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Abstract

In this paper, we investigate the equilibrium points of following a system of
difference equations z,4+1 = Tp 2Yn — L, Ynt1 = Yn 2T, — 1. We also study the
asymptotic stability of related system of difference equations. Further we examine
the periodic solutions of related system with period two. Additionally, we find out
the invariant interval and periodic cycles of related system of difference equations.
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1. INTRODUCTION

Difference equations and their systems play a crucial role in different fields of
science. Many scientific fields need mathematical models to interpret their results.
Especially mathematical models via discrete variables are related to this topic.
For the last decades, many scientists have studied stability of equilibrium points,
periodicity and boundedness of difference equations or their systems. There are
many paper related to difference equations and their systems for examples:

Kent et al, in [8], studied long-term behaviours of solutions of difference equation

LTn+l = Tpdn—-1 — 1.

Moreover, in [27], Wang et al and in [16], Liu et al examined convergence of
solutions of related difference equation about equilibrium points.

In [10], Kent et al investigated the periodicity of solutions, existence of bounded
or unbounded of solutions and stability of solutions of difference equation

Tntl = Tp_1Tp—2 — L.
Kent et al, in [11], studied the periodicity, stability and unbounded solutions of
difference equation
Tptl = TpTp—2 — 1.

Further, there are many books and papers related to dynamical systems, see [1]
- [27].

In this paper, we investigate the equilibrium points of following a system of
difference equations

(1.1) Tpt1l = Tpn—2Yn — L, Ynt1 = Yn—oxy — 1, n=0,1, ...,
1
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where all initial values are real numbers. We also study the asymptotic stability of
related system of difference equations. Furthermore, we examine the existence of
periodic solutions of related system.

From here to the end of this section, we show useful definitions and theorems
which are used during this study.

Firstly, let us introduce discrete dynamical system of the form
(1.2)
Tpt+1 = f (:Un, Tn—1,Tn—-2,Yn,Yn—1, yn72) s UYn+1 = G (:Un, Tn—1,Tn—-2,Yn,Yn—1, yn72) ;

n=0,1,.., where f : I? x J> — I and ¢ : I? x J®> — J are continuously dif-
ferentiable functions and I, J are some intervals of real numbers. Moreover, a
solution {(zy,yn)}r—_; of system (1.2) is uniquely determined by initial values
<$izyi) el xJforie {—1,0}.

Definition 1. Along with the system (1.2), we consider the corresponding vector
map F ={f,%n,Tn-1,9,Yn,Yn—1}. A point (Z,7) is called an equilibrium point of
the system (1.2) if

The point (Z,7) is also called a fized point of the vector map F.

Definition 2. Let (Z,7) be an equilibrium point of the system (1.2).

(1): An equilibrium point (T,q) of system (1.2) is called stable if, for every
e > 0, there exists § > 0 such that, for every initial value (x—;,y—;) € I xJ,
with

0 0
Z |£L‘i—.’f|<(5, Z |yi—g|<(5,

i=—1 i=—1

implying |z, — Z| < e and |y, — y| < e forn € N.

(ii): An equilibrium point (Z,y) of system (1.2) is called unstable, if it is not
stable.

(iii): An equilibrium point (Z,q) of system (1.2) is called locally asymptotically
stable if it is stable and if, in addition, there exists v > 0 such that

0 0
olwi—z <y > lwi—ul <

1=—1 1=—1

and (Tp,Yyn) — (Z,7) as n — co.

(iv): An equilibrium point (Z,7) of system (1.2) is called a global attractor if
(TnyYn) — (ZT,7) as n — oo.

(v): An equilibrium point (T,y) of system (1.2) is called globally asymptoti-
cally stable if it is stable and a global attractor.

Definition 3. Let (Z,7) be an equilibrium point of the map F where f and g are
continuously differentiable functions at (Z,4). The linearized system of system (1.2)
about the equilibrium point (Z,q) is

Xp1 = F(X,) = BX,,
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where
Tn

Tp—1

Tpn—2
X, = "
" Yn

Yn—1

Yn—2
and B is a Jacobian matriz of system (1.2) about the equilibrium point (Z, 7).
Definition 4. Assume that X,,11 = F (X,,),n=0,1,--- | is a system of difference
equations such that X is a fived point of F. If no eigenvalues of the Jacobian matriz
B about X have absolute value equal to one, then X is called hyperbolic. Otherwise,
X is said to be nonhyperbolic.

Theorem 1 (Linearized Stability Theorem [12], p.11). Assume that
XnJrl :F(Xn)anzoala P
is a system of difference equations such that X is a fized point of F.

(i): If all eigenvalues of the Jacobian matriz B about X lie inside the open
unit disk |\ < 1, that is, if all of them have absolute value less than one,
then X is locally asymptotically stable.

(ii): If at least one of them has a modulus greater than one, then X is unstable.

2. EQUILIBRIUM POINTS OF SYSTEM (1.1)
In this here, we examine the equilibrium points of System (1.1).

Theorem 2. System (1.1) has two equilibrium points such that

o 1-v5 1-+5
(T1,51) = ( >,

2 2
o 1+v5 1+5
(9027?42) = ( 9 2 )

Since 1+T‘/5 ~ 1.618, the elements of second equilibrium point is equal to the Golden
Ratio.

Proof. We can easily seen for the equilibrium points of system (1.1):
T = z-9—1,

y = y-z—1

<

From this system, we obtain

Thus
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So we finished the proof as desired. O
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3. EXISTENCE OF PERIODIC AND BOUNDED SOLUTIONS OF SYSTEM (1.1)

In this section, we investigate the periodic behaviours of solutions of System
(1.1). Firstly we find out the two periodic solutions of System (1.1). Further, we
determine existence of bounded of solutions of System (1.1). Moreover we study
the periodic cycles of solutions of System (1.1).

Theorem 3. System (1.1) has periodic solutions with period two.

Proof. Assume that system (1.1) has two periodic solutions. Thus we have for
n > 0:

(3.1) Top = G, Tan—1 = b, Yon = C,Yon—1 = d,

where a # b and ¢ # d. Hence we get from system (1.1) and (3.1):

(3.2) Top = Toap—3Yon—1—1=>a=>b-d—1,
(3.3) Yom = YonsTom1—l=>c=d-b—1,
(3.4) Toptl = Top—oYon —1=>b=a-c—1,
(3.5) Yo+l = Yon—2Top —1=>d=c-a—1.

Therefore we obtain from (3.2)-(3.3) @ = ¢ and similarly from (3.4)-(3.5) b = d.
According to these, we can write the following equations:

(3.6) a = b -1,

(3.7) b = a®—1.

Now, we write (3.7) into (3.6). Thus we have the following:

a=(a*-1)*-1.

When this equation rearrange, we obtain that

(3.8) ala+1)(a®* —a—1)=0.

From this we obtain the four roots of (3.8) as

= 0’
~1,
1—
2

1+
2

If a =0 or a = —1, then System (1.1) has two periodic cycle such as

{<xmyn)} = { e 7(_17 _1)) (070)7 (_17 _1)7 T } .

Since the other values of a are equal to elements of eqilibrium points, they are
equilibrium solutions. So, the proof completed as desired. ([

E

=)
Il
I

8l
—
Il

|
—

S

a =

Il

=l
[\v]

Il
<
[\v)

Now we investigate the invariant interval of System (1.1).

Theorem 4. If the initial values are in (—1,0) then all solutions of System (1.1)
are bounded from below and above.
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Proof. We assume the initial values of System (1.1) z_o,2_1,%0,Y—2,Y—1,Y0 €
(—1,0). Hence we have from System (1.1):

T = z_2yo—1€(-1,0),
y1 = y_awo— 1€ (-1,0),
Ty = z_y1—1€(-1,0),
y2 = y_1xz1—1€(—=1,0)
From these and by induction, we obtain that x,,y, € (—1,0) for all n > 1. a

Remark 1. There are two equations corresponding to the odd and even arguments
of x, and y, such that

Unp+1 = Up-—1 (unvnflun72 — Up — un72) 5
Un+1 = Upn-1 ('Unun—lvn—Q — Un — 'Un—2) .

Firstly we discuss the odd terms of x,,. Hence we have from System (1.1):

Ton+s = TopYon—2 — 1
Tonts = (Tan-3Y2n-1— 1) (Y2n—1T2n41 — 1) — 1
(3~9) Tan4+3 = Y2n-1 (x2n73y2n71-732n+1 — T2p4+1 — 9C2n73) .
Similarly we can write the even terms of x,, and the odd and even terms of y, as
follows:
<3~10) Tant+4 = Yz2n (-’L‘2n7292n-752n+2 — Tont2 — 9U2n72) ,
(3.11) Yonts = Zon—1(Y2n—3T2m—1Y2n+1 — Y2n+1 — Y2n—3)
(3.12) Yonta = Ton (Y2n—2%2nY2n+2 — Y2nt2 — Y2n-2) -

Therefore Ton+1 and xonyo satisfy the following equation
(3.13) Unt1 = Un—1 (UnVUp—1Un—2 — Up — Up—2)
where n € N and u,, v, € (—1,0).

Likewise yant1 and yont2 satisfy the equation
(3.14) VUpt1 = Up—1 (VpUp_1Un_2 — Uy — Up_2)

where n € N and u,, v, € (—1,0).
From (3.13) and (3.14), we obtain the following eight equilibrium points:

(5% = ’U1=—1,

g = vy =0,

uz = 17321_\/3
2 )

) _14+V5

Ug = Vg = B) .

Now we take the f and g functions corresponding to (3.13) and (3.14) respectively:
f(u,v,w) =g (u,v,w) =w (uwv —u —v).
where u,v,w € (—1,0). Then we obtain the followings:

fu = gu:wQU_w>07

fo Go = w2u —w > 0,
fo = gw=2uvw—u—v>0.
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So, the f and g functions are strictly increasing in each argument.

Theorem 5. Let the initial values be in (—1,0).
(H1): 2 o <@y, 21> T1, 39 < T1, Y—2 < 1, Yy—1 > §1 and yo < 71.
(H2): 2 2>, 21 <Z1, To > T1, Y2 > Y1, Y—1 < J1 and Yo > Y1
(a): If (H1) holds then there is an N € Ny such that Ton 1 > T1, Tanta < T1,

Yont+1 > Y1 and Yani2 < U1.
(b): If (H2) holds then there is an N € Ny such that Top41 < ZT1, Tant2 > T1,

Y2n+1 < Y1 and Yapy2 > Y1-

Proof. According to Theorem 4, if the initial values z_o,x_1,%0,y_2,y_1,Y0 €
(—1,0) then we have z,,y, € (—1,0) for all n > 1. As the proof of (b) is similar to
(a), we will prove only (a). From (H1), we have —1 < x_9,20,y—2,% < T1 = ¥1.
So we obtain that

T, = $,2y0—1>i’?—1:f1,

Y= yoaro—1>7 —1=71.
Hence we have that 1 < z; <0, g1 < y1 < 0. From (H1), we get 1 < x_1 < 0,
71 < y—1 < 0. Therefore we obtain the followings:

Ty = x_1y1—1<§3§—1:a§1,
Yo = y_1x171<§371:371.
So, by induction we obtain that
Tokts = TopYoksz — 1> T — 1 =74,
Tog+a = Toky1Yorts — 1 < —1=2a4,
Yokts = YokToks2 — 1> — 1 =1,
Yokt = Yoki1@2kts — 1 <Pi—1=71.
Therefore the proof completed. O

Theorem 6. Suppose that x_2,x_1,%Z0,Y—2,Y-1,Y0 € (—=1,0) and (H1) or (H2)
hold. Then both {z,},~ _, and {y,}.-_, converge to a two-cycle {—1,0}.

Proof. Firstly, from Theorem 4, we know that x,,y, € (—1,0), for n > 1.

(a): Iffor some N > —1, u, > @3 forn > N then (u,),-_, of (3.13) converges
to ug = 0 where u,, € (—1,0) = (41, az) for n > —1.
(b): If for some N > —1, u,, < @iz forn > N then (u,), ., of (3.13) converges
to w3 = —1 where u,, € (—1,0) = (41, us) for n > —1.
(c): If for some N > —1, v, > v3 for n > N then (v,,),—_; of (3.14) converges
to U9 = 0 where v, € (—=1,0) = (91, 02) for n > —1.
(d): If for some N > —1, v,, < 03 for n > N then (v,),— ; of (3.14) converges
to 9 = —1 where v,, € (—=1,0) = (v1,02) for n > —1.
Now we will prove (a). The proofs of (b), (c) and (d) are similar to (a), so we
leave it to readers.
We know from Theorem 5:

(315) Uy € (ﬂg,’L_LQ),Tl Z N.

Let I = lim infu, and S = lim supwu,. Hence we get u3 < I < S <y =0.

n—00 n—00
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We assume that I = @z. From (3.15), there is an € > 0 such that
I+e<un,uny1,unt2 < Us.
Since f is a monotonic function, we can write
(3.16) f(z,z,x) > x for x € (u3, Uz).
Hence we get
un+3 = f(unt2,unt1,un) > f(I+e, I +e,I+¢e)>1+e.

Therefore we obtain by induction u,, > I +&,n > N. And so lim infu, > I + €.

n—oo

It is a contradiction.
We assume that [ € (u3,uz). Let (un, ),y be a subsequence of (uy,),__; such
that klirn Up, = I. Thus we can denote the subsequences such that there are limits:
—00

o0

lim ty, 1 = K_1, im u,, 2 = K_5 and lim w,, 5 = K_3. From (3.16), we have
k—oo k—o0 k—oo

f(K-1, Ko, K_3) =1 < f(I,1,I).

Hence there is an ig € {1,2,3} such that K_;, < I. Otherwise, K_;, > I for
1 =1,2,3 and monotonicity of f we have

f(IaIa‘[) Sf(K—laK—Q,K—3) :I<f(I,I,I)

This is a contradiction. On the other hand, if K_;, < I then it contradicts the

choice of I. So I cannot be in (@3, @s2). Therefore we obtain 4y < I < S < @g.

Hence lim u,, = @iz = 0. The proof of (a) is completed. O
n—oo

Example 1. Consider the System (1.1) with the initial values x_o = —0.9,2_1 =
—0.2,29 = —0.7,y_2 = —0.8,y_1 = —0.3 and yo = —0.9. Then System (1.1) is
bounded from below and above. Moreover, the solutions of System (1.1) converges
to a two periodic cycle {—1,0} such as Theorem 6. We can easily see the followings:

lim z9, = —1, lim 29,41 =0, lim y9, = —1, lim yo,41 = 0.
n—o0 n—oo n—oo n—oo

—_—

06 [ — Yn

FIGURE 1. The plot of System (1.1) with z_5 = —0.9, z_; = —0.2,
zog=—0.7, y_2 = —0.8, y_1 = —0.3 and yo = —0.9.
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4. STABILITY ANALYSIS OF SYSTEM (1.1)

This section, we study the stability of System (1.1). Moreover, we determine
that both negative and positive equilibrium points of System (1.1) are unstable.

Theorem 7. Equilibrium point (T1,%1) of System (1.1) is locally unstable.

Proof. Firstly we study linearized form of System (1.1). For this, we consider the
transformation:

(xmxn—17$n—2aymyn—17yn—2) - (f7 fla f27gaglag2) )

where
f = @Tnooy,—1,
i = zn,
fo = Tnou,
g = Yn-2tn—1
g1 = Yn,
92 = Yn-1-
Therefore we have the Jacobian matrix about equilibrium point (Z,y):
00y z 00
10 0 0 0 O
01 0 0 0O
B@o)=| 3000 0 z
00 0 1 00
00 0 010

Thus, the linearized system about the equilibrium point (Z,7) = (1*‘/5 1*‘/5) is
XN+1 - B(i'vg)Xn where Xn = ((mnaxnfla xn727ynayn717ynf2))T and

0 0 1*7\/3 1*7\/5 0 0

1 0 0 0 0 0

0 1 0 0 0 0

B(Z,7
(@9) Y5 g 0 0 0 155

0 0 0 1 0 0

0 0 0 0 1 0
So, the characteristic equation of B(Z,7) is

5-3 3—+5
(4.1) >\6+<\[2) >\4+<\/5—1)>\3+T\[:0.
Hence, we have six roots of Eq.(4.1):
Ai| = |—1.11508| = 1.11508,

|A2.3| = [0.248524 4 0.701773i| = 0.744 48,
[As 5] = [0.65298 + 0.687037i| = 0.947 84,
|A¢| = |—0.687925| = 0.687925.

Due to
A1l > 1> [Ags] > [A23] > [ Xl
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and from linearized stability theorem, five roots of the characteristic equation lie
inside the unit disk but the other root lie outside the unit disk. So, the negative
equilibrium of System (1.1) is locally unstable. O

Theorem 8. FEquilibrium point (ZT2,y2) of System (1.1) is locally unstable.

Proof. Firstly we study linearized form of System (1.1). For this, we consider the
transformation:

(90m$n71,93n727ymyn71,yn72) - <f7 fla f2ag7gla92) )

where
[ = Tnooyn—1,
i =
fo = Tpoa,
9 = Yn-2Tn—1,
g1 = Yn,
92 = Yn-1.
Therefore we have the Jacobian matrix about equilibrium point (Z, 3):
00y T 00
1 0 0 0 0 O
01 0 00O
B@Eo=15000 0 =
00 0 100
00 0 010

Thus, the linearized system about the equilibrium point (Z,§) = (14‘2“/5, 1+2‘/5) is
XN+1 - B(i'v g)Xn where Xn = ((Z‘n, Tn—1yTn—-2sYn>Yn—1, ynf2))T and

0 0 1+/5  14+V5 0 0

2 2
1 0 o0 0 0 0
0 1 0 0 0 0
B(i‘a _) =
1+2\/5 0 0 0 0 1+2\/5
0 0 0 1 0 0
0 0 0 0 1 0
So, the characteristic equation of B(Z,y) is
543 3 )
(4.2) )\6—<\[2+> )\4—<1+\/3))\3+%[:0.
Hence, we have four roots of Eq.(4.2):
Ml = |A2] =|—1.21673 4 0.709835¢| = 1.4087,
sl = |Aal =[—0.199036 + 0.873464i| = 0.895 85,
As| = ]0.815421] = 0.815421,
| = [2.01611] = 2.01611.

Because of
As] < [As] = [A] <1 <|A1| = [A2| < |Ael,
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and from linearized stability theorem, three roots of the characteristic equation lie
inside the unit disk but the other roots lie outside the unit disk. So, the positive
equilibrium of System (1.1) is locally unstable. O

5. CONCLUSION

In this study, we determine the equilibrium points of System (1.1). We also
examine the periodicity of solutions of System (1.1) with period two. Moreover
we present that if the initial values of System (1.1) are in (—1,0) then solutions of
System (1.1) are both bounded and converge to a two periodic cycle {—1, 0}.
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