

1 Article

2

Satellite Retrieval of Downwelling Shortwave 3 Surface Flux and Diffuse Fraction under All Sky 4 Conditions in the Framework of the LSA SAF 5 Program (Part 2: Evaluation)

6 **Dominique Carrer¹, Suman Moparthi¹, Chloé Vincent¹, Xavier Ceamanos¹, Sandra C. Freitas² and
7 Isabel F. Trigo²**8 ¹ Météo-France/CNRM, CNRS/GAME, 42 avenue Gaspard Coriolis, 31057 Toulouse Cedex, France9 ² Instituto Português do Mar e da Atmosfera (IPMA), Rua C-Aeroporto, 1749-077 Lisboa, Portugal10 **Abstract:** High frequency knowledge of the spatio-temporal distribution of the Downwelling
11 Surface Shortwave Flux (DSSF) and its diffuse fraction (fd) at the surface is nowadays essential for
12 understanding climate processes at the surface-atmosphere interface, plant photosynthesis and
13 carbon cycle, and for the solar energy sector. The EUMETSAT Satellite Application Facility for Land
14 Surface Analysis operationally delivers estimation of the MDSSFTD (Downwelling Surface Short-
15 wave radiation Fluxes – Total and Diffuse fraction) product with an operational status since the year
16 2019. The method for the retrieval was presented in the companion paper [40]. The part 2 now
17 focuses on the evaluation of the MDSSFTD algorithm and presents the comparison of the
18 corresponding outputs, i.e. total DSSF and diffuse fraction (fd) components, against *in-situ*
19 measurements acquired at four BSRN stations over a seven-month period. The validation is
20 performed on an instantaneous basis. We show that the satellite estimates of DSSF and fd meet the
21 target requirements defined by the user community for all-sky (clear and cloudy) conditions. For
22 DSSF, the requirements are 20Wm^{-2} for $\text{DSSF} < 200\text{Wm}^{-2}$, and 10% for $\text{DSSF} \geq 200\text{Wm}^{-2}$. The MBE and
23 rMBE compared to the ground measurements are 3.618Wm^{-2} and 0.252%, respectively. For fd, the
24 requirements are 0.1 for $\text{fd} < 0.5$, and 20% for $\text{fd} \geq 0.5$. The MBE and rMBE compared to the ground
25 measurements are -0.044 and -17.699%, respectively. The study also provides a separate analysis of
26 the product performances for clear sky and cloudy sky conditions. The importance of representing
27 the cloud-aerosol radiative coupling in the MDSSFTD method is discussed. Finally, it is concluded
28 that the quality of the Aerosol Optical Depth (AOD) forecasts currently available is enough accurate
29 to obtain reliable diffuse solar flux estimates. This quality of AOD forecasts was still a limitation a
30 few years ago.31 **Keywords:** Solar Radiation; Meteosat Second Generation; Validation; Land Surface Modelling

32

33

1. Introduction

34 The downwelling surface short-wave radiation flux (DSSF) refers to the radiative energy in the
35 wavelength interval $[0.3\text{ }\mu\text{m}, 4.0\text{ }\mu\text{m}]$ reaching the Earth's surface per time and area unit. An accurate
36 knowledge of the spatio-temporal distribution of the downwelling solar radiation at the surface is
37 essential not only for understanding climate processes at the surface-atmosphere interface [1, 2], but
38 also for plant photosynthesis and carbon cycle, e.g., [3-5] and for the solar energy sector [6].
39 Concerning the current status of DSSF modelling in atmospheric models, [7] and [8] found that the
40 National Centers for Atmospheric Prediction (*NCEP*) and the National Center for Atmospheric
41 Research (*NCAR*) data consistently overestimated DSSF by 17%–27%. Comparisons with satellite data
42 have also revealed large positive biases in *NCEP–NCAR* DSSF ranging from 25 to 50 Wm^{-2} over the
43 United States [9-10] and from 40 to 80 Wm^{-2} over Europe [11]. However, in a recent study, [12]
44 examined the progress made by two new reanalyses in the estimation of surface irradiance (ERA5

45 and COSMO-REA6) and negative biases of around -5 Wm^{-2} . They showed the largest deviations
46 under clear-sky conditions, which is most likely caused by the aerosol data used.

47 DSSF essentially depends on the solar zenith angle, cloud coverage, aerosols, and to a lesser
48 extent on atmospheric absorption and surface albedo. Over the past few decades the scientific
49 community has developed computation methods to estimate both downward and net surface solar
50 irradiance from satellite observations [13-29]. In addition to those estimates, two incoming solar
51 radiation products derived from MSG/SEVIRI were also developed, being operated since 2005 by
52 EUMETSAT Satellite Application Facility (SAF) on Land Surface Analysis (LSA; [30]): the MDSSF
53 product (referenced LSA-201) corresponding to instantaneous values, and the DIDSSF product (LSA-
54 203) corresponding to daily accumulated values. Both products consider clear and cloudy skies to
55 provide total shortwave fluxes at the surface. However, all these estimates lack of the repartition of
56 the total flux into its direct and diffuse components (through the diffuse fraction, for example).
57 Moreover, even though these products have proven to be of high quality, [31-33] showed that they
58 still have some limitations under clear sky conditions, especially as they are determined taking as
59 hypothesis a temporally and spatially constant load and type of continental aerosols [34]. The
60 importance of aerosols on the DSSF has been established in numerous studies on some highly
61 polluted regions [35-39]. Thus, an initiative has been conducted by EUMETSAT to upgrade the
62 physics in the scientific algorithms used for the satellite-derived DSSF retrievals and to provide first
63 estimations of the diffuse fraction of the radiation.

64 The physics of this upgraded algorithm is described in the companion paper [40]. The new
65 product version has been referenced as LSA-207 by EUMETSAT, corresponding to the MSG
66 Downwelling Surface Short-wave radiation Fluxes – Total and Diffuse fraction (MDSSFTD). Two
67 different modules are used to calculate the set of MDSSFTD outputs, one for clear conditions, and the
68 other for cloudy conditions. The two methods are designed to ensure the spatial and temporal
69 continuity of DSSF and diffuse fraction in the LSA-207 product. Details on the methodology as well
70 as the major limitations are given in [40]. The input cloud mask is used to distinguish between the
71 two methods. The summary of the two methods is as follows and described in detailed in [40].

72 In clear sky conditions, the formulation based on the algorithm SIRAMix [41, 42] is used to
73 estimate the total flux and the diffuse fraction. The atmospheric pressure, water content, ozone
74 content, aerosols vary in time and space and are provided by atmospheric model forecasts. Both
75 direct and diffuse flux terms are estimated by combining pre-computed aerosol transmittances and
76 albedo (computed using radiative transfer models for varying aerosol load, solar zenith angles and
77 water vapour content) from look-up tables and semi-empirical radiative transfer equations [42]. The
78 total flux is the sum of both direct and diffuse flux estimates. The diffuse fraction is obtained as the
79 ratio of the diffuse flux to the total flux estimate. In cloudy sky conditions, the total flux is estimated
80 using simplified radiative transfer equations as described in [40]. The cloud transmittances are
81 estimated from SEVIRI radiances at the top-of-atmosphere (TOA) level. The atmospheric
82 transmittance term used for the estimation of the effective transmittance remains the same as in clear
83 sky conditions. However, an extra cloud transmittance term is added as well as two multiple
84 scattering terms. In the case of cloudy-sky conditions, the diffuse fraction is estimated using an
85 empirical formulation. The clear-sky and cloudy sky methods are designed to provide smooth
86 transitions in the frontiers between clear and cloudy pixels (see [40]). Finally, LSA-207 then includes
87 an estimation of the total incoming solar radiation with an improved modelling of the aerosol impact
88 on the atmospheric transmittance compared to the previous MDSSF product (LSA-201). The diffuse
89 fraction of the radiation for all sky conditions is now also available. Moreover, estimations of
90 auxiliary quantities are also provided: the equivalent Aerosol Optical Depth (AOD) at 550nm, the
91 Opacity Index (OI) characterizing the opacity of the atmosphere (defined in [40]), and a quality flag
92 information (QF).

93 This study makes an evaluation of the satellite-derived MDSSFTD product. The article is
94 organized as follows. Section 0 presents the data and the metrics used for the validation. Section 0
95 presents validation results and Section 0 concludes about the performance of the product regarding
96 the users requirements.

97 **2. Data and Metrics**98 **2.1. Requirements**

99 Over India, a satellite-based surface solar radiation dataset called Surface Solar Radiation Data
 100 Set-Heliosat (SARAH-E) was developed and evaluated against *in-situ* measurements over a variety
 101 of sites. The results indicate an overestimation of the satellite DSSF, with a mean bias of 21.9Wm^{-2}
 102 [43]. Study Over Finland and Sweden [44] also discussed the retrieval accuracies of two different
 103 satellite-derived DSSF dataset (the polar-orbiting satellite-based dataset – CLARA-A1 – and the
 104 geostationary satellite-based dataset – SARAH). They showed comparable accuracies in comparison
 105 with ground measurements, in particular 10Wm^{-2} for the monthly means metrics and 15Wm^{-2} for
 106 daily means metrics. Over Europe, [31] completed the inter-comparison of satellite-derived incoming
 107 solar products from the different Satellite Application Facilities of EUMETSAT and concluded that
 108 the products have comparable mean biases ($+4\text{Wm}^{-2}$) and root mean square differences ($80\text{-}100\text{Wm}^{-2}$)
 109 for instantaneous metrics. Performances of the historical LSA-SAF DSSF (LSA-201) satellite-derived
 110 incoming solar radiation product were also discussed more in detail in [45,46]. On an instantaneous
 111 basis, the bias between the satellite product and the ground data was shown to be small with absolute
 112 values of less than 10 Wm^{-2} over Europe [45], and even lower over France (3.75Wm^{-2} representing
 113 2.5%). The standard deviation of the difference between instantaneous satellite estimates and ground
 114 measurements were of the order of 40 Wm^{-2} for clear sky data and 110Wm^{-2} for cloudy sky data.
 115 Finally, the satellite estimates of DSSF are today ranging in average from 10 to 30 Wm^{-2} in absolute
 116 bias scale. However, these past works also pointed out that the absolute metrics usually used to
 117 evaluate the product performances are not equivalent if the domain (or period) of interest is located
 118 in high latitude or in low latitudes (or winter and summer periods).

119 The characteristics of the LSA-207 MDSSFTD product and the targeted accuracies agreed with
 120 EUMETSAT are described in Table 1. These are a compromise between what is currently achievable,
 121 given existing observations and algorithm input data, and what would suit most users and applications.
 122 In this respect, the ‘threshold’ requirement is then defined as the minimum accuracy which is
 123 acceptable for DSSF user needs. This paper assesses the performance of the product by referring to
 124 the ‘target’ requirement. However, it may be relevant to note that because the topic of retrieving
 125 diffuse fraction from satellite is very recent, there is today no performance requirements defined by
 126 the scientific community for this parameter. We therefore have fixed the ‘target’ accuracy to 20%,
 127 although a larger uncertainty (e.g. $>30\%$) could have been also considered. The target accuracy
 128 metrics used are the Mean Bias Error (MBE) for low values, and the relative MBE (rMBE) for high
 129 values of DSSF or fd.

130 **Table 1 Product Requirements for MDSSFTD, in terms of area coverage, resolution and accuracy.**
 131 The targeted requirements are indicated in bold.

Product	Coverage	Resolution			Accuracy		
		Temporal	Spatial	Threshold	Target	Optimal	
MDSSFTD (LSA-207) DSSF_TOT	MSG disk	15 min	MSG pixel resolution	20%	DSSF< 200 Wm^{-2} : 20W/m² (MBE) DSSF \geq 200 Wm^{-2} : 10% (rMBE)		5%
MDSSFTD (LSA-207) Diffuse Fraction FRACTION_DIFFUSE (fd)	MSG disk	15 min	MSG pixel resolution	30%	fd <0.5: 0.1 (MBE) fd \geq0.5: 20% (rMBE)		10%

132 **2.2. Ground measurements and preprocessing**

133 Four ground stations are used for the validation analyses presented in this document. The
 134 stations considered are Carpentras, De Aar, Tamanrasset and Toravere from the BSRN (Baseline
 135 Surface Radiation Network, <http://www.bsrn.awi.de>) of the World Climate Research Programme.
 136 Their location is presented in Figure 1.

137 The *in-situ* measurements of instantaneous total and diffuse DSSF as observed at these stations
 138 are used as reference. The stations are located in climatically different regions of Europe and Africa.
 139 For example, the station Tamanrasset in North Africa is influenced by coarser dust particles and more
 140 clear conditions than the other Europe-based stations. Toravere is located at the highest latitude and
 141 therefore is related to frequent periods of overcast in the winter and fall. This will help evaluation the
 142 MDSSFTD method under cloudy situation and high solar zenith angles.

Figure 1 Location of the ground stations providing *in-situ* measurements.

143 BSRN derived surface flux values are retrieved at a high temporal frequency going from 1
 144 minute to a few minutes. BSRN data already account for missing or bad measurements for which
 145 missing flag values are assigned. The missing values are discarded in the comparison with satellite
 146 flux measurements. The direct flux measurements account for the varying solar zenith angle
 147 dependence. All measurements (total, diffuse and direct surface solar flux measurements) are
 148 discarded when the solar zenith angle is greater than 80 degrees. MSG/SEVIRI satellite-derived
 149 products differ on a pixel basis from 0 to 12 minutes with the product time. SEVIRI scan takes 12
 150 minutes for the data acquisition over the MSG disk starting from the South pole and finishing its
 151 acquisition in the North pole. For the sake of a fair comparison, the ground measurements are
 152 averaged over 15 minutes, centered around the exact acquisition time of the satellite for every SEVIRI
 153 pixel. The relationship between the estimated time difference as a function of row number (or latitude)
 154 is detailed in other LSA SAF reports (product user manual MDSSF; 2.6V2 at
 155 <https://landsaf.ipma.pt/en/products/longwave-shortwave-radiation/>; last time consulted on 2nd of
 156 September, 2019). Note that the diffuse fraction is not a direct measurement. This variable is obtained
 157 by dividing the diffuse component over the total component that are measured by the ground
 158 instruments. The BSRN total fluxes and diffuse fluxes are measured respectively with pyranometers
 159 and shaded pyranometers (Kipp & Zonen/CM21 for stations Carpentras and Toravere, Kipp &
 160 Zonen/CMP21 for station De Aar, and Eppley/PSP for station Tamanrasset). The accuracy of the
 161 BSRN total fluxes measurements, provided the measure is made according to the BSRN protocol, is
 162 estimated to 0.5% or 1.5 W m⁻², while the accuracy of the diffuse measurements is estimated to 2%
 163 or 3 W m⁻² [47]. In practice, specific analyses on BSRN sites accuracy [48-49] confirmed that the
 164 uncertainty of the measures are in agreement with such levels of uncertainties, with some limitations
 165 for low sun elevation angles and low radiation fluxes. As the validity of the MDSSFTD products are
 166 limited to sun zenith angles below 80°, we consider that the in situ measurement of total fluxes and
 167 the BSRN-derived diffuse fractions can reasonably be taken as references for our validation analysis.

168 2.3 CAMS all-sky radiation data

169 The Copernicus Atmosphere Monitoring Service (CAMS) all-sky radiation data was also used
 170 to compare with the MDSSFTD product. CAMS all-sky radiation service distributes global, direct and
 171 diffuse irradiances as well as a direct at normal incidence irradiance, for all-sky (clear+cloud), clear-
 172 sky only, and cloudy-sky only. These data are provided as timeseries with a temporal resolution of
 173 1-minute, 15-minutes, 1h, 1 day or 1 month, and are made available since February 2004 with a 2-
 174 days delay. The spatial coverage corresponds to the Meteosat Second Generation (MSG) disk. To
 175 produce the timeseries, radiation data is spatially interpolated to the point of interest from a product
 176 available at the native spatial resolution of MSG/SEVIRI. These data are publicly available from the
 177 CAMS portal (<https://atmosphere.copernicus.eu/solar-radiation>, last consulted on 18/10/2019).

178 The CAMS Radiation service relies on the Heliosat-4 method [50], which is composed of two
 179 modules: McClear v3 for clear-skies [51, 52] and McCloud for cloudy-skies [50]. The McClear
 180 approach, version 3, used by CAMS radiation service, has been upgraded from McClear v2 and now
 181 consist in a physical modelling using the radiative transfer model libRadtran [53]. As for the
 182 MDSSFTD method, the McClear v3 now also relies on aerosols content and load, as well as gases
 183 contents forecasted by ECMWF and distributed by CAMS. Compared to MDSSFTD method, McClear
 184 v3 uses a monthly-climatology [54] of the MODIS surface albedos [55] and a similar approach than
 185 MDSSFTD for the aggregation of the optical depths of each aerosol species to derive the properties
 186 of the aerosol mixture [52]. The McCloud method estimates the cloud properties from MSG
 187 measurements using a model adapted from APOLLO (AVHRR Processing scheme Over cLOUDs,
 188 Land and Ocean, [56, 57].

189 For our validation analysis, we used the CAMS global and diffuse radiation data, at a temporal
 190 resolution of 15-minutes. For sake of consistency with the evaluation against ground measurements,
 191 the product was extracted for the whole validation period (February to October 2017) at the location
 192 of the four BSRN stations already considered for the ground measurements analysis (Carpentras, De
 193 Aar, Tamanrasset and Toravere).

194 2.4. Metrics

195 The target accuracy metrics used are the Mean Bias Error (MBE) for low values of DSSF
 196 (<200Wm⁻²) or of fd (<0.5). The target accuracy metrics used are the relative MBE (rMBE) for high
 197 values of DSSF (>=200Wm⁻²) or of fd (>=0.5). MBE is computed as

$$198 MBE = \frac{1}{N} \times \sum_{i=1}^N (satelliteproduct_i - reference_i)$$

199 and the relative MBE, noted "rMBE" is a dimensionless metric, expressed in percent units, and
 200 defined as:

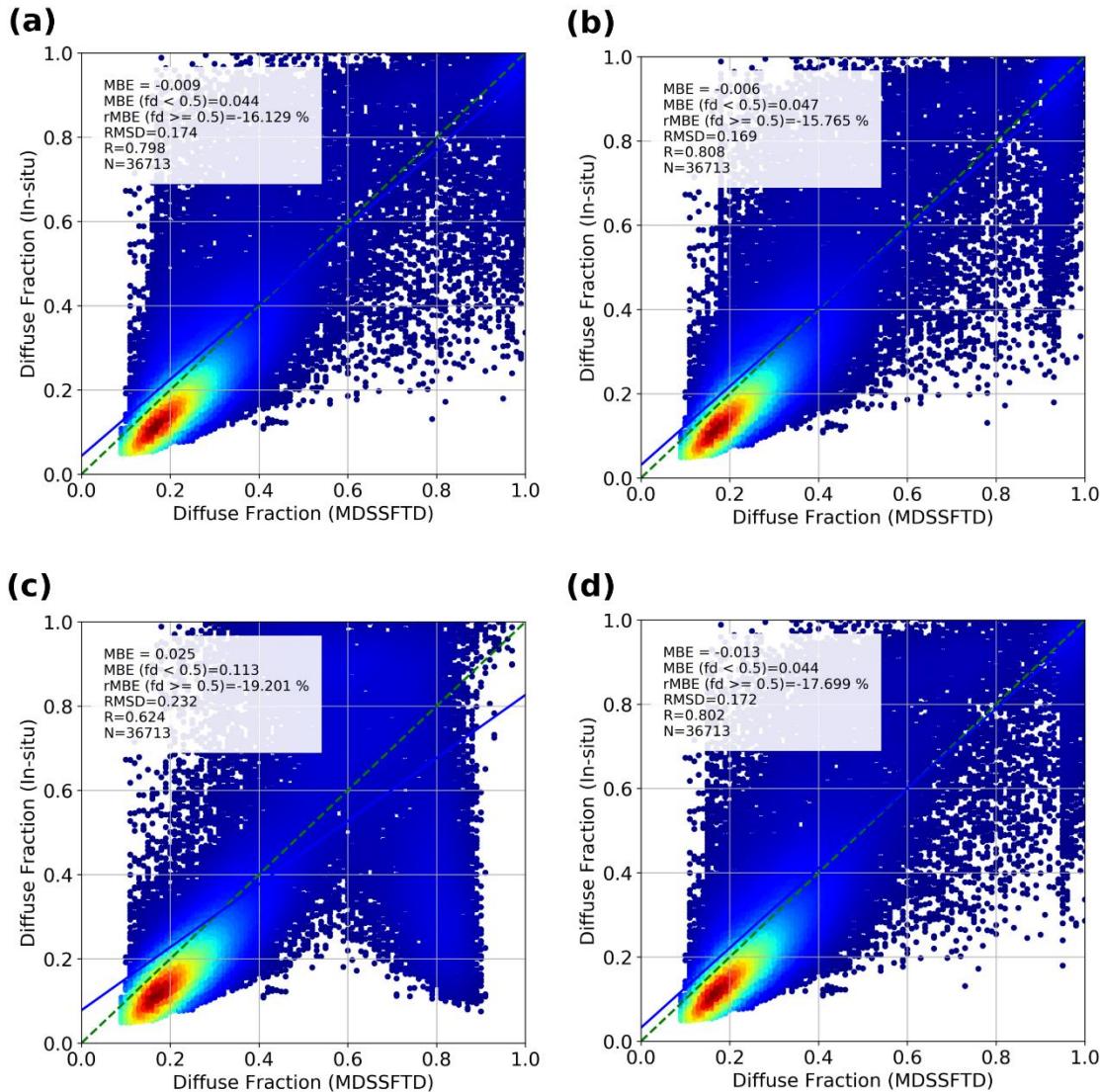
$$201 rMBE = \frac{1}{N} \times \sum_{i=1}^N \frac{satelliteproduct_i - reference_i}{reference_i}$$

202 where N is the number of points and 'reference' corresponds to the ground measurements in our
 203 study.

204 The choice of the metrics was made to ensure consistency with the two other existing LSA-SAF
 205 products MDSSF and DIDSSF (LSA-201 and 203; see Section 0) for which the same evaluation strategy
 206 was used. The ground measurements are separated into clear and cloudy samples based on the
 207 information contained in the cloud mask. For example, if the SEVIRI pixel is defined as cloudy
 208 (respectively clear) according to the information contained in the quality flag, the corresponding time
 209 slot is then defined as cloudy (respectively clear) for the ground measurements. In the case of clear
 210 sky retrievals, the clear sky pixel is excluded when the adjacent time slots (up to 1h, that is, 30 minutes
 211 before and 30 minutes after) are defined as cloudy. This is deemed to suppress any residual cloud
 212 contamination (or cloud shadow effects) in the clear sky retrievals. Same strategy is applied reversely
 213 to identify cloudy-sky pixels with adjacent time slots which are clear-sky.

214 The aimed requirements are the target accuracies (values in bold Table 1). These metrics will be
215 used in the following to evaluate the performances of the MDSSFTD product for clear-sky, cloudy-
216 sky, and all-sky conditions. However, the user needs expressed to EUMETSAT is to have a MDSSFTD
217 product which meets the target requirements for the all-sky conditions (without distinction according
218 to cloudiness). The performances are evaluated based on the metrics that are obtained from all the
219 available ground measurements (i.e., for all the stations and over the entire period of evaluation). The
220 MDSSFTD product has the spatial resolution of the native SEVIRI grid (3km at the sub-satellite point
221 over Africa and around 5km over Europe). [58] show that there is no major representativeness issue
222 between the local ground-based solar radiation measurements and the satellite estimates (which have
223 kilometer scales).

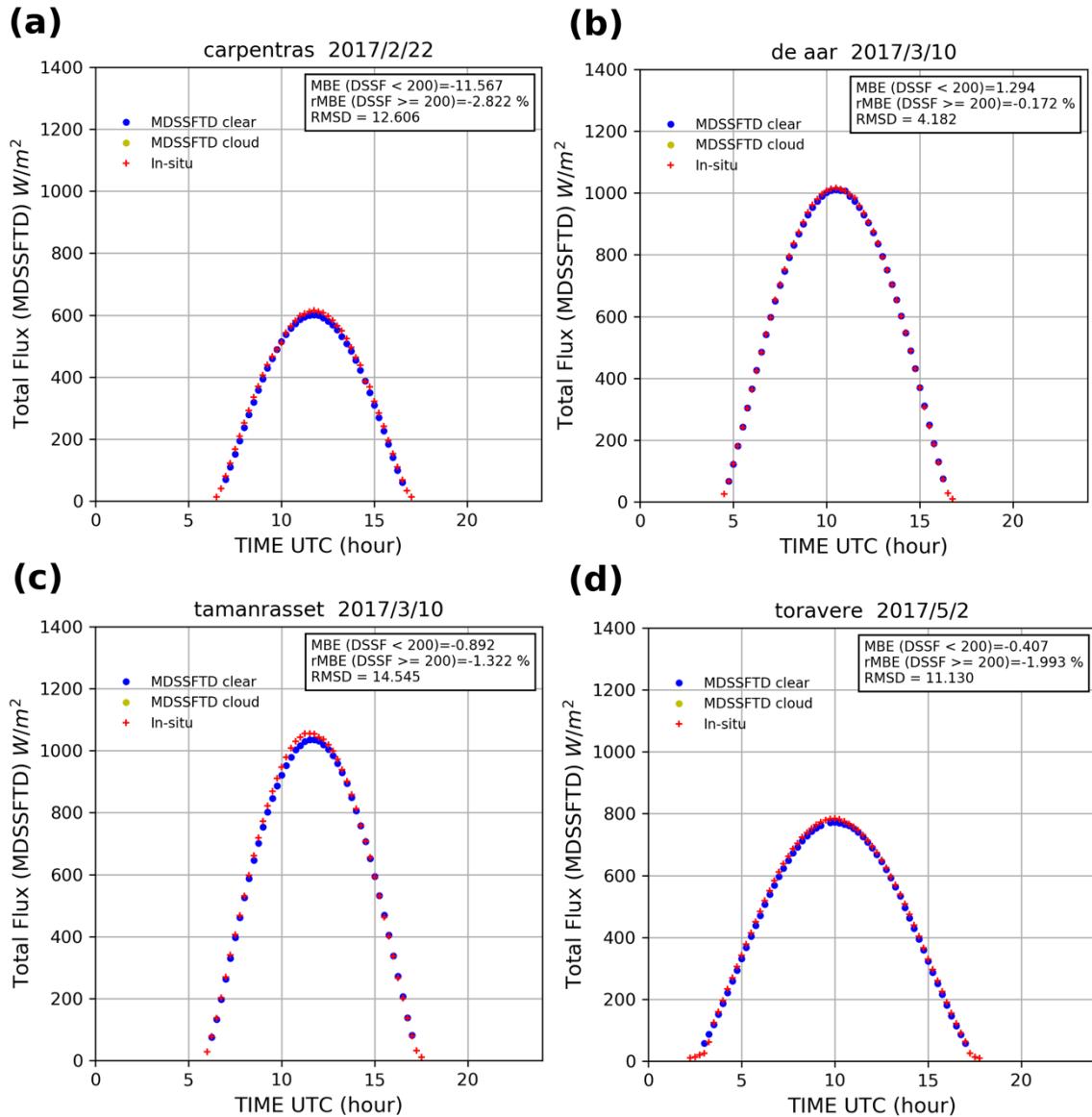
224 The evaluation is performed over a period of seven months: from February to October 2017.
225 The stability of the metrics is also examined by splitting on a daily basis the metrics and analysing
226 stability of the metrics from day to day.

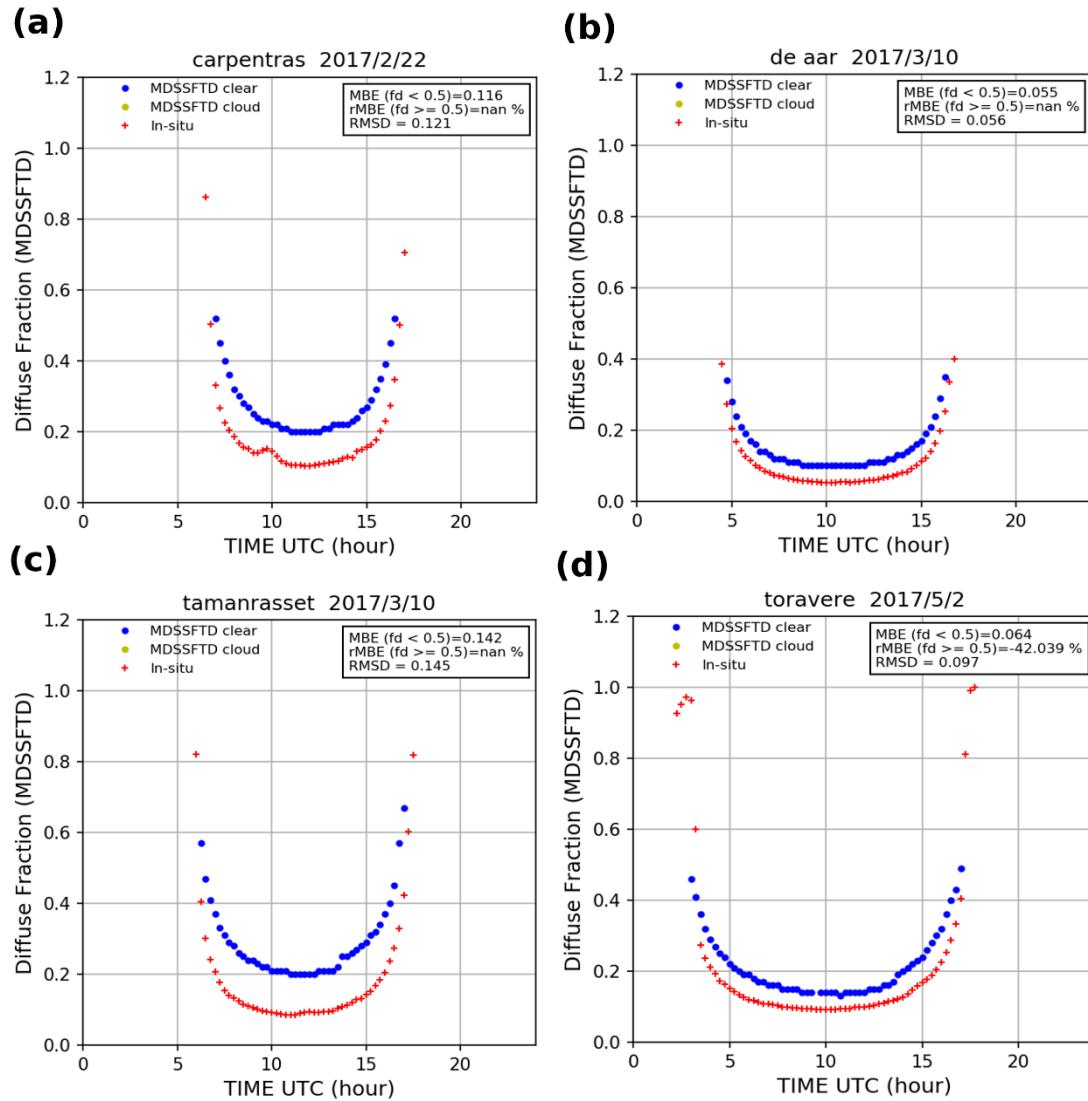

227 3. Results

228 3.1. *Sensitivity study: inter-comparison of models to estimate diffuse flux in cloudy-sky conditions*

229 A critical module in the method used for MDSSFTD is the choice of the empirical formulation
230 used to estimate the diffuse fraction in the cloudy-sky case. In this context, a specific sensitivity study
231 is first made to compare a set of existing solutions. One shall note that this sensitivity study only
232 reflects the impact of the parametrisation choice on the diffuse fraction retrieval under cloudy
233 conditions. Retrieval of the diffuse fraction under clear sky remains unchanged (see [40]).

234 We detail here this sensitivity study that compared several empirical formulations from the
235 literature. The different formulations are based on [59-61]. All three methods estimate the diffuse part
236 of the total solar irradiance from the clearness index (' K_t '). This allows the calculation of the diffuse
237 fraction by simply dividing the diffuse flux by the total counterpart. Another formulation based on
238 [62] was also considered in this sensitivity study (Section 0). This fourth method, however, estimates
239 the direct component of the solar irradiance based on ' K_t ', which is used to infer the direct fraction
240 of the solar irradiance to finally retrieve the diffuse fraction.

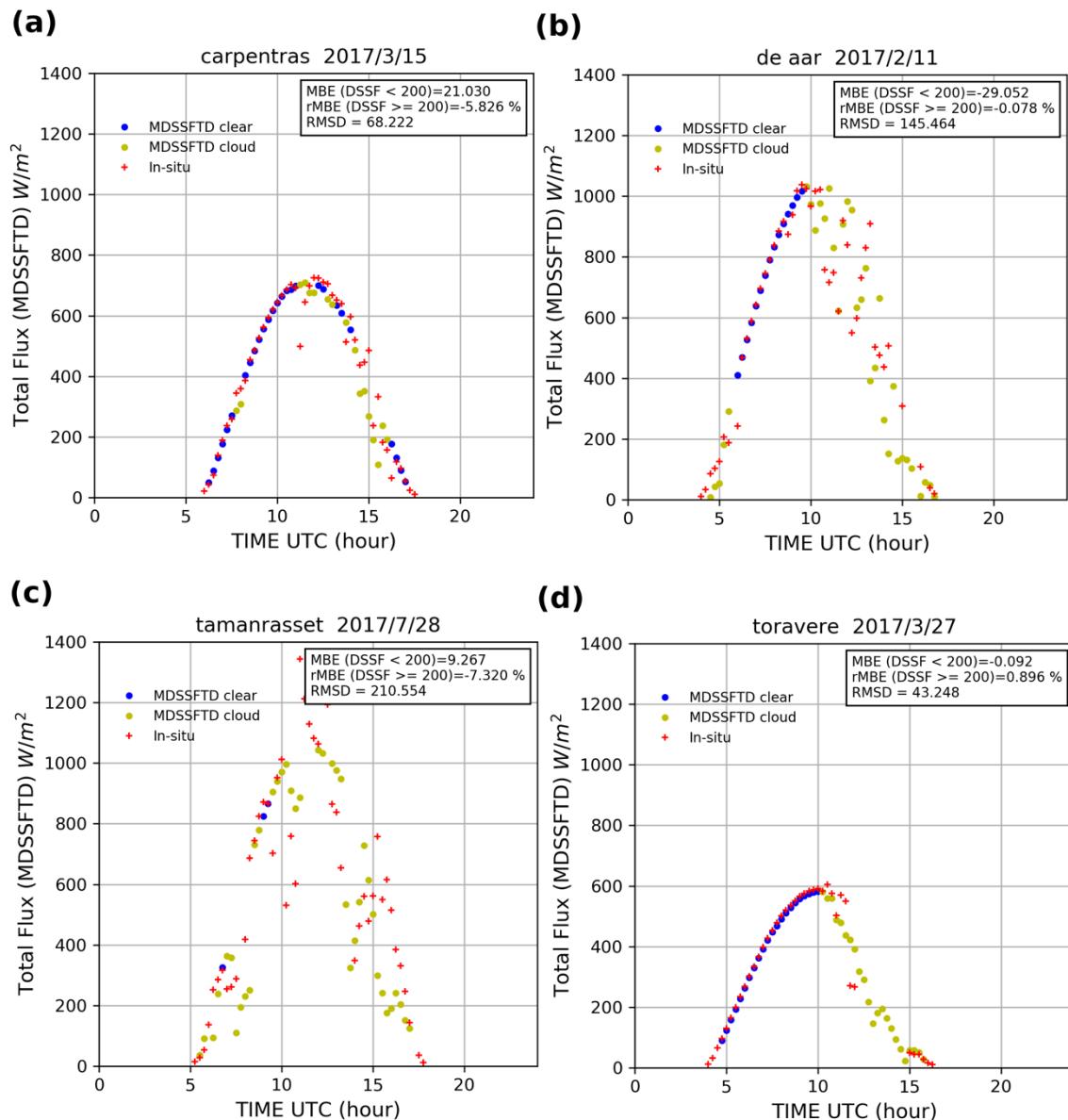

241 Figure 2 displays the density scatter plots for the diffuse fraction retrieved following each of the
242 four formulations mentioned above, all compared to the *in-situ* diffuse fraction in all-sky conditions
243 (clear and cloudy). The statistics shown in Figure 2 are obtained considering the four stations over
244 the entire period of the study. As it can be seen, the statistics from the four formulations are highly
245 similar, with slightly lower performances for the method from [62]. Because formulation based on
246 [60] was validated against several stations over Europe and USA, we decided to use this formulation
247 for our application. Indeed, the other models were derived from flux measurements over more
248 limited areas, which make them less representative at the continental scale made possible by MSG.


249 **Figure 2** Diffuse fraction components retrieved following four empirical formulations, a) Erbs et al.,
 250 b) Orgill and Hollands c) Louche et al., d) Reindl et al., and compared to the *in-situ* diffuse fraction
 251 component. Blue color corresponds to low density of points and red color corresponds to high density
 252 of points. Blue line represents the mean fit across the whole evaluation data.

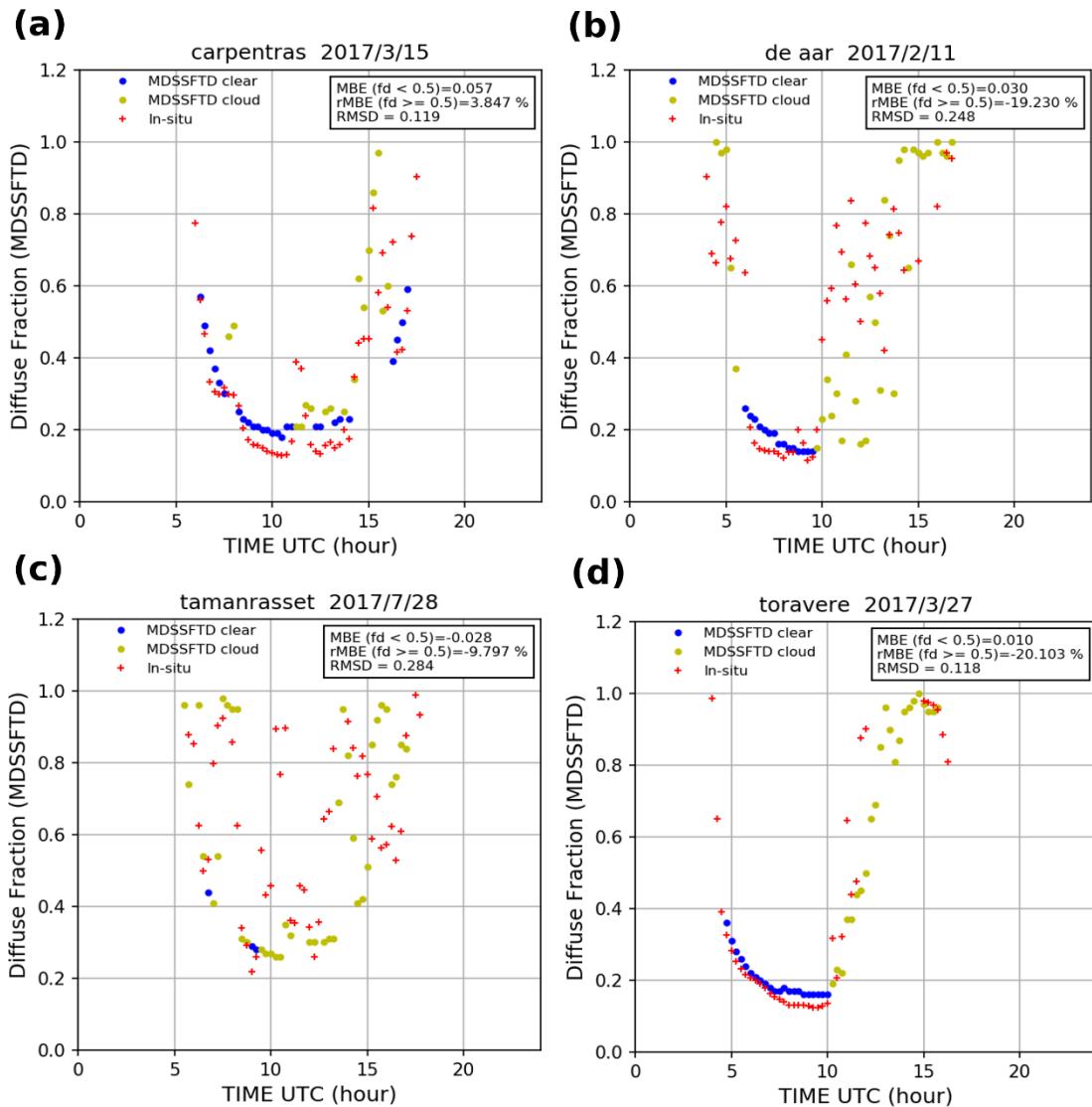
253 *3.2. Diurnal comparisons for clear-sky and all-sky days*

254 The diurnal total and diffuse down-welling surface flux components from the MDSSFTD
 255 product are compared against the same flux components derived from the ground BSRN
 256 measurements. As already mentioned, the BSRN data (available at a high temporal frequency) are
 257 averaged over 15 minutes and centred around the correct MSG acquisition time slot (see Section 0).

Figure 3 Diurnal variation of the total MDSSFTD component in clear sky conditions compared against *in-situ* measurements for **a**) Carpentras, **b**) De Aar, **c**) Tamanrasset, and **d**) Toravere for a selected day. Yellow cloudy samples do not appear in this figure as the chosen dates were fully clear.


259 **Figure 4** Diurnal variation of the diffuse fraction MDSSFTD component in clear sky conditions
 260 compared against *in-situ* measurements for **a)** Carpentras, **b)** De Aar, **c)** Tamanrasset, and **d)** Toravere
 261 for a selected day. Yellow cloudy samples do not appear in this figure as the chosen dates were fully
 262 clear.

263 Figure 3 shows a comparison between satellite-derived estimates and ground measurements of
 264 the diurnal cycle of the total flux for clear sky conditions all along the day. It can be observed how
 265 the satellite-derived estimates capture well the diurnal variations compared to ground measurements.

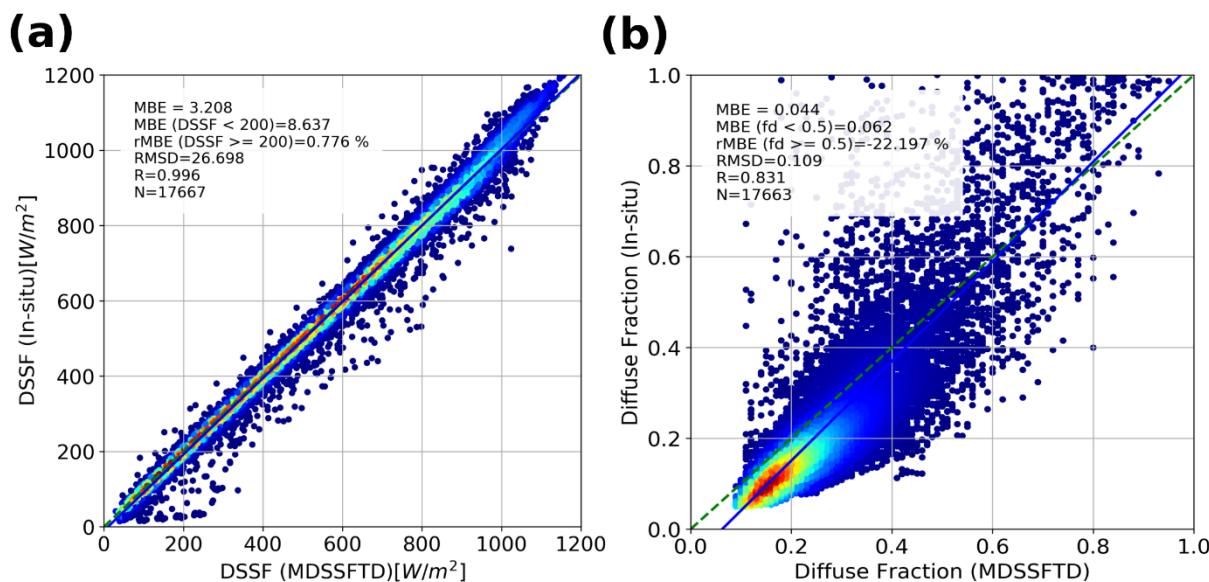

266 Figure 4 shows a comparison between satellite-derived estimates and ground measurements of
 267 the diurnal cycle of the diffuse fraction for clear sky conditions. Again, the satellite-derived estimates
 268 capture well the diurnal variations compared to ground measurements. In particular, the increase of
 269 the diffuse fraction with extreme geometries is well reproduced. For these four days, a slight
 270 overestimation between 0.055 and 0.142 is found for $fd < 0.5$ in clear-sky conditions. This
 271 overestimation comes from the slight overestimation of the diffuse DSSF by MDSSFTD, which was
 272 also found for clear sky situations by [41] when using SIRAMix and the McClear method [51]. These
 273 two methods used CAMS aerosol data and GADS aerosol properties, which may point to an
 274 overestimation of the highly scattering aerosol components by CAMS or a limited transformation
 275 from CAMS to GADS components.

276 Figures 5 and 6 show the results of similar comparisons that were conducted for dates showing
 277 all sky conditions (partially clear and partially cloudy). The diurnal variations of the MDSSFTD

278 product, including the total DSSF and the diffuse fraction, are compared against ground
 279 measurements for selected days in Figures 5 and 6, respectively. A rather satisfactory agreement
 280 exists between the satellite derived estimates and the ground measurements. The increase of the
 281 diffuse fraction with the cloudiness is generally well represented (e.g., see Figure 6 d).

282 **Figure 5** Diurnal variation of the total MDSSFTD component in all sky conditions compared against
 283 *in-situ* measurements for **a**) Carpentras, **b**) De Aar, **c**) Tamanrasset, and **d**) Toravere for a selected day
 284 (partially clear and cloudy). The yellow dots represent cloudy retrievals and the blue dots represent
 285 clear sky retrievals.

286 **Figure 6** Diurnal variation of the diffuse fraction of MDSSFTD in all sky conditions compared
 287 against *in-situ* measurements for **a**) Carpentras, **b**) De Aar, **c**) Tamanrasset, and **d**) Toravere for a
 288 selected days (partially clear and cloudy). The yellow dots represent cloudy retrievals and the blue
 289 dots represent clear sky retrievals.


290 **3.3. Global performances**

291 This section details the overall statistics of the MDSSFTD product that are obtained by
 292 considering the evaluation over the four ground stations for the entire period of interest, with
 293 temporal frequency of every 15min. Statistics are hence discussed successively for clear-sky, cloudy-
 294 sky, and all-sky conditions.

295 **3.3.1. Clear-sky conditions**

296 Figure 7 displays the density scatter plot between instantaneous measurements of MSG-derived
 297 surface down-welling solar flux measurements for total and diffuse fraction components with their
 298 *in-situ* counterparts. Only clear sky retrievals are considered here thanks to the use of the cloud mask
 299 used as input in the MDSSFTD algorithm. Figure 7 shows that the satellite estimates of DSSF and fd
 300 meet the requirements for total DSSF, which are 20Wm^{-2} for $\text{DSSF} < 200\text{Wm}^{-2}$ and 10% for
 301 $\text{DSSF} \geq 200\text{Wm}^{-2}$ (as described in Table 1). The MBE and rMBE compared to the ground
 302 measurements are 8.637Wm^{-2} and 0.776%, respectively. On the other hand, the requirements for fd
 303 measurements are 8.637Wm^{-2} and 0.776%, respectively. On the other hand, the requirements for fd

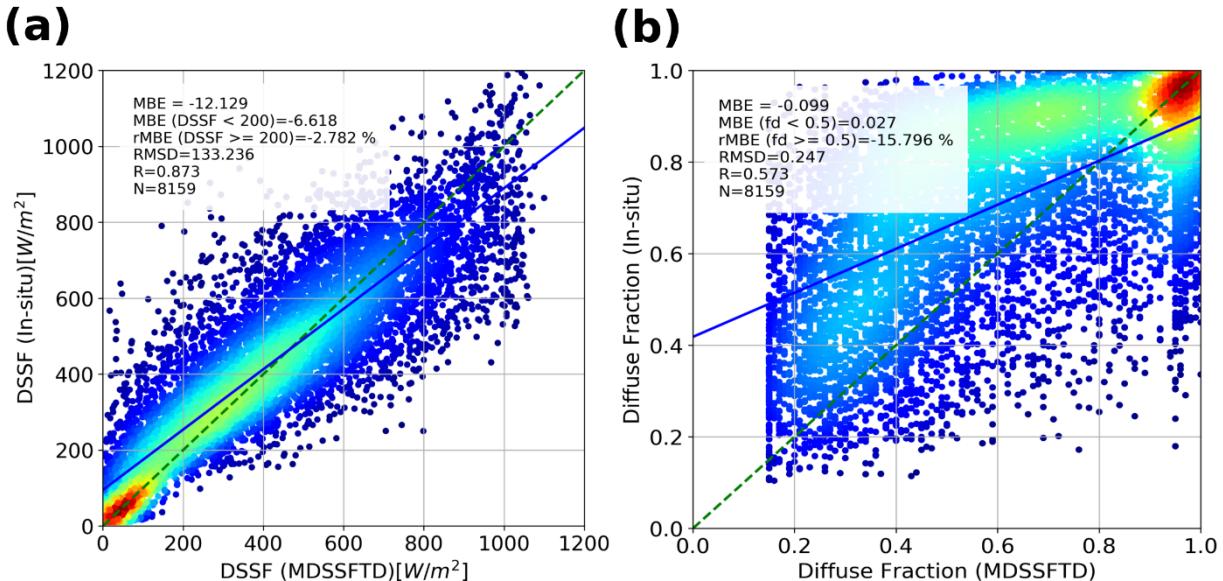
304 are 0.1 for $fd < 0.5$ and 20% for $fd \geq 0.5$. The MBE and rMBE compared to the ground measurements in
 305 this case are 0.062 and -22.197%, respectively. The statistical scores in terms of MBE and RMSD (root
 306 mean square deviation) for the comparison between MDSSFTD total and diffuse fraction components
 307 with their *in-situ* counterparts for all four stations are given in Tables 2 and 3. The scores for all
 308 stations are in agreement with the DSSF product requirements. The diffuse fraction compares well
 309 for all stations except for high values of diffuse fraction ($fd \geq 0.5$). However, only 12 days over the 7-
 310 month period of the study have $fd \geq 0.5$ in clear-sky conditions (see Figure 13). Indeed, these values
 311 of diffuse fraction correspond to intense aerosol loading, which is relatively infrequent. Therefore,
 312 statistics in that case ($fd \geq 0.5$ and clear-sky conditions) cannot be considered as significant from a
 313 statistical point of view.

Figure 7 Comparison of instantaneous MSG-derived MDSSFTD measurements for (a) total DSSF, (b) diffuse fraction components with their *in-situ* counterparts for clear-sky retrievals. The retrievals are collected every 15 min. Blue line represents the mean fit across the whole evaluation data. Blue circles corresponds to low density of points and red circles corresponds to high density of points.

314 **Table 2** Statistical scores obtained from the comparison between MDSSFTD derived total flux
 315 estimates and ground *in-situ* measurements over the selected BSRN sites for clear sky retrievals. If the
 316 value is in bold, the metric does not meet the “target” requirements. If no value appears in bold, all
 317 the metrics meet the requirements. R_VAL correspond to the Pearson correlation coefficient. RMSD
 318 is the root mean square deviation.

	Lat °N	Lon °E	R_VAL [-]	RMSD [Wm ⁻²]	MBE [Wm ⁻²]	MBE (DSSF<200) [Wm ⁻²]	rMBE (DSSF>=200) [%]
Carpentras	44.08	5.06	0.998	22.809	14.552	6.759	2.623
De Aar	-30.67	23.99	0.996	23.042	-2.946	8.927	-0.797
Tamanrasset	22.79	5.53	0.995	34.096	-0.441	12.336	0.798
Toravere	58.25	26.46	0.996	19.277	1.488	4.297	0.320

319 **Table 3** Statistical scores obtained from the comparison between MDSSFTD diffuse fraction estimates
 320 and ground measurements over the selected BSRN sites for clear sky retrievals. If the value is in bold,
 321 the metric does not meet the “target” requirements. If no value appears in bold, all the metrics meet


322
323

the requirements. R_{VAL} correspond to the Pearson correlation coefficient. RMSD is the root mean square deviation.

	Lat °N	Lon °E	R_{VAL} [-]	RMSD [-]	MBE [-]	MBE (fd<0.5) [-]	rMBE (fd>=0.5) [%]
Carpentras	44.08	5.06	0.890	0.069	0.042	0.045	-10.173
De Aar	-30.67	23.99	0.624	0.115	0.065	0.073	-47.698
Tamanrasset	22.79	5.53	0.831	0.134	0.028	0.072	-21.216
Toravere	58.25	26.46	0.768	0.091	0.027	0.039	-31.354

324 3.3.2. Cloudy-sky conditions

325 Figure 8 displays the density scatter plot between instantaneous measurements of MSG-derived
326 surface down-welling solar flux measurements for total and diffuse fraction components with their
327 *in-situ* counterparts. Only cloudy sky retrievals are considered for this experiment. Figure 8 shows
328 that the satellite estimates of DSSF and fd meet the target requirements. For DSSF, the requirements
329 are 20Wm^{-2} for $\text{DSSF} < 200\text{Wm}^{-2}$ and 10% for $\text{DSSF} \geq 200\text{Wm}^{-2}$. The MBE and rMBE compared to the
330 ground measurements are -6.618Wm^{-2} and -2.782% , respectively. For fd, the requirements are 0.1 for
331 $\text{fd} < 0.5$ and 20% for $\text{fd} \geq 0.5$. The MBE and rMBE compared to the ground measurements are 0.027 and
332 -15.796% , respectively. Tables 4 and 5 give the statistical scores in terms of MBE and RMSD for the
333 comparison between MDSSFTD total and diffuse fraction components with their *in-situ* counterparts
334 for all four stations. The vertical patterns that are observed in Figure 8(b) comes from the method that
335 is used for cloudy skies. Indeed, the estimation of the diffuse fraction is estimated using three
336 equations that are selected according to the value of clearness index. More details are given in the
337 companion paper [40].

Figure 8 Comparison of instantaneous MSG-derived MDSSFTD measurements for (a) total, (b) diffuse fraction components with their *in-situ* counterparts for cloudy-sky retrievals. The retrievals are collected every 15 min. Blue line represents the mean fit across the whole evaluation data. Blue circles corresponds to low density of points and red circles corresponds to high density of points.

338
339

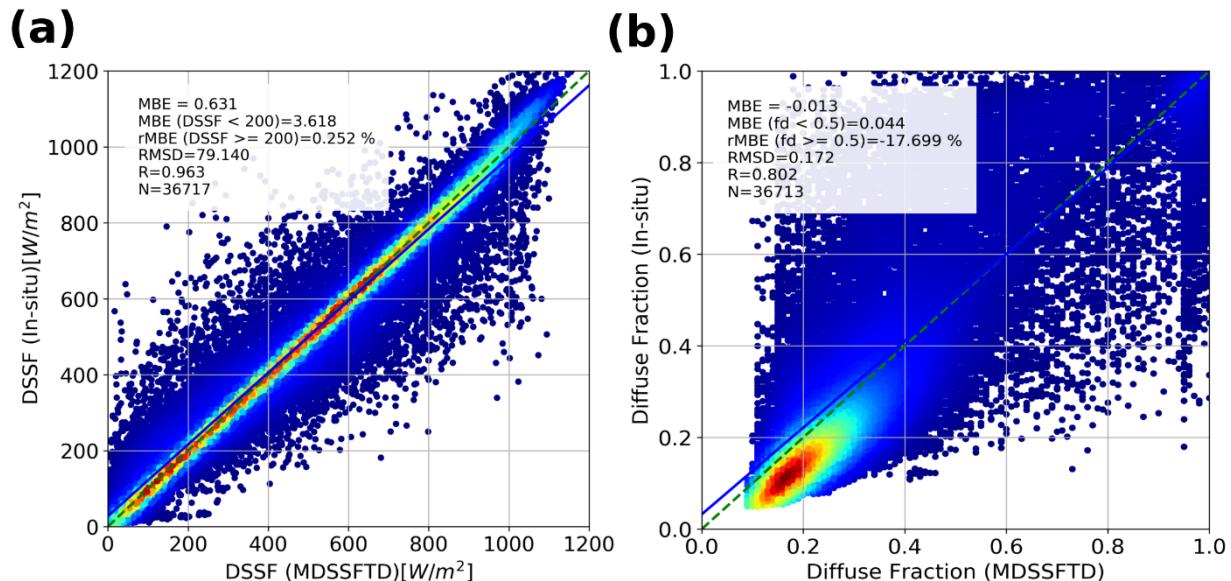
Table 4 Statistical scores obtained from the comparison between MDSSFTD total flux estimates and ground measurements over the selected BSRN sites for cloudy sky retrievals. If the value is in bold,

340
341

the metric does not meet the “target” requirements. If no value appears in bold, all the metrics meet the requirements.

	Lat °N	Lon °E	R_VAL [-]	RMSD [Wm ⁻²]	MBE [Wm ⁻²]	MBE (DSSF<200) [Wm ⁻²]	rMBE (DSSF>=200) [%]
Carpentras	44.08	5.06	0.886	124.089	-5.226	-20.663	-1.463
De Aar	-30.67	23.99	0.860	144.928	-22.573	-16.236	-5.585
Tamanrasset	22.79	5.53	0.861	174.924	54.220	-21.255	10.806
Toravere	58.25	26.46	0.880	117.562	-34.572	0.800	-8.025

342
343
344
345


Table 5 Statistical scores obtained from the comparison between MDSSFTD diffuse fraction estimates and ground measurements over the selected BSRN sites for cloudy sky retrievals. If the value is in bold, the metric does not meet the “target” requirements. If no value appears in bold, all the metrics meet the requirements.

	Lat °N	Lon °E	R_VAL [-]	RMSD [-]	MBE [-]	MBE (fd<0.5) [-]	rMBE (fd>=0.5) [%]
Carpentras	44.08	5.06	0.620	0.246	-0.108	-0.047	-15.082
De Aar	-30.67	23.99	0.489	0.287	-0.109	-0.007	-17.631
Tamanrasset	22.79	5.53	0.418	0.306	-0.198	-0.079	-25.767
Toravere	58.25	26.46	0.647	0.215	-0,060	0.064	-11.693

346 3.3.3. All-sky (clear and cloudy) conditions

347 In a similar way, the total DSSF and diffuse fraction from the MDSSFTD product for all sky
348 retrievals are compared against their *in-situ* counterparts in Figure 9. We remind that the metrics
349 obtained for all-sky conditions are those that are used to evaluate the performances of the product in
350 the framework of the LSA SAF program (see Section 0).

351 Figure 9 displays the density scatter plot between instantaneous measurements of MSG-derived
352 surface downwelling solar flux measurements for total and diffuse fraction components with their
353 *in-situ* counterparts for the all-sky retrievals. Figure 9 shows that the satellite estimates of DSSF and
354 fd meet the requirements. For DSSF, the requirements are 20Wm⁻² for DSSF<200Wm⁻² and 10% for
355 DSSF>=200Wm⁻². The MBE and rMBE compared to the ground measurements are 3.618Wm⁻² and
356 0.252%, respectively. For fd, the requirements are 0.1 for fd<0.5 and 20% for fd>=0.5Wm⁻². The MBE
357 and rMBE compared to the ground measurements are 0.044 and -17.699%, respectively. The statistical
358 scores in terms of MBE and RMSD for the comparison between MDSSFTD total and diffuse fraction
359 components with their *in-situ* counterparts for all four stations are given in Tables 6 and 7. The scores
360 for all stations are in agreement with the MDSSFTD product requirements. The diffuse fraction
361 compares well for most stations except in De Aar and Tamanrasset if a 20% threshold is considered
362 for fd>0.5.

Figure 9 Comparison of instantaneous MSG-derived MDSSFTD measurements for (a) total, (b) diffuse fraction components with their *in-situ* counterparts for all sky (clear and cloudy) retrievals. The retrievals are collected every 15 min. Blue line represents the mean fit across the whole evaluation data. Blue circles corresponds to low density of points and red circles corresponds to high density of points.

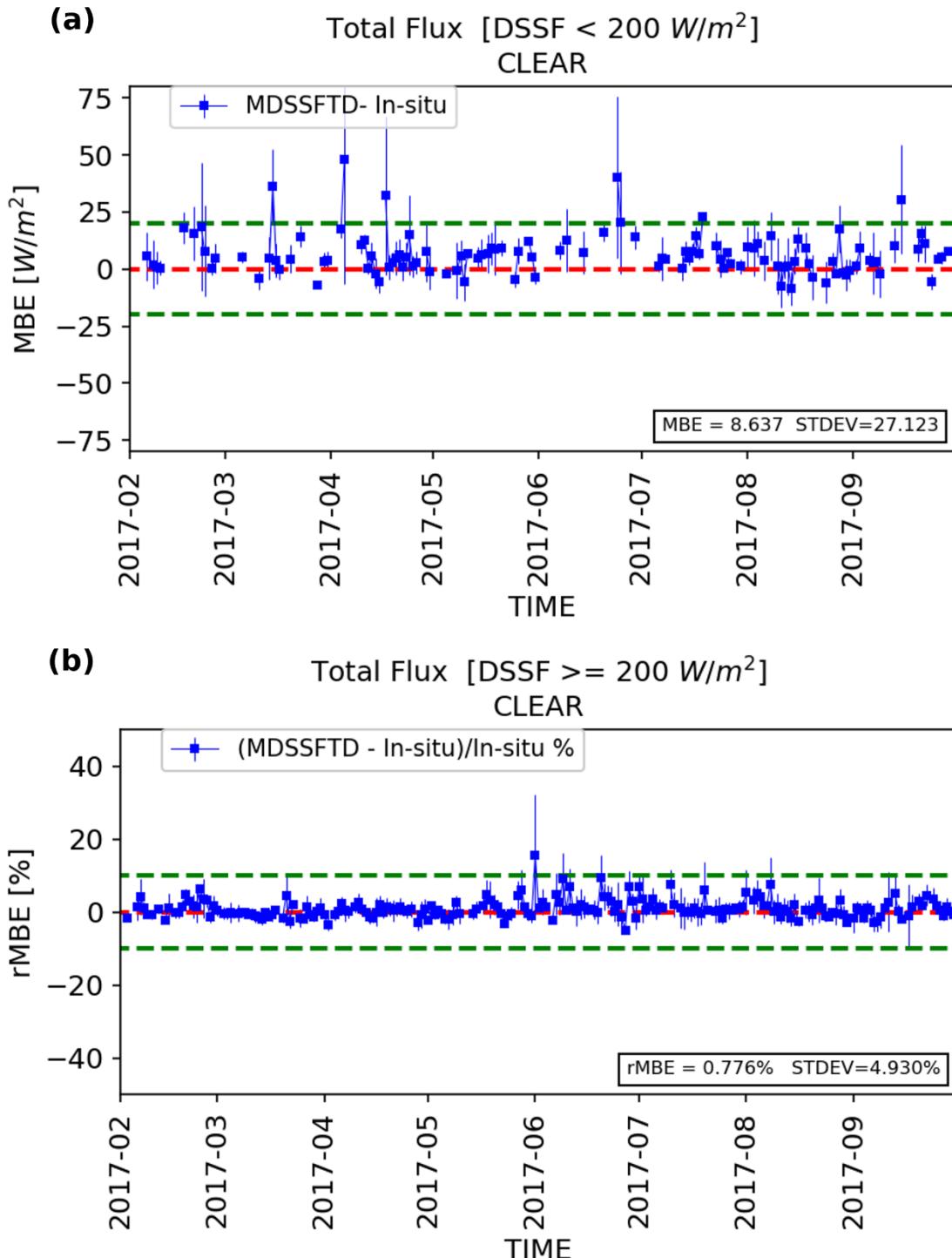
363
364
365
366

Table 6 Statistical scores obtained from the comparison between MDSSFTD total flux estimates and ground measurements over the selected BSRN sites for all (clear and cloudy) sky retrievals. If the value is in bold, the metric does not meet the “target” requirements. If no value appears in bold, all the metrics meet the requirements.

	Lat	Lon	R_VAL	RMSD	MBE	MBE (DSSF<200)	rMBE (DSSF>=200)
			[-]	[Wm ⁻²]	[Wm ⁻²]	[Wm ⁻²]	[%]
Carpentras	44.08	5.06	0.969	69.584	10.790	0.728	2.037
De Aar	-30.67	23.99	0.969	64.833	-4.015	5.891	-0.993
Tamanrasset	22.79	5.53	0.965	86.075	10.722	5.034	2.939
Toravere	58.25	26.46	0.917	94.607	-18.026	3.604	-4.125

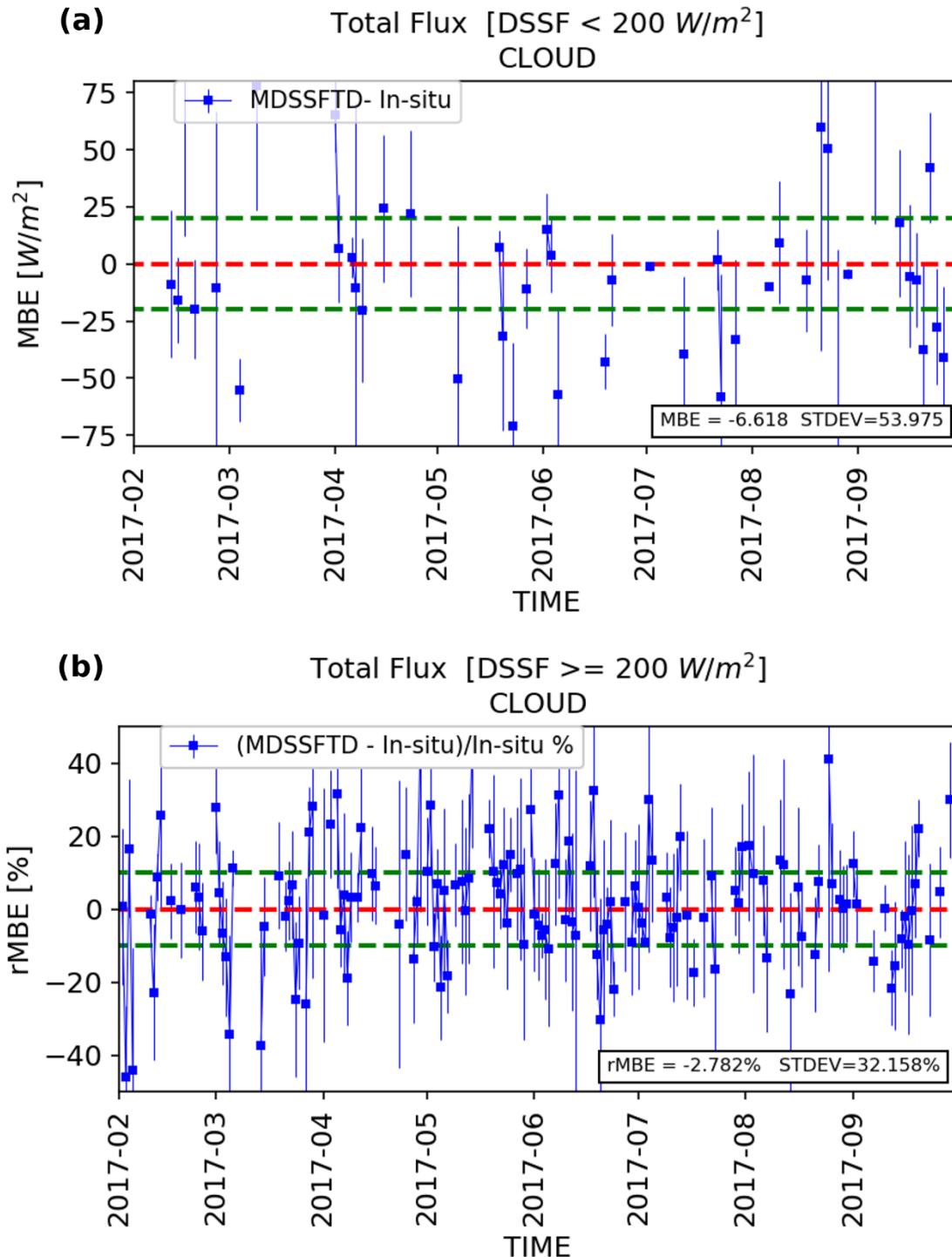
367
368
369
370

Table 7 Statistical scores obtained from the comparison between MDSSFTD diffuse fraction estimates and ground measurements over the selected BSRN sites for all (clear and cloudy) sky retrievals. If the value is in bold, the metric does not meet the “target” requirements. If no value appears in bold, all the metrics meet the requirements.


	Lat	Lon	R_VAL	RMSD	MBE	MBE (fd<0.5)	rMBE (fd>=0.5)
			[-]	[-]	[-]	[-]	[-]
Carpentras	44.08	5.06	0.818	0.151	-0.006	0.029	-14.753
De Aar	-30.67	23.99	0.734	0.161	0.022	0.054	-21.809
Tamanrasset	22.79	5.53	0.755	0.184	-0.034	0.057	-22.949
Toravere	58.25	26.46	0.786	0.191	-0.035	0.038	-13.361

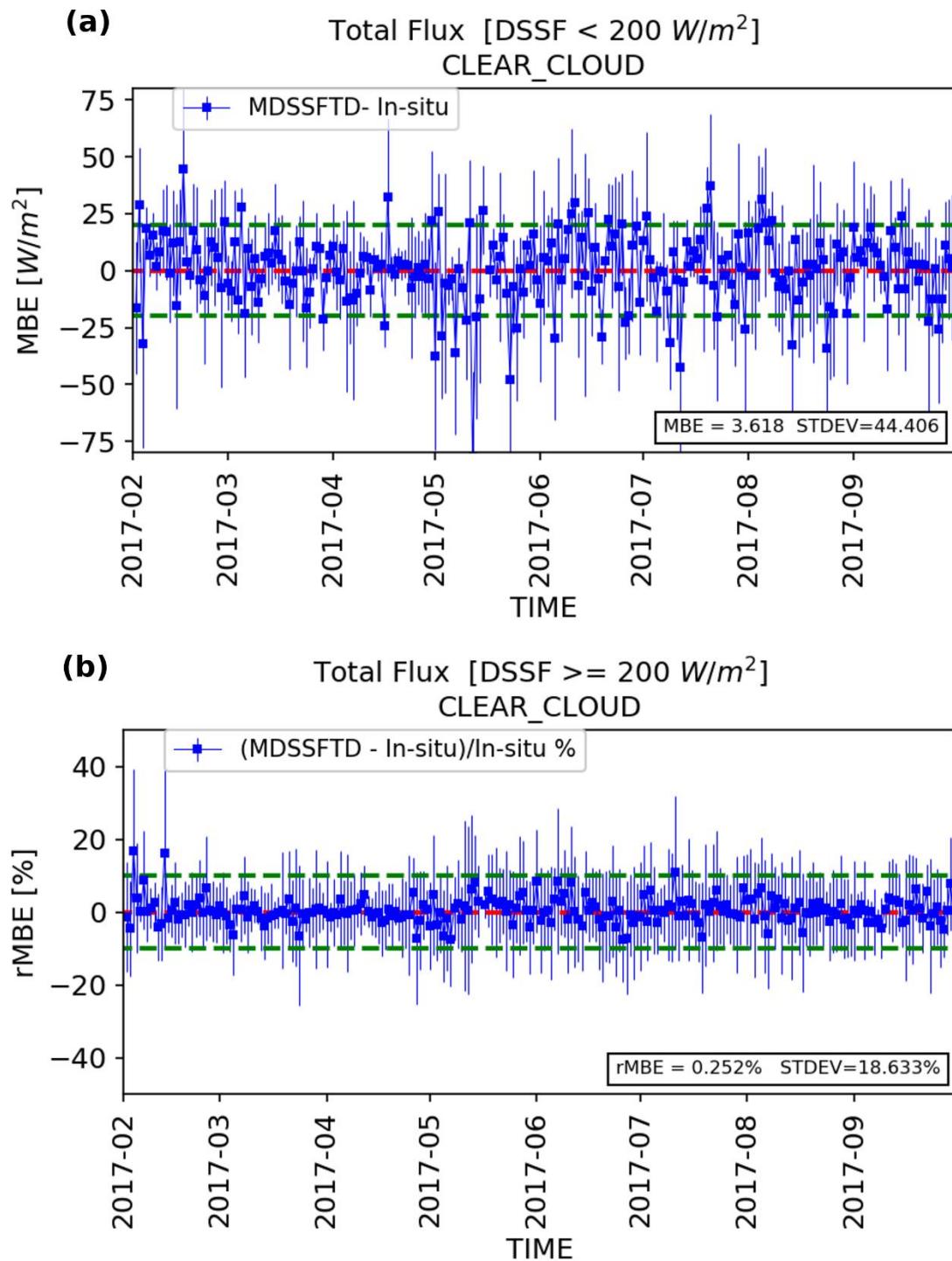
371

3.4. Stability of the metrics


372 Here, we present the time series of the mean statistics averaged over all stations for the
373 MDSSFTD total flux products (DSSF and fd). The goal is to study the temporal evolution of
374 performances with time. The 15-min statistics between the 15-min satellite derived products and the
375 15-min resampled ground measurements are averaged on a daily basis. Standard deviation of the 15-
376 min statistics are also calculated on a daily basis and reported in the following plots. The statistics
377 are calculated for both DSSF regimes and both outputs: for total flux, DSSF less than 200 Wm⁻² and
378 greater than 200 Wm⁻²; and for the diffuse fraction, fd lower than 0.5 and greater than 0.5.

379 First, Figures 10 and 13 show the time series of the metrics for clear-sky conditions. Second,
380 Figures 11 and 14 show the time series of the metrics for cloudy-sky conditions. Finally, Figures 12
381 and 15 show the time series of the metrics for all-sky (clear and cloudy) conditions. All figures show
382 the daily averages along with the standard deviation, which is related to the variation of values
383 among the different stations. First, it is important to highlight that all these conditions do not have
384 the same level of representativeness due to the varying number of samples in the different cases. The
385 only case that frequently shows values going beyond the requirement limits (i.e. the horizontal green
386 lines) is the cloudy-sky case for high values of fd (fd>=0.5; see Figure 14). In all the other conditions,
387 and especially for all-sky (clear and cloudy) conditions, the average statistics obtained from the
388 product outputs meet the target requirement along the entire period of the analysis.

389
390
391
392
393
394

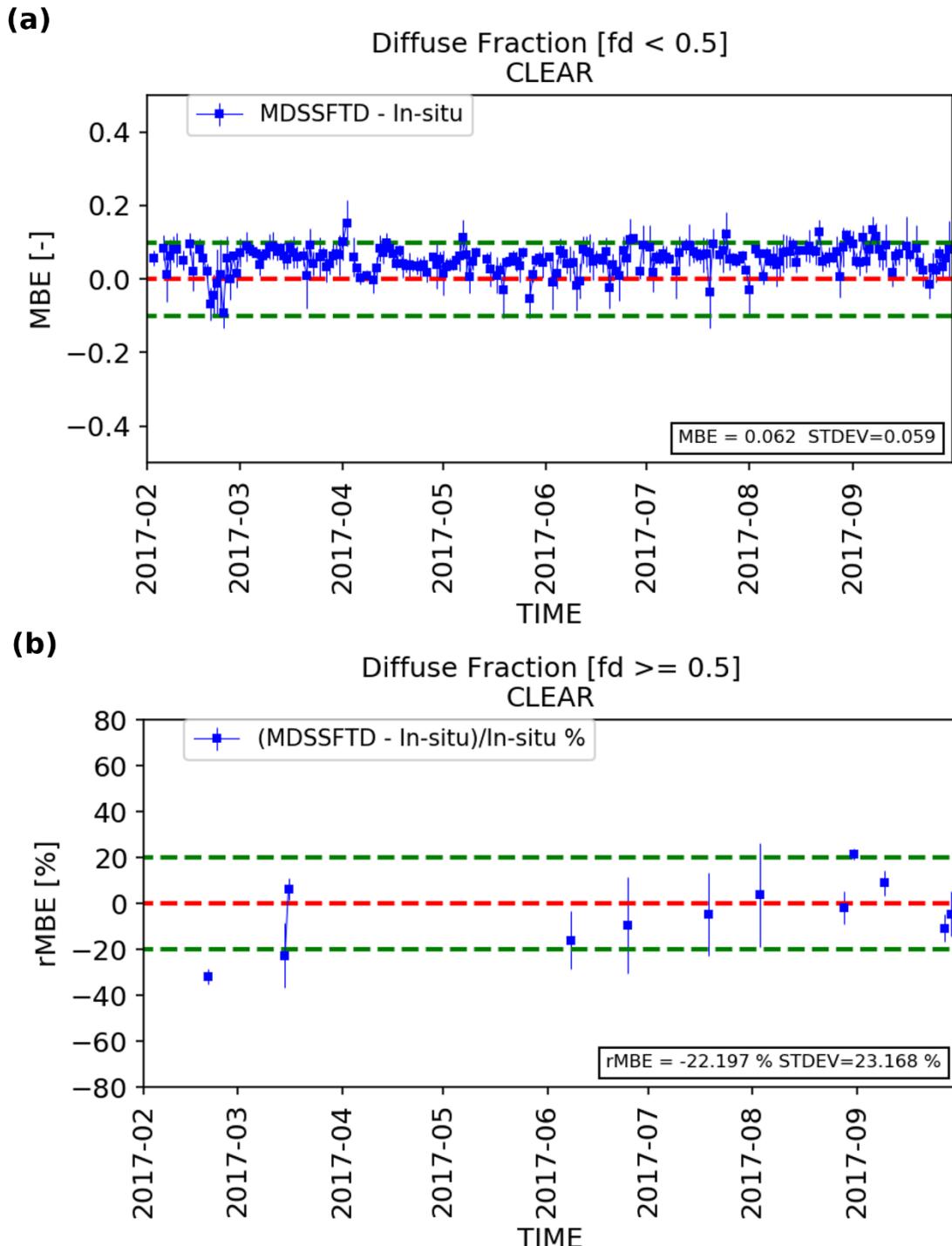

Figure 10 Time series of statistics of difference averaged on a daily basis between 15 min in-situ measurements and 15 min MDSSFTD total flux (blue dots). The daily standard deviation of the absolute and relative statistics are indicated with vertical blue lines. The data points are filtered to keep those a) total flux values less than 200 Wm⁻² (absolute statistics) and b) total flux values greater than 200 Wm⁻² (relative statistics). The comparison is made only for the clear-sky conditions. The green dotted horizontal lines characterize the “target” accuracy requirements.

395

Figure 11 Same than Figure 10 for cloudy-sky conditions.

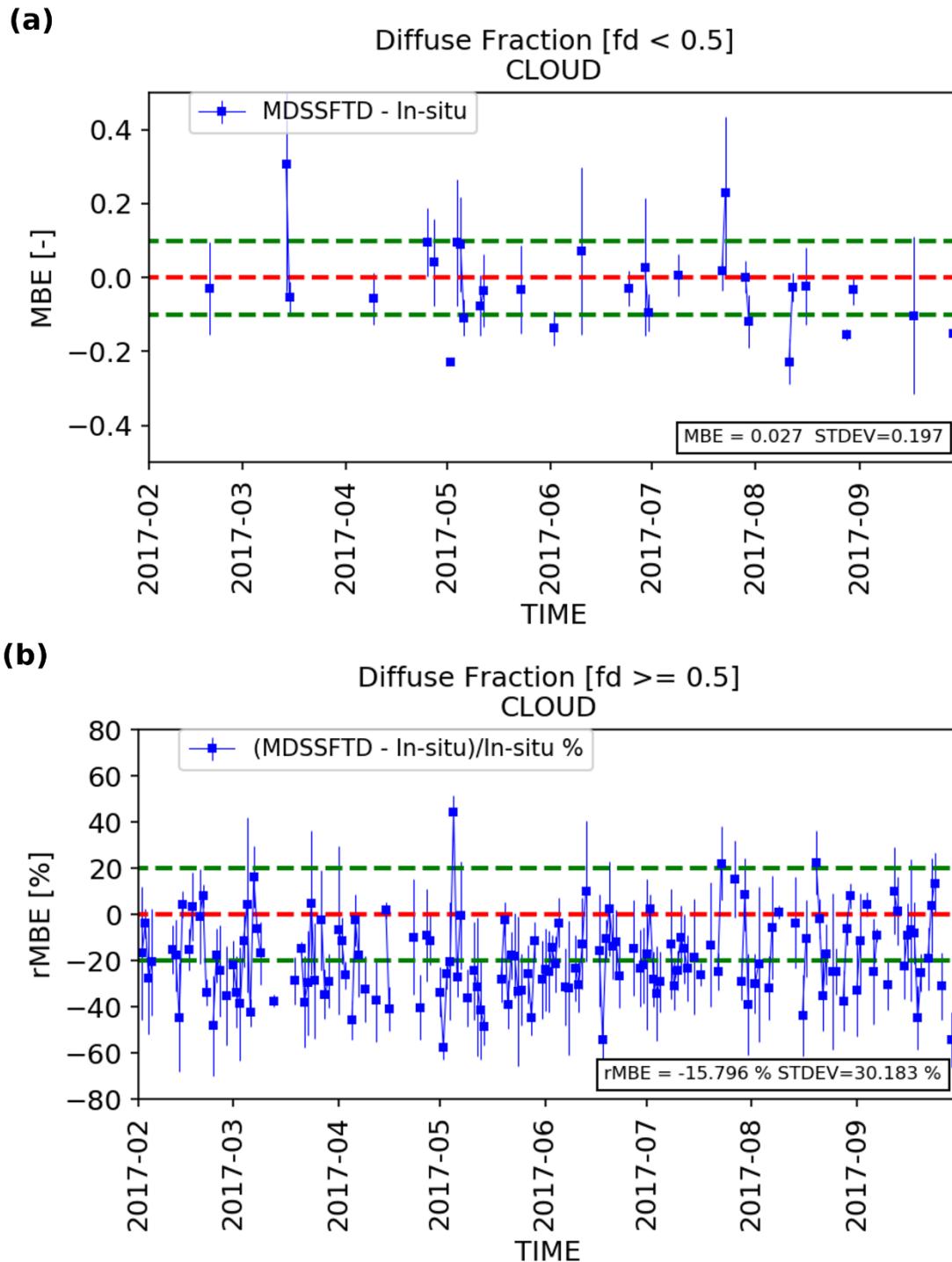
396

397


Figure 12 Same than Figure 10 for all-sky (clear and cloudy) conditions.

398

399


400

401

402
403
404
405
Figure 13 Time series of the relative mean bias for the comparison of the diffuse fraction on the 15
minutes time step basis. Statistics of difference are averaged on a daily basis. The standard deviation
of the relative statistics are indicated with vertical blue lines. The comparison is made only for clear-
sky conditions. The green dotted horizontal lines characterize the “target” requirements.

406
407

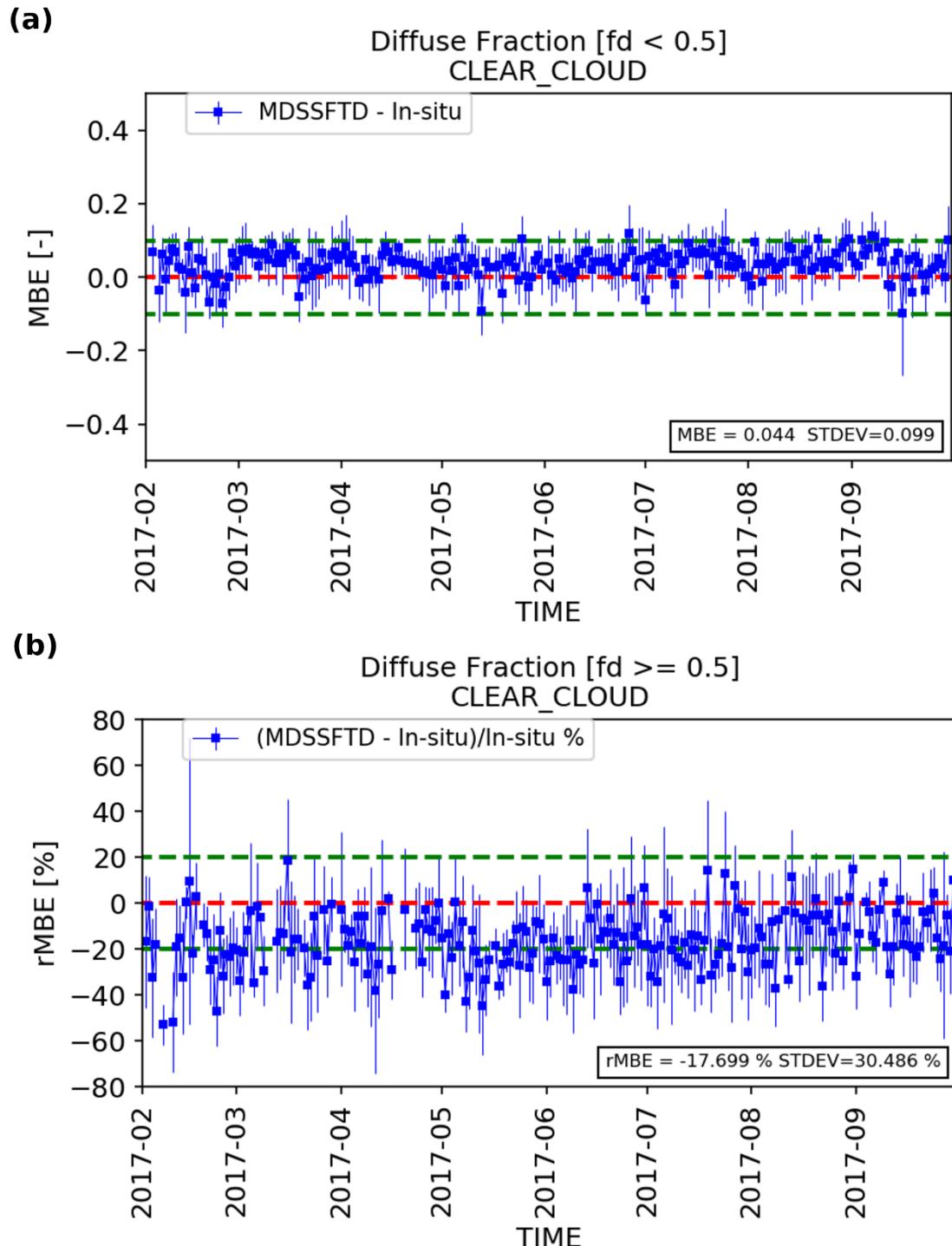

408

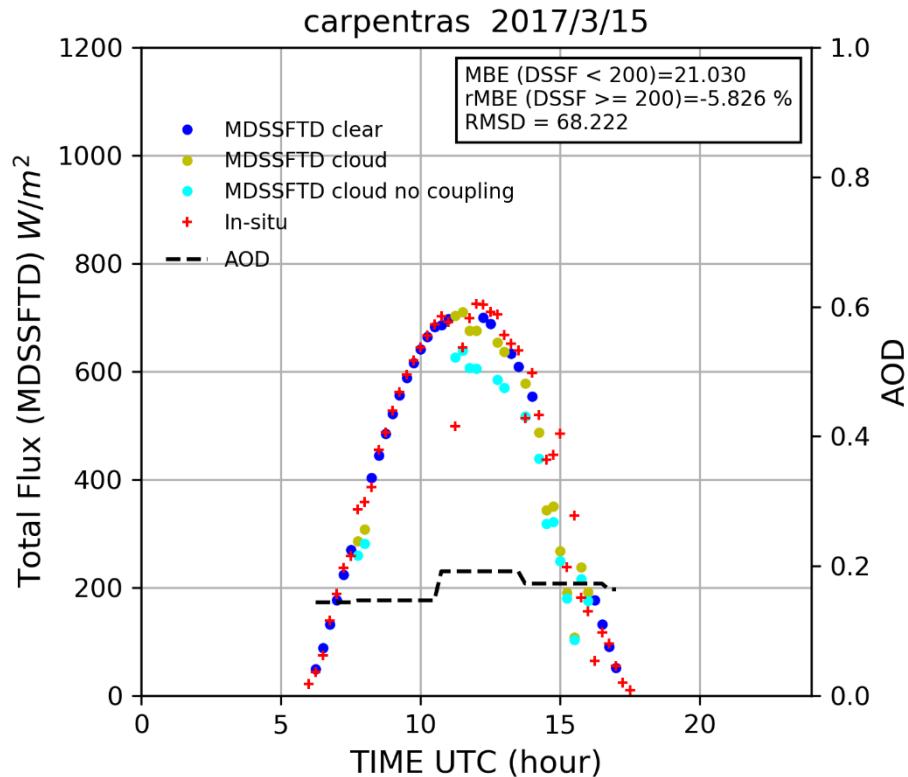
Figure 14 Same than Figure 13 for cloudy-sky conditions.

409

410

411

412

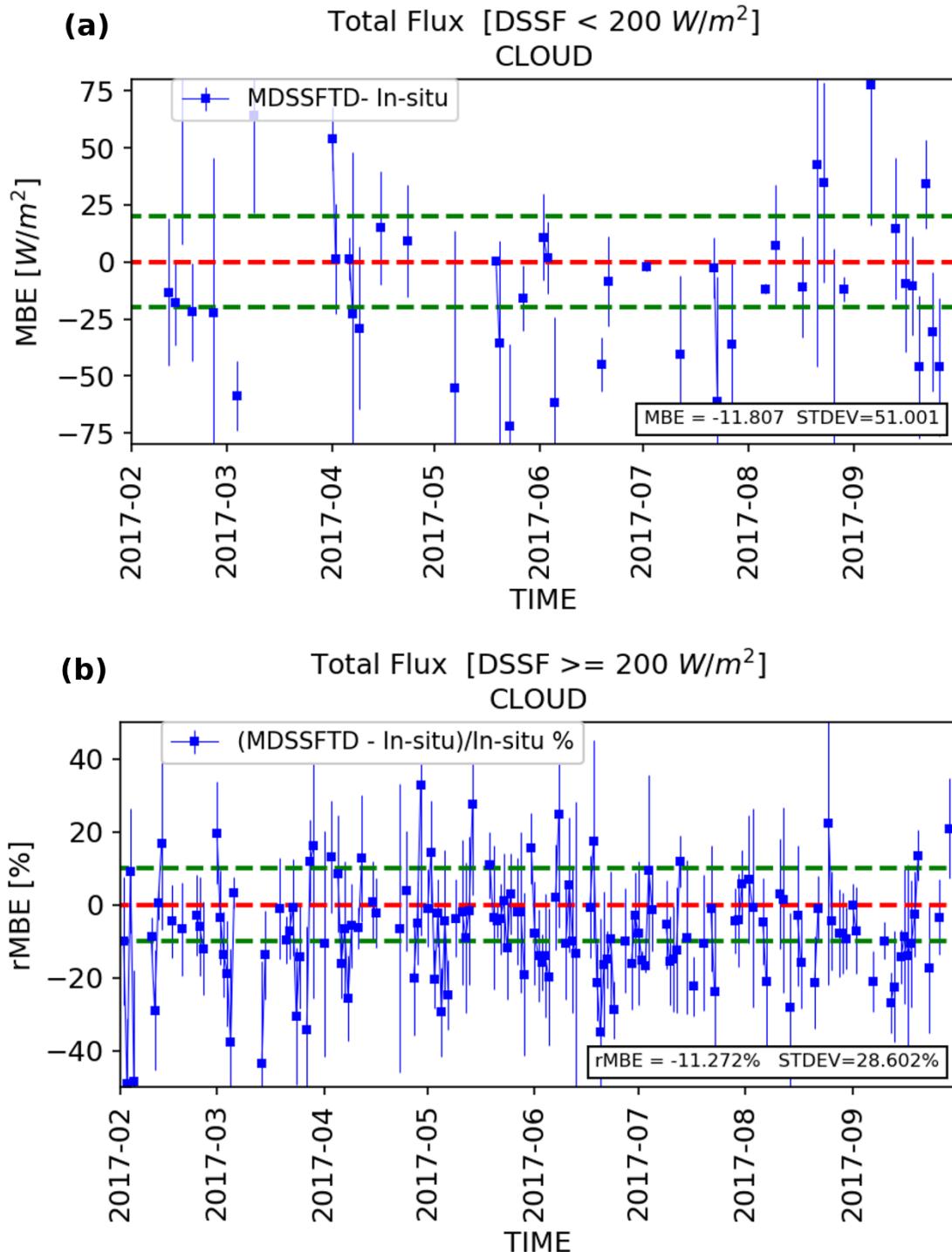

Figure 15 Same than Figure 13 for all-sky (clear and cloudy) conditions.

413

3.5. Impact of the activation of the cloud-aerosol coupling

414
415
416
417
418
419
420

The method for DSSF retrieval is using a simple radiative transfer model that takes into account the radiative coupling between aerosols and clouds as described in the companion paper [40] (see fourth term of Eq. 24). Figure 16 gives an example of this cloud-aerosol coupling for a selected day in Carpentras. We clearly observe a better agreement with the *in-situ* measurements around noon in the case of the activation of the cloud-aerosol radiative coupling (yellow dots compared to light blue dots). Even if the AOD is not large (i.e. 0.2), the impact of the cloud-aerosol coupling remains important. We are here clearly in presence of very thin clouds in the high atmosphere.

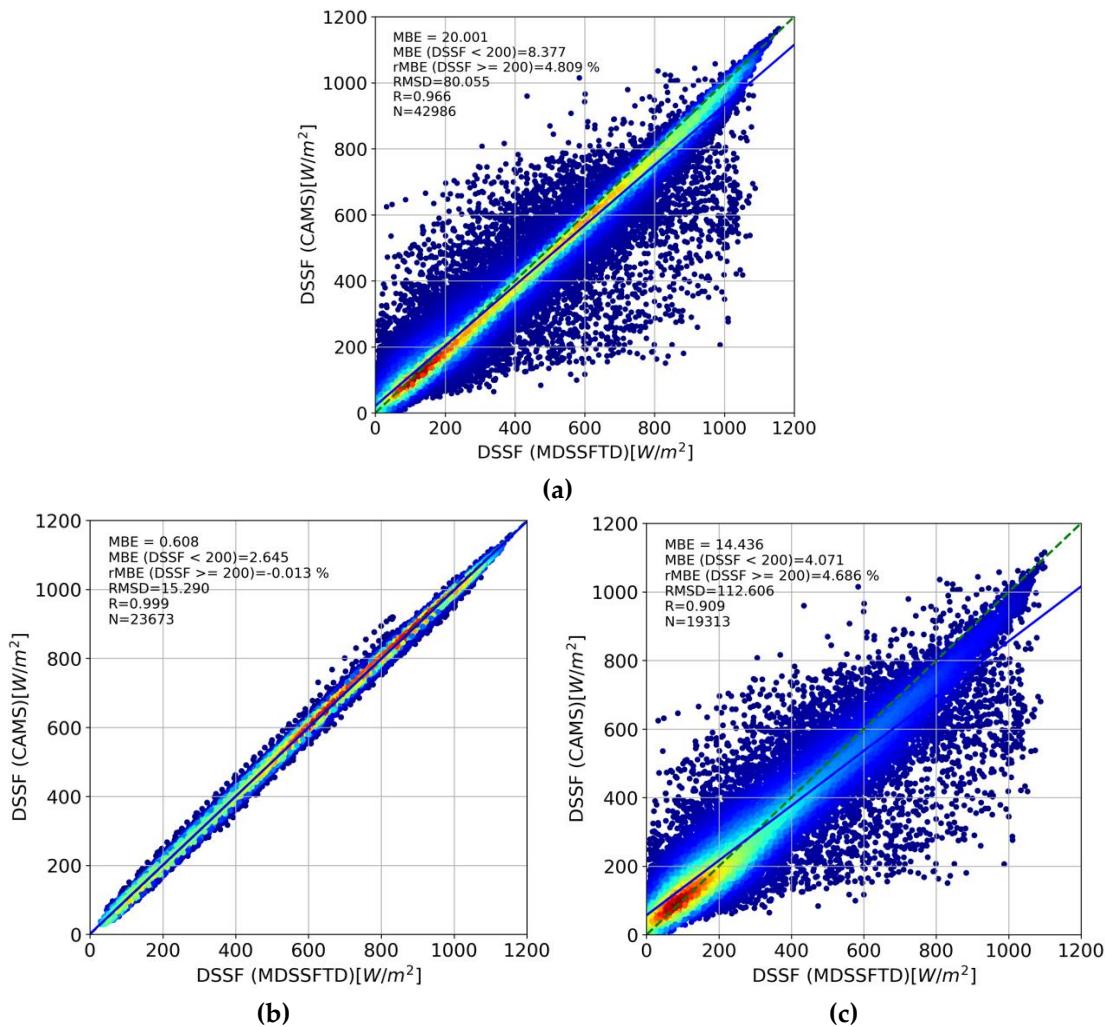


421 **Figure 16** Same diurnal variation than in Figure 5 for Carpentras. Light-blue dots show the
 422 estimations of total MDSSFTD with 'no coupling' (i.e., no activation of the cloud-aerosol coupling) in
 423 cloudy conditions. Yellow dots show same LSA-207 DSSF retrievals in cloudy conditions than in
 424 Figure 5. Black dashed line represents the AOD (CAMS). Statistics in the top right corner are those of
 425 the MDSSFTD product (with activation of the cloud-aerosol coupling).

426 Figure 11 showed the performances of the DSSF estimated by the MDSSFTD algorithm, which
 427 considers the influence of the cloud-aerosol coupling under cloudy-sky conditions. MDSSFTD
 428 satellite estimates are very close to the *in-situ* measurements (MBE=-6.618, rMBE=-2.782%). Figure 17
 429 now shows the same comparison by using the same code after disabling the coupling between cloud
 430 and aerosols (by simply removing the fourth term of Eq. 24 in [40]. We clearly observe a large
 431 degradation of the performances of the algorithm in this case (MBE=-11.807 Wm⁻², rMBE=-11.272%).
 432 The presence of aerosols makes the atmospheric transmittance decrease, and in turn the DSSF
 433 becomes lower. However, this atmospheric transmittance decreasing is too large in cloudy conditions.
 434 This sensitivity test illustrates the importance of the indirect radiative impacts of clouds on aerosol
 435 radiative forcing. In our study, the activation of the coupling improves the performances of about 8%.
 436 Clouds induce an increase of the atmospheric transmittance by reflecting, back to the surface, part of
 437 the radiation scattered by aerosols. This radiative cloud-aerosol coupling is included in the LSA-207
 438 product.

439

440



441 **Figure 17** Same than Figure 11 for cloudy-sky conditions but inactivating the coupling between cloud
 442 and aerosol.

443 *3.6. Comparison to CAMS radiation product*

444 The retrievals from MDSSFTD are compared against the counterpart estimates from the
 445 CAMS radiation product. Figure 18(a) shows the good agreement between the two products for
 446 all-sky conditions, with a correlation of 0.966. Figures 18(b) and 18(c) take a further look to the
 447 comparison by exploring the clear sky and cloudy sky retrievals separately. The clear sky
 448 comparison gives a high agreement between the two products, which are using CAMS aerosol
 449 data as input. The comparison for cloudy sky also shows a good agreement (correlation of 0.909)

450 despite the differences of the retrieval methods for cloudy sky conditions. The higher dispersion
 451 is justified by the increased difficulty of the retrieval for cloudy skies.

452
 453
 454
 455
 456
 457
Figure 18 Density scatter plots for the comparison between MDSSFTD and CAMS radiation product
 for (a) all-sky, (b) clear sky, and (c) cloudy sky conditions.

458 4. Conclusions

459 This paper presents the results of the comparison of the LSA-207 MDSSFTD product outputs,
 460 namely the total DSSF and diffuse fraction (fd) components, against the *in-situ* measurements
 461 acquired at four BSRN stations over a seven-month period. The validation is performed on
 462 instantaneous satellite retrievals with MSG/SEVIRI (i.e. acquired every 15 minutes).

463 The results show that the satellite estimates of DSSF and fd meet the requirements for all-sky
 464 (clear and cloudy) conditions. For DSSF, the requirements are 20Wm^{-2} for $\text{DSSF} < 200\text{Wm}^{-2}$ and 10%
 465 for $\text{DSSF} \geq 200\text{Wm}^{-2}$. The MBE and rMBE compared to the ground measurements are 3.618Wm^{-2} and
 466 0.252%, respectively. For fd, the requirements are 0.1 for $\text{fd} < 0.5$ and 20% for $\text{fd} \geq 0.5$. The MBE and
 467 rMBE compared to the ground measurements are -0.044 and -17.699%, respectively.

468 A more detailed analysis of the product performances was also performed separately for clear
 469 and cloudy sky conditions. For DSSF in clear-sky conditions, the MBE and rMBE compared to the
 470 ground measurements are 8.637Wm^{-2} and 0.776%, respectively. For fd, the MBE and rMBE compared
 471 to the ground measurements are 0.062 and -22.197%, respectively. Thus, the two products outputs
 472 also meet the target requirements if only clear-sky conditions are selected and if we do not consider
 473 $\text{fd} \geq 0.5$ case (which is not statistically representative). For DSSF in cloudy-sky conditions, the MBE
 474 and rMBE compared to the ground measurements are -6.618Wm^{-2} and 2.782%, respectively. For fd,
 475 the MBE and rMBE compared to the ground measurements are 0.027 and -15.796%, respectively. Thus,

476 the product meets the target requirements for all conditions with only a few exceptions. The major
477 limitations of the retrieval approach described in the companion article [40] are not an obstacle for
478 meeting the required quality. It is noted that the requirements for the product MDSSFTD are defined
479 for the all-sky conditions only.

480 In an earlier study by [42], it was shown that the use of MACC-II (now CAMS) AOD forecasts
481 as input to the MDSSFTD clear sky method instead of reanalyses significantly decreased the quality
482 of the DSSF products under clear sky conditions. For the last years, the quality of the CAMS AOD
483 forecasts currently available could have improved, which makes the high sensitivity of the MDSSFTD
484 diffuse estimation to the quality of AOD forecasts not to be a limitation anymore. Finally, we show
485 that this AOD information is of primary importance for the estimation of the atmospheric
486 transmittance either in clear or in cloudy conditions. In cloudy-sky conditions, the modelling of the
487 cloud-aerosol radiative coupling allows to reduce the overall bias by around 8%.

488 **Acknowledgments:** The work presented in this article has been carried out as part of the CDOP3 activities
489 related to the exploitation of the MSG/SEVIRI satellite mission in the framework of the EUMETSAT Satellite
490 Application Facility on Land Surface Analysis (LSA-SAF; <http://lsa-saf.eumetsat.int>).

491 References

492 [1] Mateos, D., Antón, M., Valenzuela, A., Cazorla, A., Olmo, F. J., & Alados-Arboledas, L. (2013). Short-wave
493 radiative forcing at the surface for cloudy systems at a midlatitude site. *Tellus B: Chemical and Physical
494 Meteorology*, 65(1), 21069.

495 [2] Van Tricht, K., Lhermitte, S., Lenaerts, J.T.M., Gorodetskaya, I.V., L'Ecuyer, T.S., Noël, B., van den Broeke,
496 M.R., Turner, D.D., van Lipzig, N.P.M., 2016. Clouds enhance Greenland ice sheet meltwater runoff. *Nat.
497 Commun.* 7, 10266.

498 [3] Mercado, L. M., Bellouin, N., Sitch, S., Boucher, O., Huntingford, C., Wild, M., & Cox, P. M. (2009). Impact of
499 changes in diffuse radiation on the global land carbon sink. *Nature*, 458(7241), 1014.

500 [4] Carrer, D., Roujean, J. L., Lafont, S., Calvet, J. C., Boone, A., Decharme, B., ... & Gastellu-Etchegorry, J. P.
501 (2013). A canopy radiative transfer scheme with explicit FAPAR for the interactive vegetation model ISBA-A-gs:
502 Impact on carbon fluxes. *Journal of Geophysical Research: Biogeosciences*, 118(2), 888-903.

503 [5] O'Sullivan, M. et al. Small global effect on terrestrial net primary production due to increased fossil fuel
504 aerosol emissions from East Asia since the turn of the century. *Geophys. Res. Lett.* 43, 8060–8067 (2016).

505 [6] Yoshida, S., Ueno, S., Kataoka, N., Takakura, H., & Minemoto, T. (2013). Estimation of global tilted irradiance
506 and output energy using meteorological data and performance of photovoltaic modules. *Solar Energy*, 93, 90-99.

507 [7] Betts, A. K., S.-Y. Hong, and H.-L. Pan, 1996: Comparison of NCEP–NCAR reanalysis with 1987 FIFE data.
508 *Mon. Wea. Rev.*, 124, 1480–1498.

509 [8] Brotzge, J. A., 2004: A two-year comparison of the surface water and energy budgets between two OASIS sites
510 and NCEP–NCAR reanalysis data. *J. Hydrometeor.*, 5, 311–326.

511 [9] Berbery, E. H., K. E. Mitchell, S. Benjamin, T. Smirnova, H. Ritchie, R. Hogue, and E. Radeva, 1999: Assessment
512 of land-surface energy budgets from regional and global models. *J. Geophys. Res.*, **104**, 19 329–19 348.

513 [10] Schroeder TA, Hamber R, Copps NC and Liang S (2009) Validation of solar radiation surfaces from MODIS
514 and reanalysis data over topographically complex terrain. *J. App. Meteor. Climat.* **48**, 2441-2458

515 [11] Babst, F., R. W. Mueller, and R. Hollman, 2008: Verification of NCEP reanalysis shortwave radiation with
516 mesoscale remote sensing data. *IEEE Trans. Geosci. Remote Sens.*, **5**, 34–37.

517 [12] Urraca, R., Huld, T., Gracia-Amillo, A., Martinez-de-Pison, F. J., Kaspar, F., & Sanz-Garcia, A.: Evaluation
518 of global horizontal irradiance estimates from ERA5 and COSMO-REA6 reanalyses using ground and satellite-
519 based data, *Solar Energy*, **164**, 339-354, 2018.

520 [13] Bishop, J. K. B., and Rossow, W. B., 1991. Spatial and temporal variability of global surface solar
521 irradiance. *Journal of Geophysical Research*, **96**, 16389 – 16858.

522 [14] Darnell, W., Staylor, W., Gupta, S., and Denn, F., 1988. Estimation of surface insolation using sun-
523 synchronous satellite data. *Journal of Climate*, **1**, 820 – 835.

524 [15] Dedieu, G. P., Deschamps, P., and Kerr, Y., 1987. Satellite estimation of solar irradiance at the surface of the
525 earth and of surface albedo using a physical model applied to METEOSAT data. *Journal of Climate and Applied
526 Meteorology*, **26**, 79 –87.

527 [16] Gautier C., Diak G., Masse S., 1980, A simple physical model to estimate incident solar radiation at the
528 surface from GOES satellite data, *J. Climate Appl. Meteor.*, **19**, 1005-1012.

529 [17] Cano, D., Monget, J. M., Albuisson, M., Guillard, H., Regas, N., Wald, L., 1986: A method for the
530 determination of the global solar radiation from meteorological satellite data. *Solar Energy*, **37**, 31±39.

531 [18] Gautier, C., & Landsfeld, M. (1997). Surface solar radiation flux and cloud radiative forcing for the
532 Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP): A satellite, surface observations, and
533 radiative transfer model study. *Journal of the atmospheric sciences*, **54**(10), 1289-1307.

534 [19] Li, Z., and Leighton, H. G. (1993). Global climatologies of the solar radiation budgets at the surface and in
535 the atmosphere from 5 years of ERBE data. *Journal of Geophysical Research*, **98**, 4919 – 4930.

536 [20] Masuda, K., Leighton, H. G., & Li, Z. (1995). A new parameterization for the determination of solar flux
537 absorbed at the surface from satellite measurements. *Journal of Climate*, **8**(6), 1615-1629.

538 [21] Hammer, A., Heinemann, D., Lorenz, E., & Lućkehe, B. (1999). Short- term forecasting of solar radiation
539 based on image analysis of meteosat data. *Proc. EUMETSAT meteorological satellite data users conference* (pp.
540 331-337).

541 [22] Möser, W., and E. Raschke, 1984: Incident solar radiation over Europe from METEOSAT data. *J. Climate*
542 *Appl. Meteor.*, **23**, 166–170.

543 [23] Pinker, R., and Ewing, J. (1985). Modeling surface solar radiation: model formulation and validation. *Journal*
544 *of Climate and Applied Meteorology*, **24**, 389 – 401.

545 [24] Pinker, R., and Laszlo, I. (1992). Modeling surface solar irradiance for satellite applications on a global scale.
546 *Journal of Applied Meteorology*, **31**, 194 – 211.

547 [25] Tarpley, J. (1979). Estimating incident solar radiation at the surface from geostationary satellite data. *Journal*
548 *of Climate and Applied Meteorology*, **18**, 1172 –181.

549 [26] Whitlock, C. H., Charlock, T. P., Staylor, W. F., Pinker, R. T., Laszlo, I., Ohmura, A., Gilgen, H., Konzelman,
550 T., DiPasquale, R. C., Moats, C. D., LeCroy, S. R., and Ritchey, N. A. (1995). First global WCRP shortwave surface
551 radiation budget dataset. *Bulletin of the American Meteorological Society*, **76**, 905 – 922.

552 [27] Romano, F.; Cimini, D.; Cersosimo, A.; Di Paola, F.; Gallucci, D.; Gentile, S.; Geraldi, E.; Larosa, S.; T. Nilo,
553 S.; Ricciardelli, E.; Ripepi, E.; Viggiano, M. Improvement in Surface Solar Irradiance Estimation Using
554 HRV/MSG Data. *Remote Sens.* **2018**, *10*, 1288.

555 [28] Gallucci, D.; Romano, F.; Cersosimo, A.; Cimini, D.; Di Paola, F.; Gentile, S.; Geraldi, E.; Larosa, S.; Nilo, S.T.;
556 Ricciardelli, E.; Viggiano, M. Nowcasting Surface Solar Irradiance with AMESIS via Motion Vector Fields of
557 MSG-SEVIRI Data. *Remote Sens.* **2018**, *10*, 845.

558 [29] Ineichen, P. High Turbidity Solis Clear Sky Model: Development and Validation. *Remote Sens.* **2018**, *10*,
559 435.

560 [30] Trigo, I. F., C. C. DaCamara, P. Viterbo, J.-L. Roujean, F. Olesen, C. Barroso, F. Camacho-de-Coca, D.
561 Carrer, S. C. Freitas, J. García-Haro, B. Geiger, F. Gellens-Meulenberghs, N. Ghilain, J. Meliá, L. Pessanha, N.
562 Siljamo, A Arboleda (2011), The Satellite Application Facility on Land Surface Analysis, *Int. J. Remote Sens.*, ,
563 32, 2725-2744.

564 [31] Ineichen, P., Barroso, C. S., Geiger, B., Hollmann, R., Marsouin, A., and Mueller, R.: Satellite Application
565 Facilities irradiance products: hourly time step comparison and validation over Europe, *Int. J. Remote Sens.*, **30**,
566 doi:0.1080/01431160802680560, 2009.

567 [32] Roerink, G. J., Bojanowski, J., de Wit, A. J. W., Eerens, H., Supit, I., Leo, O., and Boogaard, H. L. (2012)
568 Evaluation of MSG-derived global radiation estimates for application in a regional crop model. *Agricultural*
569 *and Forest Meteorology*, **160**:36–47.

570 [33] Moreno, A. & Gilabert, M.A. & Camacho, F. & Martínez, B., 2013. "Validation of daily global solar
571 irradiation images from MSG over Spain," *Renewable Energy*, Elsevier, vol. 60(C), pages 332-342.

572

573 [34] Bevan, S. L., North, P. R. J., Los, S. O., and Grey, W. M. F.: A global dataset of atmospheric aerosol optical depth and
574 surface reflectance from AATSR, *Remote Sens. Environ.*, **116**, 199–210, 2012.

575 [35] Jayaraman, A., Lubin, D., Ramachandran, S., Ramanathan, V., Woodbridge, E., Collins, W.D., Zalpuri, K.S.,
576 1998. Direct observations of aerosol radiative forcing over the tropical Indian Ocean during the January–February
577 1996 pre-INDOEX cruise. *J. Geophys. Res. Atmospheres* **103**, 13827–13836.

578 [36] Satheesh, S.K., Ramanathan, V., 2000. Large differences in tropical aerosol forcing at the top of the
579 atmosphere and Earth's surface. *Nature* **405**, 60–63. doi:10.1038/35011039

580 [37] Cherian, R., Quaas, J., Salzmann, M., Wild, M., 2014. Pollution trends over Europe constrain global aerosol
581 forcing as simulated by climate models. *Geophys. Res. Lett.* **41**, 2176–2181. doi:10.1002/2013GL058715

582 [38] Dramé, M. S., Ceamanos, X., Roujean, J. L., Boone, A., Lafore, J. P., Carrer, D., & Geoffroy, O. (2015). On the
583 Importance of Aerosol Composition for Estimating Incoming Solar Radiation: Focus on the Western African
584 Stations of Dakar and Niamey during the Dry Season. *Atmosphere*, **6**(11), 1608–1632.

585 [39] Kosmopoulos, P.G., Kazadzis, S., Taylor, M., Athanasopoulou, E., Speyer, O., Raptis, P.I., Marinou, E.,
586 Proestakis, E., Solomos, S., Gerasopoulos, E., Amiridis, V., Bais, A. and Kontoes, C. (2017). Dust impact on
587 surface solar irradiance assessed with model simulations, satellite observations and ground-based
588 measurements. *Atmos. Meas. Tech.* **10**: 2435–2453.

589 [40] Carrer, D., Ceamanos., X., Moparthy, M., Vincent, C., Coehlo, S., Trigo, I., 2019. Satellite retrieval of
590 downwelling shortwave surface flux and diffuse fraction under all sky conditions in the framework of the LSA
591 SAF program (part 1: methodology). Submitted.

592 [41] Ceamanos, X., Carrer, D., Roujean, J.-L., An efficient approach to estimate the transmittance and reflectance
593 of a mixture of aerosol components, *Atmospheric Research*, Vol. 137, Feb. 2014a, pp. 125–135

594 [42] Ceamanos, X., Carrer, D., Roujean, J.-L., 2014b. Improved retrieval of direct and diffuse downwelling surface
595 shortwave flux in cloudless atmosphere using dynamic estimates of aerosol content and type: application to the
596 LSA-SAF project. *Atmospheric Chem. Phys.* **14**, 8209–8232. doi:10.5194/acp-14-8209-2014

597 [43] Riihelä, A.; Kallio, V.; Devraj, S.; Sharma, A.; Lindfors, A. Validation of the Sarah-e satellite-based surface

598 [44] Riihelä, A.; Carlund, T.; Trentmann, J.; Müller, R.; Lindfors, A.V. Validation of CM SAF Surface Solar
599 Radiation Datasets over Finland and Sweden. *Remote Sens.* **2015**, *7*, 6663–6682.

600 [45] Geiger, B., Meurey, C., Lajas, D., Franchistéguy, L., Carrer, D., & Roujean, J. L. (2008). Near real-time
601 provision of downwelling shortwave radiation estimates derived from satellite observations. *Meteorological
602 Applications*, **15**(3), 411–420.

603 [46] Carrer, D., Lafont, S., Roujean, J.-L., Calvet, J.-C., Meurey, C., Le Moigne, P., and Trigo, I. : Incoming solar
604 and infrared radiation derived from METEOSAT: impact on the modelled land water and energy budget over
605 France, *J. Hydrometeor.*, **13**, 504–520, 2012.

606 [47] McArthur, L. J. B. "Baseline Surface Radiation Network (BSRN)-Operation Manual Version 2.1." (2005).

607 [48] Vuilleumier, L., Hauser, M., Félix, C., Vignola, F., Blanc, P., Kazantzidis, A., & Calpini, B. (2014). Accuracy
608 of ground surface broadband shortwave radiation monitoring. *Journal of geophysical research: atmospheres*,
609 **119**(24), 13-838.

610 [49] García, R. D., Cuevas, E., Ramos, R., Cachorro, V. E., Redondas, A., & Moreno-Ruiz, J. A. (2019). Description
611 of the Baseline Surface Radiation Network (BSRN) station at the Izaña Observatory (2009–2017): measurements
612 and quality control/assurance procedures. *Geoscientific Instrumentation, Methods and Data Systems*, **8**(1), 77–
613 96.

614 [50] Qu, Z., Oumbe, A., Blanc, P., Espinar, B., Gesell, G., Gschwind, B., ... & Wald, L. (2017). Fast radiative
615 transfer parameterisation for assessing the surface solar irradiance: The Heliosat-4 method. *Meteorologische
616 Zeitschrift*, **26**(1), 33-57.

617 [51] Lefèvre, M., Oumbe, A., Blanc, P., Espinar, B., Gschwind, B., Qu, Z., ... & Benedetti, A. (2013). McClear: a
618 new model estimating downwelling solar radiation at ground level in clear-sky conditions. *Atmospheric
619 Measurement Techniques*, **6**, 2403-2418.

620 [52] Gschwind, B., Wald, L., Blanc, P., Lefèvre, M., Schroedter-Homscheidt, M., & Arola, A. (2019). Improving
621 the McClear model estimating the downwelling solar radiation at ground level in cloud-free conditions—
622 McClear-v3. *Meteorologische Zeitschrift*.

623 [53] Mayer, B., & Kylling, A. (2005). The libRadtran software package for radiative transfer calculations—
624 description and examples of use. *Atmospheric Chemistry and Physics*, **5**(7), 1855-1877.

625 [54] Blanc, P., B. Gschwind, M. Lefèvre, L. Wald, 2014: Twelve monthly maps of ground albedo parameters
626 derived from MODIS data sets. In *Proceedings of IGARSS 2014*, held 13-18 July 2014, Quebec, Canada,
627 USBKey, pp. 3270-3272.

628 [55] Schaaf, C. B., Gao, F., Strahler, A. H., Lucht, W., Li, X., Tsang, T., ... & Lewis, P. (2002). First operational
629 BRDF, albedo nadir reflectance products from MODIS. *Remote sensing of Environment*, **83**(1-2), 135-148.

630 [56] Kriebel, K. T., Saunders, R. W., & Gesell, G. (1989). Optical properties of clouds derived from fully cloudy
631 AVHRR pixels. *Beiträge zur Physik der Atmosphäre*, **62**, 165-171.

632 [57] Kriebel, K. T., Gesell, G., Ka“ Stner, M., & Mannstein, H. (2003). The cloud analysis tool APOLLO:
633 improvements and validations. *International journal of remote sensing*, 24(12), 2389-2408.

634 [58] Hakuba MZ, Folini D, Sanchez-Lorenzo A, Wild M (2013) Spatial representativeness of ground-based solar
635 radiation measurements. *J Geophys Res* 118:8585–8597.

636 [59] Erbs, D.G., Klein, S.A., Duffie, J.A., 1982. Estimation of the diffuse radiation fraction for hourly, daily and
637 monthly-average global radiation. *Sol. Energy* 28, 293–302. doi:10.1016/0038-092X(82)90302-4

638 [60] Reindl DT, Beckman WA, Duffie JA. Diffuse fraction correlations. *Solar Energy* 1990;45:1–7.

639 [61] Orgill JF, Hollands KGT. Correlation equation for hourly diffuse radiation on a horizontal surface. *Solar
640 Energy*, 1977;19:357–9.

641 [62] Louche A, Notton G, Poggi P, Simonnot G. Correlations for direct normal and global horizontal irradiation
642 on French Mediterranean site. *Solar Energy* 1991;46:261–6.