

1 Article

2

Analysis of Raindrop Shapes, Fall Velocities, and

3

Scattering Calculations during Tropical Storm Nate

4 **Merhala Thurai^{1*}, Sophie Steger², Franz Teschl², Michael Schönhuber³**5 ¹ Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80523,
6 USA; merhala@colostate.edu (M.T.)7 ² Institute of Communication Networks and Satellite Communications, Graz University of Technolog,
8 Austria; sophie.steger@student.tugraz.at (S.S.), franz.teschl@tugraz.at (F.T.)9 ³ Joanneum Research, Graz, Austria; michael.schoenhuber@joanneum.at (M.S.)

10 * Correspondence: merhala@colostate.edu; Tel.: +1-970-491-7678

11

12 **Abstract:** Tropical storm Nate, which was a powerful hurricane prior to landfall along the
13 Alabama coast, traversed north towards our instrumented site in Hunstville, AL. The rain bands
14 lasted 18 h and the 2D-video disdrometer (2DVD) captured the event which was shallow and
15 indicative of pure warm rain processes. Measurements of raindrop size, shape and velocity
16 distributions are quite rare in pure warm rain and are expected to differ from cold rain processes.
17 In particular, asymmetric shapes due to drop oscillations and their impact on polarimetric radar
18 signatures in warm rain have not been studied so far. Recently, the 2DVD data has been used for
19 3D reconstruction of asymmetric raindrop shapes but their fraction (relative to the more common
20 oblate shapes) in warm rain has yet to be ascertained. Here we compute the scattering matrix
21 drop-by-drop using Computer Simulation Technology integral equation solver for drop sizes > 2.5
22 mm. From the scattering matrix elements, the polarimetric radar observables are simulated by
23 integrating over 1 minute consecutive segments of the event. These simulated values are compared
24 with dual-polarized C-band radar data located at 15 km range from the 2DVD site to evaluate the
25 contribution of the asymmetric drop shapes.26 **Keywords:** raindrop shapes; asymmetric rain drops; scattering calculations; polarimetric radar;
27 2D-video distrometer

28

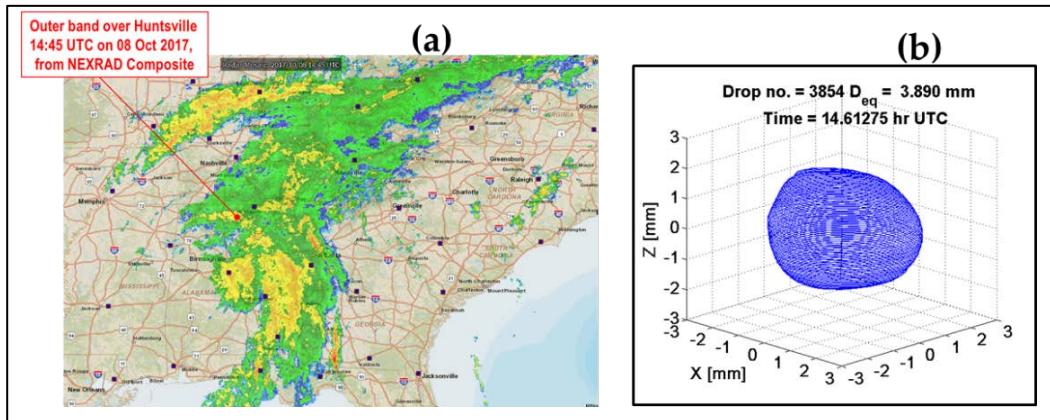
29

1. Introduction

30 One of the important applications of polarimetric radar is the measurement of rainfall whose
31 accuracy depends critically on the assumed drop shape model which under equilibrium (i.e.,
32 balance of aerodynamic, surface tension and gravitational forces) was derived numerically by Beard
33 and Chuang [1]. However, rain drops (with D > 0.7 mm or so) do oscillate due to wake instabilities or
34 time-varying drag but the oscillation modes (axisymmetric or asymmetric) and the distribution of
35 oscillation amplitudes are not theoretically predictable. In laminar flow the wind-tunnel
36 experiments of Szakáll et al. [2] showed that larger drops (> 2.0 mm) oscillate primarily in the
37 axisymmetric oblate-prolate mode with smaller amplitude asymmetric modes mixed in. These
38 wind-tunnel data (based on high speed camera images of different sized suspended drops over a
39 few seconds) were consistent with the earlier 80 m fall ‘artificial rain’ experiments of drop shapes
40 imaged as individual ‘snap shots’ with a 2D-video disdrometer (2DVD) [3], [4], [5]. The consistency
41 was demonstrated by the excellent agreement between time-averaged axis ratios and amplitudes as
42 a function of drop size from the wind-tunnel data with the ensemble-based axis ratio averages and

43 standard deviations from the (80 m fall) 2D-video data and has given confidence in using the
44 average oblate axis ratio versus D relations used in rain rate retrieval algorithms.

45 A relatively recent advance has been the use of 2DVD in reconstructing the 3D shapes of
46 natural rain drops even if they are asymmetric [6], [7], and further to calculate the scattering
47 matrices of such asymmetric (and the detected symmetric shape) drops using advanced
48 electromagnetic scattering codes [8], [9]. This enables simulation of what is termed 'drop-by-drop'
49 integration to arrive at the radar reflectivity, the differential reflectivity and the copolar correlation
50 coefficient [10]. Comparing the 'drop-by-drop' with the 'bulk' simulations of the same event using
51 the average oblate axis ratio versus D relations enabled a determination of the importance of
52 asymmetric shapes to the rain rate retrieval algorithms as well as the conditions under which
53 asymmetric drop shapes occur more frequently as in one example of an intense line convection [10],
54 [11]. However, in less intense convection or in pure warm rain process (coalescence) dominated
55 events, the frequency of occurrence of asymmetric drops shapes and their impact on rain rate
56 retrieval algorithms is not known. While it is known that small drops dominate the size
57 distributions in tropical rain with active warm rain processes relative to ice dominated deeper
58 convection at the same rain rate, it has been speculated that in the ice dominated cases, asymmetric
59 shapes due to oscillations can be damped by residual tiny ice cores in the nearly fully melted
60 drops (originating as graupel or tiny hail aloft). On the other hand, pure warm rain processes have
61 no such damping mechanism and thus might exhibit more frequent occurrence of asymmetric
62 shapes. Thus, this article presents 2DVD-based reconstructions of drop shapes in the outer band
63 remnants of tropical storm Nate as it moved across our instrumented site in Huntsville, Alabama.
64 'Drop-by-drop' scattering simulations are performed and compared with 'bulk' oblate shape
65 assumptions and compared with observations from a scanning C-band radar located 15 km away
66 from the instrument site. Also presented are fall velocities and drop horizontal velocities
67 determined from the 2DVD measurements, specifically for the larger drops (> 2 mm).


68 The paper is organized as follows. In section 2, we give an overview of tropical storm (TS) Nate
69 and an outline of the specific instruments and measurements pertaining to this study. In section 3,
70 processing of the 2DVD-based images is presented, together with drop horizontal velocities which
71 are obtained as a by-product of the de-skewing procedure of the drop images. Section 4 outlines the
72 scattering calculation procedure and section 5 presents the single particle radar cross-sections
73 calculated for all drops with $D > 2.5$ mm as well as their differential reflectivities. In section 6, the
74 computed reflectivity and differential reflectivity based on the scattering calculations over a
75 1-minute interval are compared with the C-band radar measurements over the instrument site, for
76 the entire duration of the Nate event at the instrument site. The main conclusions are summarized in
77 section 7 as well as discussion on each of the main conclusion points.

78 2. TS Nate Description and Observations in Huntsville

79 Tropical system Nate originated as a fast moving hurricane which made landfall on the US Gulf
80 Coast. It made its second landfall in the US causing storm surge, flooding buildings, and beach
81 erosion. More inland, Nate weakened to a tropical storm after being embedded within fast
82 mid-latitude westerlies while moving north towards Huntsville, Alabama. The rain bands lasted 18
83 h over the instrumented site at the University of Alabama, Huntsville (UAH) giving rise to total rain
84 accumulation of over 31 mm. Fig.1 shows the radar mosaic image at 14:45 UTC on 08 October 2017.
85 The rain bands, although noticeable, are not highly defined. The 2DVD [12] captured the event
86 which, at times was shallow, indicative of pure warm rain processes, and at other times somewhat
87 more intense with clear melting layer. The red dot in Fig. 1 (a) marks the location of the instrument;
88 at the specified time, the inner-most rain band was traversing the instrument.

89 Apart from the 2DVD, there was also another optical array probe specifically for small and tiny
90 drops (called the Meteorological Particle Spectrometer, MPS) [13], a precipitation occurrence sensor
91 system [14], rain gauges, anemometers, and several other ground instruments. Raingauge data
92 showed 1-minute rain rates to be less than 10 mm/hr, and less than 3 mm/h for much of the time. The

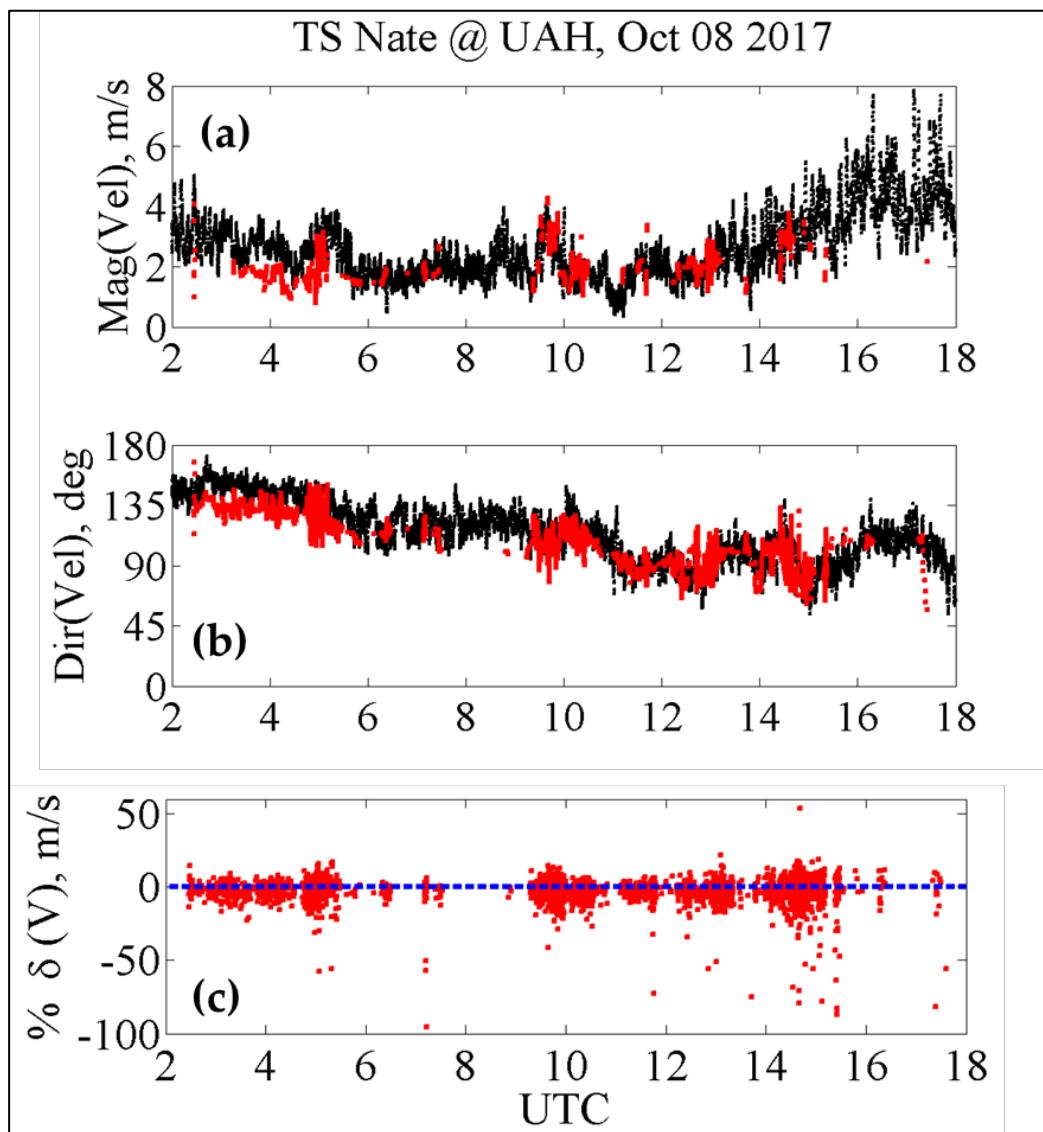
93 temperature at 2-m height was around 73-75 deg F (23-24 deg C) during much of the storm period
 94 (02 to 20 hr UTC). A X-band vertically-pointing Doppler radar [15] located a few meters also made
 95 observations over the entire storm event, and a C-band dual-polarization radar (ARMOR) [16], [17],
 96 located 15 km from UAH had made regular and frequent scans over the site.

97

98 **Figure 1.** (a) Composite (nexrad) radar image of Tropical System Nate over Alabama on 08 Oct 2017
 99 at 14:45 UTC. The location of the 2DVD and other instruments is marked with a red dot; (b) Shape of
 100 a large drop recorded by the 2DVD at this time (using the 3D reconstruction procedure, see Section 3).

101 Unlike a previous tropical system, category-1 hurricane Irma which had relatively strong
 102 winds and gust conditions associated with it, TS Nate had considerably less wind speeds and
 103 turbulence by the time it reached Huntsville. As shown later, the wind speeds were less than 8 m/s
 104 (at 10 m height), with no sudden or abrupt change in magnitude nor direction.

105 3. 2DVD data and processing


106 The derivation of contoured shapes in two orthogonal planes from 2DVD measurements has
 107 been presented in a number of previous publications [18], [19], [4]). Several years later, the
 108 contoured shapes in the two orthogonal planes were used to derive the 3-dimensional particle
 109 shapes which have been described in [6], [7], and [9]. The procedure involved in the drop contour
 110 derivation also includes a 'deskewing' technique which not only yields the corrected contoured
 111 shapes for each drop but also its horizontal velocities along the x and y axes, which in turn enables
 112 the magnitude and direction to be determined. Along the z-axis, the matching procedure from the
 113 2DVD's two camera images (A and B) enables the fall speeds to be determined on a drop-by-drop
 114 basis. However, due to a number of limitations, the velocity and shape information can only be
 115 retrieved for relatively large drops, in particular for drops with equi-volume diameter larger than
 116 1.5 or 2 mm. When performing scattering calculations, it is the larger drops which will have the
 117 highest contributions to the polarimetric radar variables such as differential reflectivity and copolar
 118 correlation coefficient and differential backscatter phase.

119 The 2DVD measurements during the entire Nate event revealed that the drop diameters (D_{eq})
 120 did not exceed 4 mm. There were 601 drops with $D_{eq} > 2.5$ mm out of 1,467,540 drops in total; out of
 121 these, only 79 drops exceeded 3 mm and only 12 drops exceeded 3.5 mm. One of the biggest drops
 122 recorded (3.89 mm) is shown in panel (b) of Figure 1, the time of which corresponds nearly to that of
 123 the radar mosaic image in panel (a). This was one of the most-intense periods of the storm over
 124 UAH, albeit with relatively modest reflectivity of around 40 dBZ. A small degree of shape
 125 deformation is visible.

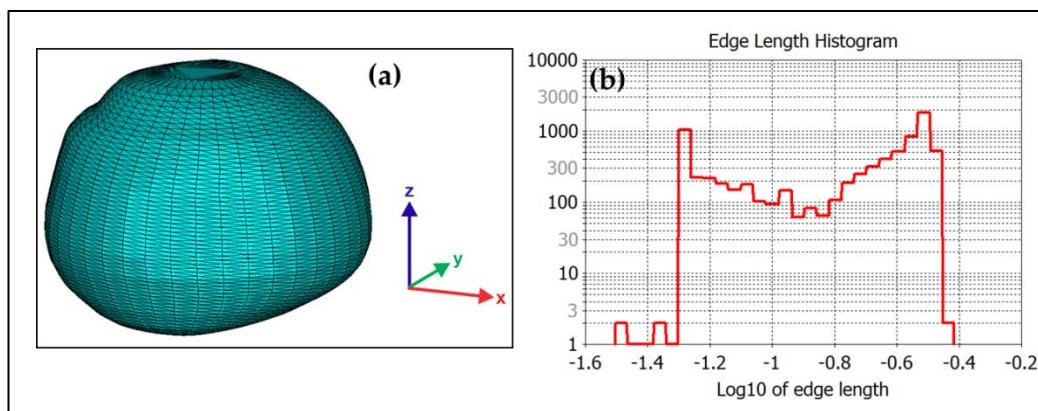
126 The magnitude and direction of drop horizontal velocities for all drops > 2 mm derived from
 127 the 2DVD deskewing procedure are shown as red points in panels (a), and (b) of Fig. 2, respectively.
 128 They are compared with the anemometer measurements at 10 m height (black points) from the same
 129 location for most of the storm period (02 to 20 hr UTC). Note some 'smoothing' was applied to the

130 drop horizontal velocities in order to highlight the close agreement with the wind-sensor
 131 measurements. As expected, the response of the drops is to assume and acquire the same horizontal
 132 velocities as the ambient wind speed and direction. The close agreement, between the green points
 133 and the black points, particularly after 06 hr UTC, is also indicative of the accuracy of the shapes of
 134 the reconstructed drops.

135 In panel (c), we show the percentage of deviation of the drop fall velocities from the expected
 136 terminal fall speeds of Gunn-Kinzer [20], again for all drops > 2 mm. The 0% line is marked as a
 137 dashed blue line. Fluctuations can be observed, which is to be expected, but they appear to be
 138 distributed fairly evenly around the 0% line, throughout the event, although at around 15 hr UTC, a
 139 few drops show significantly negative percentages ($< -30\%$) which could be due to the well-known
 140 response to turbulence. However, majority of the drops have fall velocities within the expected
 141 range of their theoretical fall speeds (e.g. [21] for sea level).

142
 143
 144
 145
 146

Figure 2. (a) and (b) Wind speed and wind direction (as black points) from the anemometer at 10 m height at the 2DVD location, respectively, along with the retrieved drop horizontal velocities from the 2DVD in green for all > 2 mm drops; (c) percentage change in the drop fall velocities from the 2DVD compared with Gunn-Kinzer equation.


147 **4. Scattering calculations**

148 The scattering calculations have been carried out for all 601 drops captured during the Nate
 149 event with $D_{eq} > 2.5$ mm. The simulation program used within this study is CST Microwave Studio
 150 (MWS) of the CST Studio Suite 2019. The use of this software for the scattering calculation of each
 151 individual drop has been automated. Visual Basic for Application language was used for creating
 152 structures and controlling procedures in CST MWS. In the following paragraphs the main steps of
 153 the scattering calculations are outlined.

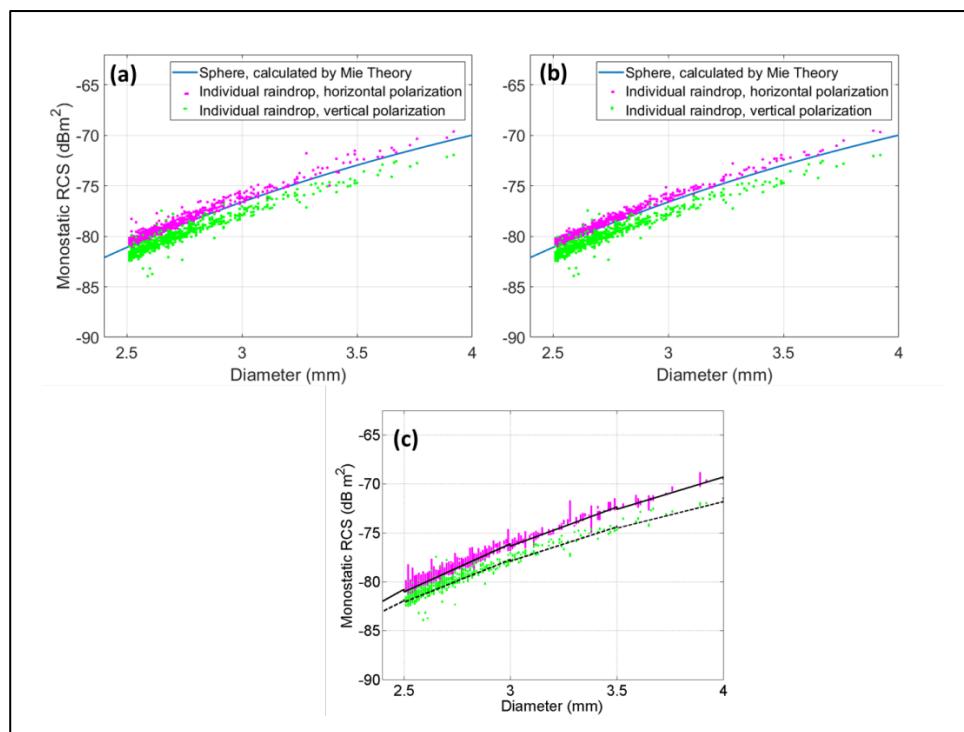
154 The 3D shapes of each raindrop was reconstructed with Matlab-software using the procedure
 155 described in [6] and [7]. For each drop a STL-file (STL for stereolithography) was generated that
 156 characterize the surface geometry of the drop without specifying material or scale information. The
 157 STL-files of the drops were imported into CST MWS. For the material, the dielectric properties of
 158 water at a temperature of 68 deg F (20 deg C) and a frequency of 5.625 GHz were assumed.
 159 Following the model of Ray [22] this leads to a complex permittivity ϵ of $72.5 - j22.43$ (refractive
 160 index $m = 8.6137 - j1.3020$). After importing and scaling the shape, a meshing algorithm is performed
 161 by CST MWS. Figure 3(a) shows the mesh of an example drop. The drop is approximated by a set of
 162 triangles that are connected by common edges or by corner points. The triangulation is based on the
 163 outer surfaces that occur when reconstructing the drop. The 3D reconstruction is carried out with an
 164 angular resolution of 10 degrees in azimuth and with 0.05 mm vertical resolution. If a drop e.g. has a
 165 height of 3 mm this procedure leads to approximately $36 * (3 / 0.05) = 2160$ quadrangular planar
 166 surfaces on the outside. As each surface is split in order to form triangles, the number of surfaces
 167 duplicates.

168 Figure 3(b) shows the histogram of the edge length of the triangulation of the drop shown in
 169 Figure 3(a). For the given drop the shortest edge length is approx. 0.03 mm and the largest edge
 170 length is approx. 0.37 mm. On average the edge length is 0.1 mm. The largest detected drops with an
 171 equal volume diameter of ~3.8 mm are approximated by more than 5000 triangles. Given a
 172 frequency of 5.626 GHz and therefore a wavelength of 5.3 cm, each drop is modelled with at least 15
 173 grid points per wavelength.

174

175

176 **Figure 3.** (a) Triangle mesh of an individual drop imported into CST Microwave Studio;
 177 (b) histogram of the edge length of the triangulation


178 A plane wave excitation source was defined with linear polarization and a frequency of 5.625
 179 GHz. The Radar Cross Section (RCS) of each individual drop was calculated for both horizontal and
 180 vertical polarization using the CST Integral Equation Solver which is suitable for electrically large
 181 dielectric objects. Results are presented in the next section.

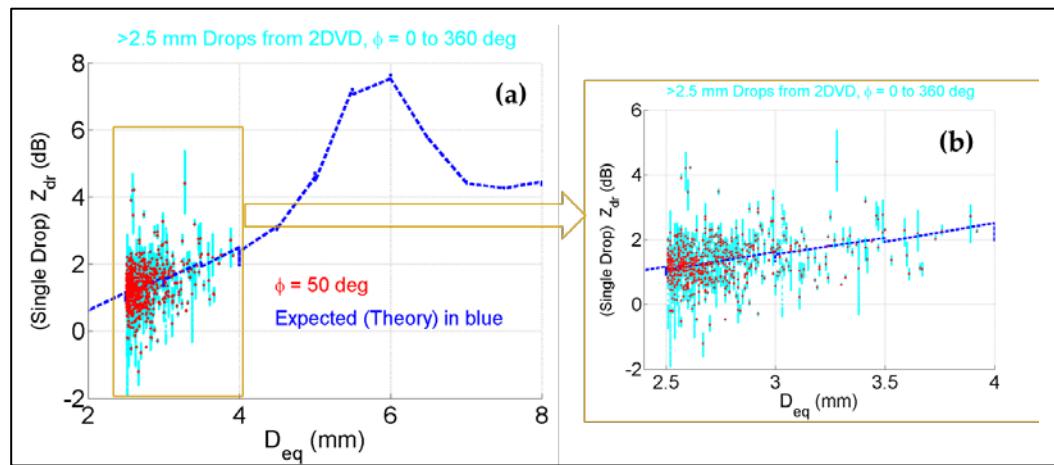
182 **5. Results for individual particles**

183 RCS calculations were carried out for 0° to 359° angles with 1° step size, in order to cover all
 184 possible look angles in the horizontal plane. To ensure plausibility of the results, the calculated
 185 RCS of all 601 individual drops were compared to the respective values of equal volume spheres.
 186 Figure 4 illustrates the RCS in terms of the equi-volume drop diameter for one defined view angle in
 187 panel (a) as well as for the averaged RCS over all orientations within 360° in panel (b). The figures
 188 show that the modelled shape can differ by ± 3 dB from a sphere representation.

189 Panel (c) shows the same points as panel (b) for H and V polarizations for all look angles, but
 190 here we have superimposed two curves which represent the RCS variation when a fixed shape-size
 191 relationship is used, in this case, the oblate-spheroid approximation of the Beard-Chuang (1984)
 192 shapes. The curves are shown as black solid line for H polarization and black dashed line as V
 193 polarization. All variations show a general increase in RCS with drop diameter, at least up to 4 mm.
 194 Since the shape is fixed for a given drop size, the scattering amplitude will be expected to be a single
 195 curve for a given polarization. Furthermore, the rotational symmetry of the drop shape will result in
 196 RCS being independent of the look angle. The scatter in the RCS values for the reconstructed drops
 197 is of course due to both variation in shapes and the variation with look angle, but even so they
 198 appear to lie evenly scattered on both sides of the two (solid black and dashed black) curves.

199 The differential reflectivity of each reconstructed drop is obtained from the difference between
 200 the horizontal and vertical polarization radar cross-sections. Because both the H and V radar cross
 201 sections for any given drop will vary with the look angle, its differential reflectivity will also have a
 202 φ variation. This has been illustrated in [9] in terms of the complex scattering amplitudes for both
 203 polarizations (see their Fig. 7 where φ was varied from 0 to 360 deg in the horizontal plane).

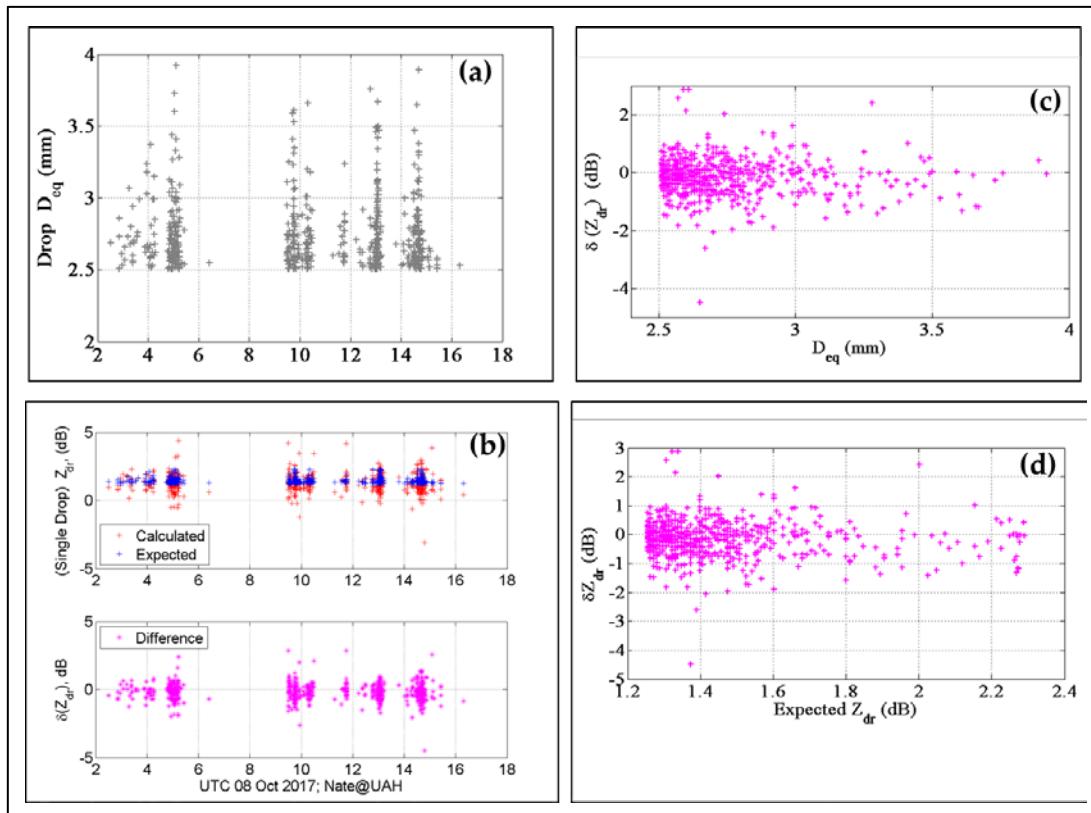
204


205 **Figure 4.** Radar Cross Section (RCS) of 601 reconstructed raindrops for horizontal and vertical
 206 polarization, as a function of their respective equal volume diameter. For comparison, the RCS
 207 of a sphere is shown. $f = 5.625$ GHz and the refractive index $m = 8.6137 - j1.3020$. Panel (a) is for
 208 a fixed view angle of $\varphi = 0$ and panel (b) is the averaged value of the RCS over $\varphi = 0$ to 359° .
 209 Panel (c) shows the same RCS versus D_{eq} as panel (b) for the reconstructed drops for H and V
 210 polarizations, compared with those assuming Beard-Chuang shapes.

211 The overall variation of Z_{dr} with drop diameter for all the 601 drops is shown in panel (a) of Fig.
 212 5 as cyan color points. For comparison, the theoretical curve assuming the Beard-Chuang drop
 213 shape model [1] (approximated to oblate spheroids) is included as blue dotted line. The zoomed in
 214 version for D_{eq} up to 4 mm is shown in panel (b) for more clarity. In both cases, the cyan points cover
 215 the full range of ϕ from 0 to 360 (or 180) degrees. Superimposed on the plots are red points which
 216 correspond to $\phi=50$ deg, which in fact is close to the look angle (i.e. azimuth) from the ARMOR
 217 radar site to the 2DVD location.

218 From Fig. 5, certain observations can be made:

219


- 220 (i) Compared to the theoretical curve, Z_{dr} values for individual drops can differ by several
 221 dB's, indicating considerable amount of shape deviations from the 'equilibrium' shapes.
- 222 (ii) However majority of the deviations span both positive and negative values, implying the
 223 drop shapes can be 'elongated' either in the horizontal plane or along the vertical, due to
 224 drop oscillations (including mixed-mode).
- 225 (iii) The $\phi=50$ deg points show less scatter than the $\phi = 0$ to 360 deg (cyan) points; this is to be
 226 expected.
- 227 (iv) The resonance region around $D_{eq} = 6$ mm will not have any implications for the Nate storm
 228 since all drops recorded were much smaller.

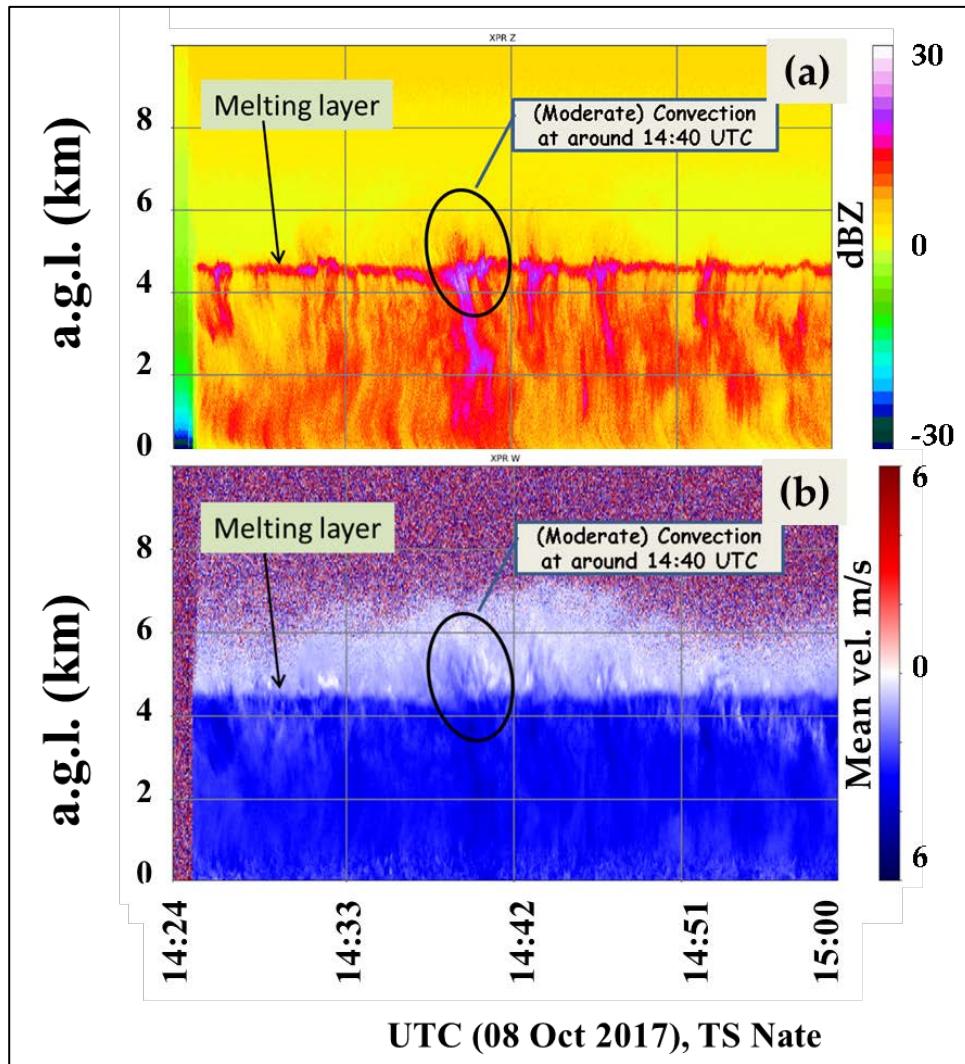
230
 231 **Figure 5.** (a): Single drop Z_{dr} versus D_{eq} for the reconstructed drops for all ϕ angles in cyan and for
 232 $\phi=50$ deg in red, together with those for a fixed shape-size drop model in blue; (b) same as panel (a)
 233 but zoomed in to cover the brown dotted line box.

234
 235 The set of panels in Fig. 6 summarizes the drop sizes for the period during which $D_{eq} > 2.5$ mm
 236 were recorded as well as the shape deviations quantified in terms of Z_{dr} . Panel (a) shows the drop
 237 diameters and panel (b) shows the calculated Z_{dr} in red for each drop and the theoretical (expected)
 238 value in blue, as well as the difference $\delta(Z_{dr})$ between the two in magenta. Panels (c) and (d) show
 239 the variation of $\delta(Z_{dr})$ with D_{eq} and the expected Z_{dr} respectively. Note panels (b), (c) and (d)
 240 correspond to $\phi=50$ deg.

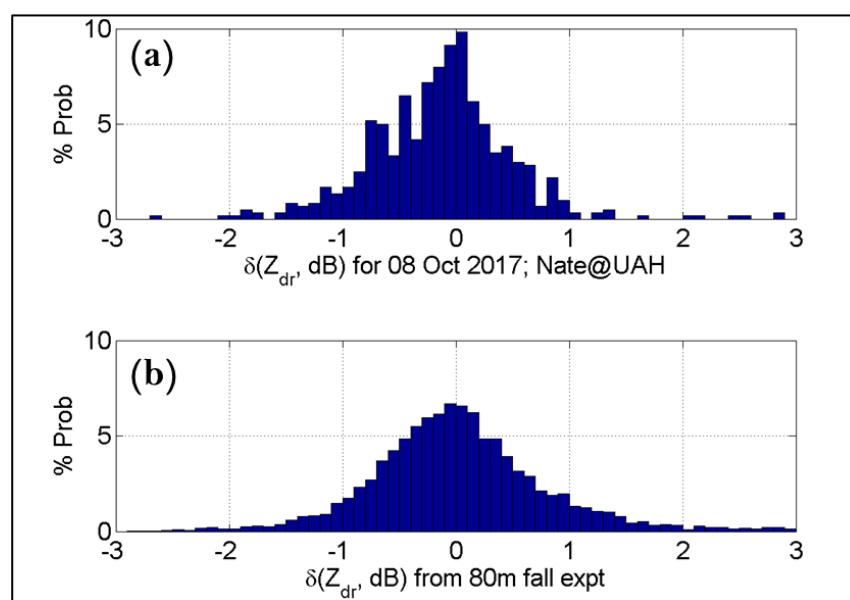
241 Once again, we summarize the important observations: (i) that TS Nate did not produce drops
 242 larger than 4 mm over Huntsville (as mentioned earlier); (ii) $\delta(Z_{dr})$ can be significant but overall they
 243 tend to be distributed evenly around the 0 dB level, although the larger drops (> 3 mm) $\delta(Z_{dr})$ shows
 244 tendency to be slightly more negative, i.e. drops being somewhat closer to spherical in shape; (iii)
 245 that the skewness towards negative $\delta(Z_{dr})$ values are more apparent at around just prior to 15:00
 246 UTC when the wind speeds are seen to increase and the change in wind direction is more rapid. It is
 247 around this time, that the fall velocities also show a small but noticeable number of drops having
 248 lower than expected velocities. This may provide further evidence that turbulence may contribute
 249 toward enhanced amplitude of mixed mode oscillations, as was observed in two earlier studies, one
 250 during category-1 hurricane Irma, and the other during a highly organized line convection [23], [11].

251
 252 **Figure 6.** (a) Diameters of all drops > 2.5 mm recorded during the passage of TS Nate over the 2DVD;
 253 (b) the calculated Z_{dr} for each drop in red and the expected value in blue (top plot) and the difference
 254 in Z_{dr} , δZ_{dr} , for each particle; (c) $\delta(Z_{dr})$ versus D_{eq} ; (d) δZ_{dr} versus the expected Z_{dr} .

255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265


The vertically pointing X-band Doppler radar shows evidence of moderate convection at around 14:40 UTC compared with other time periods. Fig. 7 is an expanded plot of the Z-height profile measurements for a 1-hour period from 14:00 to 15:00 UTC. The marked period shows more clearly the moderate convection near the melting layer of around 4.8 km, which in fact corresponds to the outer-band shown earlier from the radar-mosaic image in Fig. 1. To be more precise, the 'more diffused bright-band' in terms of Z and Doppler mean velocity associated with the outer-band is seen at 14:35 UTC at the melting layer height whereas significant $\delta(Z_{dr})$ was obtained at around 14:42 UTC at ground level, with $\delta(Z_{dr})$ tending to be more negative and the fall velocities tending to be somewhat lower than the expected values. The time difference accounts for the drops to fall from the bottom of the melting level to ground level.

266 The extent of the negative $\delta(Z_{dr})$ for > 2.5 mm drops can be seen in panel (a) of Fig. 8 which
 267 shows the overall histogram. The mode of the distribution lies very close to 0 dB however
 268 significantly more negative $\delta(Z_{dr})$ are observed, compared with positive $\delta(Z_{dr})$. To quantify this, as an
 269 example, 149 drops out of 601 drops had $\delta(Z_{dr})$ less than -0.5 dB whereas only 72 drops had $\delta(Z_{dr})$
 270 greater than 0.5 dB. By way of comparison, panel (b) shows the $\delta(Z_{dr})$ histogram derived from the 80
 271 m fall artificial rain experiment [3], where only 5% of the measured drops were found to have
 272 significant asymmetry. Here, the axis ratios have been used to convert to $\delta(Z_{dr})$ values using the
 273 expression from [24]:

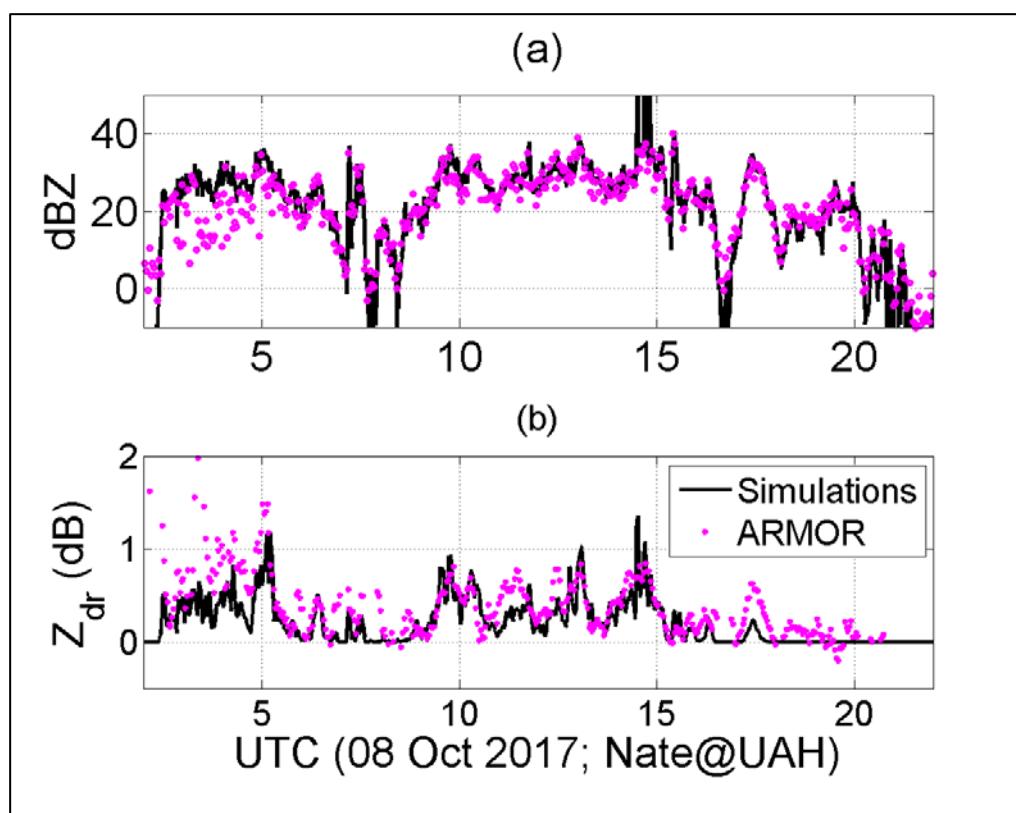

$$10^{-0.1(Z_{dr})} = \left(\frac{a}{b}\right)^{\frac{7}{3}} \quad (1)$$

274
 275
 276
 277
 278

The distribution of $\delta(Z_{dr})$ in panel (b) is visibly more symmetric than panel (a), although the extent of the distribution is slightly wider than panel (a).

279
280 Figure 7. (a) Vertical profiles of dBZ from the vertically-pointing XPR observations for 14:24 to
281 15:00 UTC on 08 Oct 2017; (b) the corresponding Doppler mean velocity. Courtesy of K. Knupp
282 of University of Alabama, Huntsville.
283
284

285
286 Figure 8. Histograms of $\delta(Z_{dr})$ for all > 2.5 mm drops (a) for the reconstructed drops during TS
287 Nate and (b) for drops recorded during the 80 m fall experiment [4] using eq. (1).

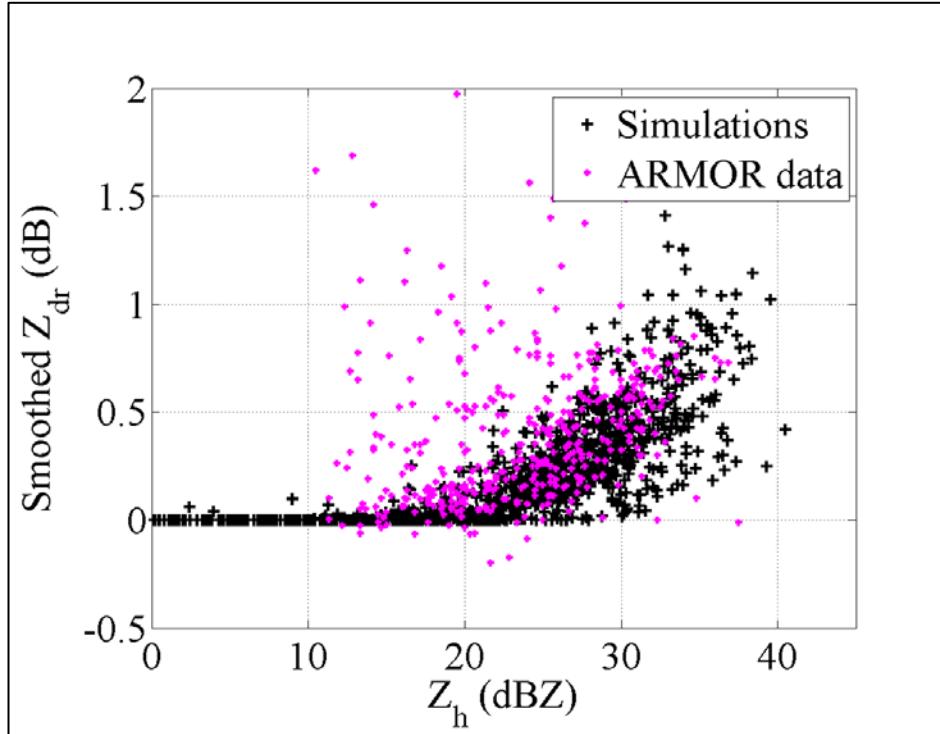

288 6. 1-minute based Z_h , Z_{dr} calculations and comparisons with ARMOR

289 To compute the overall back scatter reflectivity from the individual scattering amplitudes, for
 290 example over a 1-minute period, we perform drop-by-drop integration of the radar cross-sections
 291 (strictly speaking the covariance matrix elements) during that time period. If we denote the
 292 H-polarization reflectivity for the i^{th} drop as z_i^h , then the overall reflectivity from all drops over the
 293 1-minute period is given by:
 294

$$Z_h = \frac{1}{A\Delta t} \sum_{i=1}^n v_i^{-1} z_i^h \quad (2)$$

295 where A is the measurement area of the 2DVD, Δt is the averaging time period, and v_i is the vertical
 296 velocity of the i^{th} drop. For V polarization, similar integration is performed using the corresponding
 297 RCS values, z_i^v . Both are converted to the conventional dBZ units and Z_{dr} for that 1-minute period is
 298 determined from the difference between the two.
 299

300 The 1-minute based calculations for the entire 18 hour event period is shown in Fig. 9 and
 301 compared with the C-band ARMOR radar data over and in the vicinity of the disdrometer site.
 302 Panel (a) shows the Z comparison, and panel (b) the Z_{dr} comparison. After 05:00, there is excellent
 303 agreement in both cases. Some smoothing has been applied to both sets of plots in order to reduce
 304 the noise and show more clearly the close agreement. Prior to 05 hr UTC, radar Z appears to be
 305 somewhat lower than the simulations and the Z_{dr} slightly higher. It was around this time that the
 306 retrieved horizontal drop velocities (from 2DVD measurements) showed some discrepancy with the
 307 wind sensor data. Hence it is possible that the shape reconstruction is not precise enough to provide
 308 sufficiently accurate scattering amplitudes. On the other hand, the radar data shows highly
 309 fluctuating Z_{dr} at the beginning of the storm, so that too may have contributed to the discrepancy.
 310



311
 312
 313
 314

Figure 9. (a) dBZ and (b) Z_{dr} calculations derived from the individual drop scattering amplitudes using the 2DVD measurements (in black) compared with the ARMOR radar measurements (magenta) over the 2DVD site. For the former, 1-minute time interval is used.

315 The Z_{dr} versus Z_h variation from the CST simulations for 05-20 hr UTC are compared with those
 316 from the radar observations in Fig. 10. The variations are in good agreement with each other and
 317 both show a clear increase of Z_{dr} with increasing Z_h beyond 22 dBZ. Note also the maximum
 318 reflectivity values for both cases did not go beyond 40 dBZ and the maximum Z_{dr} did not go beyond
 319 1.5 dB. All these features provide confirmation and validation for the drop-by-drop based scattering
 320 calculations.

321

322
323Figure 10. Z versus Z_{dr} corresponding to Fig. 9.324

7. Discussion and Conclusions

325 Thus far the analyses of the 2DVD measurements during the Nate storm over Huntsville and
 326 the scattering calculations have provided the following observations and highlights:

327

- 328 (i) Confirmation that horizontal velocity of the drops is very similar to the wind velocities, both
 329 in terms of magnitude and direction;
- 330 (ii) Fall velocities largely follow the Atlas et al. [21] variation with drop diameter for this event,
 331 although some scatter is evident, particularly during the (modest) convection period.
- 332 (iii) Shape deviations from the most probable shapes can be significant, as can be inferred from
 333 their scattering amplitudes for horizontal and vertical polarizations for individual drops
 334 compared with equilibrium-shaped drops,
- 335 (iv) Additionally, and as a result, the differences in the calculated Z_{dr} and the expected Z_{dr} show
 336 a histogram with a relatively broad distribution,
- 337 (v) Overall however the histogram of the differences have a mode at 0 dB, although some
 338 skewness towards negative values is indicated, implying some tendency towards more
 339 spherical-like drops.
- 340 (vi) The Z and Z_{dr} calculated using the individual C-band scattering amplitudes of each drop
 341 over say 1-minute interval shows, in general, excellent agreement with the C-band radar
 342 observations over the disdrometer for the entire 18 hour period of TS Nate in Huntsville.

343

344 Regarding (i), even though it is well known from theory that horizontal velocities of
345 precipitation particles will be the same as the prevalent wind velocities (e.g. [25], [26]) during steady
346 conditions, it is only the 2DVD instrument which is capable of providing direct observational
347 evidence on a drop-by-drop basis in natural rain. Examples have been demonstrated in previous
348 studies ([9], [23]) for a line convection event and a hurricane event which showed excellent
349 agreement of the 2DVD-based drop horizontal velocities at near-ground level with the wind
350 measurements at 10 m height. Such agreement has also been observed for several other events also
351 (not published). Altogether they categorically show (a) that there is very little difference in wind
352 speeds between 10 m height and near ground level, and (b) that the instrument itself (the low-profile
353 design) does not cause any perturbations in the local wind conditions.

354 Along the vertical, the drop fall velocities (point (ii) above) show a distribution of velocities
355 which are mostly Gaussian-shaped, with a mean and mode very close to that predicted by the Atlas
356 et al. [21] equation. During the (moderate) convection period, the fall velocities showed somewhat
357 more scatter than at other times. However there were no time periods where there was noticeably
358 negative bias (i.e. slowing down of the drops). This is in contrast to the hurricane (category-1) Irma
359 event which had lower than expected velocities during turbulence, as well an embedded line
360 convection period where low fall speeds were associated with a rapid change in wind direction (see
361 [23] for both cases). Such changes were not observed with the anemometer readings during TS Nate
362 at Huntsville. In general, the fall velocities (at least for > 2 mm) tend to follow the Atlas et al. 1973
363 equation except for events associated with high turbulence. Another example is Tropical Storm
364 Michael which had passed over another 2DVD instrument (unit number SN70) located at Wallops
365 flight facility in Virginia, USA. This storm had high wind gusts associated with it, and the
366 2DVD-SN70 measurements clearly had shown significant reduction in fall speeds for drops within
367 the leading eye-wall region of the storm (see Appendix). In other parts of the storm, fall velocities
368 were close to the expected values. This too should be considered as evidence for reduced fall speeds
369 being associated as a response to turbulence. The observations are in agreement with the theoretical
370 work by Stout et al. [27] who simulated the motion of drops in isotropic turbulence to show that
371 there would be a reduction (> 35%) of the average drop settling velocity, relative to terminal
372 velocity, for larger drops with inertia (> 2 mm). This is largely due to a net upward component of the
373 non-linear drag forces generated under turbulent conditions. Note there are also other factors which
374 can affect drop terminal velocities; for example Gay et al. [28] have demonstrated the changes in fall
375 velocities can occur for drops falling in strong electric fields.

376 Regarding point (iii), we have seen from Fig. 4(c) how the scattering amplitudes can be
377 different for the reconstructed drops compared with those using a specific drop shape-size
378 relationship (e.g. from [1]). The differences can be significant for both polarizations, although the
379 two curves for the fixed shape-size variation lie somewhere in the middle of the scatter (of the
380 individual, scattered, points) observed with the reconstructed shapes. The differences occur
381 obviously because of changes in drop shapes which in turn can be attributed to drop oscillations, the
382 amplitudes of which can be expected during significant turbulence. Note also that there could be
383 possible coupling between change in drop shapes and fall velocities [27], [29], [30].

384 For a given drop equi-volume diameter, variations in drop shape and hence their scattering
385 amplitudes give rise to a distribution of Z_{dr} values. For drops possessing considerable asymmetry,
386 the Z_{dr} will also depend on the look angle. When expressed in terms of $\delta(Z_{dr})$, i.e. the difference from
387 the fixed shape-size variation, the histogram, although showing a wide distribution, has a mode at 0
388 dB. The histogram does show some skewness towards negative values indicating a tendency
389 towards more spherical shapes, mostly the > 3 mm drops. In general, the scatter in $\delta(Z_{dr})$ is more
390 evident when the wind direction has a more rapid change. This was even more evident in a
391 previously analyzed convection line event (see Fig. 4 in [10] and Fig. A1 in [9]), at the time when the
392 embedded convection line had crossed the 2DVD instrument (between 03:35 to 03:40 UTC on 25 Dec
393 2009). As mentioned earlier, the larger drops also showed a considerable reduction in fall speeds
394 during the same time interval. For the TS Nate, the convection was at best very moderate which

395 occurred at around 14:40 to 14:45 UTC (Fig. 7) which is when the most amount of scatter in the
396 calculated single particle $\delta(Z_{dr})$ was observed (along with the highest variation in the fall velocities).

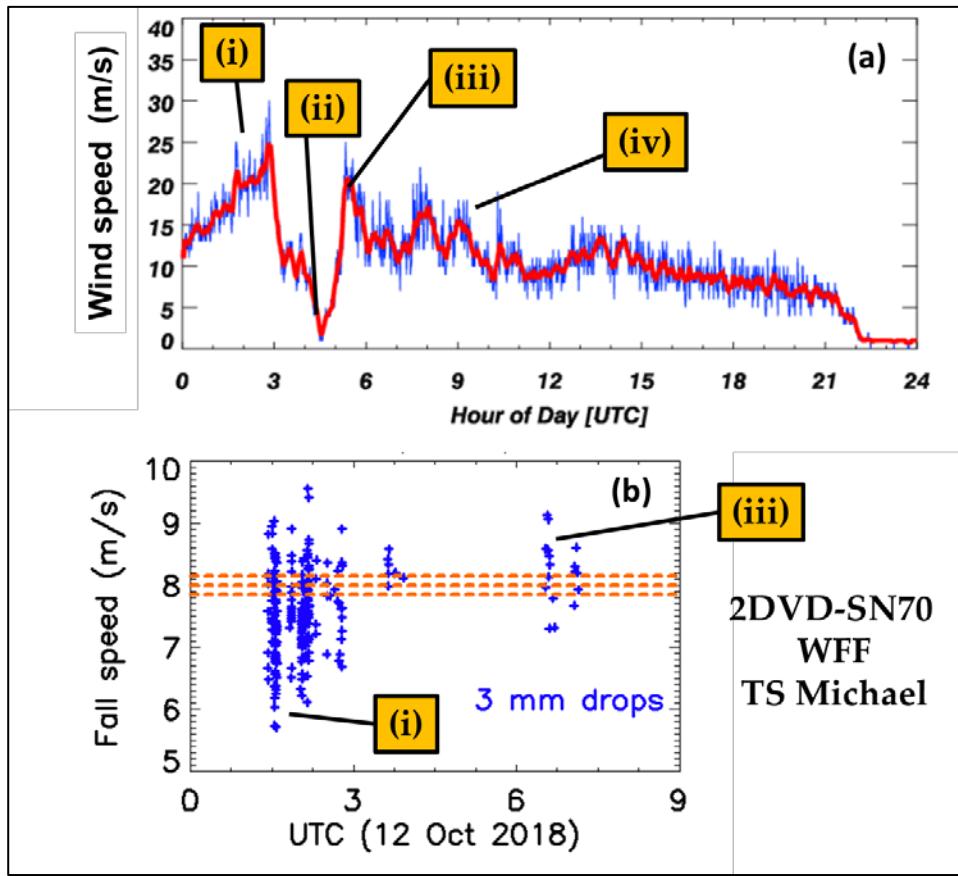
397 Regarding the final point (iv), the calculated Z_h and Z_{dr} based on the individual scattering
398 amplitudes at C-band over a 1-minute time interval show very close agreement with the radar
399 observations made over the instrument site throughout the entire event. Some minor differences in
400 Z were observed during the beginning of the storm and minor differences in Z_{dr} towards the end of
401 the storm. These could be attributed to non-homogeneity along the vertical (i.e. with height) from
402 the radar pulse-volume to ground level. The calculated Z_{dr} versus Z variation also show excellent
403 agreement with the radar observations.

404 In terms of the differential backscatter phase, the scattering calculations for the >2.5 mm drops
405 did not show any appreciable differences in the back scatter phase between the H and V polarization
406 implying that resonance scattering does not play a significant role. Consequently the calculated
407 copolar correlation coefficients were close to 1 which is also largely in agreement with radar
408 measurements when reflectivity values exceeded 15 dBZ.

409 Finally, as a general comment, the following point is worth noting: Strictly speaking, rather
410 than considering drops with a fixed axis ratio-size relationship and a typical canting angle
411 distribution for Z and Z_{dr} calculations (which is often the case), the individual drop-by-drop shape
412 should be used as input for scattering calculations. For the TS Nate event over Huntsville however,
413 T-matrix calculations at C-band using the fixed axis ratio-size assumption did not differ markedly
414 from those using the drop-by-drop scattering amplitudes (not shown here). Several other event
415 analyses have also shown this to be the case. For events with large drops which are associated with
416 high wind speeds and/or rapid change in wind direction (or even high atmospheric e-filed), one
417 may expect a drop in the co-polar correlation coefficient as well as significant backscatter differential
418 phase.

419

420 APPENDIX: Drop fall Velocities During Tropical Storm Michael


421

422 On 12 October 2018, Tropical Storm Michael, after weakening from hurricane force winds,
423 passed directly over a ground instrumentation site in Wallops, Virginia, which had several
424 collocated sensors. Among them were a 2DVD (unit 70) and all-in-1 weather station. Panel (a) of Fig.
425 A1 shows the variation of the wind-speed from the anemometer with time. Four time periods are
426 marked. The first period (i) is prior to 03 hr UTC when the wind-speeds increase rapidly reaching
427 nearly 25 m/s as the leading edge of the eyewall approached the site from south-east. Note these are
428 much stronger winds than those associated with the outer-bands of TS Nate over Huntsville. The
429 second period (ii) at around 04 hr UTC is when the wind velocity dropped to almost 0 m/s as
430 pressure dropped to 987 mb. This can be considered as the center of the eye of the storm. The third
431 period (iii) is when the winds increased to 20 m/s as the rear side of the eyewall traversed the site
432 and the fourth period (iv) is when cool dry air rushed in as the storm center pulled away after 08 hr
433 UTC.

434 Panel (b) shows, as an example, the measured fall velocities for all 3 mm drops (± 0.15 mm) for
435 the whole storm. They were only detected in and around the eye wall regions, hence only the 00 – 09
436 hr UTC time interval is shown. During the first period, which corresponds to the leading edge of the
437 eye-wall, considerably lower fall speeds are observed from 02:00 to 03:00 UTC, compared with the
438 Gunn-Kinzer range of values marked as orange dashed lines. 3 mm drops were also detected later
439 on, at around 06:30 to 07:00 UTC, which corresponds to time interval between (iii) and (iv). Here the
440 drops do not show any systematic reduction in fall velocities. The wind speeds at this time were
441 much lower than those during period (i).

442 Although the drop shapes have not yet been reconstructed for this case, based on the fall
443 velocity measurements, one would expect shape deformation to be significant in the eye-wall region
444 and not in other parts of the storm.

445

446
447 Fig. A1: (a) Wind speeds (blue) and averages (red) during TS Michael on 12 October 2018; (b)
448 Measured fall velocities for 3 ± 0.15 mm drops. See text for explanation for time periods (i) to
449 (iv). *Panel (a): Courtesy of D. Wolff and D. Marks, NASA-WFF*
450

451 **Author Contributions:** Conceptualization, M.T. and M.S.; Methodology, Investigation and Formal Analysis,
452 S.S., F.T., M.T.; Data Curation, M.T.; Writing-Original Draft Preparation, M.T.; Writing-Review & Editing, F.T.,
453 M.S.; Visualization, S.S.; Supervision, F.T., M.S.; Resources, M.S.

454 **Funding:** M.T. received funding to conduct this research from National Science Foundation under Grant
455 AGS-1901585 (PI: V. N. Bringi).

456 **Acknowledgments:** We would like to thank Patrick Gatlin and Mathew Wingo for maintaining the 2DVD
457 instruments at the University of Huntsville site and for providing access to anemometer data. Our thanks are
458 also to Prof. Kevin Knupp for providing the XPR data plot used in Fig. 7. Authors would also like to thank
459 David Marks and David Wolff from NASA-Wallops Flight Facility for supplying the 2DVD-SN70 during
460 tropical storm Michael as well as the wind-speed plot in Fig. A1(a). Finally, our thanks to Prof. V.N. Bringi for
461 valuable discussions.

462 **Conflicts of Interest:** The authors declare no conflict of interest. The funders had no role in the design of this
463 study; in the collection, analyses, or interpretation of its data; in the writing of this manuscript, and in the
464 decision to publish these results.

465

466 References

1. Beard, K.V.; Chuang, C. A new model for the equilibrium shape of raindrops. *J. Atmos. Sci.*, 1987, 44, 1509-1524.
2. Szakáll, M.; Diehl, K.; Mitra, S.K.; Borrmann, S. A wind tunnel study on the shape, oscillation, and internal circulation of large raindrops with sizes between 2.5 and 7.5 mm. *J. Atmos. Sci.*, 2009, 66, 755-765.
3. Thurai, M.; Bringi, V.N. Drop axis ratios from a 2D video disdrometer. *J. Atmos. Oceanic Technol.*, 2005, 22, 966-978.
4. Thurai, M.; Huang, G-J.; Bringi, V.N.; Randeu, W.L.; Schönhuber, M. Drop shapes, model comparisons, and calculations of polarimetric radar parameters in rain. *J. Atmos. Oceanic Technol.*, 2007, 24, 1019-1032.
5. Thurai, M.; Bringi, V.N.; Szakáll, M.; Mitra, S.K.; Beard, K.V.; Borrmann, S. Drop shapes and axis ratio distributions: Comparison between 2D video disdrometer and wind-tunnel measurements. *J. Atmos. Oceanic Technol.*, 2009, 26, 1427-1432.
6. Schönhuber, M.; Schwinzerl, M.; Lammer, G. 3D reconstruction of 2DVD-measured raindrops for precise prediction of propagation parameters. 10th European Conference on Antennas and Propagation (EuCAP), 2016, Davos, Switzerland, IEEE, 3403-3406, <https://doi.org/10.1109/EuCAP.2016.7481929>.
7. Schwinzerl, M.; Schönhuber, M.; Lammer, G.; Thurai, M. 3D reconstruction of individual raindrops from precise ground-based precipitation measurements. EMS Annual Meeting Abstracts, 2016, Vol. 13, Abstract EMS2016-601, <http://meetingorganizer.copernicus.org/EMS2016/EMS2016-601.pdf>.
8. Chobanyan, E., N.; Šekeljić, N.; Manić, A.B.; Ilić, M.M.; Bringi, V.N.; Notaroš, B.M. Efficient and accurate computational electromagnetics approach to precipitation particle scattering analysis based on higher-order method of moments integral equation modeling. *J. Atmos. Oceanic Technol.*, 2015, 32, 1745-1758
9. Thurai, M.; Manić, S.B.; Schönhuber, M.; Bringi, V.N.; Notaroš, B.M. Scattering calculations at C-band for asymmetric raindrops reconstructed from 2D video disdrometer measurements. *J. Atmos. Oceanic Technol.*, 2017, 34, 765-776
10. Manić, S.B.; Thurai, M.; Bringi, V.N.; Notaroš, B.M. Scattering Calculations for Asymmetric Raindrops during a Line Convection Event: Comparison with Radar Measurements. *J. Atmos. Oceanic Technol.*, 2018, 35, 1169-1180
11. Thurai, M.; Bringi, V.N.; Petersen, W.A.; Gatlin, P.N. Drop shapes and fall speeds in rain: Two contrasting examples. *J. Appl. Meteor. Climatol.*, 2013, 52, 2567-2581.
12. Schönhuber, M.; Lammer, G.; Randeu, W.L. The 2D-video-disdrometer. *Precipitation: Advances in Measurement, Estimation and Prediction*, S. C. Michaelides, Ed., 2008, Springer, 3-31.
13. Baumgardner, D.; Kok, G.; Dawson, W.; O'Connor, D.; Newton, R. A new ground-based precipitation spectrometer: The Meteorological Particle Sensor (MPS). 11th Conf. on Cloud Physics, Ogden, UT, Amer. Meteor. Soc., 2002, paper 8.6.
14. Sheppard, B.E.; Joe, P.I. Performance of the precipitation occurrence sensor system as a precipitation gauge. *J. Atmos. Ocean. Technol.* 2008, 25, 196-212.

503 15. Hulsey, C.B.; Knupp, K.; An Analysis of a Mesoscale Features during IOP 4C of the VORTEX-SE Field
504 Campaign, 97th American Meteorological Society Annual Meeting, Seattle, WA, January 22-26, 2017.

505 16. Petersen, W. A.; Knupp, K. R.; Cecil, D. J.; Mecikalski, J. R. The University of Alabama Huntsville THOR
506 Center instrumentation: Research and operational collaboration. 33rd Int. Conf. on Radar Meteorology,
507 Cairns, Queensland, Australia, Amer. Meteor. Soc., 2007, paper 5.1,
508 <https://ams.confex.com/ams/33Radar/webprogram/Paper123410.html>.

509 17. Mecikalski, R.M.; Bain, A.L.; Carey, L.D. Radar and Lightning Observations of Deep Moist Convection
510 across Northern Alabama during DC3: 21 May 2012. Mon. Wea. Rev., 2015, 143, 2774-2794

511 18. Schönhuber, M.; Randeu, W. L.; Urban, H. E.; Poiares Baptista, J. P. V. Field measurements of raindrop
512 orientation angles. Proc. AP2000 Millennium Conf. on Antennas and Propagation, Davos, Switzerland,
513 2000, IEE, CD-ROM.

514 19. Gimpl, J. Optimised algorithms for 2d-video-distrometer data analysis and interpretation. Diploma thesis,
515 Institute of Communications and Wave Propagation, Graz University of Technology, Austria, 2003, 111
516 pp.

517 20. Gunn, R.; Kinzer, G.D. The terminal velocity of fall for water droplets in stagnant air, J. Meteorol., 1949, 6,
518 243-248

519 21. Atlas, D.; Srivastava, R.C.; Sekhon, R.S. Doppler radar characteristics of precipitation at vertical incidence.
520 Rev. Geophys., 1973, 11, 1-35.

521 22. Ray, P. Broadband complex refractive indices of ice and water. Appl. Opt., 1972, 11, 1836-1844.

522 23. Thurai, M.; Schönhuber, M.; Lammer, G.; Bringi, V.N. Raindrop shapes and fall velocities in "turbulent
523 times", Adv. Sci. Res., 2019, 16, 95-101, 2019, <https://doi.org/10.5194/asr-16-95-2019>

524 24. Jameson, A.R. Microphysical interpretation of multiparameter radarmeasurements in rain. Part
525 I: Interpretation of polarization measure-ments and estimation of raindrop shapes,"J. Atmos.
526 Sci., 1983, 40, 1792-1802.

527 25. Marshall, J.S. Precipitation trajectories and patterns.J. Meteor., 1953, 10, 25-29.

528 26. Dawson, D.T.; Mansell, E.R.; Kumjian, M.R. Does Wind Shear Cause Hydrometeor Size Sorting?. J. Atmos.
529 Sci., 2015, 72, 340-348.

530 27. Stout, J.E.; Arya, S.P.; and Genikhovich, E. L. The effect of nonlinear drag on the motion and settling
531 velocity of heavy particles, J. Atmos. Sci., 1995, 52, 3836-3848

532 28. Gay, M. J.; Griffiths, R.F.; Latham, J.; Saunders, C.P.R. The terminal velocities of charged raindrops and
533 cloud droplets falling in strong electric fields, Q. J. R. Meteorol. Soc., 1974, 100, 682-687.

534 29. Brazier-Smith, P.R. On the shape and fall velocities of raindrops. Quart. J. Roy. Meteor. Soc, 1992, 118,
535 749-766.

536 30. Coquillat, S.; Combal, B.; Chauzy, S. Corona emission from raindrops in strong electric fields as a possible
537 discharge initiation: comparison between horizontal and vertical field configurations, J. Geophys. Res.,
538 2003, 108 (D7), 4205.