim
n→∞

x9n+1 =∞, lim
n→∞

x9n+4 =∞, lim
n→∞

x9n+7 =∞,
lim
n→∞

y9n+1 =∞, lim
n→∞

y9n+4 =∞, lim
n→∞

y9n+7 =∞,
lim
n→∞

z9n+1 =∞, lim
n→∞

z9n+4 =∞, lim
n→∞

z9n+7 =∞,
lim
n→∞

x9n+2 = −∞, lim
n→∞

x9n+5 = −∞, lim
n→∞

x9n+8 = −∞,
lim
n→∞

y9n+2 = −∞, lim
n→∞

y9n+5 = −∞, lim
n→∞

y9n+8 = −∞,
lim
n→∞

z9n+2 = −∞, lim
n→∞

z9n+5 = −∞, lim
n→∞

z9n+8 = −∞,
lim
n→∞

x9n+3 = −∞, lim
n→∞

x9n+6 = −∞, lim
n→∞

x9n+9 = −∞,
lim
n→∞

y9n+3 = −∞, lim
n→∞

y9n+6 = −∞, lim
n→∞

y9n+9 = −∞,
lim
n→∞

z9n+3 = −∞, lim
n→∞

z9n+6 = −∞, lim
n→∞

z9n+9 = −∞.

Proof.

(i) Let {(xn, yn, zn)}∞n=−1 be a solution of system (1). Let the initial values
x−1, x0, y−1, y0, z−1, z0 < −1. Therefore, we know the followings from
Theorem 13

x1, y1, z1 > 0,

x2, y2, z2 < −1,

x3, y3, z3 < −1.

Firstly we consider (26) for n = 1. Thus we have

x4 − y1 = (y3 + 1) (z2 + 1)− (x2 + 1) (y1 + 1) .

Since y3, z2, x2 < −1 and y1 > 0, we obtain that

x4 − y1 > 0⇒ x4 > y1.

So x4 > y1 > 0 and similarly y4 > z1 > 0 and z4 > x1 > 0.

Now we take n = 2 for (26), therefore we get

x5 − y2 = (y4 + 1) (z3 + 1)− (x3 + 1) (y2 + 1) .

Because of y4 > 0 and x3, z3, y2 < −1, we have

x5 − y2 < 0⇒ x5 < y2.

Hence we obtain x5 < y2 < −1 and y5 < z2 < −1, z5 < x2 < −1 similarly.
Next we get (26) for n = 3. We attain that

x6 − y3 = (y5 + 1) (z4 + 1)− (x4 + 1) (y3 + 1)

= (y3z4 − 1 + 1) (z4 + 1)− (x2y3 − 1 + 1) (y3 + 1)

= y3z
2
4 + y3z4 − x2y23 − x2y3

9
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From y3, x2 < −1, we have

x6 − y3 < −z24 +−z4 + y23 + y3

= (y3 − z4) (y3 + z4 + 1)

From y3 < −1, we obtain

x6 − y3 < (y3 − z4) z4 < 0.

So we get x6 < y3 < −1 and similarly y6 < z3 < −1 and z6 < x3 < −1.
Now we take (26) for n = 4. We obtain that

x7 − y4 = (y6 + 1) (z5 + 1)− (x5 + 1) (y4 + 1) .

Since y6, z5, x5 < −1 and y4 > 0, we have x7 − y4 > 0 and x7 > y4 > z1 > 0.
Therefore we get y7 > z4 > x1 > 0 and z7 > x4 > y1 > 0.
We consider (26) for n = 5. We have that

x8 − y5 = (y7 + 1) (z6 + 1)− (x6 + 1) (y5 + 1) .

Thus we obtain following

x8 − y5 < 0⇒ x8 < y5 < z2 < −1.

from y7 > 0 and z6, x6, y5 < −1. Similarly we get y8 < z5 < x2 < −1 and
z8 < x5 < y2 < −1.
We take (26) for n = 6. We have

x9 − y6 = (y8 + 1) (z7 + 1)− (x7 + 1) (y6 + 1) < 0

from y8, y6 < −1 and z7, x7 > 0. Thus we obtain x9 < y6 < z3 < −1, y9 < z6 <
x3 < −1 and z9 < x6 < y3 < −1.
Now we consider (26) for n = 7. Hence we obtain

x10 − y7 = (y9 + 1) (z8 + 1)− (x8 + 1) (y7 + 1) > 0

from y9, z8, x8 < −1 and y7 > 0. So we have x10 > y7 > z4 > x1 > 0,
y10 > z7 > x4 > y1 > 0 and z10 > x7 > y4 > z1 > 0.
Finally we obtain the followings by induction

0 < x1 < z4 < y7 < · · · < x9k+1 < z9k+4 < y9k+7 < · · · ,
0 < y1 < x4 < z7 < · · · < y9k+1 < x9k+4 < z9k+7 < · · · ,
0 < z1 < y4 < x7 < · · · < z9k+1 < y9k+4 < x9k+7 < · · · ,
−1 > x2 > z5 > y8 > · · · > x9k+2 > z9k+5 > y9k+8 > · · · ,
−1 > y2 > x5 > z8 > · · · > y9k+2 > x9k+5 > z9k+8 > · · · ,
−1 > z2 > y5 > x8 > · · · > z9k+2 > y9k+5 > z9k+8 > · · · ,
−1 > x3 > z6 > y9 > · · · > x9k+3 > z9k+6 > y9k+9 > · · · ,
−1 > y3 > x6 > z9 > · · · > y9k+3 > x9k+6 > z9k+9 > · · · ,
−1 > z3 > y6 > x9 > · · · > z9k+3 > y9k+6 > z9k+9 > · · · .

Therefore the proof completed as desired.
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(ii)

x9n+1 = x9n−1y9n − 1

= (x9n−3y9n−2 − 1) (y9n−2z9n−1 − 1)− 1

= x9n−3y
2
9n−2z9n−1 − x9n−3y9n−2 − y9n−2z9n−1

We have from x9n−3y
2
9n−2z9n−1 > 0 and x9n−3y9n−2 < 0,

x9n+1 > −y9n−2z9n−1.

From z9n−1 < −1, we obtain

x9n+1 > y9n−2 = y9n−4z9n−3 − 1

= y9n−4 (z9n−5x9n−4 − 1)− 1

= y9n−4z9n−5x9n−4 − y9n−4 − 1.

From y9n−4 < −1 and y9n−4x9n−4 > 1 we have

x9n+1 > y9n−4z9n−5x9n−4 > z9n−5

= z9n−7x9n−6 − 1

= z9n−7 (x9n−8y9n−7 − 1)− 1

= z9n−7x9n−8y9n−7 − z9n−7 − 1.

Thus we get from z9n−7 < −1 and y9n−7 < −1

x9n+1 > z9n−7x9n−8y9n−7 > x9n−8.

So lim
n→∞

x9n+1 =∞. Since the proof of the other cases are similar to this,
we leave them to readers.

5 Stability of System (1)

Throughout this section we investigate the stability of system (1).
Now, we take into account the transformation to set up the linearized form

of system (1):

(xn, xn−1, yn, yn−1, zn, zn−1)→ (f, f1, g, g1, h, h1) ,

where 
f = xn−1yn − 1,

f1 = xn,
g = yn−1zn − 1,

g1 = yn,
h = zn−1xn − 1,

h1 = zn.

 .
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Thus, we obtain the Jacobian matrix about the equilibrium point (x̄, ȳ, z̄):

B (x̄, ȳ, z̄) =


0 ȳ x̄ 0 0 0
1 0 0 0 0 0
0 0 0 z̄ ȳ 0
0 0 1 0 0 0
z̄ 0 0 0 0 x̄
0 0 0 0 1 0

 . (29)

Theorem 16 The equilibrium point (x̄1, ȳ1, z̄1) =
(
1+
√
5

2 , 1+
√
5

2 , 1+
√
5

2

)
of sys-

tem (1) is locally unstable.

Proof. Linearized system of system (1) about the equilibrium point (x̄1, ȳ1, z̄1) =(
1+
√
5

2 , 1+
√
5

2 , 1+
√
5

2

)
is Xn+1 = B (x̄, ȳ, z̄)Xn where

Xn = ((xn, xn−1, yn, yn−1, zn, zn−1))
T

and

B (x̄, ȳ, z̄) = B

(
1 +
√

5

2
,

1 +
√

5

2
,

1 +
√

5

2

)

=



0 1+
√
5

2
1+
√
5

2 0 0 0
1 0 0 0 0 0

0 0 0 1+
√
5

2
1+
√
5

2 0
0 0 1 0 0 0

1+
√
5

2 0 0 0 0 1+
√
5

2
0 0 0 0 1 0


Therefore, the characteristic equation ofB (x̄, ȳ, z̄) about (x̄1, ȳ1, z̄1) =

(
1+
√
5

2 , 1+
√
5

2 , 1+
√
5

2

)
is

λ6 −
(

3 + 3
√

5

2

)
λ4 +

(
2 +
√

5
)
λ3 +

(
9 + 3

√
5

2

)
λ2 − 2−

√
5 = 0. (30)

Then, six roots of (30) are

λ1 ≈ −2.31651,

λ2 ≈ −0.757501− 0.456732i,

λ3 ≈ −0.757501 + 0.456732i,

λ4 ≈ 0.698478,

λ5 ≈ 1.56652− 0.944526i,

λ6 ≈ 1.56652 + 0.944526i.

Thus,
|λ4| < |λ2| = |λ3| < 1 < |λ5| = |λ6| < |λ1| .
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Hence, the first equilibrium point of system (1) is locally unstable from linearized
stability theorem.

Theorem 17 The equilibrium point (x̄2, ȳ2, z̄2) =
(
1−
√
5

2 , 1−
√
5

2 , 1−
√
5

2

)
of sys-

tem (1) is locally unstable.

Proof. Linearized system of system (1) about the equilibrium point (x̄2, ȳ2, z̄2) =(
1−
√
5

2 , 1−
√
5

2 , 1−
√
5

2

)
is Xn+1 = B (x̄, ȳ, z̄)Xn where

Xn = ((xn, xn−1, yn, yn−1, zn, zn−1))
T

and

B (x̄, ȳ, z̄) = B

(
1−
√

5

2
,

1−
√

5

2
,

1−
√

5

2

)

=



0 1−
√
5

2
1−
√
5

2 0 0 0
1 0 0 0 0 0

0 0 0 1−
√
5

2
1−
√
5

2 0
0 0 1 0 0 0

1−
√
5

2 0 0 0 0 1−
√
5

2
0 0 0 0 1 0


Therefore, the characteristic equation ofB (x̄, ȳ, z̄) about (x̄2, ȳ2, z̄2) =

(
1−
√
5

2 , 1−
√
5

2 , 1−
√
5

2

)
is

λ6 +

(
−3 + 3

√
5

2

)
λ4 +

(
−2 +

√
5
)
λ3 +

(
9− 3

√
5

2

)
λ2 − 2 +

√
5 = 0 (31)

Hence, we have six roots of (31):

λ1 ≈ −0.309017− 0.722871i,

λ2 ≈ −0.309017 + 0.722871i,

λ3 ≈ 0.10393− 0.549903i,

λ4 ≈ 0.10393 + 0.549903i,

λ5 ≈ 0.205087− 1.08514i,

λ6 ≈ 0.205087 + 1.08514i.

From these we obtain that

|λ3| = |λ4| < |λ1| = |λ2| < 1 < |λ5| = |λ6| .

So, the second equilibrium point of system (1) is locally unstable from linearized
stability theorem.
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6 Conclusion

In this paper, we investigate the equilibrium points of system (1). Moreover
we find out the periodic solutions of system (1) with three period. We also
study the bounded or unbounded solutions of system (1). Finally, we analyze
the stability of solutions of system (1) both the two equilibrium points.

References

[1] Liu K, Li P, Han F, Zhong W. Behavior of the Difference Equations x n+
1= x n x n-1-1. J. Comput. Anal. Appl. 2017; 2017 22 (7), pp. 1361-1370.
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[20] Taşdemir E, Soykan Y. Long-Term Behavior of Solutions of the Non-Linear
Difference Equation xn+1 = xn−1xn−3− 1. Gen. Math. Notes 2017; 38 (1),
pp. 13-31.
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