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Abstract: We consider a model of predator-prey interaction at fractional-order where the predation
obeys the ratio-dependent functional response and the prey is linearly harvested. For the proposed
model, we show the existence, uniqueness, non-negativity as well as the boundedness of the solutions.
Conditions for the existence of all possible equilibrium points and their stability criteria, both locally and
globally, are also investigated. The local stability conditions are derived using the Magtinon’s theorem,
while the global stability is proven by formulating an appropriate Lyapunov function. The occurance
of Hopf bifurcation around the interior point is also shown analytically. At the end, we implement the
Predictor-Corrector scheme to perform some numerical simulations.
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1. Introduction

One of interesting topics in ecological systems is the predator-prey model, which studies the dynamics
of the populations as the extinction conditions of populations, and terms of its existence as the result of
their interaction [1]. The famous predator-prey model was introduced by Rosenzweig and MacArthur [2]
which was modified from the first predator-prey model by Lotka-Volterra [3]. This model is given by:

du
dt

= ru
(

1− u
K

)
−mp(u)v

dv
dt

= np(u)v− dv
(1)

where p(u) =
u

ω + u
is the Michaelis-Menten functional response [2]. We respectively denote the

population of prey and predator by u and v. The parameters r, K, m, n, ω, d are positive real numbers dan
respectively denote r the prey intrinsic growth rate, the prey carrying capacity, the capturing rate of prey
by predator, the conversion rate of predation into predator growth rate, the half saturation constant, and
the predator death rate.

In modeling the interaction between predator and prey is important task in order to decide the spesific
form of functional response [4], so the model is relevant to the expected ecological conditions. In the model
(1), the predation rate depends on the functional response p(u). Since the value of p(u) is fluctuated by
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prey density and this functional response is called by "prey-dependence". Several researchers argue that
the functional response not only prey-dependence, but also on the ratio of both populations [4–7], known
also as "ratio-dependent" functional response. Such functional response is defined by p( u

v ). Recently, Xiao
and Cao [8] studied the interaction of prey and predator with a ratio-dependent functional response with
linear harvesting for both prey and predator population:

du
dt

= ru
(

1− u
K

)
− muv

u + ωv
− k1u

dv
dt

=
nuv

u + ωv
− dv− k2v.

(2)

Using the following transformation

(u, v, t)→
( u

K
,

ωv
K

, rt
)

model (2) can be simplified as
du
dt

= u(1− u)− auv
u + v

− ku,

dv
dt

=
buv

u + v
− δv,

(3)

where
a =

m
r

, k =
k1

r
, b =

n
ω

, δ =
1

rω
(d + k2), a, k, b, δ > 0.

Note that the prey and predator growth rates in the model (3) only depend on the current conditions.
In fact, the growth rates of population having also depend on long-time memory. To include such
memory effects, many researchers have applied fractional derivative in order to get fractional differential
equations. There are various theories of fractional derivative in the literatures. Among many two of
fractional derivatives are well known, namely, Riemann Liouville and Caputo. We consider here the
Caputo fractional derivative since the classical initial values as in the differential equations of integer order
can also be applied.

Definition 1. [9] Suppose α > 0. The fractional operator

Dα
∗g(t) =

1
Γ(n− α)

∫ t

0

g(n)(s)
(t− s)1+α−n ds,

is called the Caputo fractional derivative of order α, where n = dαe. Particularly, if α ∈ (0, 1], then we have

Dα
∗g(t) =

1
Γ(1− α)

∫ t

t0

g′(s)
(t− s)α

ds.

Note that the operator Caputo is nonlocal operator, i.e., includes the history from initial state to the
current state. Therefore, the Caputo fractional derivative is often applied in modeling biological systems to
describe the influence of memory effects, see e.g. [10–13], and [14]. Motivated by this fact, we replace the
left hand side of system in (3) by the Caputo derivative and obtain the model of predator-prey interaction
at fractional order as follows

Dα
∗u(t) = u(1− u)− auv

u + v
− ku,

Dα
∗v(t) =

buv
u + v

− δv.
(4)
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Now assume that the initial conditions are u (0) = u0 > 0 and v (0) = v0 > 0 where α ∈ (0, 1]. In this
study, further we consider 0 < k < 1 as the harvesting parameter. By studying the current literature one
can notice that the dynamical properties of system (4) has not been previously analyzed yet. Hence we
aim to analyze the dynamics of system in (4). For this, we first introduce some basic concept of fractional
differential equations.

2. Preliminaries

Theorem 1. (See [15,16]). Consider an autonomous nonlinear fractional-order system

Dα
∗~u = ~f (~u); ~u(0) = ~u0; α ∈ (0, 1].

A point ~u∗ is called an equilibrium point of the system if it satisfies ~f (~u∗) = 0. This equilibrium point is locally
asymptotically stable if all eigenvalues λj of the Jacobian matrix J = ∂ f

∂u evaluated at ~u∗ satisfy | arg(λj)| > απ
2 .

Lemma 1. (See [17]). Let u(t) ∈ C ([0,+∞)). If u(t) satisfies

Dα
∗u(t) ≤ −λu(t) + µ, u(0) = u0 ∈ R,

where α ∈ (0, 1], λ, µ ∈ R and λ 6= 0, then

u(t) ≤
(

u0 −
µ

λ

)
Eα[−λtα] +

µ

λ
.

Lemma 2. [18] Let u(t) ∈ C (R+) and its fractional derivatives of order α exist for any α ∈ (0, 1]. Then, for any
t > 0 we have

Dα
∗

[
u(t)− u∗ − u∗ ln

u(t)
u∗

]
≤
(

1− u∗

u(t)

)
Dα
∗u(t), u∗ ∈ R+.

Lemma 3. (See [19]). Consider a fractional order-system

Dα
∗u(t) = f (t, u(t)), t > 0, u(0) ≥ 0, α ∈ (0, 1], (5)

where f : (0, ∞)×Ω → Rn, Ω ⊆ Rn. A unique solution of (5) on (0, ∞)×Ω exists if f (t, u(t)) satisfies the
locally lipschitz condition with respect to u.

Lemma 4. (Generalized Lasalle Invariance Principle [20]). Suppose Ω is a bounded closed set and every solution of

Dα
∗u(t) = f (u(t))

starts from a point in Ω and remains in Ω for all time. If ∃ V(u) : Ω→ R with continuous first partial derivatives
satisfies

Dα
∗V|Dα∗u(t)= f (u(t)) ≤ 0.

Let E :=
{

u|Dα
∗V|Dα∗u(t)= f (u(t)) = 0

}
and M be the largest invariant set of E. Then every solution u(t) originating

in Ω tends to M as t→ ∞.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 October 2019                   doi:10.20944/preprints201910.0340.v1

Peer-reviewed version available at Mathematics 2019, 7, 1100; doi:10.3390/math7111100

https://doi.org/10.20944/preprints201910.0340.v1
https://doi.org/10.3390/math7111100


4 of 13

3. Main Results

3.1. Existence and uniqueness

In this section we investigate the existence and uniqueness of solution of the fractional order system
(4) in the region [0, ∞)×ΩM where

ΩM =
{
(u, v) ∈ R2 : max {|u| , |v|} ≤ γ

}
for sufficiently large γ. The existence of γ is guaranteed by the boundedness of the solution which
will be shown later. We first denote Y = (u, v) and Ȳ = (ū.v̄), and then consider a mapping F (Y) =

(F1 (Y) , F2 (Y)) where

F1 (Y) = u(1− u)− auv
u + v

− ku

F2 (Y) =
buv

u + v
− δv.

For any Y, Ȳ ∈ ΩM, next we show that

∥∥F (Y)− F (Ȳ)
∥∥ =

∣∣F1 (Y)− F1 (Ȳ)
∣∣+ ∣∣F2 (Y)− F2 (Ȳ)

∣∣
=

∣∣∣∣u(1− u)− auv
u + v

− ku− ū(1− ū) +
aūv̄

ū + v̄
+ kū

∣∣∣∣+∣∣∣∣ buv
u + v

− δv− būv̄
ū + v̄

+ δv̄
∣∣∣∣

=

∣∣∣∣(1− k) (u− ū)− (u + ū) (u− ū)− a
uū (v− v̄) + vv̄ (u− ū)

(u + v) (ū + v̄)

∣∣∣∣+∣∣∣∣b uū (v− v̄) + vv̄ (u− ū)
(u + v) (ū + v̄)

− δ (v− v̄)
∣∣∣∣

≤ (1− k) |u− ū|+ 2γ |u− ū|+ (a + b)
∣∣∣∣ vv̄
(u + v) (ū + v̄)

∣∣∣∣ |u− ū|+

(a + b)
∣∣∣∣ uū
(u + v) (ū + v̄)

∣∣∣∣ |v− v̄|+ δ |v− v̄|

≤ (1− k + 2γ + a + b) |u− ū|+ (a + b + δ) |v− v̄|

≤ L
∥∥Y− Ȳ

∥∥ ,

where L = max {1− k + 2γ + a + b, a + b + δ}. Hence, F (Y) satisfies the Lipschitz condition. By Lemma
3, the fractional order system (4) with initial values Y0 = (u0, v0) where u0 ≥ 0 and v0 ≥ 0 has a unique
solution Y (t) = (u (t) , v (t)) ∈ ΩM. Thus, we establish the following existence and uniqueness of solution
of system (4).

Theorem 2. The fractional order predator-prey system (4) subject to any non-negative initial value (u0, v0) has a
unique solution (u(t), v(t)) ∈ ΩM for all t > 0.

3.2. Boundedness and non-negativity

System (4) describes the interaction of prey population with predator population at fractional
order and therefore solutions of this system must be bounded and non-negative. Let Ω+ :=
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{(u, v)|u ≥ 0 and v ≥ 0} denotes all non-negative real number in R2. The non-negativity and boundedness
of solutions of system (4) are guaranteed by the following theorem.

Theorem 3. All solutions of system (4) with u0 > 0 and v0 are uniformly bounded and non-negative.

Proof. Assume that the initial values are u0 > 0 and v0 > 0 and define a function w = u + a
b v. From

system (4), we obtain

Dα
∗w + δw = u (1− u)− auv

u + v
− ku +

auv
u + v

− aδ

b
v + δu +

aδ

b
v

= −u2 + (1− k + δ) u

= −
(

u− 1− k + δ

2

)2
+

(1− k + δ)2

4

≤ (1− k + δ)2

4
.

Based on the comparison in theorem, we obtain, (see Lemma 1)

w (t) ≤
(

w (0)− (1− k + δ)2

4δ

)
Eα (−δtα) +

(1− k + δ)2

4δ
,

where Eα is the Mittag-Leffler function. Since

Eα (−δtα) −→ 0 as t −→ ∞,

see [21, Lemma 5 and Collorary 6], we have

w (t) ≤ (1− k + δ)2

4δ
, t −→ ∞.

Hence, all solutions of system (4) which start in R2
+ are restricted to the region ΩB where

ΩB =

{
(u, v) ∈ R2

+ : u +
a
b

v ≤ (1− k + δ)2

4δ
+ ε, ε > 0

}
. (6)

Thus, all solutions of fractional order system (4) are uniformly bounded. Then in order to check the
non-negativity solution, we first notice that

u +
a
b

v ≤ (1− k + δ)2

4δ
≡ σ. (7)

Then by combining the first equation of system (4) with equation (7), we get

Dα
∗u = u (1− u)− auv

u + v
− ku

≥ u (1− σ)− au− ku

= (1− σ− a− k) u

= θu,

where θ = 1− σ− a− k. Using the comparison theorem (Lemma 1), we have
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u (t) ≥ u0Eα (θtα) .

Since Eα (t) > 0, for any α ∈ (0, 1], we conclude that u (t) > 0 for any t ≥ 0. According to the second
equation in (4) we obtain

Dα
∗v =

buv
u + v

− δv

≥ −δv.

Using the same previous argument, we get v (t) ≥ v0Eα (−δtα) and therefore v (t) > 0 for any t ≥ 0.
Hence, the fractional order system (4) has always non-negative solutions.

3.3. Local Stability

Based on Theorem (1), we can show that system (4) has three equilibrium points as follows:

1. The extinction point of both prey and predator population E0 = (0, 0) which is always feasible.
2. The free predator point E1 = (k0, 0) which also awalys exists. Here k0 = 1− k.
3. The interior point E∗ = (u∗, v∗) where u∗ = 1

b (bk0 − a (b− δ)) and v∗ = 1
δ (b− δ) u∗. Notice that E∗

exists if 0 < (b− δ) < b
a k0.

In the following we study the dynamics of system (4) around each of equilibrium point. For that, we
linearize system (4) and get the following Jacobian matrix

J (E) =

 k0 − 2u− av2

(u+v)2 − au2

(u+v)2

bv2

(u+v)2
bu2

(u+v)2 − δ

 . (8)

By evaluating this Jacobian matrix at each equilibrium points and applying theorem (1), we obtain the
stability properties of E0 and E1 as follows.

Theorem 4. For the fractional order system (4), the extinction of both population point (E0) and the free predator
point (E1) have the following stability properties.

1. E0 is a saddle point.
2. If b < δ then E1 is locally asymptotically stable and it is a saddle if b > δ.

Proof. 1. The Jacobian matrix (8) evaluated at E0 is

J (E0) =

[
k0 0
0 −δ

]
.

The eigenvalues of J (E0) are λ1 = k0 > 0 and λ2 = −δ < 0, and consequently we have |arg (λ1)| =
0 < απ/2 and |arg (λ2)| = π > απ/2 for 0 < α < 1. Hence E0 is a saddle point.

2. If E1 is substituted into the Jacobian matrix (8), then we have

J (E1) =

[
−k0 −a

0 b− δ

]
.
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Obviously that J (E1) has eigenvalues λ1 = −k0 < 0 and λ2 = b− δ. We observe that |arg (λ1)| =
π > απ/2. If b < δ then |arg (λ2)| = π > απ/2 and if b > δ then |arg (λ2)| = 0 < απ/2. Therefore
E1 is asymtotically stable (locally) if b < δ and is a saddle point if b > δ.

We now examine the stability of equilibrium E∗. The characteristics equation of the Jacobian matrix
evaluated at E∗ is given by

λ2 − Tλ + D = 0, (9)

where T = −
(
b2k0 + b2 (δ− a) + δ2 (a− b)

)
/b2 and D =

(
bδk0 (b− δ)− aδ (b− δ)2

)
/b2. From the

existence condition of E∗ we notice that D > 0. The eigenvalues of J (E∗) is

λ1,2 =
T ±
√

∆
2

, ∆ = T2 − 4D.

By analyzing these eigenvalues, the stability of E∗ is stated in following theorem .

Theorem 5. For the fractional order system (4), the interior point E∗ is locally asymptotically stable if one of the
following mutually exclusive conditions holds:

1. T < 0 and ∆ ≥ 0
2. ∆ < 0 and

√
|∆|
T > tan

(
απ
2
)
.

Proof. 1. Since D > 0, T < 0 and ∆ ≥ 0, then λ1,2 < 0 and arg (λ1,2) = π > απ/2. Therefore E∗ is
asymtotically stable.

2. Suppose ∆ < 0. If λ is an eigenvalue then its complex conjugate (λ̄), is also an eigenvalue. We have

that
∣∣∣ λ−λ̄

λ+λ̄

∣∣∣ = ∣∣∣ Im(λ)
Re(λ)

∣∣∣ = arg (λ) =

√
|∆|
T . Using the Matignon’s condition, see [15, Theorem 2], it is

obvious that E∗ is locally asymptotically stable if
√
|∆|
T > tan

(
απ
2
)
.

3.4. Hopf Bifurcation

For the following fractional-order commensurate system:

Dα
∗w = f (µ, w), α ∈ (0, 1], w ∈ R2, (10)

Abdelouahab et al. [22] stated that a Hopf bifurcation occurs around an equilibrium E at µ = µ∗ if the
following conditions hold:

− The eigenvalues of the Jacobian matrix are a pair of complex-conjugate: λ1,2(µ) = ζ(µ)± iω(µ)
− p1,2(α, µ∗) = 0
− ∂p1,2

∂µ |µ=µ∗ 6= 0,

where pj(α, µ) = απ
2 − | arg(λj(µ))|, j = 1, 2.

The existence of a Hopf bifurcation in the system (4) is analyzed as follows. From the Theorem 5, we
can derive the following theorem.
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Theorem 6. Suppose ∆ < 0 and T > 0. The fractional model (4) undergoes a Hopf bifurcation at E∗ when the
fractional order α crosses the critical values

α∗ =
2
π

tan−1

(√
|∆|
T

)
.

Proof. If ∆ < 0, T > 0 and α = α∗, then the characteristic equation of the Jacobian matrix at E∗ has a pair
of conjugate complex roots λ1,2 located on the border of stability area arg(λ1,2) =

α∗π
2 . If α changes around

α∗, λ1,2 pass through the stability margin and there occurs a Hopf bifurcation.

3.5. Global asymptotic stability

Theorem 7. Let k0 = 1− k. E1 is globally asymptotically stable in the region
Ω1 =

{
(u, v)|u + v ≥ bk0

δ

}
.

Proof. Define a Lyapunov function U (u, v) =
(

u− k0 − k0 ln u
k0
+ a

b v
)

. Using Lemma 2, we can show

Dα
∗U (u, v) ≤ u− k0

u
Dα
∗u +

a
b

Dα
∗v

= (u− k0)

[
k0 − u− a

v
u + v

]
+

a
b

(
b

u
u + v

− δ

)
v

= −(u− k0)
2 + a

[
k0

u + v
− δ

b

]
v.

It is obvious that Dα
∗U (u, v) ≤ 0, ∀(u, v) ∈ Ω1. Furthermore, Dα

∗U (u, v) = 0 implies that u = k0 and v = 0.
Hence, the only invariant set on which Dα

∗U (u, v) = 0 is the singleton {E1}. Using Lasalle invariance
principle (see [20, Lemma 4.6]) we conclude that E1 is globally asymptotically stable.

Theorem 8. E∗ is globally asymptotically stable in Ω2 =
{
(u, v)| v

v∗ >
u
u∗ > 1

}
.

Proof. Consider a Lyapunov function

L(u, v) =
(

u− u∗ − u∗ ln
u
u∗
)
+

a
b

(
v− v∗ − v∗ ln

v
v∗
)

.

Then based on Lemma 2, we show that

Dα
∗L(u, v) ≤ u− u∗

u
Dα
∗u(t) +

a
b

(
v− v∗

v

)
Dα
∗v(t)

= (u− u∗)
(

1− u− a
v

(u + v)
− k
)
+

a
b
(v− v∗)

(
bu

u + v
− δ

)
= (u− u∗)

(
−u− a

v
(u + v)

+ u∗ + a
v∗

(u∗ + v∗)

)
+ a(v− v∗)

(
u

u + v
− u∗

u∗ + v∗

)
= −(u− u∗)2 + a

(u− u∗)(uv∗ − u∗v) + (v− v∗)(uv∗ − u∗v)
(u + v)(u∗ + v∗)

.

Hence, Dα
∗L(u, v) ≤ 0 for arbitrary (u, v) ∈ Ω2. Furthermore Dα

∗L(u, v) = 0 implies that u = u∗ and
v = v∗. Hence, the singleton {E∗} is the only invariant set such that Dα

∗L(u, v) = 0. Again, the Lasalle
invariance principle (see [20, Lemma 4.6]) gives conclusion that E∗ is globally asymptotically stable.
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4. Numerical Simulations

To verify the previous analytical results, some numerical simulations of system (4) are performed.
For that aim, we implement the predictor-corrector scheme developed by Diethelm [23] to solve
our fractional-order model (4). For the first simulation, we use hypothetical parameter as in [8]:
a = 1.3, k = 0.25, and δ = 0.4. Based on Theorem 4, Theorem 5 and Theorem 6, we plot the bifurcation
diagram in (α, b)−plane as shown in Figure 1. In this figure, we can see three different regions. The yellow
area represents the stable predator extinction point (E1); the green area denotes the stable coexistence
point (E∗); and the cyan area corresponds to the limit cycle oscillation. From this figure we see that for the
case of b = 0.3 with α = 0.75 or α = 0.9, the predator extinction point E1 = (0.75, 0.0) is asymptotically
stable. This behaviour is clearly seen from the phase-portraits shown in Figure 2, i.e. all solutions are
convergent to E1. From Theorem (6), we find that if ∆ < 0 and T > 0 then there occurs a Hopf bifurcation
around E∗ when α passes through the critical values α∗. The critical values of α in Figure 1 is shown by
the line between green area and cyan area. This figure also shows that the Hopf bifurcation can also be
driven by parameter b. To show the phenomenon of Hopf bifurcation, we solve system (4) with the same
parameter values as before, except b = 0.8. From these parameter values, we get α∗ = 0.94366. Hence,
E∗ = (0.1, 0.1) is asymptotically stable for αin(0, α∗) and is unstable for α > α∗. The numerical solution
depicted in Figure 3.(a− b) shows that for α = 0.9 < α∗, the solution is convergent to E∗. On the other
hand, for α = 0.95 > α∗, the solution is not convergent to any point, and it is converging to a periodic
solution, see Figure 3.(c− d). This shows that system (4) undergoes Hopf bifurcation.

Figure 1. Bifurcation diagram in (α, b)−plane for prey-predator system (4) with a = 1.3, k = 0.25 and
δ = 0.4.
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Figure 2. Phase-portraits of prey-predator system (4) with a = 1.3, k = 0.25, δ = 0.4 and b = 0.3 for different
order of fractional derivative: (a) α = 0.75, and (b) α = 0.9.

Figure 3. Numerical solutions of prey-predator population as function of time t and the phase-diagrams of
system (4) with a = 1.3, k = 0.25, δ = 0.4, b = 0.8 and different order of fractional derivative: (a-b) α = 0.9,
(c-d) α = 0.95.

Next, we show the bifurcation diagram in (α, k)−plane for system (4) with a = 1.3, b = 0.8, and
δ = 0.4, see Figure 4. Figure 4 shows that there are two different stability regions. As in the previous case,
the green area represents the asymptotically stable area of coexistence point (E∗), while the cyan area
represents the area of stable limit cycle. Thus, the line which separates the two areas corresponds to the
Hopf bifurcation point. It is seen that smaller order of fractional derivative has a larger value of critical
harvesting rate k∗. For example, Xiao and Cao [8] have shown that for the case of α = 1, the critical value
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of harvesting rate is k∗ = 0.225, see also Figure 4. If we reduce the value of α such that α = 0.9 then the
Hopf bifurcation point becomes k∗ = 0.26564. Hence, for α = 0.9 and k = 0.25 < k∗, the coexistence point
E∗ is asymptotically stable. This behavior can be seen in Figure 3.(a− b). If we take k = 0.3 > k∗, then the
solution converges to a periodic solution which shows that E∗ is unstable; see Figure 5.

Figure 4. Bifurcation diagram in (α, k)−plane for prey-predator (4) with a = 1.3, b = 0.8 and δ = 0.4.

Figure 5. (a) Numerical solutions of prey-predator population as function of time t and the phase-diagrams
of system (4) with a = 1.3, b = 0.8, δ = 0.4, k = 0.3 and α = 0.9.
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5. Conclusion

We have introduced and analyzed a fractional order ratio-dependent predator-prey model with
linear harvesting. The existence, uniqueness, non-negativity as well as boundedness of solutions for the
proposed model have been proven. Based on Matignon’s Theorem, we have shown the local stability of all
possible equilibrium points. Since the related Jacobian matrix has real number eigenvalues, the stability
properties of the extinction point of both population and the free predator point are exactly the same as
those of first order system (see [8]). However, it is not the case for the coexistence point as the eigenvalues
of its Jacobian matrix might a be complex number. The global stability of the free predator point and the
coexistence point were also studied by defining an appropriate Lyapunov function. Further, the existence
of Hopf bifurcation driven by the order of fractional derivative (α) has also been established. From the
bifurcation diagram, it is also shown that the Hopf bifurcation may be driven by parameter b or k. The
dynamical properties of the proposed system have been confirmed by the numerical simulations.
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