

1 Article

2 **Impaired Glucose Tolerance is Associated with**
3 **Enhanced Platelet-Monocyte Aggregation in Short-**
4 **Term High Fat Diet Fed Mice**5 **Zibusiso Mkandla ^{1,*}, Tinashe Mutize ¹, Phiwayinkosi V. Dludla ^{2,3} and Bongani B. Nkambule ¹**6 ¹ School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University
7 of KwaZulu-Natal, Durban 4000, South Africa; 217063119@stu.ukzn.ac.za (TM), nkambuleb@ukzn.ac.za
8 (BBN)9 ² Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg
10 7505, South Africa; pdludla@mrc.ac.za (PVD)11 ³ Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy

12 * Correspondence: 217063126@stu.ukzn.ac.za; Tel +27 31 260 8964 (ZM)

13

14 **Abstract:** High fat-diet (HFD) feeding is known to induce metabolic dysregulation, however less is
15 known on its impact in promoting the hypercoagulable state. The current study aimed to evaluate
16 platelet-monocyte aggregate (PMA) formation following short-term HFD feeding. This is
17 particularly important for understanding the link between inflammation and the hypercoagulable
18 state during the early onset of metabolic dysregulation. To explore such a hypothesis, mice were fed
19 a HFD for 8 weeks, with body weights as well as insulin and blood glucose levels monitored on
20 weekly basis during this period. Basal hematological measurements were determined and the levels
21 of spontaneous peripheral blood PMAs were assessed using whole blood flow cytometry. The
22 results showed that although there were no significant differences in body weights, mice on HFD
23 displayed impaired glucose tolerance and markedly raised insulin levels. These metabolic
24 abnormalities were accompanied by elevated baseline (before administration of experimental diets)
25 PMA levels as an indication of hypercoagulation. Importantly, it was evident that baseline levels of
26 monocytes, measured using the CD14 monocyte marker were significantly decreased in HFD-fed
27 mice when compared to controls. In summary, the current evidence shows that in addition to
28 causing glucose intolerance, such as that identified in a prediabetic state, HFD-feeding can promote
29 undesirable hypercoagulation, the major consequence implicated in the development of
30 cardiovascular complications.31 **Keywords:** high fat diet; metabolic dysregulation; platelets; monocytes; hypercoagulation;
32 inflammation

33

34 **1. Introduction**35 Chronic platelet activation has been associated with a sustained pro-inflammatory response and
36 an increased risk of cardiovascular complications [1]. Monocytes, via the surface membrane P-selectin
37 glycoprotein ligand-1 (PSGL-1), bind to P-selectin expressed on the activated endothelial surface-
38 mediated interaction [2]. This represents the early events in the pathophysiological mechanisms
39 leading to atherosclerosis under dysregulated metabolic complications such as type 2 diabetes
40 mellitus (T2DM) [3]. In a similar manner, activated platelets are able to bind circulating peripheral
41 blood leucocytes via P-selectin and PSGL-1 interactions, forming platelet-leukocyte aggregates (PLAs)
42 [4,5]. The binding of P-selectin to its counter-receptor PGSL1 induces leukocyte tethering and firm
43 adhesion of monocytes to the endothelium [6,7]. The endothelium serves an important role in the
44 hemostatic system, and it appears to be greatly impacted by lifestyle modifications such as high fat

45 diet feeding (HFD) that are associated with enhanced metabolic stress, and this may lead to the
46 development of prothrombotic events [7].

47 It is well established that overfeeding, especially excess intake of saturated fatty acids coupled
48 with physical inactivity, are factors which contribute to the development of metabolic syndrome [1].
49 Recently, we reviewed evidence showing that inflammation together with other consequences such
50 as oxidative stress are the foremost causal factors implicated in the aggravation of metabolic disease
51 associated complications [8]. In conditions of metabolic dysregulation, elevated expression of pro-
52 inflammatory markers such as monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-
53 α (TNF- α), interleukin-8 (IL-8), IL-1 β and cyclooxygenase-2 (COX-2) is concomitant with the
54 formation of platelet monocyte aggregates (PMA) [8]. In fact, previous studies have shown that
55 platelets preferentially bind to monocytes, thus PMAs are regarded as stable markers of platelet
56 activation [3,5,9]. These interactions provide a link between the inflammatory and thrombotic
57 responses involved in conditions such as T2DM where elevated levels of PMAs have been reported
58 [10–12]. The aim of this study was to assess the impact of HFD-feeding on PMA formation in mice,
59 to better understand the link between pro-inflammatory status and hypercoagulable state under
60 dysregulated metabolic condition. Furthermore, investigating the impact of short-term HFD feeding
61 could help identify essential pathophysiological mechanisms implicating inflammation during onset
62 of metabolic complications such as T2DM. Also, of interest is the influence of short-term HFD feeding
63 on the dysregulation of haematological indices, since this consequence has been in the aggravation
64 of metabolic disease associated complications [13]. This is especially important since progression
65 conditions like T2DM can contribute to the malabsorption of iron by the intestines causing reduced
66 haemoglobin levels [13].
67

68 2. Materials and Methods

69 2.1. Study design

70 Five-week-old C57BL/6 male mice were purchased from the Jackson's Laboratories (Sacramento,
71 USA) and housed, individually in a cage, at the University of KwaZulu-Natal (UKZN) biomedical
72 research unit (BRU). The C57BL/6 mice strain is well characterised and has been shown to become
73 glucose intolerant when kept on a HFD [13]. Animals were handled according to the principles of
74 Laboratory Animal Care of the National Society of Medical Research and the National Institutes of
75 Animal Care and Use of Laboratory Animals of the National Academy of Sciences (National Institute
76 of Health publication 80-23, revised 1978). Ethical clearance was granted by the UKZN animal
77 research ethics committee (AREC), ethics registration number AREC/086/016.

78 Briefly, sixteen mice were randomly allocated to receive two experimental diets. The control
79 group (n=8) was fed with the low-fat diet containing 10 Kcal% derived from fat (Research Diets, New
80 Brunswick, NJ, USA). The study group (n=8) was fed with the HFD containing 60% Kcal% derived
81 from fat (Research Diets, New Brunswick, NJ, USA). An overview of diet composition for the control
82 (low fat diet) and HFD groups is displayed in Table 1. During the study, mice both controls and HFD
83 fed mice were monitored for body weights, as well as blood glucose and insulin levels for 8 weeks.
84 Furthermore, the oral glucose tolerance test was performed, and all glucose measurements
85 performed using the OneTouch®Select® handheld glucometer (LifeScan Inc., Milpitas, CA, USA).

86 2.2. Blood collection for haematology characteristics and flow cytometry analysis

87 After being subject to both low (controls) and HFD diets for 8 weeks, mice were terminated and
88 200 μ l of venous blood was collected using the tail bleeding method. Venous blood was collected into
89 3.2% citrate coated microtainer tubes (Sigma Aldrich, St Louis, Missouri, USA). Moreover, the
90 Beckman Coulter Ac T diff™ analyser (Beckman Coulter, Brea, CA, USA.) was used to measure the
91 baseline (before administration of experimental diets) haematological parameters as per the
92 manufacturer's protocol.

93 *2.3. Instrument set-up and optimization*

94 The BD FACSCanto II flow cytometer (BD Bioscience, NJ, USA) was used, and the cytometer
 95 set-up and tracking (CST) beads (BD Bioscience, NJ, USA) were used to perform internal quality
 96 control (QC) as per manufacturer's protocol. To compute and compensate for spectral overlap, the
 97 BD™ Compbead compensation particles (BD Bioscience, NJ, USA) were used. In addition, SPHERO
 98™ 6-peak Rainbow calibration particles (BD Bioscience, NJ, USA) were used daily as QC for the
 99 median fluorescence intensity (MFI).

100

101 Table 1. An overview of diet composition (g/kg) for both control and high fat diet fed mice.

102

Ingredients	Low fat diet (Control) ^a	High fat diet ^b
Casein, 30 mesh	200.00	200.00
L-Cystine	3.00	3.00
Corn starch	506.20	-
Lodex 10	125.00	125.00
Sucrose	72.80	72.80
Solka Floc, FCC200 (Fiber)	50.00	50.00
Soybean Oil	25.00	25.00
Lard	20.00	245.00
Mineral mix S10026B	50.00	50.00
Choline Bitartrate	2.00	2.00
Vitamin mix V10001C	1.00	1.00
Dye, Yellow FD&C #5, Alum. Lake 35-42%	0.04	-
Dye, Blue FD&C #1, Alum. Lake 35-42%	0.01	0.05

103

^aThe low fat diet obtained from Research Diets Inc (#D12450J, rodent diet with 10% kcal% fat) provided 3.82 kcal/g from 20%, 70%, and 10% of protein, carbohydrate, and fat, respectively.

104

^bThe high fat diet (HFD) obtained from Research Diets Inc (#D12492, rodent diet with 60% kcal% fat) provided 5.21 kcal/g from 26.2%, 26.3%, and 34.9% of protein, carbohydrate, and fat, respectively.

105

^cTypical analysis of cholesterol in lard = 0.72 g/kg.

106

2.4. Measurement of baseline PMA levels

107

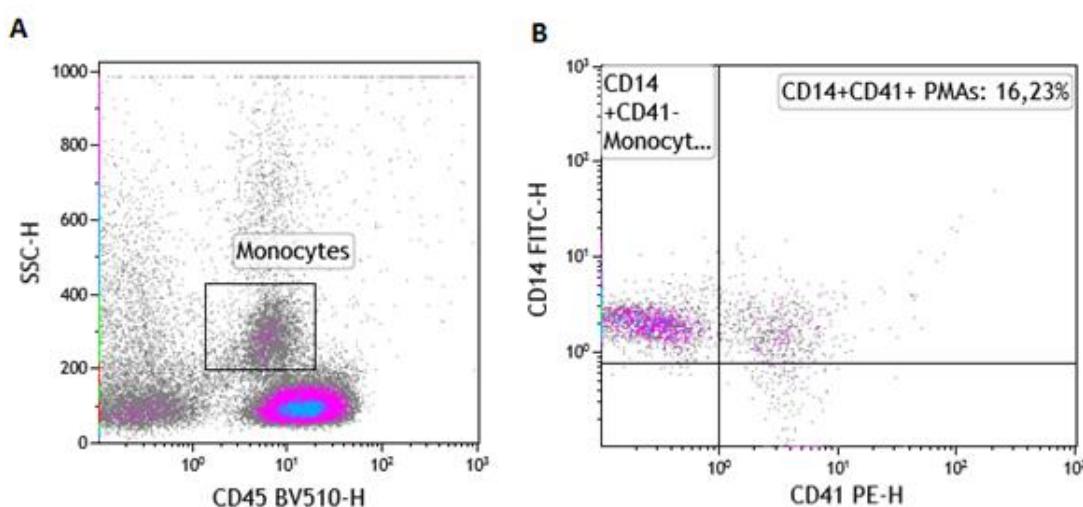
The measurement of baseline PMA levels was performed within 30 min after blood collection. Briefly, 25 μ l of the blood was stained with 2.5 μ l (ratio 1:10) of the anti-mouse monoclonal antibody cocktail containing CD14-PE (clone: rmC5-3) (monocyte marker), CD41-FITC (clone: MWReg30) (platelet marker) and CD45-BV510 (clone: 30-F11) (leukocyte marker) for 10 min in the dark at room temperature. These samples were fixed using 25 μ l of thrombofix (Beckman Coulter, Brea, CA, USA) prior to red blood cell lysis. The samples were then lysed with 350 μ l FACSlyse lysis buffer (BD Bioscience, NJ, USA) for 15 min in the dark at room temperature. This was then analysed on the BD FACSCanto II flow cytometer.

108

2.5. Measurement of PMA post-stimulation with ADP

109

To investigate the role of agonist-activated platelets in the formation of PMAs under HFD feeding conditions, ADP (adenosine diphosphate) was used to stimulate platelets, whilst PMA levels were determined by flow cytometry. Briefly, 25 μ l of the citrated blood was incubated with 10 μ l (20 μ M) ADP for 15 min and then fixed with 25 μ l of thrombofix. The sample was then stained with 2.5 μ l (ratio 1:10) of anti-mouse monoclonal antibody cocktail containing CD14-PE PE (clone: rmC5-3), CD41-FITC (clone: MWReg30) and CD45-BV510 (clone: 30-F11) (BD Bioscience, NJ, USA) and incubated for 10 minutes, at room temperature in the dark. The analysis was then done on the BD FACSCanto II flow cytometer.


110

2.6. The gating strategy for the enumeration of PMAs

129 The pan-leukocyte marker (CD45) was used to identify leukocyte populations. The specific
 130 monocyte specific marker (CD14) was used to identify monocytes. In addition, CD41 was used to
 131 identify platelets bound monocytes and enumerate PMAs (Figure 1AB).
 132

133 *2.7. Statistical analysis*

134 Statistical analysis was performed using GraphPad Prism 5 (GraphPad Software, San Diego,
 135 California, USA). Non-parametric and parametric data were analysed using the Mann-Whitney test
 136 and unpaired *t*-test respectively. Non-parametric data was reported as the median IQR. Parametric
 137 data was reported as the mean \pm standard deviation (SD). A *p* < 0.05 was considered as statistically
 138 significant.
 139

140 Figure 1. Gating strategy for the enumeration of platelet monocyte aggregates (PMAs). Panel A
 141 illustrates the use of the pan leucocyte marker (CD45) and the side scatter (SSC) properties to identify
 142 the monocyte population in whole blood using a control sample. Panel B illustrates the enumeration
 143 of platelet monocyte aggregates (CD45+CD14+CD41+).
 144

145

146 **3. Results**

147 *3.1. The impact of HFD on baseline metabolic parameters and glucose tolerance*

148 Although there were no significant differences the body weights of HFD group when compared
 149 to the LFD group, mice kept on the HFD for 8 weeks displayed impaired glucose tolerance, and
 150 markedly increased insulin levels when compared to animals in the control group (Table 2).
 151 Furthermore, baseline haematological markers showed varied modulation between HFD group
 152 when compared to the controls (Table 2). In particular, haematological markers such as red blood cell
 153 count (*p*=0.0178), haematocrit (*p*=0.0433) and mean cell volume (*p*=0.0025) showed a significant
 154 difference when the HFD group was compared to the controls (Table 2).
 155

156

157

158

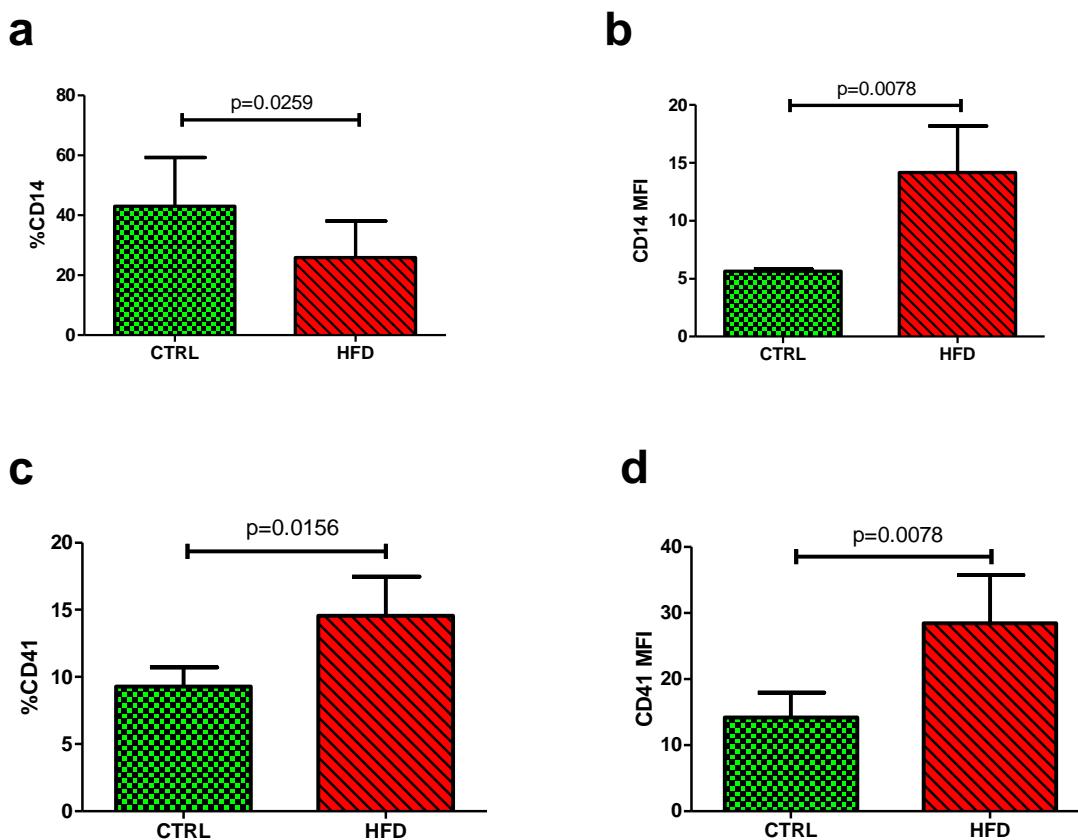
159

Table 2. An overview of metabolic and haematological parameters between high fat diet fed mice and controls.

Parameter	Control (n=8)	High fat diet (n=8)	p-value
Weight gain (g)	25.0 ± 2.5	26.0 ± 1.9	0.43
Glucose levels (mmol/l)	6.1 (5.4 - 6.9)	8.7 (8.5 - 9.2)	0.008
AUC mmol/L*120 min	636.0 (559.9 - 702.0)	765.0 (715.5 - 784.5)	0.032
Insulin levels (μIU/ml)	4.5 (4.4 - 4.6)	4.8 (4.6 - 8.1)	0.026
White cell count	5.35[3.68- 9.00]	7.50[4.80- 8.40]	0.4699
(10³/μl)			
Red blood cell count	7.17[7.04- 7.69]	6.910[5.53- 7.17]	0.0178
(10⁶/μl)			
Haemoglobin (g/dL)	25.85[20.00- 29.23]	22.40[16.75- 25.00]	0.6683
Haematocrit (%)	31.10[30.05- 33.30]	29.00[23.00- 31.40]	0.0433
Mean cell volume (fL)	43.00[43.00- 43.75]	42.00[41.00- 44.00]	0.0025
Platelet count (10³/μL)	782.9± 206.4	697.2± 151.1	0.5789
Mean platelet volume (fL)	5.30[5.03- 5.50]	5.20[5.10- 5.40]	0.6957
Neutrophil count (%)	7.75[7.00- 9.48]	8.000[6.90- 9.30]	0.9640
Lymphocyte count (%)	89.85[88.15- 90.73]	89.20[87.80- 90.50]	0.5271
Monocyte count (%)	1.96± 0.24	2.05± 0.56	0.6840
Basophil (%)	0.25[0.13- 0.50]	0.2000[0.10- 0.80]	0.7997
%CD14	31.05[30.74- 31.61]	31.13[29.65- 35.78]	0.4695
CD14 MFI	5.325[5.14- 5.45]	5.59[5.32- 5.79]	0.0350
%CD41	7.06[5.81- 8.06]	5.82[4.43- 6.83]	0.2757
CD41 MFI	6.36[6.04- 7.52]	6.12[5.81- 6.74]	0.7892

Data presented as mean \pm SD and median (IQR); p<0.05 represented in boldface; MFI: Median fluorescence intensity.

3.2. The impact of HFD on platelet-monocyte aggregates


The levels of monocytes were determined by measuring the levels of CD14 expression from each sample. The HFD (25.93 ± 12.17) showed lower quantitative levels of monocyte (%CD14) compared to the control group (42.98 ± 16.34 , $p=0.0259$) (Figure 2a). In contrast, the qualitative median fluorescence intensity (MFI) was elevated in the HFD group (14.18 ± 18.80) compared to the control group (5.66 ± 0.51 , $p=0.0078$) (Table 3, Figure 2b).

While other parameters did not show significant changes, baseline levels of platelet-monocyte aggregates (%CD41) were markedly increased in the HFD group (14.55 ± 13.66) compared to the control group (9.28 ± 4.05 , $p=0.0156$) (Figure 2c). The qualitative analysis measured using the median fluorescence intensity (MFI), also showed increased levels in the HFD group (28.45 ± 34.13) compared to the control group (14.19 ± 10.64 , $p=0.0078$) (Table 3, Figure 2d).

178 Table 3. Platelet monocyte aggregate (PMA) formation following stimulation with 20 μ M of
 179 adenosine diphosphate
 180

Control diet	Unstimulated (n=3)	Post-ADP (n=3)	p-value
%CD14	63.16[61.10-63.80]	17.99[8.46-20.31]	0.0074
CD14 MFI	6.13[5.98-6.55]	18.00[12.53-64.61]	0.2596
%CD41	12.55[12.49-16.34]	25.97[20.02-33.22]	0.0438
CD41 MFI	25.84[22.45-31.69]	34.22[24.06-41.80]	0.2854
High fat diet	Unstimulated (n=8)	Post-ADP (n=7)	p-value
%CD14	13.52[4.590-16.08]	14.37[8.430-18.98]	0.0405
CD14 MFI	16.53[11.28-45.47]	20.32[14.66-73.78]	0.3125
%CD41	29.96 \pm 11.40	28.94 \pm 10.79	0.4375
CD41 MFI	67.22 \pm 28.19	40.08 \pm 14.95	0.0938

181
 182

183
 184 Figure 2. Baseline monocyte and platelet-monocyte aggregate levels between the control (CTRL)
 185 group and the high-fat diet (HFD) group. (a) Monocyte levels (%CD14) were significantly lower in
 186 the HFD group compared to the control group at baseline, p=0.0259. (b) The qualitative measurement
 187 (CD14 MFI) however was increased in the HFD compared to the control group, p=0.0078. PMAs were
 188 determined by the level of platelet-bound monocytes. (c) The HFD group had higher levels of PMA
 189 compared to the control group at baseline measurement, p=0.0156. (d) Similarly, the qualitative

190 measurement (CD41 MFI) was increased in the HFD compared to the control group, $p=0.0078$. PMA:
191 platelet-monocyte aggregate; HFD: high-fat diet; MFI: median fluorescence intensity.
192
193

194 *3.3. The impact of HFD on the modulation of PMAs post-stimulation with ADP*

195 Results from this study showed that post-stimulation with ADP induced a significant decrease
196 in %CD14 in the control group 17.99[8.46-20.31], when compared to the unstimulated levels
197 63.16[61.10-63.80], $p=0.0074$ (Table 3). There were no significant differences in post-stimulation with
198 ADP in qualitative measurements (CD14 MFI) (Table 3). Moreover, PMA levels (%CD41) were
199 significantly increased in the control group post-stimulation with ADP 25.97[20.02-33.22], when
200 compared to unstimulated levels 12.55[12.49-16.34], $p=0.0438$ (Table 3).

201 Furthermore, it was also clear that the HFD group showed a significant decrease in the %CD14
202 post-stimulation with ADP 14.37[8.430-18.98] compared to unstimulated levels 13.52[4.590-16.08],
203 $p=0.0405$. Interestingly there was no significant difference between the unstimulated PMA levels
204 29.96 \pm 11.40 and post-ADP stimulation 28.94 \pm 10.79, $p=0.4375$ (Table 3).
205

206 **4. Discussion**

207 The aim of this study was to evaluate the impact of HFD feeding in PMA formation using a
208 mouse model. Importantly, the C57BL/6 mice used were ideal for this study since they have already
209 been shown to develop glucose intolerance when fed on an HFD [14]. This study also aimed at
210 elucidating a link between inflammation and the hypercoagulable state observed under conditions
211 of metabolic dysregulation. Overall, this study was able to demonstrate that under HFD conditions,
212 activated platelets readily interact with monocytes forming PMAs which have been described as early
213 markers for atherosclerosis in T2DM [15]. The formation of these aggregates with short-term HFD
214 feeding may indicate the hyperreactive nature of platelets which characterize the early onset of a
215 T2DM condition. We could demonstrate that activated platelets were capable of forming these
216 interactions by flow cytometry measurements of platelet bound monocytes. This is in agreement with
217 previous studies which demonstrated that activated platelets interact with monocytes via P-selectin
218 and its counter-receptor PSGL-1 expressed on the surface of monocytes [3,4,16]. Another point of
219 interest, it was clear that haematological indices measured, which included the red blood cell count,
220 platelet count and the plateletcrit were reduced in HFD fed mice, when compared to the controls.
221 Consistent with previous evidence, anemia is common in an overweight and obese states [17–20],
222 however little is known on the relationship with thrombocytopenia. Thus, suggesting that additional
223 studies are necessary that aim to understand the relationship between reduced hematologic
224 parameters in obesity, especially its impact in the development of cardio-metabolic complications.
225 Nonetheless, to the best of our knowledge, our study is the first to assess the impact of HFD feeding
226 of PMA formation using an animal model, which could significantly enhance our current
227 understanding on the susceptibility of the vasculature to abnormally enhanced platelet activation.
228

229 The animal experimental model showed that HFD fed mice exhibited elevated levels of PMAs,
230 indicating increased interactions between platelets and monocytes when compared to the controls.
231 The qualitative increase of the PMAs also reiterates the increased levels of platelet-monocyte
232 interactions with HFD feeding which may promote thrombosis. This is indeed supported by a
233 previous study showing that increased PMA levels in individuals who already had coronary artery
234 disease [16]. Nevertheless, individuals with myocardial infarctions already exhibit high levels of
235 PMAs [21,22]. It has been suggested that increased levels of PMA as well as platelet-neutrophil
236 aggregates under dysregulated metabolic conditions such as T2DM further highlight the importance
237 of the platelet-monocyte interactions in the progression of the pro-thrombotic state [12].

238 In response to ADP stimulation, HFD feeding promoted the formation of PMAs indicating the
239 hyperreactive nature of platelets in this disease state. ADP is a platelet agonist which activates the
P2Y12 pathway resulting in its the translocation of P-selectin from the alpha granules to the cell

240 surface [21,23,24]. It is already acknowledged that activated platelets form interactions with
241 monocytes, and this process is mediated by the binding of P-selectin to its receptor PSGL-1 on the
242 surface of these cells [3]. Subsequently, platelet-bound monocytes are activated and differentiated
243 into pro-inflammatory monocytes. This is accompanied by an increase in the expression of CD11b, a
244 marker of monocyte activation [3,21,25]. To that effect, our study showed a decrease in CD14
245 monocyte marker, indicating a shift in the monocyte phenotype to the pro-inflammatory form
246 CD14++ which can be explained by the higher qualitative analysis (CD14 MFI). Monocytes exhibit
247 distinct heterogeneous features which can be classified using flow cytometry into classic
248 (CD14++CD16-), intermediate (CD14++CD16+) and non-classic (CD14+CD16++). The intermediate
249 monocyte subtype expresses genes associated with inflammation and angiogenesis [26].

250 Overall, the hyperreactive nature of platelets with short-term exposure to HFD feeding in mice
251 may be associated with increased PMA formation, the early marker of atherosclerosis that is known
252 to promote a pro-inflammatory state [14,27]. A drawback of this study may be that the levels of pro-
253 inflammatory markers produced as a result of PMA formation were not determined. Further, studies
254 evaluating the impact of HFD on pro-inflammatory response as a result of platelet binding
255 interactions will give a better understanding of implicated mechanisms of action, especially
256 providing an insight into its influence in the transmigration of monocytes into metabolic tissue. In
257 any case, studies looking at the direct effect of HFD on markers of atherosclerosis and inflammation
258 under varied metabolic conditions are also necessary.

259 **Author Contributions:** Conceptualization, Z.M. and B.B.N.; methodology, Z.M. and B.B.N.; validation, Z.M.,
260 T.M.. and B.B.N.; formal analysis, Z.M.; resources, P.V.D. and B.B.N.; writing—original draft preparation, Z.M.,
261 P.V.D. and B.B.N; writing—review and editing, Z.M., T.M., P.V.D. and B.B.N.; supervision, P.V.D. and B.B.N.;
262 funding acquisition, B.B.N..

263 **Funding:** The current study is partially funded by the National Research Foundation (NRF) of South Africa
264 (Grant Number: 107519 to BB Nkambule). BB Nkambule is also a University of KwaZulu-Natal Developing
265 Research Innovation, Localisation and Leadership in South Africa (DRILL) fellow. DRILL, is a NIH D43 grant
266 (D43TW010131) awarded to UKZN in 2015 to support a research training and induction programme for early
267 career academics. PV Dladla was partially supported as a Post-Doctoral Fellow by funding from the South
268 African Medical Research Council (SAMRC) through its division of Research Capacity Development under the
269 Intra-Mural Postdoctoral Fellowship Programme from funding received from the South African Treasury. The
270 content hereof is the sole responsibility of the authors and do not necessary represent the official views of the
271 SAMRC or the funders.

272 **Acknowledgments:** We would like to acknowledge the Biomedical research unit and the Department of Human
273 Physiology, College of Health Sciences (CHS) the University of KwaZulu-Natal for providing access to the flow
274 cytometry analysis facility and Biomedical research unit for the animal housing facilities.

275 **Conflicts of Interest:** The funders had no role in the design of the study; in the collection, analyses, or
276 interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

277

278 References

1. Rosqvist F, Iggman D, Kullberg J, Cedernaes J, Johansson HE, Larsson A, Johansson L, Ahlström H, Arner P, Dahlman I, Risérus U. Overfeeding polyunsaturated and saturated fat causes distinct effects on liver and visceral fat accumulation in humans. *Diabetes*, **2014**, *63*, 2356–2368.
2. Yngen, M.; Östenson, C.G.; Hu, H.; Li, N.; Hjemdahl, P.; Wallén, N.H. Enhanced P-selectin expression and increased soluble CD40 ligand in patients with type 1 diabetes mellitus and microangiopathy: Evidence for platelet hyperactivity and chronic inflammation. *Diabetologia* **2004**, *47*, 537-540.
3. Bournazos, S.; Rennie, J.; Hart, S.P.; Fox, K.A.A.; Dransfield, I. Monocyte functional responsiveness after PSGL-1-mediated platelet adhesion is dependent on platelet activation status. *Arterioscler. Thromb. Vasc. Biol.* **2008**, *28*, 1491-1498.

290 4. Liang, H.; Duan, Z.; Li, D.; Li, D.; Wang, Z.; Ren, L.; Shen, T.; Shao, Y. Higher levels of
291 circulating monocyte-platelet aggregates are correlated with viremia and increased sCD163
292 levels in HIV-1 infection. *Cell. Mol. Immunol.*, **2015**, *12*, 435–443.

293 5. Hui, H.; Fuller, K.A.; Erber, W.N.; Linden, M.D. Imaging flow cytometry in the assessment of
294 leukocyte-platelet aggregates. *Methods* **2017**, *112*, 46–54.

295 6. Dorsam, R.T.; Kunapuli, S.P. Central role of the P2Y 12 receptor in platelet activation. *J. Clin.*
296 *Invest.* **2004**, *113*, 10–5.

297 7. Yau, J.W.; Teoh, H.; Verma, S. Endothelial cell control of thrombosis. *BMC Cardiovasc. Disord.*
298 **2015**, *15*, 130.

299 8. Dludla, P.V.; Nkambule, B.B.; Jack, B.; Mkandla, Z.; Mutize, T.; Silvestri, S.; Orlando, P.; Tiano,
300 L.; Louw, J.; Mazibuko-Mbeje, S.E. Inflammation and oxidative stress in an obese state and the
301 protective effects of gallic acid. *Nutrients* **2019**, *11*, pii: E23.

302 9. Michelson, A.D.; Barnard, M.R.; Krueger, L.A.; Valeri, C.R.; Furman, M.I. Circulating
303 monocyte-platelet aggregates are a more sensitive marker of in vivo platelet activation than
304 platelet surface P-selectin: Studies in baboons, human coronary intervention, and human acute
305 myocardial infarction. *Circulation* **2001**, *104*, 1533–1537.

306 10. van Gils, J.M.; Zwaginga, J.J.; Hordijk, P.L. Molecular and functional interactions among
307 monocytes, platelets, and endothelial cells and their relevance for cardiovascular diseases. *J.*
308 *Leukoc. Biol.* **2009**, *85*, 195–204.

309 11. Li, Z.; Yang, F.; Dunn, S.; Gross, A.K.; Smyth, S.S. Platelets as immune mediators: Their role in
310 host defense responses and sepsis. Vol. 127, *Thrombosis Research*. Elsevier B.V.; 2011. p. 184–188.
311 Available from: <http://dx.doi.org/10.1016/j.thromres.2010.10.010>

312 12. Davison, G.M.; Nkambule, B.B.; Mkandla, Z.; Hon, G.M.; Kengne, A.P.; Erasmus, R.T.; Matsha,
313 T.E. Platelet, monocyte and neutrophil activation and glucose tolerance in South African Mixed
314 Ancestry individuals. *Sci. Rep.* **2017**, *16*, 7:40329.

315 13. Barbieri, J.; Fontela, P.C.; Winkelmann, E.R.; Zimmermann, C.E.; Sandri, Y.P.; Mallet, E.K.;
316 Frizzo, M.N. Anemia in patients with type 2 diabetes mellitus. *Anemia* **2015**, *2015*, 354737.

317 14. Andrikopoulos, S.; Blair, A.R.; Deluca, N.; Fam, B.C.; Proietto, J. Evaluating the glucose
318 tolerance test in mice. *Am. J. Physiol. Endocrinol. Metab.* **2008**, *1323–1332*.

319 15. Patkó, Z.; Császár, A.; Acsády, G.; Óry, I.; Takács, É.V.A.; Fűrész, J. Elevation of monocyte –
320 platelet aggregates is an early marker of type 2 diabetes. *Interv. Med. Appl. Sci.* **2012**, *4*(2):181–
321 185.

322 16. Furman, M.I.; Benoit, S.E.; Barnard, M.R.; Valeri, C.R.; Borbone, M.L.; Becker, R.C.; Hechtman,
323 H.B.; Michelson, A.D. Increased platelet reactivity and circulating monocyte-platelet
324 aggregates in patients with stable coronary artery disease. *J. Am. Coll. Cardiol.* **1998**, *31*, 352–358.

325 17. Dang Y, Xia Y, Li Y, Yu DCW. Anemia and type 2 diabetes mellitus associated with peripheral
326 arterial disease progression in Chinese male patients. *Clin Biochem.* **2013**, *46*, 16–17, 1673–7.

327 18. Bonakdaran S, Gharebaghi M, Vahedian M. Prevalence of Functional Dyspepsia in a Rural
328 Medical College Hospital. *Jemds.* **2014**, *3*, 8, 1934–9.

329 19. Chiou, T.T.Y., Lee, J.J., Wang, M.C., Chung, M.S., Pan, L.L., Hsieh, C.J., et al. Genetic
330 disposition and modifiable factors independently associated with anemia in patients with type
331 2 diabetes mellitus. *Diabetes Res Clin Pract* **2015**, *108*, 1, 164–9.

332 20. Chen, C.Y., Lee, M.Y., Lin, K Der, Hsu, W.H., Lee, Y.J., Hsiao, P.J., et al. Diabetes mellitus
333 increases severity of thrombocytopenia in dengue-infected patients. *Int J Mol Sci.* **2015**, *16*(2),
334 3820–30.

335 21. Projahn, D.; Koenen, R.R. Platelets: key players in vascular inflammation. *J. Leukoc. Biol.* **2012**,
336 92, 1167–1175.

337 22. Furman, M.I.; Barnard, M.R.; Krueger, L.A.; Fox, M.L.; Shilale, E.A.; Lessard, D.M.; Marchese,
338 P.; Frelinger, A.L.; Goldberg, R.J.; Michelson, A.D. Circulating monocyte-platelet aggregates
339 are an early marker of acute myocardial infarction. *J. Am. Coll. Cardiol.* **2001**, *38*, 1002-1006.

340 23. Sudic, D.; Razmara, M.; Forslund, M.; Ji, Q.; Hjemdahl, P.; Li, N. High glucose levels enhance
341 platelet activation: Involvement of multiple mechanisms. *Br. J. Haematol.* **2006**, *133*, 315-322.

342 24. von Hentig, N.; Förster, A.K.; Kuczka, K.; Klinkhardt, U.; Klauke, S.; Gute, P.; Staszewski, S.;
343 Harder, S.; Graff, J. Platelet-leucocyte adhesion markers before and after the initiation of
344 antiretroviral therapy with HIV protease inhibitors. *J. Antimicrob. Chemother.* **2008**, *62*, 1118-
345 1121.

346 25. Barnard, M.R.; Linden, M.D.; Frelinger, A.L.; Li, Y.; Fox, M.L.; Furman, M.I.; Michelson, A.D.
347 Effects of platelet binding on whole blood flow cytometry assays of monocyte and neutrophil
348 procoagulant activity. *J. Thromb. Haemost.* **2005**, *3*, 2563-2570.

349 26. Wrigley BJ, Shantsila E, Tapp LD, Lip GYH Increased Formation of monocyte-platelet
350 aggregates in ischemic heart failure. *Circ Hear Fail.* **2013**, *6*, 127-135.

351 27. Rutter, B.; Tersteeg, C.; Vrijenhoek, J.E.P.; Van Holten, T.C.; Elsenberg, E.H.A.M.; Mak-
352 Nienhuis, E.M.; et al. Increased platelet reactivity is associated with circulating platelet-
353 monocyte complexes and macrophages in human atherosclerotic plaques. *PLoS One* **2014**, *9*, 1-
354 8.