

1 Article

2

Photocathodic Protection of Cobalt Doped ZnO 3 Nanorod Arrays for 316 Stainless Steel and Q235 4 Carbon Steel in 3.5 wt.% NaCl Solution

5 **Xiong Zhang** ¹, **Guanghui Chen** ², **Weihua Li** ³, **Dianwu Wu** ^{1,*}6 ¹ School of Materials Science and Engineering, Tongji University, No. 4800 Caoan Road, 201804, Shanghai, P.R.
7 China; e-mail: zhangxiong@tongji.edu.cn8 ² College of chemical engineering, Qingdao University of science & technology, No.53 Zhengzhou Rd, 266042,
9 Qingdao, P. R. China; e-mail: guanghui@uest.edu.cn10 ³ School of Chemical engineering and technology, Sun Yat-Sen University Zhuhai Campus, tangjiawan, 519082,
11 Zhuhai, P.R. China; e-mail: liweihua3@mail.sysu.edu.cn12 * Correspondence: School of Materials Science and Engineering, Tongji University, No. 4800 Caoan Road,
13 201804, Shanghai, P.R. China; e-mail: wdw110044@163.com

14 **Abstract:** In this work, cobalt doped ZnO nanorod arrays with anticorrosion function were
15 successfully prepared on FTO substrate by a simple aqueous solution method. XRD and EDS
16 indicate the doped Co^{2+} has successfully incorporated into the ZnO crystal lattice. Photocurrent
17 density and open circuit potential (OCP) results indicate the photocathodic protection performance
18 for 316 stainless steel (316 SS) and Q235 carbon steel in 3.5 wt.% NaCl solution under 300 W Xe
19 lamp enhanced with the increase of cobalt concentration, and the photoanode with 15% Co/Zn ratio
20 has the optimal photocathodic protection effect. The mechanism of enhancement may be result
21 from the narrowed band gap, the lower recombination rate of photogenerated electron-holes, the
22 intermediate impurity level and the split of the hypo-outer shell of cobalt ions.

23 **Keywords:** cobalt; ZnO; photocathodic protection; corrosion protection

24

25

1. Introduction

26 Metal corrosion is a spontaneous process which the gibbs free energy of the metal has been
27 lowered and the metal return to its stable state in nature. However, corrosion caused great losses,
28 including economic, environmental damages, life, injury and efficiency, et al. Among several
29 corrosion control strategies, impressed current cathodic protection is not suitable for remote places,
30 sacrificial anode protection consumes abundant of resources every year, and the coating can not
31 tolerate few breakages which may accelerate the rate of corrosion. Therefore, it was urgently for us
32 to find a sustainable and environmentally friendly technology for corrosion control. Photocathodic
33 protection was studied extensively recent years, the principle is that the electrons in *n*-type
34 semiconductors are excited by solar light with certain wavelength and transfer to the metal in a
35 direct or indirect manner, which was equivalent to the impressed current cathodic protection, and
36 result in the cathodically polarization of the metal. Photocathodic protection was originally found
37 from the emergence of electron-hole pairs in TiO_2 film when irradiated by ultraviolet light [1], and
38 the OCP of the coupled metal shifted to the negative potential, which lowered and even stop the
39 corrosion of the coupled metal. The biggest advantage of photocathodic protection is that
40 photocathodic protection is a green, sustainable and one of the most promising anticorrosion

41 methods, which originate from the use of clean and inexhaustible solar energy for the corrosion
42 protection.

43 Up to now, most studies with regards to photocathodic protection system focus on anodic
44 oxidation prepared TiO_2 and its composites with other semiconductors for the anticorrosion of
45 stainless steel [2-5]. Due to the low electron mobility, the photocurrent density of pure TiO_2 coupled
46 with 304 SS was smaller than $50 \mu\text{A}/\text{cm}^2$, and the polarized OCP was $\sim -450 \text{ mV}$. Through modified
47 with other semiconductors, the photocathodic protection properties have greatly improved. The 3D
48 $\text{ZnIn}_2\text{S}_4/\text{TiO}_2$ composite has increased the photocurrent density of the coupled 304 SS greater than $2.0 \text{ mA}/\text{cm}^2$, and the polarized OCP was negative shifted to about -1.17 V . The photocurrent density of
49 $\text{ZnS-Bi}_2\text{S}_3/\text{TiO}_2/\text{WO}_3$ film coupled 403 SS was about greater than $110 \mu\text{A}/\text{cm}^2$, and the OCP was to
50 about -520 mV . The study of $\text{ZnIn}_2\text{S}_4/\text{RGO}/\text{TiO}_2$ composites for the photocathodic protection of Q235
51 (the rarely reported photocathodic protection for carbon steel) possessed the photocurrent density of
52 $5.6 \text{ mA}/\text{cm}^2$ and OCP of -1.1 V , which can provide adequate protection for Q235. However, most of
53 the modified semiconductors were sulphides which often suffer from the photocorrosion due to the
54 instability of S^{2-} .

55 Zinc oxide (ZnO) is a semiconductor material with wide band gap of about 3.2 eV , which was
56 widespread used in photocatalysis [6], dye-sensitized solar cell [7], photoluminescence [8] and
57 electronic device [9], due to its abound in natural resources, low price and environmental friendly
58 [10-11]. Besides, ZnO has high electron mobility which was two orders of magnitude higher than
59 TiO_2 [12], ZnO might be an appropriate photoanode in photocathodic protection system. It is well
60 known that doping a selective element into ZnO is an effective route to improve the optical and
61 electrical properties, and to increase the carrier concentration, because a higher carrier concentration
62 is required. Transition metal (TM) such as Co, Fe, Ni, and Mn doping into ZnO may increase the
63 carrier concentration due to the impurity energy level or another introduced intermediate level [13]
64 which may lower the requirement for the wavelength of the light and promote the efficiency of the
65 photocathodic protection for the metals.

66 In this article, we successfully prepared ZnO nanorod arrays on FTO substrate with different
67 cobalt doping concentrations by a simple aqueous solution method. The morphology, optical, and
68 photocathodic protection properties of as-prepared ZnO nanorod arrays were all changed with the
69 change of cobalt concentrations.

71 2. Experimental

72 All of the chemical reagents used in this study were analytical reagents and without further
73 purification. All of the aqueous solutions were prepared using double distilled water.

74 2.1. Preparation of ZnO nanorod arrays

75 ZnO nanorod arrays were prepared by aqueous solution method. Firstly, clean the substrate.
76 FTO ($\leq 10 \Omega/\text{sq}$, $10 \text{ mm} \times 13 \text{ mm}$) substrates were ultrasonic cleaned with deionized water (DI water)
77 acetone, ethanol, and DI water for 30 min, respectively. Then dried in the vacuum drying oven at
78 80°C for 30min. Secondly, in order to the benefit of the uniform growth of ZnO nanorod arrays,
79 ZnO nanoparticles were coated on the FTO substrate. The well cleaned FTO substrates were spin
80 coated by a spin coater, the zinc nitrate hexahydrate ($\text{Zn}(\text{NO}_3)_2 \cdot 6\text{H}_2\text{O}$) and hexamethylenetetramine
81 ($\text{C}_6\text{H}_{12}\text{N}_4$, HMT) aqueous solution were used as the precursor, the spin parameter was set to third

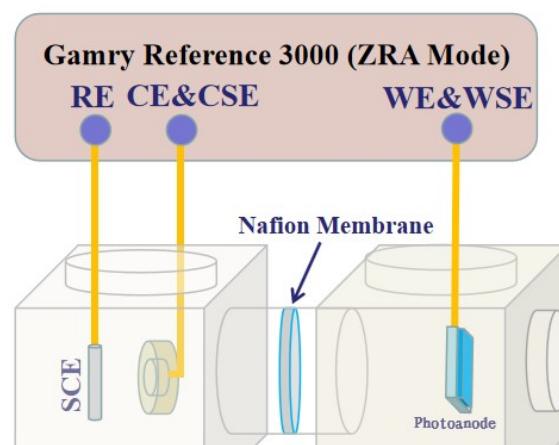
82 gears. The velocities were 500 r/min, 2000 r/min, and 5000 r/min respectively, and the rotation time
 83 of each gear were all 10 s. After that, the substrate was sintered in a muffle furnace at 450°C for 10
 84 min. This process was repeated for three times in order to form the uniform ZnO seed film on the
 85 substrate. Thirdly, ZnO nanorod arrays were grown vertically by immersing the cleaned FTO
 86 substrate in the aqueous solution of Zn(NO₃)₂·6H₂O (0.025M), HMT (0.025M) and different
 87 concentrations of cobaltous acetate tetrahydrate (Co(CH₃COO)₂·4H₂O). The reaction temperature
 88 and time were set at 80°C and 12 h in the water bath, then rinsed thoroughly with DI water for
 89 several times to eliminate residual salts, and dried for 1.0 h at 80°C. On the basis of the different
 90 concentrations of Co(CH₃COO)₂·4H₂O, the dopant concentrations of cobalt in the reactive solution
 91 were 0, 1.25, 2.50, 3.75, 5.00 mM, respectively, corresponding to the Co/Zn ratio of 0%, 5%, 10%, 15%,
 92 20%, respectively. The as-prepared ZnO samples are labeled as C0, C1, C2, C3 and C4 in the
 93 subsequent discussion in this paper, respectively.

94 2.2. Characterization

95 Morphological characterization was performed on a scanning electron microscopy (SEM,
 96 ZEISS EV018). The composition was determined by an Energy Dispersive Spectrometer (EDS,
 97 Bruker XFlash 6130). The crystalline structures of the samples were recorded by X-ray diffraction
 98 (XRD, Bruker AXS D8 ADVANCE) with a copper X-ray source (Cu-K α , 50 kV, 250 mA). The
 99 reflectance spectra were performed with an Agilent Cary 5000 UV-Vis-NIR spectrophotometer, and
 100 MgO powder was served as the reference material. The photoluminescence (PL) spectra were
 101 performed with a fluorospectrophotometer (Hitachi F-4600). The OCP and photocurrent density of
 102 the photoanodes were performed on an electrochemical workstation (Gamry Reference 3000).

103 2.3. Electrode fabrication and photoelectrochemical measurements

104 **Metal electrode:** Here, we chose the widely used steel (316 SS and Q235) to be the object of our
 105 research. First, the cube metals (10 mm × 10 mm × 10 mm, the element content were shown in **Table**
 106 1) were polished with sand paper of 600, 1200 and 2000 mesh in sequence on a metallographic
 107 polishing machine. Second, to ensure good contact, the cube iron was connected with copper wire by
 108 tin welding. Third, keep one side of the cube iron (to be studied) exposed, encapsulate the other
 109 sides and the welded joint with ethoxyline resin in case of corrosion. Before examination, polish the
 110 exposed side of cube iron every time to ensure the consistency and veracity of the results.


111 **Table 1.** The element content of 316 SS and Q235

Type	C	Mn	Si	S	P	Ni	Cr	Mo
316 SS	0.08	1.80	0.90	0.029	0.045	14.00	17.00	2.00
Q235	0.19	0.59	0.30	0.05	0.44	-	-	-

112 **Photoanode:** First, cut out ZnO/FTO substrate with a certain size (10 mm × 13 mm, including 10mm
 113 × 3 mm blank FTO with no ZnO film). Second, connect the conductive side of FTO with the copper
 114 wire by silver conductive adhesive. Third, encapsulate the blank FTO and the connected joint with
 115 ethoxyline resin.

116 **Photoelectrochemical measurements:** The diagrammatic sketch of the experiment setup is shown
 117 in Figure 1. The experiment setup is a double electrolytic cell system which is composed of a
 118 photoelectric cell and a corrosion cell. The photoelectrodes and metal electrodes (316SS and Q235)
 119 were put into the photoelectric cell and corrosion cell, respectively. The electrolyte in the

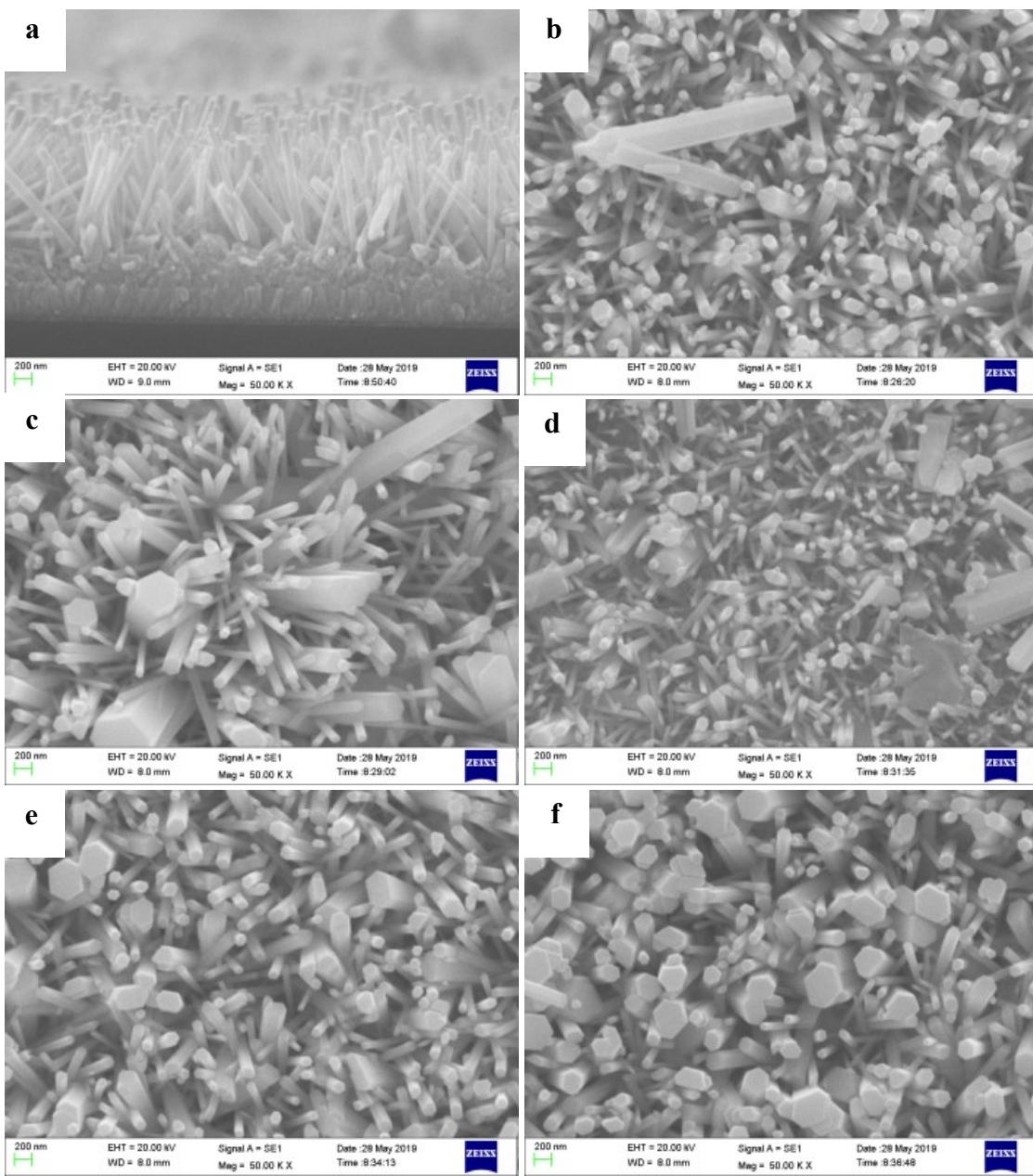
120 photoelectric cell is Na_2S (0.1 M) and Na_2SO_3 (0.1 M). The electrolyte in the corrosion cell is simulated
 121 seawater solution (3.5 wt.% NaCl). The measurements of OCP and photocurrent density were
 122 conducted by Zero Resistance Ammeter (ZRA mode) on Gamry Reference 3000. The photoelectrode
 123 was connected with the work electrode (WE) and working sense electrode (WSE), the metal
 124 electrode was connected with the current electrode (CE) and current sense electrode (CSE), and the
 125 saturated calomel electrode (SCE) served as the reference electrode (RE). The measurements were
 126 carried out under simulated solar light source with a 300 W Xenon lamp (Microsolar 300, Beijing
 127 Bofeilai Co.). All electrochemical measurements were performed at ambient temperature.

138 Figure 1. Schematic diagram of the double electrolytic cell setup for the measurement of OCP and
 139 photocurrent density.

140 3. Results and Discussion

141 3.1. Morphology and crystal structure analysis

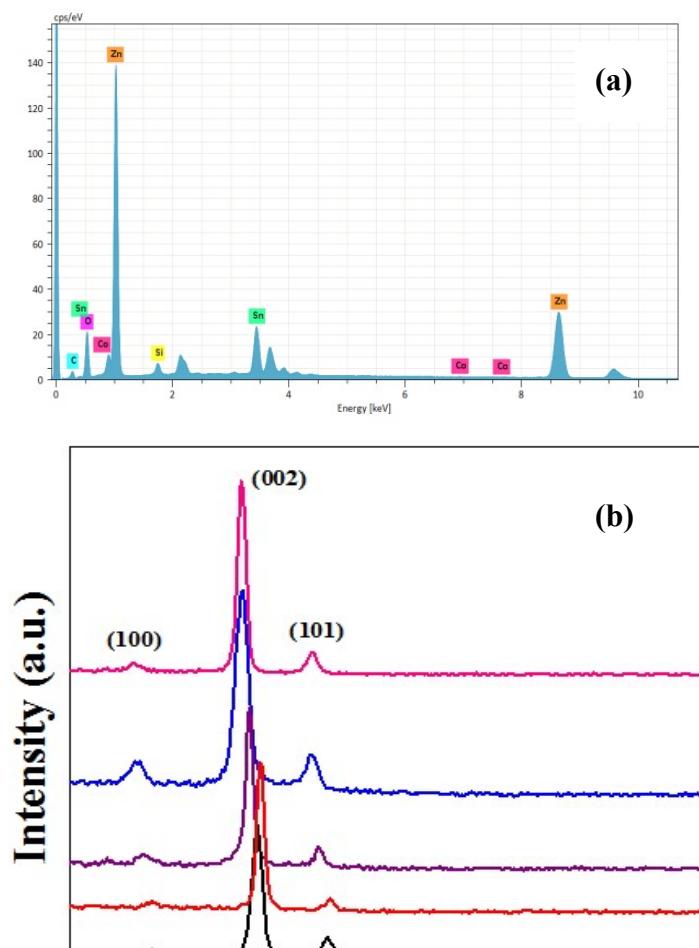
142 Figure 2 shows SEM images of the pure and cobalt doped ZnO nanorod arrays grown on FTO
 143 substrate. All ZnO samples are regular nanorod shaped from the appearance, and the nanorods are
 144 all hexagonal prisms. From the sectional view images of C0 in Figure 2 (a), the one-dimensional ZnO
 145 nanorods have vertically grown on the FTO substrate with ZnO seed layer, the length of pure ZnO
 146 nanorod is about 1.5 μm , and the thickness of ZnO seed layer is about 200 nm. From Figure 2 (b-f),
 147 the nanorod diameter of each sample is not uniform, and the average diameter of ZnO nanorods are
 148 about 80 nm, 80 nm, 80 nm, 95 nm, and 120 nm for C0, C1, C2, C3, and C4, respectively, which
 149 indicate the diameter of ZnO nanorod is get larger with the increase of cobalt in precursor.


150 The composition of ZnO samples are determined by EDS in Figure 3 (a), and the result shows
 151 the existence of Zn, O, Sn, Si, Co, and C in the spectrum. The elements of Sn, Si, and C are ascribed to
 152 the FTO substrate that ZnO nanorod arrays grown on, and the element Zn and O formed ZnO . The
 153 existence of cobalt suggests that cobalt has entered into the ZnO nanorod arrays. Table 2 shows the

154 **Table 2.** Cobalt concentration in ZnO nanorod arrays determined by EDS analysis

Sample	C1	C2	C3	C4
Co%	<1	2	6	4.5

155 cobalt concentration in doped ZnO nanorod arrays determined by EDS, there are 2%, 6%, and 4.5%
 156 cobalt ions doped into ZnO in C2, C3, and C4 samples, respectively, which implies the actual

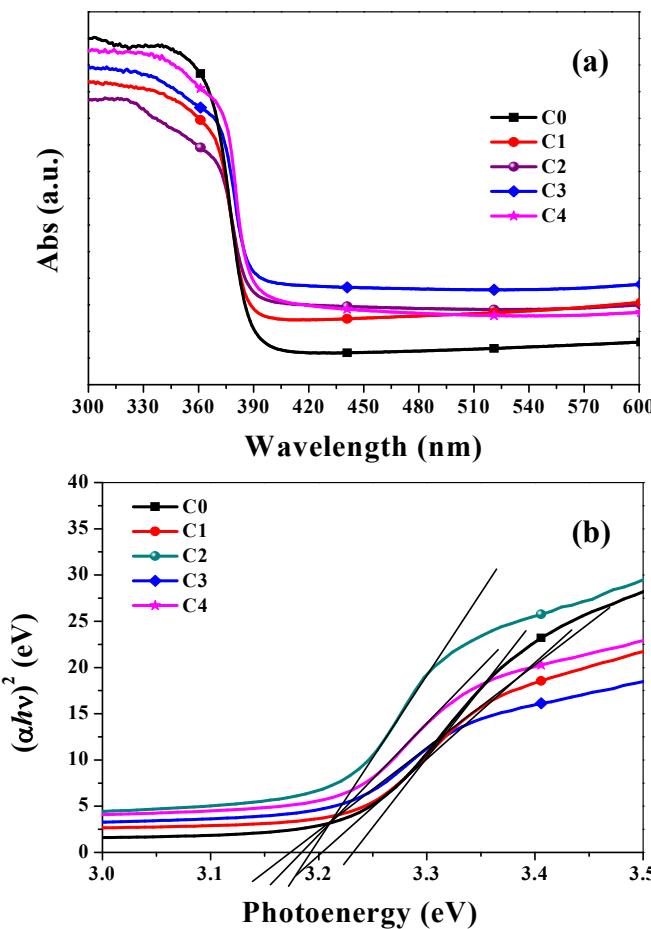

157 quantities of cobalt in ZnO is far less than the quantities of cobalt precursor, and C3 has the
158 maximum cobalt doping concentrations.

189 **Figure 2.** SEM images of ZnO nanrod arrays grown on FTO substrate with different cobalt doping
190 concentrations. (a) sectional view of C0. (b) C0. (c) C1. (d) C2. (e) C3. (f) C4.

191 In order to confirm that the dopants were doped into the crystal lattice of ZnO rather than
192 formed the oxide of the dopant, XRD was performed. Figure 3 (b) displays the XRD patterns of the
193 as-prepared pure and doped ZnO films. All ZnO diffraction peaks are in good agreement with the
194 JCPDS card (No. 36-1451) for a typical wurtzite-type ZnO crystal (hexagonal). These peaks at
195 scattering angles (2θ) of 32.06° , 34.76° , 36.56° and 47.84° , correspond to the diffractions from the
196 (100), (002), (101), and (102) of the ZnO hexagonal phase, respectively. The (002) diffraction peaks of
197 cobalt doped ZnO nanorod array, compared to pure ZnO nanorod arrays, a slightly left-shifted by
198 about 0° , 0.2° , 0.2° and 0.3° for C1, C2, C3, and C4 samples, respectively. The c-axis lattice parameter

199 decreased with the dopant incorporated into the crystal lattice. No other diffraction peaks were
200 detected, implying that there were no CoO , Co_2O_3 or Co_3O_4 crystal structures in the doped samples.

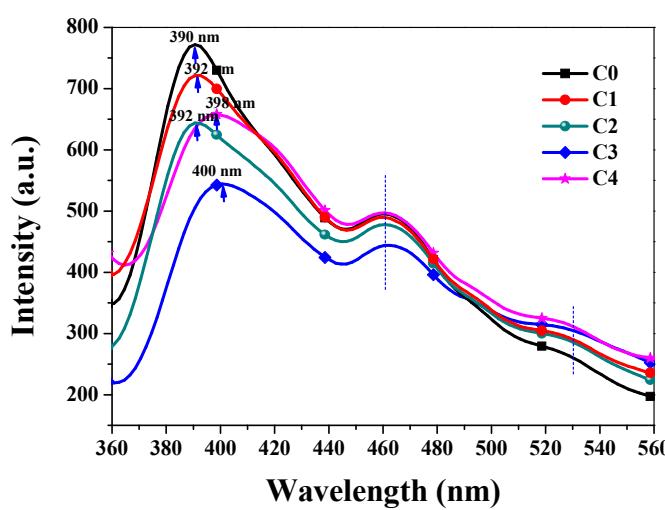
222 **Figure 3.** (a) EDS and (b) XRD patterns of cobalt doped ZnO nanorod arrays.


223 3.2. Optical properties analysis

224 Figure 4 (a) shows the UV-Vis diffuse reflectance spectra of different cobalt doped ZnO nanorod
225 arrays. The absorption band-edge of pure ZnO is at approximately 390nm, and with the increase of
226 cobalt concentration, the absorption band-edges are slightly red-shifted. C3 has the largest
227 red-shifted range. Compared to the relative lower absorption intensities in ultraviolet range, the
228 cobalt doped ZnO nanorod arrays had higher light absorption intensities in visible light range (more
229 than 400 nm), which means the ability of utilizing visible light has promoted.

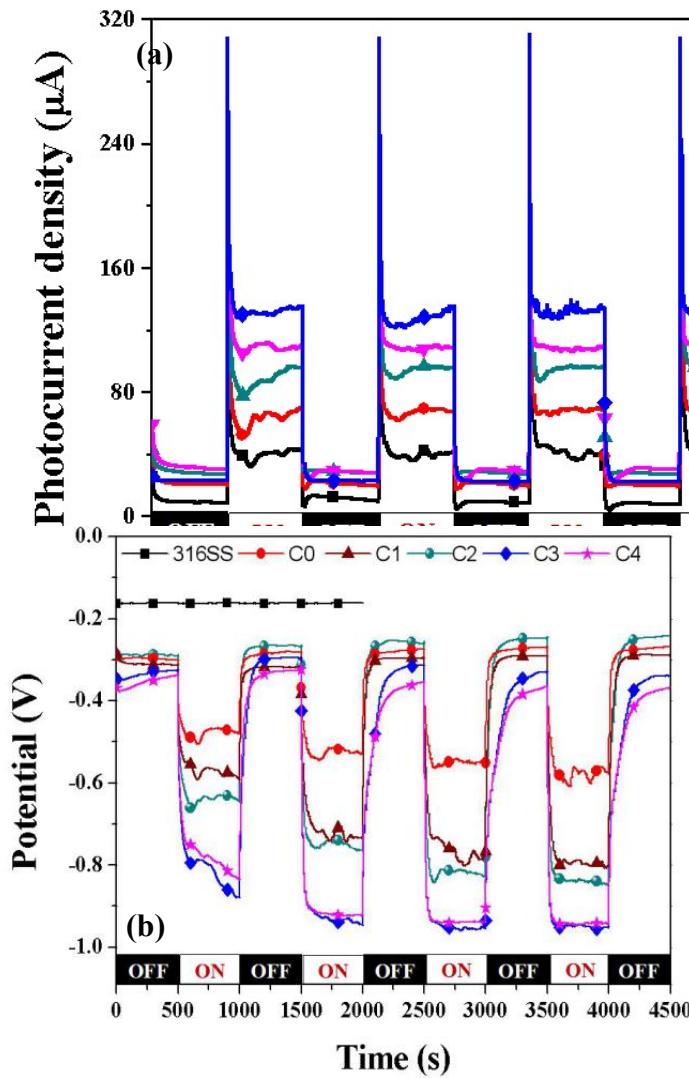
230 The band gap of the photoanode could be roughly estimated by the following equation for a
231 semiconductor [14]: $\alpha h\nu = A(h\nu - E_g)^\eta$, where α , h , ν , A , E_g and η represent the optical adsorption
232 coefficient, the Planck constant, the frequency of light, a constant, the band gap of semiconductor
233 and a characteristic of the type of electrons transition process ($\eta = 1/2$ for a direct semiconductor, $\eta =$
234 2 for an indirect semiconductor). From Figure 4 (b), the estimated band gap values of C0, C1, C2, C3
235 and C4 films were approximately 3.23 eV, 3.20 eV, 3.19 eV, 3.17 eV and 3.18 eV, respectively. The
236 band gap became slightly narrowed when the cobalt doping in ZnO.

237 Figure 5 displays the typical PL spectra of different dopant concentration of ZnO nanorod
238 arrays. The PL spectra includes three peaks: an UV emission peak which is located at 390 ~ 400 nm,
239

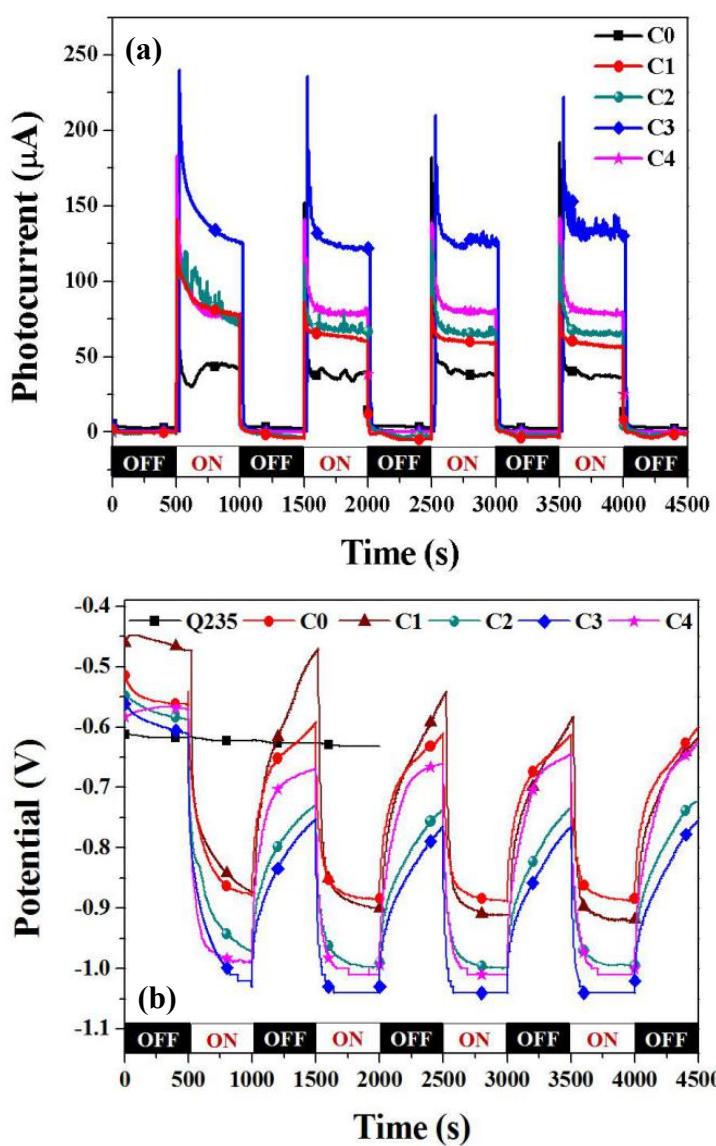

241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262

263 **Figure 4.** (a) UV-Vis absorption spectra of pure and cobalt doped ZnO nanorod arrays measured at
264 room temperature. (b) Plots of $(\alpha h\nu)^{1/2}$ vs. photoenergy for the pure and cobalt doped ZnO nanorod
265 arrays.

266 a distinct shoulder peak located at ~ 460 nm, and an unobvious weak green emission band located
267 at ~ 530 nm, respectively. The peak in UV range belongs to the excitons recombination
268 corresponding to near-band-edge emission of the ZnO [15]. The point of each photoanode's
269 UV-emission peak was signed in the spectra with arrows, and it can be clearly observed that the
270 UV-emission peaks were red-shifted by 2.0, 8.0, 10.0, and 2.0 nm for C1, C2, C3, and C4 compared to
271 the pure ZnO, respectively. This indicates that the band gap became a bit narrow with the increase
272 of the doping Co concentrations till Co/Zn ratio of 15%, and the band gap turned larger when Co/Zn
273 ratio is 20%. With the increase of Co concentration (Co/Zn ratio from 0 to 15%) in ZnO, the
274 UV-emission peaks are obviously getting weaker, it illustrates the near band edge emission which
275 caused by the recombination of photogenerated electron-hole pairs was weaker, and the
276 recombination of charge carrier has been depressed. The green emission peaks located at 530 nm
277 have been reported to be ascribed to the internal defect in crystals (oxygen vacancies) and the
278 transition of a photogenerated electron from a dark level below the conduction band to a deeply
279 trapped hole [16]. We know that that some dopants or defects in semiconductors tend to generate
280 one or more deep energy level, which can not only capture electrons, but also capture holes, and
281 these defects might be the recombination center in semiconductors. The recombination center can
282 promote the recombination of the photogenerated electron-holes, and will release energy in the form


283 of fluorescence. As shown in Figure 5, with the increase of the doping Co concentrations, the defects
284 in the photoanodes increased, and the corresponding intensities of the green emission peaks located
285 at 530 nm enhanced. It is not good for the utilization of the generated electrons. On the other hand,
286 the recombination center between the valence band and the conduction band turns to be an
287 intermediate energy level. The electrons on the valence band could be excited to the intermediate
288 energy level first, and then excited to the conduction band, leaving holes in the valence band
289 meanwhile. No matter the energy between the valence band and the intermediate energy level or the
290 energy between the intermediate energy level and the conduction band is much less than the E_g of
291 ZnO. The recombination center plays a role of a “step”, and the electrons can be excited by a relative
292 small energy through this “step”. In other words, the electrons can be excited by the light of shorter
293 wavelength, and it can be verified by UV-Vis Abs spectra (Figure 4) that the absorption intensity of
294 cobalt doped ZnO nanorod arrays becomes stronger when the wavelength exceed 400 nm.

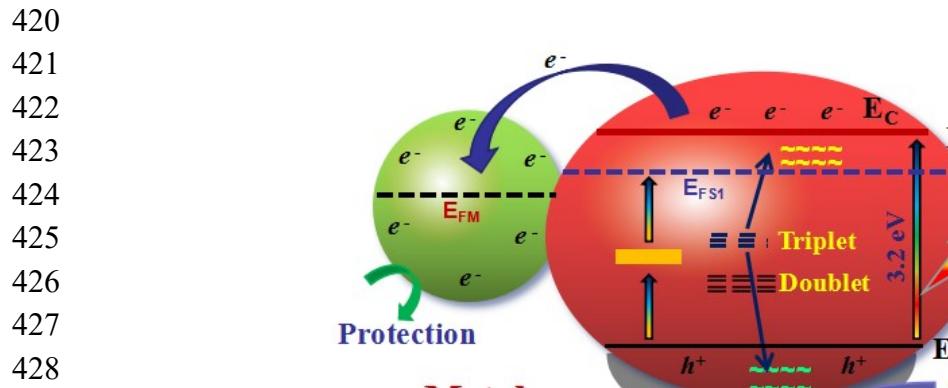
307 **Figure 5.** PL spectra of pure and cobalt doped ZnO nanorod arrays.


308 *3.3. Photocathodic protection properties*

309 In order to validate the photocathodic protection properties of the doped ZnO samples, the
310 OCPs and photocurrent densities of the galvanic couple between 316 SS electrode and different
311 photoanodes under intermittent simulated sunlight in 3.5% NaCl solution were measured. In the
312 light of the principle of the cathodic protection for metal protection, the potential of the coupled
313 metal will quickly polarize when impressed galvanic current, and the metal corrosion potential will
314 lower to the protective potential. As shown in Figure 6 (a), all samples have a relatively small
315 photocurrent densities (lower than $10 \mu\text{A}/\text{cm}^2$) under dark condition, and the photocurrent densities
316 were all rapidly increased owing to the photoelectric effect once the light switched on, which
317 indicates that the photogenerated electrons originate from the photoanode flow to the metal
318 electrode. After switching off the light, the photocurrent all return to the initial position (dark
319 condition), and once the light switched on again, the photocurrent were all rapidly increased again.
320 After four times circulation, the value of the photocurrent densities is as follows: C3 ($136.27 \mu\text{A}/\text{cm}^2$)
321 $>$ C4 ($110.41 \mu\text{A}/\text{cm}^2$) $>$ C2 ($97.88 \mu\text{A}/\text{cm}^2$) $>$ C1 ($68.23 \mu\text{A}/\text{cm}^2$) $>$ C0 ($42.69 \mu\text{A}/\text{cm}^2$). Compared with
322 pure ZnO, the photocurrent of the cobalt doped ZnO all increased, and the photocurrent densities
323 get larger with the increase of actual cobalt doping concentration. The value of OCP represents the
324

Figure 6. Photocurrent densities (a) and open circuit potential (b) of the galvanic couple of 316 SS electrode with ZnO of different cobalt doping concentration under simulated solar light switched on and off intermittently in 3.5 wt.% NaCl solution.

thermodynamics trend of metal corrosion, the more negative potential the metal has, the small probability the metal will suffer from corrosion. From Figure 6 (b), the corrosion potential (E_{corr}) of 316 SS in 3.5 wt.% NaCl solution is approximately -164 mV, and all OCPs become significantly decrease when coupling with the pure and doped ZnO photoanode films. The OCPs sharply shifted to the negative potential immediately once the light switched on, which was originated from the polarization the 316 SS caused by the impressed current (photocurrent). The OCPs were unstable at first, after manifold cycles the light switched on and off, the OCP values become relatively stable, which may be attributed to the balance between the generation and recombination of the photogenerated electron-holes [17]. According to the theory of metal polarization, the larger the impressed current is, the stronger cathodic polarization will have, and the more negative potential the metal has. As a result of the values in Figure 6 (a), C3 should have the most negative potential. From Figure 6 (b), the order of the relative equilibrium potentials of the photoanodes is: C3 (-955 mV vs SCE) < C4 (-942 mV vs SCE) < C2 (-848 mV vs SCE) < C1 (-803 mV vs SCE) < C0 (-579 mV vs SCE). The OCP shifted to the original position when the light switched off, but still negative than E_{corr} of


Figure 7. Photocurrent densities (a) and open circuit potential (b) of the galvanic couple of Q235 electrode with ZnO of different cobalt doping concentration under simulated solar light switched on and off intermittently in 3.5% NaCl solution.

316 SS (lower than -240 mV vs SCE). We can judge that all the pure and doped ZnO photoanodes can provide effectively protection for 316 SS, and C3 film is the best scheme.

We also tested the photocathodic protection properties of Q235 by different ZnO photoanodes. The E_{corr} of Q235 in 3.5 wt.% NaCl solution (approximately -630 mV vs SCE from Figure 7 (b)) is more negative than 316 SS, so the corrosion protection for Q235 is more difficult, and greater demands were being placed on the photoanode. Figure 7 (a) shows the photocurrent density and OCP curves of the galvanic couple between Q235 electrode with different films under intermittent simulated sunlight in 3.5 wt.% NaCl solution. Similar to 316 SS, the photocurrent density of the coupled photoanodes quickly get larger once the light switched on, and the order of the photogenerated current density of the coupled photoanodes is: C3 (133.02 μ A/cm²) > C4 (78.95 μ A/cm²) > C2 (65.84 μ A/cm²) > C1 (56.82 μ A/cm²) > C0 (36.48 μ A/cm²). When coupling with different photoanodes, the OCPs of all ZnO photoanodes were higher than E_{corr} of Q235, which indicates that all ZnO photoanodes can not provide sufficient cathodic protection for Q235 under dark. When the

409 light switched on, the OCP sharply shifted to the negative positions which is all lower than E_{corr} of
 410 Q235, and the photogenerated current successfully gave rise to the polarize of Q235. From Figure7
 411 (b), the order of the OCPs of the photoanodes is: C3 (-1040 mV vs SCE) < C3 (-1011 mV vs SCE) < C2
 412 (-994 mV vs SCE) < C1 (-919 mV vs SCE) < C0 (-888 mV vs SCE). We can judge that all the pure and
 413 doped ZnO photoanodes can provide effectively protection for Q235 under irradiation.

414 Through the test of the photocathodic protection properties of photoanodes, the pure and doped
 415 ZnO have the ability of providing effective protection for 316SS and Q235. By comparison with the
 416 pure TiO₂, the polarized OCPs of stainless steel and carbon steel coupled with ZnO have the more
 417 negative potentials, and these might lead to the better protection effect upon metals. Addition with
 418 the advantage of low price and plentiful, the modified ZnO with better performance might be the
 419 appropriate photoanodes for the photocathodic protection.

429 **Figure 8.** Schematic diagram of anticorrosion process and the photogenerated charge-transfer
 430 process in the doped ZnO coupled with metal.

431 3.4. Possible photocathodic protection mechanism

432 In order to better understand the protection mechanism of cobalt doped ZnO nanorod arrays
 433 for 316 SS and Q235, we try to analyze the reason in Figure 8 why the photocathodic protection
 434 efficiency enhanced with the increase of cobalt concentration. Normally, electrons in valence band
 435 are excited by the light, and then transfer to the conduction band, leaving holes in valence band.
 436 Some of the electrons will instantaneously neutralize with the photogenerated holes, and release
 437 energy by ways of luminescence or heat. The other electrons will migrate to the coupled metal, result
 438 in the polarization of the metal, and finally realize the protection of the metal. The holes in valence
 439 band will be consumed with the sacrificial agent (Na₂S + Na₂SO₃) in the photoelectric cell.

440 When cobalt doping into ZnO, firstly, the band gap of ZnO becomes slightly narrowed, and
 441 electrons can be excited by the light with shorter wavelength which may increase the number of
 442 electrons that excited from valence band to the conduction band. Secondly, the doped cobalt in ZnO
 443 can form an impurity energy level between conduction band and valence band, and the electrons
 444 can indirectly be excited to conduction via this intermediate level, which greatly lower the
 445 requirement for the energy of light. Thirdly, the hypo-outer shell of the transition metal in
 446 semiconductors is extremely prone to split. In our experiment, the introduction of Co ions in ZnO
 447 crystal lattice where Zn²⁺ locates at the center of the tetrahedron built by four oxygen atoms. The
 448 hypo-outer shell of Co (d state) may be confined by the tetrahedral crystal field of ZnO, and split
 449 into a higher energy triplet state and a lower energy doublet state. The triplet state hybridizes with
 450 the p orbital of the valence band soon afterwards and will split into two states: bonding state in the

451 valence band and antiboding state close to the conduction band. The bonding states will be
452 localized and form Co-O band, and the antibonding states which possess higher energy level and
453 some itinerant electrons have higher probability of jumping to the conduction band. Based on the
454 explanations above, with the increase of Co concentration, the recombination probability of
455 photogenerated electron-holes has reduced, and more electrons are possible to migrate to the
456 conduction band to become free electrons, resulting in the increase of photocathodic protection
457 efficiency.

458 **4. Conclusions**

459 Cobalt doped ZnO nanorod arrays which have good protection effect for metal have been
460 successfully prepared by a simple aqueous solution method. The characterization results represent
461 Co²⁺ has been successfully incorporated into the ZnO crystal lattice. The optical and photocathodic
462 protection properties of cobalt doped ZnO nanorod arrays have been discussed, and particularly
463 important features are as follows: UV-Vis absorption and PL spectra illustrate that the band gap and
464 the the seperation rate of photogenerated electron-hole pairs of ZnO nanorod arrays have changed
465 with increasing the cobalt concentrations in ZnO nanorods. OCP and Photocurrent density curves
466 suggest that the photocathodic protection performance for 316 SS and Q235 in 3.5 wt.% NaCl
467 solution enhanced with the increase of cobalt concentration, and the sample with 15% Co/Zn doing
468 ratio has the optimal photocathodic protection effect. These ZnO nanorod arrays have great prospect
469 in metal corrosion protection.

470 **Funding:** This work was financially supported by National Key R&D Program of China
471 (2016YFC0700800).

472 **Conflicts of Interest:** The authors declare no conflict of interest.

473 **References**

1. Imokawa, T.; Fujisawa, R.; Suda, A.; Tsujikawa, S. Protection of 304 Stainless steel with TiO₂ coating. *Corrosion Enigneering* **1994**, *43*, 482–486.
2. Hu, J.; Guan, Z.C.; Liang, Y.; Zhou, J.Z.; Liu, Q.; Wang, H.P.; Zhang, H.; Du, R.G. Bi₂S₃ modified single crystalline rutile TiO₂ nanorod array films for photoelectrochemical cathodic protection. *Corros. Sci.* **2017**, *125*, 59 – 67.
3. Guan, Z.C.; Wang, X.; Jin, P.; Tang, Y.Y.; Wang, H.P.; Song, G.L.; Du, R.G. Enhanced photoelectrochemical performances of ZnS-Bi₂S₃/TiO₂/WO₃ composite film for photocathodic protection. *Corros. Sci.* **2018**, *143*, 31 – 38.
4. Sun, W.X.; Cui, S.W.; Wei, N.; Chen, S.G.; Liu, Y.P.; Wang, D.A. Hierarchical WO₃/TiO₂ nanotube nanocomposites for efficientphotocathodic protection of 304 stainless steel under visible light. *J. Alloys Comp.* **2018**, *749*, 741 – 749.
5. Li, H.; Wang, X.T.; Zhang, L.; Hou, B.R. Preparation and photocathodic protection performance of CdSe/reduced graphene oxide/TiO₂ composite. *Corros. Sci.* **2015**, *94*, 342 – 349.
6. Dash, P.; Manna, A.; Mishra, N.C.; Varma, S.; Synthesis and characterization of aligned ZnO nanorods for visible light photocatalysis. *Physica E* **2019**, *107*, 38-46.
7. Chen, Y.C.; Li, Y.J.; Hsu, Y.K. Enhanced performance of ZnO-based dye-sensitized solar cells by glucose treatment. *J. Alloys Comp.* **2018**, *748*, 382-389.
8. Borysiewicz, M.A.; Wzorek, M.; Wojciechowski, T.; Wojtowicz, T.; Kamińska, E.; Piotrowska, A. Photoluminescence of nanocoral ZnO films. *J. Lumin.* **2014**, *147*, 367-371.
9. Boumezoued, A.; Guergouri, K.; Barille, R.; Rechem, D.; Zaabat, M.; Rasheed, M. ZnO nanopowders doped with bismuth oxide, from synthesis to electrical application. *J. Alloys Comp.* **2019**, *791*, 550-558.

496 10. Huang, J.; Yin, Z.G.; Zheng, Q.D. Applications of ZnO in organic and hybrid solar cells. *Energy*
497 *Environ. Sci.* **2011**, *4*, 3861-3877.

498 11. Weintraub, B.; Zhou, Z.Z.; Li, Y.H.; Deng, Y.L. Solution synthesis of one-dimensional ZnO
499 nanomaterials and their applications. *Nanoscale* **2010**, *2*, 1573-1587.

500 12. Dhamodharan, P.; Manoharan, C.; Bououdina, M.; Venkadachalapathy, R.; Ramalingam, S.
501 Al-doped ZnO thin films grown onto ITO substrates as photoanode in dye sensitized solar cell. *Solar*
502 *Energ* **2017**, *141*, 127-144.

503 13. Wu, D.W.; Huang, Z.B.; Yin, G.F.; Yao, Y.D.; Liao, X.M.; Han, D.; Huang, X.; Gu, J.W.
504 Preparation, structure and properties of Mn-doped ZnO rod arrays. *CrystEngComm* **2010**, *12*, 192-198.

505 14. Pandiyan, R.; Micheli, V.; Ristic, D.; Bartali, R.; Pepponi, G.; Barozzi, M.; Gottardi, G.; Ferrari, M.;
506 Laidani, N. Structural and near-infra red luminescence properties of Nd-doped TiO₂ films deposited by
507 RF sputtering. *J. Mater. Chem.* **2012**, *22*, 22424-22432.

508 15. Wu, J. J.; Liu, S.C. Low-temperature Growth of Well - Aligned ZnO Nanorods by Chemical Vapor
509 Deposition. *Adv. Mater.* **2002**, *14*, 215-218.

510 16. Kim, C. G.; Sung, K.; Chung, T. M.; Jung D.Y.; Kim, Y. Monodispersed ZnO nanoparticles from a
511 single molecular precursor. *Chem. Commun.* **2003**, *16*, 2068-2069.

512 17. Zhou, M.J.; Zeng, Z.O.; Zhong, L. Photogenerated cathode protection properties of nano-sized
513 TiO₂/WO₃ coating. *Corros. Sci.* **2009**, *51*, 1386 - 1391.