

1 Electromechanical properties of PVDF-based 2 polymers reinforced with nanocarbonaceous fillers 3 for pressure sensing applications

4 Javier Vicente¹, P. Costa^{2,3}, S. Lanceros-Mendez^{4,5}, Jose Manuel Abete⁶ and Aitzol Iturrospe¹

5

6 Affiliations

7 1. Electronics and Computing Department, Mondragon Unibertsitatea, 20500, Mondragon, Spain

8 2. Center of Physics, University of Minho, 4710 - 057 Braga, Portugal

9 3. Institute for Polymers and Composites (IPC), University of Minho, 4800-058 Guimarães, Portugal

10 4. BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park,
11 48940 Leioa, Spain

12 5. IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain

13 6. Applied Mechanics Department, Mondragon Unibertsitatea, 20500, Mondragon, Spain

14

15 **Abstract:** Polymer-based composites reinforced with nanocarbonaceous materials can be tailored
16 for functional applications. Poly(vinylidene fluoride) (PVDF) reinforced with carbon nanotubes
17 (CNT) or graphene with different filler contents have been developed as potential piezoresistive
18 materials.

19 The mechanical properties of the nanocomposites depend of the PVDF matrix, filler type and
20 filler content. PVDF 6010 is a relatively more ductile material, whereas PVDF-HFP shows larger
21 maximum strain near 300% strain for composites with CNT, 10 times higher than the pristine polymer.
22 This behaviour is similar for all composites reinforced with CNT. On the other hand, rGO/PVDF
23 composites decrease the maximum strain compared to neat PVDF.

24 It is shown that the use of different PVDF copolymers does not influence the electrical properties
25 of the composites. On the other hand, CNT as filler leads to composites with percolation threshold
26 around 0.5 wt.%, whereas reduced graphene oxide (rGO) nanocomposites shows percolation
27 threshold at \approx 2 wt.%. Both nanocomposites present excellent linearity between applied pressure and
28 resistance variation, with pressure sensibility (PS) decreasing with applied pressure, from $PS \approx 1.1$ to
29 0.2 MPa⁻¹. A proof of concept demonstration is presented, showing the suitability of the materials for
30 industrial pressure sensing applications.

31 **Keywords:** Piezoresistivity; PVDF; nanocarbonaceous; electromechanical; pressure sensibility

32

33 **1. Introduction**

34 Polymer based nanocomposites are attracting large attention in the recent years both in the
35 scientific and industrial areas. Through the inclusion of fillers, a wide range of polymer properties
36 can be enhanced, such as mechanical [1], electrical [2] and thermal properties [3], among others. Thus,
37 polymer composites can be tailored for specific applications. Moreover, it is possible to add new
38 features to the polymers through the inclusion of nanoparticles, functionalizing them and enabling
39 sensing of different parameters such as mechanical [4], temperature or humidity [5], among others
40 physical properties.

41 Hence, their application as sensors materials is being widely studied due to their simple
42 manufacturing and integration into devices [6, 7]. Some of the most used fillers for strain sensing
43 functionalization of polymers are carbon nanoallotropes, such as carbon black (CB) [8], graphene (G)
44 and its oxidized forms (graphene oxide (GO) and reduced GO (rGO) [8, 9] and carbon nanotubes
45 (CNT) [7, 10]. With the inclusion of conductive nanoparticles, polymer nanocomposites increase their
46 piezoresistive response, i.e. under a mechanical solicitation their resistance changes linearly with
47 applied strength [11]. Different fillers influence the electrical and functional properties, but also the
48 mechanical properties of the composite [11, 12]. The percolation threshold of the polymer composites
49 depend on the filler, matrix and processing method, among other parameters [13]. Lower percolation
50 thresholds around 0.1 to 0.4 vol% can be found in polymer composites with graphene or carbon
51 nanotubes as filler [13]. The aspect ratio of the nanofillers as well as their intrinsic properties strongly
52 influence the electrical and mechanical properties of the composite and, therefore, its functional
53 response [12]. In this way, graphene and CNT are compared as reinforcement fillers due to their
54 different intrinsic properties in order to find the suitable nanofiller for specific functional devices.
55 These materials are typically tailored to optimize their mechanical properties and piezoresistive
56 sensibility, achieving gauge factor values up to 175 [14], two orders of magnitude higher than
57 traditional strain gauges, and strains larger than 50% [15]. The percentage of fillers used for
58 optimizing functional response also vary widely [16], depending on the matrix, filler, processing
59 method or even application. However, the larger piezoresistive sensibility in polymer composites is
60 observed near the percolation threshold [17].

61 The percolation threshold is the range in which the materials undergo a transition from nearly
62 insulating to conductive, changing several orders of magnitude their electrical conductivity for small
63 filler content variations [16]. The percentage at which this phenomenon occurs vary widely
64 depending on fillers, matrix and processing method [18, 19]. The percolation threshold is reported to
65 occur when the first conductive paths spanning all the nanocomposite are formed due to the

66 proximity of the conductive fillers embedded in the isolating matrix. This phenomenon has been
67 explained by different theoretical models [19-21].

68 The selection of the polymer matrix used for the development of a functional sensor depends on
69 the stimulus needed for sensor response. Flexibility or stretchability, force and environmental
70 conditions influences the host polymer to use in view the overall properties to select.

71 Soft polymer matrices such as natural rubbers or thermoplastic elastomers are reported to
72 provide the nanocomposite high strain capability from low to large strains [15], and wide range of
73 sensitivity in functional response [22]. For applications in which mechanical solicitations can
74 compromise the structural integrity of the material or for large force applications, stiffer matrices are
75 employed. Among the most used thermoplastic polymers for force and deformation sensor
76 development, literature reports on polypropylene (PP) [23], poly(vinylidene fluorine) (PVDF) [23, 24]
77 and poly-ether-ether-ketone (PEEK) [25], among others [25, 26], though thermosetting such as
78 polyepoxides [27] and elastomers such as thermoplastic polyurethane (TPU) [8, 9], triblock styrene-
79 butadiene-styrene (SBS) [15] or styrene-ethylene/butylene-styrene (SEBS) [23] have been also used.

80 PVDF and its copolymers are excellent materials for functional applications, such as sensors,
81 actuators, energy harvesting and as biomaterials in the biomedical field [28]. PVDF shows excellent
82 electroactive properties, being used as host polymer for large number of applications [28]. PVDF is
83 semi-crystalline material with five distinct crystalline phases, the most investigated and used for
84 applications being the non-polar α -phase and the polar β -phase [11, 27].

85 Furthermore, PVDF presents excellent mechanical and chemical properties, weather resistance,
86 and outstanding properties associated to their polar crystalline forms [29]. In this way, for functional
87 composite applications is an interesting material with large potential for force sensor, due to its
88 mechanical and chemical resistance properties [12, 27].

89 Polymer nanocomposites can be manufactured using laboratory and industrial techniques. At
90 laboratory level, they can be processed by solvent casting [30], for example, whereas at industrial
91 level typical processing methods include hot pressing [31], extrusion [32] or injection [33]. Through
92 the different fabrication processes, the overall properties of the PVDF composites can be tuned,
93 including mechanical and electrical properties, with large influences on the functional performance
94 of the composite. In particular, thin film materials attract increasing attention based on their simple
95 integration in to devices [33-36]. Hence, the integration of these films in components or processes
96 enables an inexpensive sensor conformation.

97 In this work, a comprehensive study of PVDF-based materials for force compression sensing is
98 presented with excellent performance and linearity [37, 38]. Different PVDF based polymers (PVDF-
99 HFP, PVDF 6010 and PVDF 5130) and nanocarbonaceous fillers (carbon nanotubes and reduced
100 graphene oxide) were used to tailor composites in view their mechanical, electrical and

101 electromechanical properties. Further, a proof of concept application is presented, submitting the
102 sensor to different pressures. In order to develop a functional material with specific response for
103 applications, the focus on the different properties of the polymer matrix and filler (type and content)
104 will be evaluated to tailor the overall properties of the composite to work as piezoresistive sensible
105 material under mechanical compression. Host matrices were selected from 400 MPa to 2.5 GPa of
106 tensile modulus, as detailed in experimental part and CNT and rGO has been selected as functional
107 fillers based on their different dimensions and intrinsic properties.

108

109 **2. Experimental**

110 *2.1. Materials*

111 The selected polymers were poly(vinylidene fluorine) with reference 5130, 6010 and PVDF-HFP,
112 all supplied by Solvay. PVDF 5130 is characterized by ultra-high viscosity with excellent adhesion, a
113 density of 1.75 g/cm³ and a tensile modulus between 1 to 1.5 GPa. PVDF 6010 is a homopolymer with
114 medium viscosity, density between 1.75 to 1.8 g/cm³ and a tensile modulus between 1.7 to 2.5 GPa.
115 Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP), with reference Solef 21,216 and
116 VDF/HFP mole ratio of 88/12, shows a density of 1.78 g/cm³ and a tensile modulus between 400 to
117 600 MPa.

118 The solvent used to disperse the nanofillers and dissolve the PVDF was N,N'-
119 dimethylpropyleneurea (DMPU) and was purchased from LaborSpirit.

120 Multi-walled carbon nanotubes were supplied by Nanocyl with reference NC7000, showing an
121 average length of 1.5 μm, an outer mean diameter of 9.5 nm and 90% purity. Reduced graphene oxide
122 was obtained from The Graphene Box (Spain) with >99 % of purity, 1-5 μm of length and 1-2 layers.

123 *2.2. Sample preparation*

124 Carbon nanofillers were dispersed in DMPU within an ultrasonic bath (ATU, Model ATM40-
125 3LCD) for an average time of 4 h, assuring a correct de-agglomeration and homogeneous dispersion
126 of the fillers in the solvent. Then, PVDF (5130, 6010 or HFP) was added to filler/solvent solution and
127 completely dissolved through magnetic stirring during approximately 3 hours at 30 °C. It is to notice
128 that this processing method has demonstrated to ensure good filler dispersion for both graphene [12]
129 and CNT [15]. Then, the solution was spread in a clean glass substrate by doctor blade method with
130 a 100 μm blade thickness. Finally, films were melted in an oven at 210 °C during 25 min, promoting
131 the crystallization of the PVDF in the α-phase and achieving a complete solvent evaporation [39]. The
132 thicknesses of the films after complete evaporation of the DMPU solvent ranges from 20 to 60 μm.

133 Films with the different polymer matrices and carbonaceous filler percentages were prepared,
 134 as indicated in Table 1.

135

136

137

138 Table 1. PVDF-based polymers, nanofillers and solvent/polymer ratio used in the processing of the
 139 nanocomposites.

	DMPU/PVDF vol / vol	CNT (wt.%)	Nomenclature	rGO (wt.%)	Nomenclature
PVDF 5130	95/5	0	PVDF5130	0	PVDF5130
		0.25	0.25CNT/5130	0.5	0.5rGO/5130
		0.5	0.5CNT/5130	1	0.1rGO/5130
		1	1CNT/5130	2	2rGO/5130
PVDF 6010	90/10	0	PVDF6010		
		0.25	0.25CNT/6010		
		0.5	0.5CNT/6010		
PVDF-HFP	90/10	0	PVDF-HFP		
		0.25	0.25CNT/HFP		
		0.5	0.5CNT/HFP		

140

141 2.3. Sample characterization

142 Fourier-transform infrared (FTIR) spectroscopy analysis was carried out in transmission mode
 143 at room temperature from 4000 cm⁻¹ to 600 cm⁻¹ with a resolution of 4 cm⁻¹ employing a Jasco FT/IR-
 144 4100 spectrometer with a TGS detector.

145 Differential scanning calorimetry (DSC) tests were performed with a Netzsch DSC 200F3 Maia
 146 set up. Samples were placed into Al pan crucibles, stabilized at 30 °C and then subjected to a
 147 20 °C.min⁻¹ heating rate up to 200 °C under nitrogen atmosphere.

148 Electrical conductivity was obtained after I-V measurements. Samples were submitted to a
 149 voltage sweep from -10 to 10 V and the current was measured with a Keithley 6430 SourceMeter.
 150 Gold electrodes were previously deposited in both sides of the films by magnetron sputtering with a
 151 Polaron SC502 sputter coater. The electrical conductivity was obtained after equation 1 considering
 152 sample thickness and electrode area:

153

154
$$\sigma = \rho^{-1} = \left(R \frac{A}{L} \right)^{-1} \quad (1)$$

155 where R is the electrical resistance, A the electrode area and L the sample thickness.

156 Electrical conductivity tests were performed in two sample points and repeated three times each.

157 The mechanical characterization of the nanocomposites was performed by tensile tests up to
158 failure with a Shimadzu AG-IS universal testing machine with a 50 N load cell, repeated for 5
159 measures for each sample.160 For the tensile tests, samples of 30x10 mm of area and 20 to 60 μm of thickness were cut from
161 the fabricated films, placed in the universal testing machine through a clamping system leaving an
162 approximate interspace between clamps of 10 mm to assure a proper grip of the sample. The
163 measurements were performed at speed of 1 mm/min and force and test time were recorded at a 100
164 ms rate. Engineering stress and strain (equations 2 and 3) were obtained according to:

165

166
$$\sigma = \frac{F}{A} \quad (2)$$

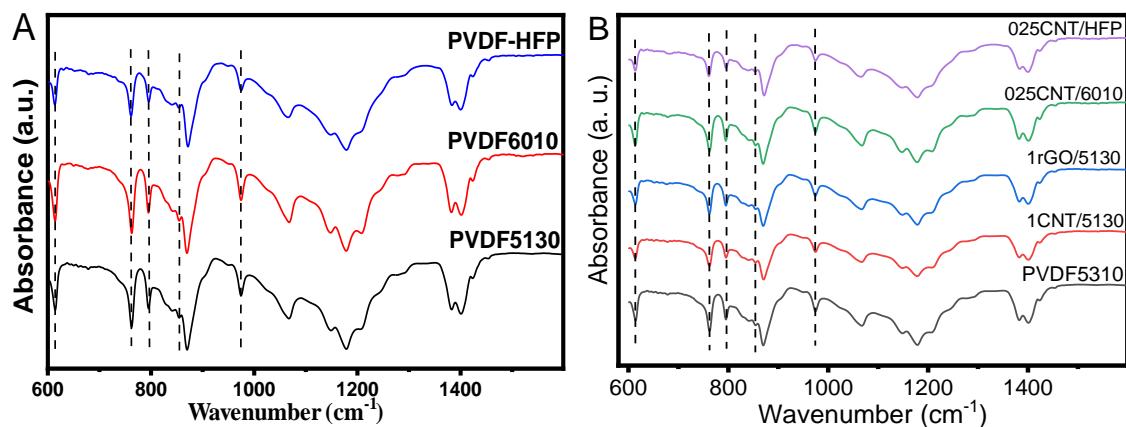
167
$$\varepsilon = \frac{\Delta L}{L_0} \quad (3)$$

168 were F is the tensile force, A the transversal area of the sample considering the thickness and width
169 of the sample, ΔL the recorded displacement and L_0 the initial interspace between clamps. Tensile
170 tests were repeated for three times, ensuring that measurements were consistent within materials.
171 The samples were considered as macroscopically homogeneous materials, without consider non-
172 local effects [40] due to the low filler content.173 Electromechanical tests were performed under cyclic compression on samples with initial
174 minimum pre-load of 10 N corresponding to 0.09 MPa to forces of 50, 100, 200 and 400 N,
175 corresponding to 0.43, 0.86, 1.72 and 3.45 MPa, respectively, considering the contact area of the
176 compression tests. The piezoresistive tests were performed in a Shimadzu AG-IS universal testing
177 machine with a load cell of 500 N at speed of 0.5 and 1 mm/min, for 10 and 50 cycles and replicated
178 twice. Force and displacement were recorded with a 500 ms time span.179 The acquisition of the electrical resistance between the compression pieces was performed with
180 an Agilent 344401A multimeter. Piezoresistive tests were repeated twice.181 The quantitative evaluation of the pressure sensitivity (PS in equation 4) was performed
182 according to:

183

184
$$PS = \frac{\Delta R/R_0}{P} \quad (4)$$

185 where ΔR represents the resistance variation measured during the test and R_0 the initial resistance of
 186 the sample under the minimum pre-load and P is the pressure on the sample.


187

188 **3. Results and discussion**

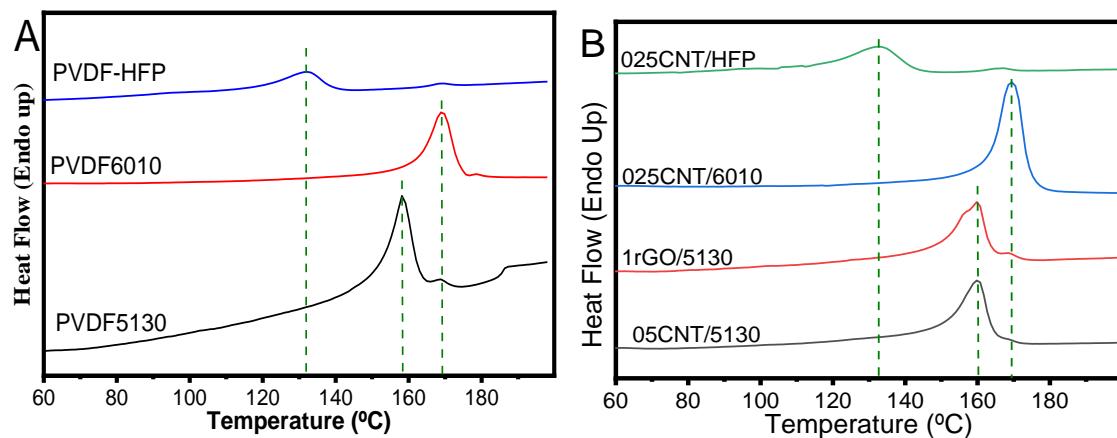
189 *3.1. Chemical and thermal characterization*

190 Figure 1 presents the FTIR spectra of different neat semi-crystalline PVDF polymer (Figure 1A)
 191 and the corresponding composites reinforced with CNT and rGO (Figure 1B). The presence of α -
 192 phase in the samples is confirmed by the corresponding bands at 614, 763, 795 and 975 cm^{-1} [28],
 193 whereas the presence of the β , γ and δ [28] phases has not been detected neither in the neat polymers
 194 or the corresponding composites. In fact, the α -PVDF phase is the most common one when the
 195 polymer is crystallizes from the melt [28]. No significative variations in the FTIR spectra was detected
 196 among the different composites.

197

198

199 Figure 1. FTIR spectra of A) neat polymers and B) composites with CNT or rGO nanofillers.


200

201 Literature reports that some nanoparticles such as carbon nanotubes can influence the
 202 crystallization phase of PVDF [41]. The neat conductive fillers CNT and rGO, without surface
 203 modification, do not influence the crystallization phase of the polymers as observed in the FTIR
 204 spectra (Figure 1B) for the PVDF composite materials, as reported previously [12]. Neat
 205 nanocarbonaceous materials do not act as nucleating agents [41] in PVDF, leading just to α -phase
 206 crystallization independently of filler type and content.

207 Thermal properties were evaluated by DSC thermograms for neat PVDF 5130, 6010 and HFP
 208 (Figure 2A) and their corresponding nanocomposites with CNT or rGO with different filler content
 209 (Figure 2B). Higher variability on the melting temperature (T_m) can be observed between the different
 210 PVDF matrixes, with PVDF-HFP presenting lower crystallization temperature, $T_c \approx 132.3$ °C, than

211 PVDF5130 and 6010, with $T_m \approx 158.2$ and $T_m \approx 168.9$ °C, respectively. The thermograms of the neat
 212 polymers and the nanocomposites show a single peak corresponding to the melting of the α -phase
 213 of PVDF [42].

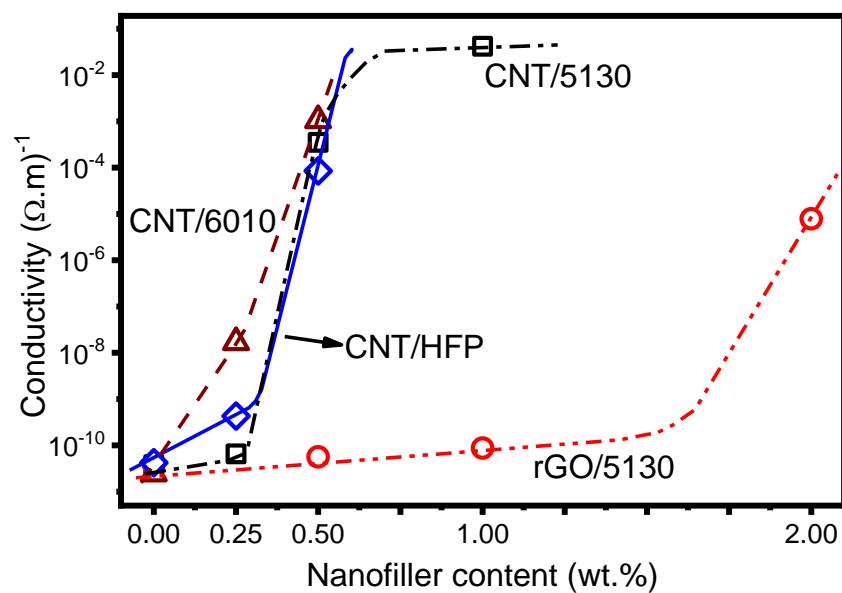
214

215

216 Figure 2. DSC scans of A) neat PVDF 5310, 6010 and HFP and B) corresponding nanocomposites with
 217 CNT and rGO for different filler contents.

218

219 PVDF composites with CNT or rGO lead to crystallization temperatures slightly higher than the
 220 neat polymers, increasing less than 2 °C in all cases, demonstrating that the effect of the fillers in the
 221 melting behaviour of the samples is quite small and independent of filler type and content,
 222 confirming the low interaction between fillers and polymers observed in the FTIR spectra (Figure 1),
 223 where the introduction of the fillers lead to no new chemical bonds or variations in the polymer bonds.


224

225 3.2. Electrical characterization

226 The volume electrical conductivity for the different composites is shown in Figure 3. Electrical
 227 conductivity increases with the inclusion of both nanofillers for all PVDF copolymers, showing a
 228 percolation threshold lower than 0.5 wt.% for CNT/PVDF composites and near 2 wt.% for
 229 rGO/PVDF5130 composites. Conductive network formed by the CNT is more effective than for rGO
 230 for similar filler contents into the PVDF matrix, the intrinsic conductivity of the CNT being higher
 231 than the one of the rGO nanofillers. Further, the aspect ratio of the CNT is larger than the one of the
 232 2D materials, leading to lower percolation threshold composites. The conductivity of the neat
 233 polymers is in agreement with the manufacturer specifications and is similar among PVDF
 234 copolymers [11, 42, 43]. Among CNT nanocomposites, PVDF6010 shows the higher electrical
 235 conductivity for filler content between 0.25 and 0.5 wt.% when compared to PVDF-HFP and 5310
 236 composites. The electrical conductivity for CNT/PVDF6010 is higher for 0.25 wt.% CNT (near 2 orders

237 of magnitude) but for composite with 0.5 wt.% filler content the electrical conductivity is in the same
 238 order of magnitude for all polymer matrices. Their percolation threshold is thus around 0.5 wt.%
 239 CNT and the maximum conductivity is $\approx 5 \times 10^{-1}$ ($\Omega \cdot \text{m}$) $^{-1}$, as reported in literature for CNT/polymer
 240 materials [43, 44]. It is to notice that percolation thresholds below 0.1 wt.% of CNT have been reported
 241 for PVDF matrix composites [44], which is not verified in the present work.

242

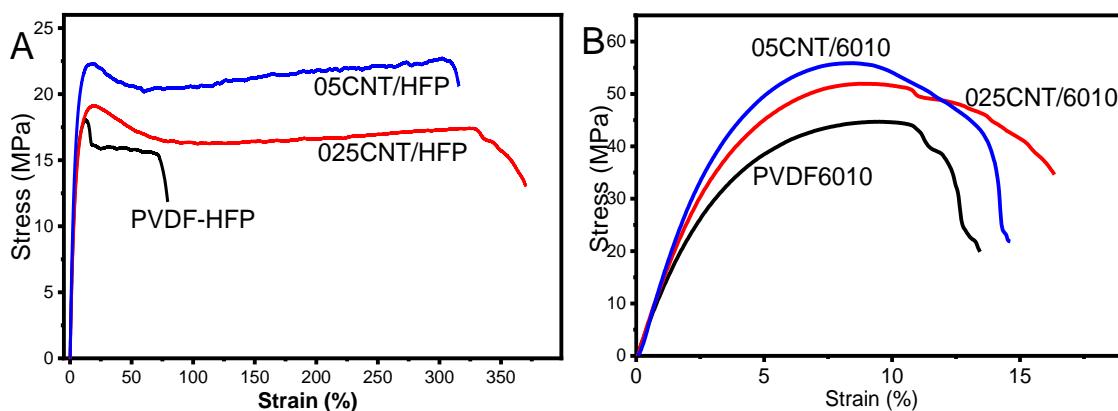
243

244 Figure 3. Electrical conductivity of the fabricated samples as a function of filler type and content. The
 245 lines are for guiding the eyes.

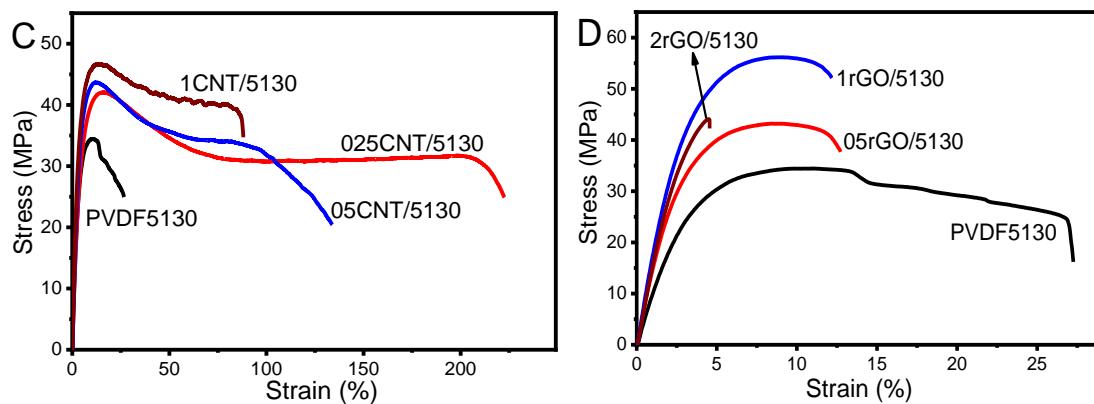
246

247 With respect to rGO/PVDF5130 nanocomposites, they show lower conductivity when compared
 248 to CNT at the same filler content, which is attributed to the lower aspect ratio and intrinsic
 249 conductivity of rGO when compared to CNT, leading to an increase of percolation threshold of the
 250 composite. The rGO/5130 up to 1 wt.% filler content shows similar electrical conductivity than neat
 251 PVDF5130 and the percolation threshold is ≈ 2 wt.% rGO, with an electrical conductivity of $\sigma \approx 1 \times 10^{-5}$
 252 ($\Omega \cdot \text{m}$) $^{-1}$.

253 The intrinsic properties of CNT lead to low percolation thresholds in polymer-based composites.
 254 To tailor polymer-based nanomaterials with functional properties, low nanofiller content are
 255 typically required in order not to affect other properties of the polymer, such as thermal or mechanical.
 256 In terms of higher conductivity and lower threshold, CNT appear as more interesting
 257 nanocarbonaceous filler than rGO for conductive polymer nanocomposites.


258

259 3.3. Mechanical measurements


260 Mechanical measurements were performed to evaluate the stress-strain response of the several
 261 PVDF polymers and composites, as a function of the filler content and type. As it is shown in Figure
 262 4, CNT tend to reinforce the PVDF matrix, leading to a higher stiffness for the composites when
 263 compared to neat matrix [45-48]. However, at the higher CNT contents, maximum stress increases,
 264 while the maximum strain of the composites decreases. This effect is ascribed to the heterogeneity of
 265 the composites caused by filler agglomeration [49] that limits the mechanical strain for all PVDF
 266 matrices, PVDF-HFP, 6010 and 5130. Maximum stress of the CNT/PVDF samples, near the yielding
 267 of the PVDF and composites, increases with increasing CNT content. This means that the CNT
 268 effectively mechanically reinforce the composites, as presented in Table 2, and that the CNT
 269 agglomerates can act as mechanical interlocking between polymer chains and the filler [49]. In fact, it
 270 has been shown in different graphene/PVDF [12] and CNT/PVDF [15] composites with low filler
 271 content into the PVDF matrix, that their presence do not influence the spherulitic size and the kinetic
 272 of crystallization, the cross-section SEM images demonstrating a homogeneous dispersion of the
 273 nanocarbonaceous fillers, independently of the filler type and content [12]. Morphological analysis
 274 of the nanocarbonaceous/polymer composites have been intensively studied in literature [7, 50, 51],
 275 the present results being in agreement with the reported literature (data not shown).

276 Among the different polymers, PVDF6010 shows the highest yield strength (larger than 40 MPa)
 277 and PVDF-HFP the lowest yield stress (lower than 20 MPa), being inversely for strain at rupture,
 278 where PVDF-HFP shows the larger strain, near 70%, and the 6010 rupture is near 12%. At rupture,
 279 composites with CNT embedded in PVDF-HFP and 5130 present larger maximum strain, reaching
 280 200% of strain for 025CNT/5130 and 300% for 025CNT/HFP samples. In all the composite samples,
 281 except the ones including rGO, the inclusion of CNT fillers yields to higher stiffness and elongation
 282 at break. From the behaviour observed in the rGO/PVDF samples it can be concluded that the matrix-
 283 filler wetting is considerably weaker than the PVDF-CNT one, leading to brittle fracture of the
 284 samples. In fact, literature has reported on the decreasing of the maximum strain with low graphene
 285 content as reinforcement for PVDF 1010 [12].

286

287

288

289 Figure 4. Stress-strain response for PVDF and the corresponding composites for A) PVDF-HPF, B)
 290 PVDF6010 and C) PVDF5010 for different CNT contents. D) PVDF5130 reinforced with rGO.
 291

292 The initial modulus for neat PVDF is larger for 6010 near $E \approx 1$ GPa being $E \approx 870$ and $E \approx 350$ MPa
 293 for 5310 and HFP, respectively. Reinforced with CNT, all PVDF matrices increase the initial modulus
 294 with increasing CNT content, excepting for the 1CNT/5310 sample. Similar behaviour is found in
 295 rGO/5310 composites, where the initial modulus increases with filler content up to 1 wt.%, decreasing
 296 for samples with 2 wt.%.

297 The 05CNT/6010 sample shows an initial modulus near $E \approx 1.4$ GPa. The larger initial modulus
 298 and yield stress of the PVDF 6010 composites is correlated with the percolation threshold, that
 299 depends on the filler dispersion, but also rigidity of the matrix [52], decreasing the threshold below
 300 0.5 wt.%.

301

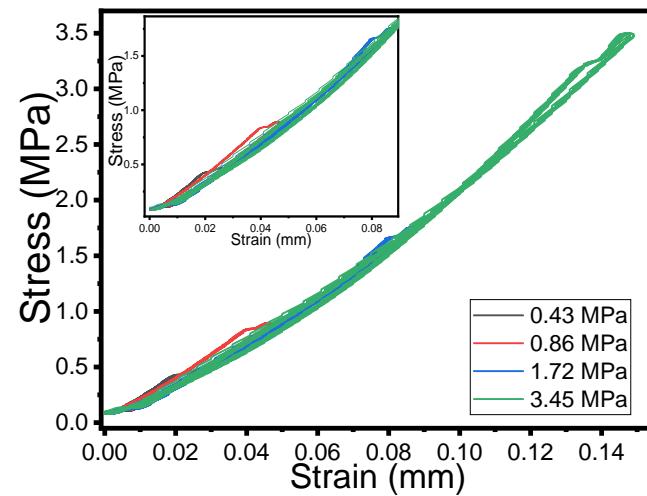
302 Table 1- Mechanical parameters obtained from the stress-strain measurements for the different PVDF
 303 matrices and the corresponding composites with CNT and rGO.

Sample	Initial modulus (MPa)	Strain at rupture (%)	Stress at rupture (MPa)	Yield strain (%)	Yield stress (MPa)
PVDF-HFP	356 ± 15	70.8 ± 4	15.5 ± 3	12.7 ± 3	18.1 ± 4
025CNT/HFP	372 ± 16	328.2 ± 16	17.4 ± 4	19.3 ± 5	19.1 ± 4
05CNT/HFP	439 ± 18	309.5 ± 15	22.4 ± 4	18.3 ± 4	22.3 ± 5
PVDF6010	1065 ± 45	11 ± 2	42.8 ± 8	9.6 ± 2	44.7 ± 10
025CNT/6010	1293 ± 49	11.1 ± 2	49.5 ± 10	8.9 ± 2	51.9 ± 11
05CNT/6010	1388 ± 51	13.6 ± 3	51.9 ± 10	8.3 ± 2	55.9 ± 12
PVDF5130	870 ± 40	23.4 ± 5	27.3 ± 6	9.8 ± 2	34.4 ± 7
025CNT/5130	863 ± 40	212.9 ± 13	30.0 ± 6	13.3 ± 3	42.0 ± 8
05CNT/5130	1244 ± 54	99.2 ± 5	32.0 ± 7	13.2 ± 3	43.6 ± 9

1CNT/5130	1220 ± 53	85.9 ± 4	38.6 ± 8	14.4 ± 4	46.6 ± 9
PVDF5130	870 ± 41	23.4 ± 4	27.3 ± 6	9.8 ± 2	34.4 ± 7
05rGO/5130	1151 ± 52	12.3 ± 3	39.6 ± 8	8.7 ± 2	43.2 ± 9
1rGO/5130	1327 ± 55	11.9 ± 3	53.4 ± 11	8.9 ± 2	56.1 ± 11
2rGO/5130	1265 ± 54	4.5 ± 1	44.1 ± 9	4.5 ± 1	44.1 ± 10

304

305 The strain at rupture for composites with PVDF 6010 is similar for the different CNT contents,
 306 increasing in the remaining PVDF composites, from 70 to 300% in HFP and 23 to 210% in 5130.
 307 PVDF5130 with rGO filler suffer a decrease of the strain at rupture from 23 to 4.5%, from neat polymer
 308 to the composite with 2 wt.% rGO, respectively. The yield stress and strain are comparable for both
 309 fillers (CNT and rGO) in PVDF 5130 materials. The load transfer efficiency and interfacial shear stress
 310 of the composites as a function of the dimensions of the fillers has been theoretically calculated [53].
 311 The CNT and rGO fillers employed in the present work show average lengths of 1.5 μm and 1 to 5
 312 μm for CNT and rGO, respectively. The CNT diameter is 9.5 nm and the rGO thickness is 1-2 layers
 313 that correspond to 2-3 nm [54]. Thickness and length of the employed nanocarbonaceous fillers are
 314 similar, being different the width of both materials, from 9.5 nm to 1-5 μm, respectively, for CNT and
 315 rGO. In this way, theoretical and experimental results are in agreement, the larger nanofillers leading
 316 to better reinforcement of the composites [55], as observed in the rGO/5130 composites, which show
 317 slightly higher initial modulus when compared to CNT/5130 composites.

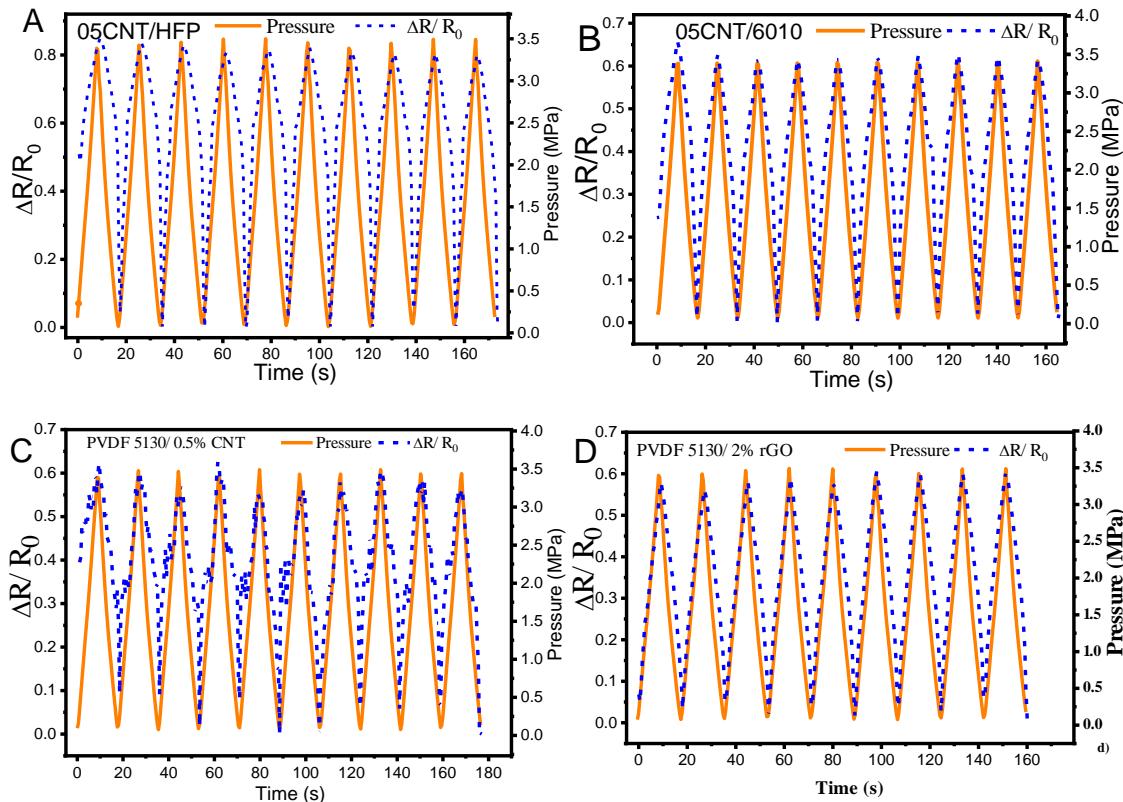

318 Those results reflect not just the different mechanical characteristics of the polymers but also the
 319 different wettability between polymer and fillers, depending on macromolecule characteristics.

320

321 3.4. Electromechanical measurements

322 PVDF composites with CNT or rGO as filler are excellent candidates for electromechanical
 323 sensors, leading to high sensibility composites [11, 24]. Electromechanical compression tests (in
 324 Figure 5) were performed in the composites around the percolation threshold to evaluate the
 325 sensitivity and linearity of the different materials. The mechanical stress-strain cycles applied to the
 326 samples up to 3.45 MPa is shown in Figure 6. It can be observed a slight nonlinear response and that
 327 the mechanical hysteresis is very low for the 05CNT/5130 composites, being similar for the different
 328 nanocomposites.

329


330

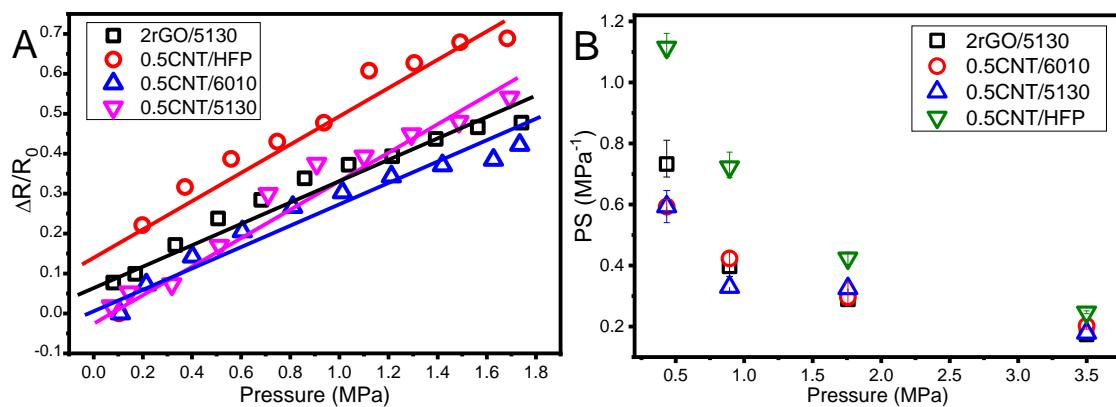
331 Figure 5- Stress-strain mechanical response for the 05CNT/PVDF composite, as representative for the
 332 rest of the nanocomposites.

333

334 Figure 6 show 10 loading-unloading tests performed at a maximum load of 3.5 MPa (400 N of
 335 force) for the different composites with 0.5 wt.% CNT content and the 2rGO/5130 sample.
 336 Electromechanical tests show good linearity between electrical resistance variation and applied
 337 pressure for the different matrices and fillers, as a function of the pressure. Similar electromechanical
 338 linearity and cycling performance has been reported in [56, 57] with different materials and
 339 experimental approaches.

340

341


342

343 Figure 6- Electromechanical performance of the A) PVDF-HFP, B) 6010 and C) 5130 with 0.5 wt.% of
 344 CNT for 10 cycles from unload to 3.5 MPa of pressure. D) PVDF 5130 reinforced with 2 wt.% CNT in
 345 cycles up to 3.5 MPa.

346

347 The composites present larger piezoresistive sensibility near the percolation threshold [58]. The
 348 linear behaviour between the applied pressure and electrical resistance variation is present in all
 349 composites, for loading and unloading cycles, as shown in Figure 6 and 7A.

350

351

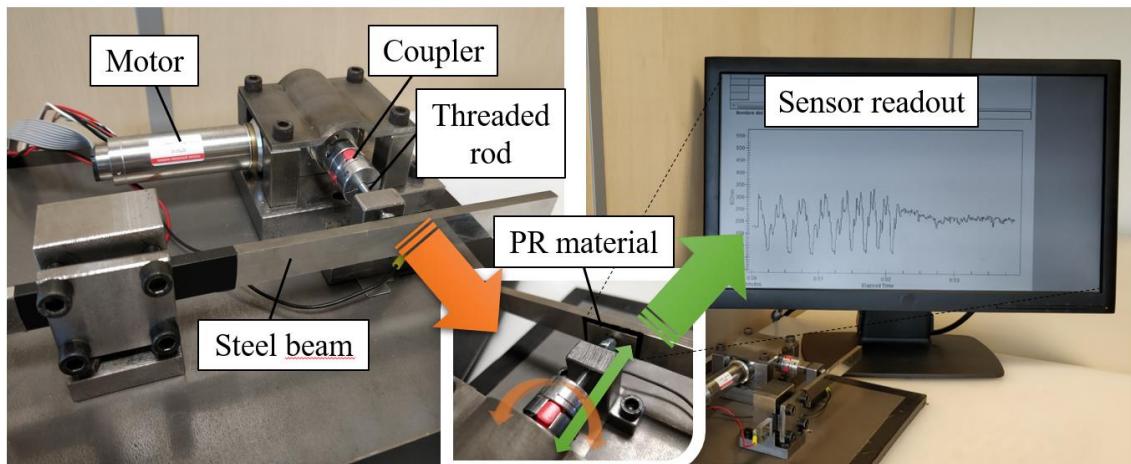
352 Figure 7- Electromechanical response of the different composites. Linearity between applied pressure
 353 and relative resistance variation in A) and pressure sensitivity for composites with 0.5 wt.% of PVDF
 354 matrices and 2rGO/5130 composite.

355

356 The pressure sensibility was evaluated in the different nanocarbonaceous/PVDF composites as
 357 a function of polymer and filler type and applied pressure. The highest sensibility is obtained for
 358 05CNT/HFP composite with $PS \approx 1.1 \text{ MPa}^{-1}$, as shown in Figure 7. Further, as it is shown in Figure 7B
 359 that the piezoresistive sensibility decreases with increasing applied pressure due to the compression
 360 of the filler network and therefore the filler-filler distance. This is in agreement with related CNT-
 361 based nanocomposites, showing the opposite behaviour with respect to test performed under tensile
 362 electromechanical conditions [16, 59]. Further, all composites present good linearity between
 363 electrical resistance variation and applied pressure during the compression cycles, with CNT/6010
 364 and rGO/5130 composites showing the larger piezoresistive sensibility. On the other hand, although
 365 showing good sensitivity and piezoresistive response, 05CNT/5130 composites show lower electrical
 366 stability (Figure 6C) when compared with the other composites.

367 *3.5. Proof of concept application*

368 The validation of the sensor in pressure sensing applications was performed using the
 369 05CNT/6010 composite. The CNT nanocomposite was integrated in a developed test bench built to


370 emulate the mechanical stiffness present in different mechanisms. With this use case, the capability
371 of employing the developed materials to fabricate sensors which could be applied in industrial smart
372 components is evaluated.

373 The test bench, shown in Figure 8, consists of a PMDC motor which through a torque coupler
374 actuates in a threaded rod, producing a net displacement of the tip of the rod. This tip rests against a
375 stainless-steel cantilever beam, which opposes the rod axial displacement. Thus, the PMDC motor
376 produces a torque in the rod that is translated into an axial force which deflects the beam. The motor
377 has a gearbox of 31:1. Considering that the thread pitch is 1 mm, the relationship between motor
378 revolutions and rod tip displacement is 32.3 $\mu\text{m}/\text{rev}$.

379 The nanocomposite material was integrated between the beam and threaded rod. The resistance
380 change produced under the compression pressure was measured between the fixtures of the beam
381 and the rod employing a Fluke 8845A multimeter and logged through PC. The PMDC motor (Maxon
382 EC-4 pole 22 mm) was actuated by an EPOS2 controller.

383 Figure 8 shows the sensor readout when submitted to 8 cycles of 4 revolutions forward and back,
384 as representative performance of the piezoresistive sensor. The angular velocity was 750 rpm for the
385 first 4 cycles and 1500 rpm for the latter four cycles.

386

387

388 Figure 8- Fabricated test bench using CNT/PVDF as sensor material and obtained measurements.

389

390 Figure 8 shows that the sensor readout presents high repeatability between the cycles both at
391 high and low rotational speed. No significant drift is presented in the measured signal, confirming
392 the suitability of the developed materials for sensor applications.

393 **4. Conclusions**

394 Different PVDF copolymers were reinforced with carbon nanotubes (CNT) and reduced
395 graphene oxide (rGO) fillers to evaluate the performance of the materials for piezoresistive sensor
396 applications.

397 FTIR analysis shows that PVDF crystallizes in the α -phase, independently of polymer type and
398 filler type and content. Similarly, mechanical tensile modulus of the matrix and reinforcement filler
399 (CNT or rGO) do not influence filler dispersion for low filler contents. Thermal measurements show
400 the melting temperature around 132, 158 and 169 °C for PVDF-HFP, 5310 and 6010, respectively. This
401 temperature is just slightly affected by the inclusion of the fillers. With respect to the mechanical
402 response, PVDF 6010 presents the highest initial modulus. Tensile tests demonstrate that the
403 inclusion of fillers reinforce the polymer matrices, leading to higher stiffness, yield strength or
404 elongation at break depending on the percentage used. Their percolation threshold is lower for the
405 CNT nanocomposites, when compared with the rGO ones, being the percolation threshold
406 independent on the polymer matrix.

407 Pressure sensibility is larger for PVDF-HFP with 0.5 wt.% CNT for low applied pressures. For
408 largest pressure, the PS is similar for all materials. The electromechanical pressure sensibility of the
409 materials as a function of pressure varies between $0.2 < PS < 1.1$. The linearity between the electrical
410 resistance variation and pressure is present in all composites. Finally, a proof of concept is presented
411 showing the suitability of the materials for applications. Hence, PVDF/CNT and rGO based
412 piezoresistive nanocomposites present suitable characteristics to work as embeddable, highly
413 sensitive and cost-effective sensors in industrial pressure sensing applications.

414

415 Acknowledgments: This work was supported by the Portuguese Foundation for Science and Technology (FCT)
416 in the framework of the Strategic Funding UID/FIS/04650/2019. The authors thank the FCT for financial support
417 for the SFRH/BPD/110914/2015 (P. C) grant, the Department of Education of the Basque Government for the
418 financial support through the PRE_2018_2_0010 grant, as well POCH and European Union. Financial support
419 from the Basque Government Industry and Education Departments under the ELKARTEK, HAZITEK and PIBA
420 (PIBA-2018-06) programs, is also acknowledged.

421

422 **References**

- 423 1. Naskar, A.K., J.K. Keum, and R.G. Boeman, *Polymer matrix nanocomposites for automotive*
424 *structural components*. *Nature Nanotechnology*, 2016. **11**: p. 1026.
- 425 2. Zhan, C., et al., *Conductive polymer nanocomposites: a critical review of modern advanced*
426 *devices*. *Journal of Materials Chemistry C*, 2017. **5**(7): p. 1569-1585.
- 427 3. Gu, J., et al., *Functionalized graphite nanoplatelets/epoxy resin nanocomposites with high*
428 *thermal conductivity*. *International Journal of Heat and Mass Transfer*, 2016. **92**: p. 15-22.
- 429 4. Gong, S., et al., *Temperature-independent piezoresistive sensors based on carbon*
430 *nanotube/polymer nanocomposite*. *Carbon*, 2018. **137**: p. 188-195.

431 5. Zhang, D., et al., *Fabrication and characterization of an ultrasensitive humidity sensor based*
432 *on metal oxide/graphene hybrid nanocomposite*. Sensors and Actuators B: Chemical, 2016.
433 **225**: p. 233-240.

434 6. Adhikari, B. and S. Majumdar, *Polymers in sensor applications*. Progress in Polymer Science, 2004. **29**(7): p. 699-766.

436 7. Chazot, C.A.C. and A.J. Hart, *Understanding and control of interactions between carbon*
437 *nanotubes and polymers for manufacturing of high-performance composite materials*.
438 Composites Science and Technology, 2019. **183**: p. 107795-107795.

439 8. Shintake, J., et al., *Ultrastretchable Strain Sensors Using Carbon Black-Filled Elastomer*
440 *Composites and Comparison of Capacitive Versus Resistive Sensors*. Advanced Materials
441 Technologies, 2018. **3**(3): p. 1700284.

442 9. Yan, T., et al., *Carbon/graphene composite nanofiber yarns for highly sensitive strain sensors*.
443 Materials & Design, 2018. **143**: p. 214-223.

444 10. Coleman, J.N., et al., *Small but strong: A review of the mechanical properties of carbon*
445 *nanotube–polymer composites*. Carbon, 2006. **44**(9): p. 1624-1652.

446 11. Zhang, X.-W., et al., *Time dependence of piezoresistance for the conductor-filled polymer*
447 *composites*. Journal of Polymer Science Part B: Polymer Physics, 2000. **38**(21): p. 2739-2749.

448 12. Costa, P., et al., *High-performance graphene-based carbon nanofiller/polymer composites*
449 *for piezoresistive sensor applications*. Composites Science and Technology, 2017. **153**: p.
450 241-252.

451 13. Kim, H., A.A. Abdala, and C.W. Macosko, *Graphene/Polymer Nanocomposites*.
452 Macromolecules, 2010. **43**(16): p. 6515-6530.

453 14. Yu, S., et al., *Superior piezoresistive strain sensing behaviors of carbon nanotubes in one-*
454 *dimensional polymer fiber structure*. Carbon, 2018. **140**: p. 1-9.

455 15. Costa, P., et al., *Electro-mechanical properties of triblock copolymer styrene–butadiene–*
456 *styrene/carbon nanotube composites for large deformation sensor applications*. Sensors and
457 Actuators A: Physical, 2013. **201**: p. 458-467.

458 16. Hu, N., et al., *Piezoresistive strain sensors made from carbon nanotubes based polymer*
459 *nanocomposites*. Sensors, 2011. **11**(11): p. 10691-10723.

460 17. Pu, J.-H., et al., *2D end-to-end carbon nanotube conductive networks in polymer*
461 *nanocomposites: a conceptual design to dramatically enhance the sensitivities of strain*
462 *sensors*. Nanoscale, 2018. **10**(5): p. 2191-2198.

463 18. Kazemi, Y., et al., *Highly stretchable conductive thermoplastic vulcanizate/carbon nanotube*
464 *nanocomposites with segregated structure, low percolation threshold and improved cyclic*
465 *electromechanical performance*. Journal of Materials Chemistry C, 2018. **6**(2): p. 350-359.

466 19. Bessaguet, C., et al., *Electrical behavior of a graphene/PEKK and carbon black/PEKK*
467 *nanocomposites in the vicinity of the percolation threshold*. Journal of Non-Crystalline Solids,
468 **512**: p. 1-6.

469 20. Kale, S., et al., *Tunneling-percolation model of multicomponent nanocomposites*. Journal of
470 Applied Physics, 2018. **123**(8): p. 85104.

471 21. Zare, Y. and K.Y. Rhee, *Simplification and development of McLachlan model for electrical*
472 *conductivity of polymer carbon nanotubes nanocomposites assuming the networking of*
473 *interphase regions*. Composites Part B: Engineering, 2019. **156**: p. 64-71.

474 22. Costa, P., et al., *Piezoresistive polymer blends for electromechanical sensor applications*.
475 Composites Science and Technology, 2018. **168**: p. 353-362.

476 23. Seyler, H., A.M. Gómez-Fatou, and J.H. Salavagione, *Preparation of Piezo-Resistive Materials*
477 *by Combination of PP, SEBS and Graphene*. Journal of Composites Science, 2019. **3**(2).

478 24. Rezvantalab, H., et al., *An Aqueous-Based Approach for Fabrication of PVDF/MWCNT Porous*
479 *Composites*. Scientific Reports, 2017. **7**(1): p. 1716.

480 25. Ogasawara, T., T. Tsuda, and N. Takeda, *Stress–strain behavior of multi-walled carbon*
481 *nanotube/PEEK composites*. Composites Science and Technology, 2011. **71**(2): p. 73-78.

482 26. Paul, D.R. and L.M. Robeson, *Polymer nanotechnology: Nanocomposites*. Polymer, 2008.
483 27. Tung, T.T., et al., *Engineering of graphene/epoxy nanocomposites with improved distribution*
484 *of graphene nanosheets for advanced piezo-resistive mechanical sensing*. *Journal of*
485 *Materials Chemistry C*, 2016. **4**(16): p. 3422-3430.
486 28. Martins, P., A.C. Lopes, and S. Lanceros-Mendez, *Electroactive phases of poly(vinylidene*
487 *fluoride): Determination, processing and applications*. *Progress in Polymer Science*, 2014.
488 29. Bidsorkhi, H.C., et al., *Nucleation effect of unmodified graphene nanoplatelets on PVDF/GNP*
489 *film composites*. *Materials Today Communications*, 2017. **11**: p. 163-173.
490 30. Yan, Y., et al., *Synthesis of highly-stretchable graphene – poly(glycerol sebacate) elastomeric*
491 *nanocomposites piezoresistive sensors for human motion detection applications*.
492 *Composites Science and Technology*, 2018. **162**: p. 14-22.
493 31. Gupta, T.K., et al., *Self-sensing and mechanical performance of CNT/GNP/UHMWPE*
494 *biocompatible nanocomposites*. *Journal of Materials Science*, 2018. **53**(11): p. 7939-7952.
495 32. Teixeira, J., et al., *Piezoresistive response of extruded polyaniline/(styrene-butadiene-*
496 *styrene) polymer blends for force and deformation sensors*. *Materials & Design*, 2018. **141**:
497 p. 1-8.
498 33. Xiaomeng, Z., et al., *Tensile Piezoresistive Behavior of Polyethylene Terephthalate/Carbon*
499 *Black Composite*. *Journal of Materials in Civil Engineering*, 2018. **30**(6): p. 4018107.
500 34. Spitalsky, Z., et al., *Carbon nanotube–polymer composites: Chemistry, processing,*
501 *mechanical and electrical properties*. *Progress in Polymer Science*, 2010. **35**(3): p. 357-401.
502 35. Lange, D., et al., *Piezoresistivity of thin film semiconductors with application to thin film*
503 *silicon solar cells*. *Solar Energy Materials and Solar Cells*, 2016. **145**: p. 93-103.
504 36. Fiorillo, A.S., C.D. Critello, and S.A. Pullano, *Theory, technology and applications of*
505 *piezoresistive sensors: A review*. *Sensors and Actuators A: Physical*, 2018. **281**: p. 156-175.
506 37. Wan, Y., Y. Wang, and C.F. Guo, *Recent progresses on flexible tactile sensors*. *Materials*
507 *Today Physics*, 2017. **1**: p. 61-73.
508 38. Yang, T., et al., *Recent advances in wearable tactile sensors: Materials, sensing mechanisms,*
509 *and device performance*. *Materials Science and Engineering: R: Reports*, 2017. **115**: p. 1-37.
510 39. Ribeiro, C., et al., *Electroactive poly(vinylidene fluoride)-based structures for advanced*
511 *applications*. *Nature protocols*, 2018. **13**(4): p. 681-704.
512 40. Marotti de Sciarra, F., *On non-local and non-homogeneous elastic continua*. *International*
513 *Journal of Solids and Structures*, 2009. **46**(3): p. 651-676.
514 41. Kim, G.H., S.M. Hong, and Y. Seo, *Piezoelectric properties of poly(vinylidene fluoride) and*
515 *carbon nanotube blends: beta-phase development*. *Physical chemistry chemical physics : PCCP*, 2009. **11**(44): p. 10506-10512.
516 42. Mendes, S.F., et al., *Effect of filler size and concentration on the structure and properties of*
517 *poly(vinylidene fluoride)/BaTiO₃ nanocomposites*. *Journal of Materials Science*, 2012. **47**(3):
518 p. 1378-1388.
519 43. Costa, P., J. Silva, and S. Lanceros Mendez, *Strong increase of the dielectric response of*
520 *carbon nanotube/poly(vinylidene fluoride) composites induced by carbon nanotube type and*
521 *pre-treatment*. *Composites Part B: Engineering*, 2016. **93**: p. 310-316.
522 44. Begum, S., et al., *Potential of Polyvinylidene Fluoride/Carbon Nanotube Composite in Energy,*
523 *Electronics, and Membrane Technology: An Overview*. *Polymer-Plastics Technology and*
524 *Engineering*, 2016. **55**(18): p. 1949-1970.
525 45. Yan, T., Z. Wang, and Z.-J. Pan, *Flexible strain sensors fabricated using carbon-based*
526 *nanomaterials: A review*. *Current Opinion in Solid State and Materials Science*, 2018. **22**(6):
527 p. 213-228.
528 46. Cai, J., et al., *Preparing carbon black/graphene/PVDF-HFP hybrid composite films of high*
529 *piezoelectricity for energy harvesting technology*. *Composites Part A: Applied Science and*
530 *Manufacturing*, 2019. **121**: p. 223-231.

534 47. Costa, P., et al., *The effect of fibre concentration on the α to β -phase transformation, degree*

535 of crystallinity and electrical properties of vapour grown carbon nanofibre/poly(vinylidene)

536 fluoride) composites. *Carbon*, 2009. **47**(11): p. 2590-2599.

537 48. Papageorgiou, D.G., I.A. Kinloch, and R.J. Young, *Mechanical properties of graphene and*

538 *graphene-based nanocomposites*. *Progress in Materials Science*, 2017. **90**: p. 75-127.

539 49. Georgousis, G., et al., *Strain sensing in polymer/carbon nanotube composites by electrical*

540 *resistance measurement*. *Composites Part B: Engineering*, 2015. **68**: p. 162-169.

541 50. Wang, B., et al., *Graphene-based composites for electrochemical energy storage*. *Energy*

542 *Storage Materials*, 2019.

543 51. Li, Y., et al., *Additive manufacturing high performance graphene-based composites: A review*.
Composites Part A: Applied Science and Manufacturing, 2019. **124**: p. 105483-105483.

544 52. Zare, Y. and K.Y. Rhee, *Evaluation and Development of Expanded Equations Based on*
Takayanagi Model for Tensile Modulus of Polymer Nanocomposites Assuming the Formation
of Percolating Networks. *Physical Mesomechanics*, 2018. **21**(4): p. 351-357.

545 53. Weon, J.-I., *Mechanical and thermal behavior of polyamide-6/clay nanocomposite using*
continuum-based micromechanical modeling. *Macromolecular Research*, 2009. **17**(10): p.
797-806.

546 54. Nemes-Incze, P., et al., *Anomalies in thickness measurements of graphene and few layer*
graphite crystals by tapping mode atomic force microscopy. *Carbon*, 2008. **46**(11): p. 1435-
1442.

547 55. Chatterjee, S., et al., *Size and synergy effects of nanofiller hybrids including graphene*
nanoplatelets and carbon nanotubes in mechanical properties of epoxy composites. *Carbon*,
2012. **50**(15): p. 5380-5386.

548 56. Li, X.-P., et al., *Highly sensitive, reliable and flexible piezoresistive pressure sensors featuring*
polyurethane sponge coated with MXene sheets. *Journal of Colloid and Interface Science*,
2019. **542**: p. 54-62.

549 57. Huang, J., et al., *Flexible electrically conductive biomass-based aerogels for piezoresistive*
pressure/strain sensors. *Chemical Engineering Journal*, 2019. **373**: p. 1357-1366.

550 58. Ferrreira, A., et al., *Electromechanical performance of poly(vinylidene fluoride)/carbon*
nanotube composites for strain sensor applications. *Sensors and Actuators A: Physical*, 2012.
178: p. 10-16.

551 59. Niu, D., et al., *Graphene-elastomer nanocomposites based flexible piezoresistive sensors for*
strain and pressure detection. *Materials Research Bulletin*, 2018. **102**: p. 92-99.

562

563

564

565

566

567