

1 Article

2 **A Dynamic Core in Human NQO1 Controls the
3 Functional and Stability Effects of Ligand Binding
4 and Their Communication across the Enzyme Dimer**5 **Pavla Vankova^{1,2}, Eduardo Salido³, David J. Timson⁴, Petr Man^{1,*} and Angel L. Pey^{5,*}**6 ¹ Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, 142 20,
7 Czech Republic. pavla.vankova@biomed.cas.cz (P.V.); pman@biomed.cas.cz (P.M.)8 ² Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, Prague 2, 128 43,
9 Czech Republic; pavla.vankova@biomed.cas.cz (P.V.).10 ³ Center for Rare Diseases (CIBERER), Hospital Universitario de Canarias, Universidad de La Laguna, 38320,
11 Tenerife, Spain; edsalido@gmail.com (E.S.).12 ⁴ School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road,
13 Brighton, BN2 4GJ, Brighton, UK; D.Timson@brighton.ac.uk (D.J.T.)14 ⁵ Department of Physical Chemistry and Unit of Excellence in Chemistry, University of Granada, Av.
15 Fuentenueva s/n, E-18071, Granada, Spain; angelpey@ugr.es (A.L.P.).

17 * Correspondence: pman@biomed.cas.cz (P.M.) or angelpey@ugr.es (A.L.P.).

18

19 **Abstract:** Human NAD(P)H:quinone oxidoreductase 1 (NQO1) is a multi-functional protein whose
20 alteration is associated with cancer, Parkinson's and Alzheimer's diseases. NQO1 displays a
21 remarkable functional chemistry, capable of binding different functional ligands that modulate its
22 activity, stability and interaction with proteins and nucleic acids. Our understanding on this
23 functional chemistry is limited by the difficulty of obtaining structural and dynamic information on
24 many of these states. Herein, we have used hydrogen/deuterium exchange monitored by
25 mass-spectrometry (HDXMS) to investigate the structural dynamics of NQO1 in three ligation
26 states: without ligands (NQO1_{apo}), with FAD (NQO1_{holo}) and with FAD and the inhibitor
27 dicoumarol (NQO1_{dic}). We show that NQO1_{apo} has a minimally stable folded core holding the
28 protein dimer and with FAD and dicoumarol ligand binding sites populating binding
29 non-competent conformations. Binding of FAD significantly decreases protein dynamics and
30 stabilizes the FAD and dicoumarol binding sites as well as the monomer:monomer interface.
31 Dicoumarol binding further stabilizes all three functional sites, a result not previously anticipated
32 by available crystallographic models. Our work provides an experimental perspective into the
33 communication of stability effects through the NQO1 dimer, valuable to understand at the
34 molecular level the effects of disease-associated variants, post-translation modifications and ligand
35 binding cooperativity in NQO1.36 **Keywords:** Protein structural dynamics; NQO1; ligand binding; protein stability; Allostery;
37 Protein degradation.

38

39 **1. Introduction**40 Human NAD(P)H:quinone oxidoreductase 1 (NQO1; EC 1.6.5.2) is a multifunctional stress
41 protein mostly localized in the cellular cytosol [1]. NQO1 expression is upregulated as a response to
42 different types of cellular stress and through several mechanisms, including the antioxidant
43 response through Nrf2-mediated and Ah2 signaling pathways [1, 2, 3, 4].

44 NQO1 displays multiple enzymatic and non-enzymatic functions [1, 2, 3, 4, 5]. NQO1 catalyses
45 different reactions with cytoprotective and metabolic roles such as the two electron reduction of
46 quinones to form hydroquinones [2, 6], reduction of coenzyme Q₁₀ and vitamin E to their
47 antioxidant form [2], scavenging reactive oxygen species [1, 2, 3, 7], reduction of catecholamines
48 and vitamin K [1, 2] and maintenance of the NADH/NAD⁺ redox balance [3, 8]. The main features
49 of these biochemical reactions involving NQO1 have been investigated in detail mainly through
50 enzymological and structural analyses. Structurally, the enzyme forms obligate functional
51 homodimers, with two active sites located in the monomer:monomer interface (MMI) and each
52 monomer consists of two different domains: i) an N-terminal domain spanning residues 1-224 that
53 contains part of the active site and it is involved in the tight binding of one FAD molecule per
54 monomer and protein dimerization; ii) a C-terminal domain (residues 225-274) that contributes to
55 stabilize the protein dimer and to the binding of the NAD(P)H coenzyme and the substrates [1, 4, 9,
56 10, 11, 12, 13, 14]. The functional cycle of NQO1 generally involves two steps according to a
57 *ping-pong* mechanism: first, in the reductive half-reaction, a NAD(P)H molecule binds to the enzyme
58 and rapidly reduces the FAD to FADH₂ (with a second-order rate constant of $\sim 10^9$ M⁻¹·s⁻¹) with the
59 subsequent release of the oxidized nicotinamide dinucleotide; and second, in a slower oxidative
60 half-reaction (with a second-order rate constant of $\sim 10^5$ - 10^6 M⁻¹·s⁻¹), the substrate binds and it is
61 reduced by the FADH₂ thus regenerating the flavin in the oxidized form and releasing the reduced
62 product [1, 10]. This catalytic cycle is known to be inhibited by different coumarin-based molecules
63 (the best characterized is the biscoumarin, dicoumarol) that act as competitive inhibitors by blocking
64 the NAD(P)H access to the active site by partially occupying the NAD(P)H binding site [1, 15].
65 Importantly, comparison of the crystal structures of NQO1 with FAD bound (NQO1_{holo}) with that
66 containing also dicoumarol bound (NQO1_{dic}) have revealed that inhibitor binding causes only minor
67 structural rearrangements in the conformation that localize at the surface of the catalytic site [15].
68 Among non-enzymatic functions, we must highlight the ability of NQO1 to develop protein:protein
69 and protein:RNA interactions [1, 2, 16, 17, 18, 19, 20]. In particular, protein:protein interactions
70 involving NQO1 are relevant to understand its multiple roles in physiological and pathological
71 processes. NQO1 interacts with key transcription factors associated with cancer (e.g. p53, p73 α and
72 HIF-1 α) [17, 18] and proteins involved in HIV infection (e.g. Tat protein) [19], and these interactions
73 increase the intracellular stability of these protein partners by preventing their degradation by the
74 proteasome. These protein:protein interactions presumably depend on the functional state of NQO1:
75 binding of NADH may increase the strength of these interactions while dicoumarol binding has the
76 opposite effect [9, 17, 19]. In addition, NQO1_{holo} binds to the 20S particle of the proteasome and
77 inhibits its proteolytic activity, while FAD withdrawal (i.e. NQO1_{apo}) renders NQO1 susceptible to
78 degradation by this mechanism [16].

79 Alterations in NQO1 stability and function are associated to different extent with a variety of
80 human diseases, including cancer, neurological disorders (such as Parkinson's and Alzheimer's
81 disease, multiple sclerosis and schizophrenia) and cardiovascular diseases [1, 21]. In these cases,
82 either the wild-type (WT) NQO1 protein and/or a common polymorphic variant (causing a
83 Pro187Ser amino acid exchange) have been found associated with increased disease predisposition.
84 The Pro187Ser variant decreases the activity due to a large defect in FAD binding (10 to 40-fold
85 lower affinity than that of WT) and in conformational stability leading to its rapid intracellular
86 degradation by the proteasome [1, 10, 14, 16, 22, 23, 24, 25]. In general, reduced NQO1 activity or
87 protein levels are commonly observed under these pathological conditions [1, 26], although for the
88 particular case of cancer, overexpression of NQO1 is also associated with cancer progression which
89 makes pharmacological inhibition of NQO1 (e.g. by dicoumarol or related compounds) an
90 interesting therapeutic strategy to treat this disease [27, 28, 29]. Linked to some of these
91 pathological conditions, the intracellular stability of NQO1 WT is controlled by the population of the
92 NQO1_{apo} state, which is efficiently targeted to the ubiquitin-dependent proteasomal degradation
93 pathway [14, 25, 30]. Recent works also demonstrated that alterations in the phosphorylation
94 pattern of NQO1 WT at different sites might be associated with these pathological states, likely

95 through effects on the FAD binding affinity and consequently on the intracellular stability of NQO1
96 WT [26, 30, 31].

97 NQO1 is an excellent model to decipher the role of protein dynamics in the function and
98 stability of flavin-dependent enzymes, the role of ligand binding in disease-associated protein
99 stability and the molecular mechanisms by which mutations cause loss-of-function genetic
100 diseases [1, 5, 9, 10, 14, 25, 30, 32, 33, 34]. FAD binding to NQO1 WT triggers a large conformational
101 change that can be observed by some biophysical techniques (circular dichroism, infrared and NMR
102 spectroscopies or small-angle X-ray scattering) and increases the kinetic stability of the protein
103 dimer, although high resolution structural information is only available for the NQO1_{holo} state [9, 10,
104 11, 14, 22, 34, 35]. This structural change is accompanied by significant changes in overall protein
105 flexibility (evidence provided by proteolysis experiments and structure-based analyses of FAD
106 binding energetics) [10, 14, 34], presumably linked to the fast degradation of NQO1_{apo} vs. NQO1_{holo}
107 in the cell [14, 25], although no high-resolution experimental information on these dynamic changes
108 is available [14]. Regarding dicoumarol binding, the comparison of the X-ray crystallographic
109 structure of NQO1_{holo} and NQO1_{dic} has revealed only local changes in protein structure at the active
110 site [15] and thus, these did not provide details on the remarkable stabilizing effect of dicoumarol
111 binding on the overall conformational stability and the dynamics of the C-terminal domain [14]. A
112 critical role of protein dynamics in the mechanisms causing alterations in NQO1 function due to the
113 Pro187Ser polymorphism and other rare cancer-associated mutations, phosphorylation at specific
114 sites as well as the effect of suppressor mutations of the Pro187Ser phenotype have been put forward
115 from experimental and computational studies [5, 9, 10, 14, 30, 31, 32, 33, 34, 36]. Thus, they also
116 await high-resolution information on the changes in protein dynamics due to these site-specific
117 changes in different ligation states (NQO1_{apo}, NQO1_{holo} and NQO1_{dic}).

118 We report herein a detailed experimental analysis on the structural dynamics of human NQO1
119 in three functionally relevant ligation states (NQO1_{apo}, NQO1_{holo} and NQO1_{dic}). Our results uncover
120 the existence of a dynamic network within the NQO1 dimer that readily respond to binding of
121 functional ligands and help to explain their effects on NQO1 function and stability *in vitro* and *in vivo*.
122 Our work also provides an experimental benchmark to understand the allosteric effects of
123 disease-associated variants, post-translational modifications and ligand binding in NQO1.

124 2. Materials and Methods

125 2.1. Protein expression and purification

126 Protein expression and purification was carried out as described [30]. *E. coli* BL21(DE3) cells
127 were transformed with the pET46 Ek/LIC vector containing the cDNA of human NQO1 [22] and
128 grown for 16 h in LBA medium (LB containing 0.1 mg·mL⁻¹ ampicillin at 37 °C). This culture was
129 diluted 40-fold in fresh LBA and grown at 37 °C for 3 h. Expression was then triggered by the
130 addition of IPTG (isopropyl β-D-1-thiogalactopyranoside) at a final concentration of 0.5 mM.
131 Induced cells were incubated for 6 h at 25 °C, harvested by centrifugation, washed with binding
132 buffer (BB, 20 mM sodium phosphate, 300 mM NaCl and 50 mM imidazole at pH 7.4) and frozen
133 overnight at -80 °C. Then, cells were thawed and resuspended in BB containing 1 mM PMSF
134 (phenylmethylsulfonyl fluoride) and lysed by sonication. Crude extracts were clarified by
135 centrifugation (20 min at 20000 g and 4 °C) and supernatants were loaded into immobilized metal
136 affinity chromatography (IMAC) columns (GE Healthcare) equilibrated in BB. Columns were
137 washed with BB and the protein was eluted with elution buffer (BB containing 500 mM imidazole).
138 The eluate was exchanged to 50 mM K-HEPES (2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic
139 acid, potassium salt) pH 7.4 using PD-10 columns (GE Healthcare), centrifuged for 30 min at 20000 g
140 and 4 °C and the UV-visible spectra of the supernatants was registered in a HP8453 UV-Visible
141 spectrophotometer (Agilent). This purified holo-protein containing high levels of FAD bound (70-80%
142 based on the absorbance ratio at 450 nm and 280 nm; see also [30, 33, 36]) was stored at -80 °C upon

143 flash freezing in liquid N₂. Further purification of the NQO1 dimer was carried out by size-exclusion
144 chromatography using a HiLoad® 16/600 Superdex® 200 prep grade (GE Healthcare) and using 20
145 mM K-HEPES 200 mM NaCl at pH 7.4 as mobile phase. This purified protein was subsequently used
146 to obtain apo-protein upon treatment with BB containing 2 M urea and 2 M KBr, 1 mM DTT
147 (1,4-dithiothreitol) and 1 mM PMSF at 4 °C and separation of the apo-protein and the FAD released
148 was carried out by IMAC at 4 °C. Apo-proteins were finally exchanged to 50 mM K-HEPES at pH 7.4
149 using PD-10 columns at 4 °C, concentrated using VIVASPIN 6 30000 MWCO PES devices (Sartorius)
150 and stored at -80 °C after flash freezing in liquid N₂.

151 Purified proteins were verified by mass spectrometry. The intact mass was analyzed through
152 direct infusion on ESI-FT-ICR MS (Figure S1) showing the protein is expressed intact and lacking the
153 N-terminal Met. The dimeric state of NQO1_{apo} and NQO1_{holo} was verified by native ESI-MS (Figure
154 S2).

155 2.2. Hydrogen/Deuterium Exchange Mass Spectrometry (HDXMS)

156 Amide hydrogen/deuterium exchange (HDX) of NQO1 was followed for its apo (NQO1_{apo}) and
157 holo (NQO1_{holo}) forms and the holo form was also analyzed in the presence of dicoumarol (NQO1_{dic}).
158 Prior to the exchange, the NQO1_{holo} and NQO1_{dic} at 20 μM concentration were pre-incubated with 10
159 molar excess of FAD for 5 min. NQO1_{dic} was then further mixed with 10 molar excess of dicoumarol
160 and incubated for another 5 min. The exchange reaction was initiated by a 10× dilution into a
161 D₂O-based 50 mM K-HEPES, pD 7.4, 1 mM TCEP (tris(2-carboxyethyl)phosphine). The exchange
162 was thus followed at 2 μM protein concentration. Deuterium labelling was quenched by 0.5 M
163 Glycine-HCl, pH 2.3 which was added at 1:1 ratio. The samples were then frozen in liquid N₂.
164 Exchange was followed for 10 s, 30 s, 2 min, 5 min, 20 min, 1 h and 3 h where 10 s, 5 min and 3 h
165 samples were done in replicate. Each sample was quickly thawed and injected onto a cooled
166 LC-system. Here the protein was digested on custom made nepenthesin-2 (Nep-2) and pepsin
167 columns coupled in tandem (each having bed volume of 66 μl) and the resulting peptides were
168 trapped on a VanGuard Pre-column (ACQUITY UPLC BEH C18, 130 Å, 1.7 μm, 2.1 mm x 5 mm,
169 Waters, Milford, MA) where they were desalted. Solvent used for digestion and desalting (0.4%
170 formic acid (FA) in water) was pumped by 1260 Infinity II Quaternary pump (Agilent Technologies)
171 at a flow rate of 200 μl·min⁻¹. After three minutes of digestion and desalting, the peptides were
172 separated on an analytical column (ACQUITY UPLC BEH C18, 130 Å, 1.7 μm, 1 mm X 100 mm,
173 Waters) using linear gradient (5-45% B in 7min) followed by a quick step to 99% B lasting 5 min.
174 Solvent A was 0.1% FA / 2% acetonitrile (ACN) in water, B was 0.1% FA / 98% ACN in water.
175 Gradient was delivered by 1290 Infinity II LC System (Agilent Technologies) at a flow of 40 μl·min⁻¹.
176 Digestion, desalting and separation were done at 0 °C and pH 2.3 to minimize deuterium loss. The
177 LC-system was connected directly to an electrospray ionization source of a 15T FT-ICR mass
178 spectrometer (Bruker Daltonics) operating in broad-band MS mode. Data were peak picked and
179 exported using DataAnalysis 5.0 and then processed by in-house developed program Deutex
180 (unpublished). Peptides arising from the digestion were identified through a separate
181 data-dependent LC-MS/MS analyses and database searching by MASCOT algorithm. Fully
182 deuterated samples were prepared and used for back-exchange correction as described
183 previously [37, 38]. Differences in deuteration can be considered as significant if they exceed 3.6%
184 or 0.25 Da (calculated as 3x the average standard deviation).

185 The optimization of digestion conditions including numerous proteolytical setups showed that
186 serial combination of nepenthesin-2 with pepsin, operated at 200 μl·min⁻¹ provided the best results in
187 terms of sequence coverage (98.9%, missing the last three amino acids), number of peptides (140),
188 average peptide length (8.3) and redundancy (4.1) (Figure S3). At this point, it should be also noted
189 that the region between 100 and 110 yielded peptides of considerable hydrophobicity for which the
190 signal intensity/quality was just at the threshold level and thus conclusions derived from their
191 analyses must be made with caution. The redundant peptide set was used to calculate deuteration in

192 shortest possible segments using the overlapping peptides. These analysis provided more detailed
193 non-redundant information (*high resolution set*). Data in this high-resolution set are mainly described
194 in the manuscript (Figures 1-6, Figures S5 and Table S1), while those using experimental peptides
195 (*low resolution set*) are found in Figures S6-S10 and Table S2. Note that the high resolution set
196 essentially lead to the same key conclusions as the low resolution one but, in principle, the former
197 narrows the region for which HDX kinetics is assessed.

198 To report data on NQO1 segments from HDX-MS, we did not consider the His-tag and used the
199 native sequence from Met1 to Lys274. Therefore, the numbering used along the manuscript differs
200 from that reported in some crystal structures of NQO1, that did not include Met1 and thus
201 numbered the residues from Val1 to Lys273 (Val2 and Lys274 in the native sequence, respectively).

202 3. Results and discussion

203 3.1. A stable folded core in $NQO1_{apo}$ with highly dynamic functional sites

204 The results of time-dependent HDX kinetics for $NQO1_{apo}$ are shown in Figure 1A. Results are
205 presented as the % of the maximal (theoretical) deuterium incorporation for each segment (%D).
206 Virtually all peptides characterized in this work for NQO1 complied with EX2 behavior (the
207 presence of a tiny contribution from EX1 regime can be detected in a few NQO1 peptides; see Figure
208 S4). In the EX2 mechanism, the intrinsic exchange rate constant (k_{int}) is much lower than the rate
209 constant (k_{cl}) for the conversion between non-exchanging (NE-NH) and exchanging (E-NH) states,
210 according to the Linderstrøm-Lang model:

214
215 **Scheme 1.** Linderstrøm-Lang model for HDX kinetics.

216 Assuming a pure EX2 behavior, the rate constant for exchange of individual backbone amides
217 would be equal to the product of the equilibrium constant between NE-NH and E-NH ($K_{op}=k_{op}/k_{cl}$)
218 and k_{int} [39]. Therefore, for this very simple mechanism (note that the conformational equilibrium is
219 simply two-state and experimental HDX is rarely pure EX2), the experimental rate constant for
220 exchange reflects to some extent the local stability (e.g. due to hydrogen bonding and burial in the
221 structure) of secondary structure.

222 Overall, the HDX kinetics was very heterogeneous among different protein segments of
223 $NQO1_{apo}$ (Figure 1A). Most of the segments showed fast HDX kinetics (typically exchanging more
224 than 20%D in the seconds-minutes time scales) while only a few peptides showed essentially no
225 exchange after 3 h (%D < 20). Thus, in a first approach, we simply discerned between exchanging
226 and non-exchanging segments considering the %D after 3 h (%D < 20 vs. %D \geq 20, respectively). The
227 functional implications of this simple analysis were considered regarding those residues in different
228 segments belonging to three functional sites: the FAD binding site (FBS), the dicoumarol binding site
229 (DBS) and the monomer:monomer interface (see Figure 1A), as provided by analysis of an X-ray
230 crystallographic structure (PDB 2F1O [15]). It is worth noting that in this structure, the FBS and DBS
231 are located adjacent in the NQO1 monomer (actually, FAD is structurally part of the DBS), and both
232 sites are close to the MMI (Figure 1B). Importantly, most of the residues that belong to the FBS, DBS
233 and MMI are classified as exchanging in $NQO1_{apo}$ (%D \geq 20; Figure 1A-B).

234

235

236 **Figure 1. Overall HDX kinetics of NQO1_{apo}.** (A) Time-dependent HDX kinetics for segments of
 237 NQO1_{apo}. Residues belonging to the monomer:monomer interface (MMI), FAD binding site (FBS)
 238 and dicoumarol binding site (DBS) are indicated as coloured circles. These sites were retrieved from
 239 the analysis of the NQO1 structure (PDB 2F1O; [15]) using the PISA server
 240 (<https://www.ebi.ac.uk/pdbe/pisa/>); (B) Structural representation of HDX after 3h [%D (3h)] in
 241 NQO1_{apo}. For visual aid, the left panel shows the location of bound FAD and dicoumarol, the middle
 242 panel shows those residues belonging to the MMI, FBS and DBS, and the right panel displays the %D
 243 after 3 h for residues belonging to these functional sites.

244 Within non-exchanging segments, we found that these contained mostly residues buried in the
 245 crystallographic structure of NQO1 (in a ternary complex with FAD and dicoumarol bound, PDB
 246 2F1O; NQO1_{dic}) (Figure 2A). Thus, these sequences likely represent regions that are critical for the
 247 acquisition and maintenance of a minimally stable dimeric fold NQO1_{apo} (note that NQO1_{apo} is
 248 dimeric in solution but more expanded and flexible, and with lower conformational stability than
 249 NQO1_{holo} [9, 14]). This minimal core involves helices α 1, α 3 and α 4 and sheets β 1 and β 3- β 5 (Figure
 250 2A and S7). This core may also contribute to the acquisition of a minimally folded monomeric state
 251 that becomes stabilized in the dimeric state by the interactions between helices α 3 and α 4 across the
 252 monomers (i.e. the MMI)(Figure 2B and S7).

253

254

255 **Figure 2. Non-exchanging segments define a minimal stable core in NQO1_{apo}.** (A) Plot of the %
 256 SASA (solvent accessible surface area) for individual residues (considering backbone and side-chain)
 257 calculated from the structure of NQO1_{dic} (PDB 2F1O [15]) using GETAREA
 258 (<http://curie.utmb.edu/getarea.html>); This algorithm do not consider the ligands in the calculation).
 259 Secondary structure elements are depicted according to [11]; Residues belonging to non-exchanging
 260 segments are displayed as green circles; (B) Structural representation of non-exchanging segments
 261 (using PDB 2F1O; [15]). The left panel shows a surface representation highlighting the burial of the
 262 minimal and stable core. The middle panel shows segments belonging to this core plotted onto
 263 secondary structure elements. The right panel shows that this core may contribute to the stable
 264 folding of the individual monomers as well as their assembly into the dimer, with only few stable
 265 contacts with the FAD (in orange ball representation) and the dicoumarol (in yellow ball
 266 representation).

267 Importantly, the FBS and DBS in NQO1_{apo} are overall exchanging (Figure 1B, 2B and S7B), with
 268 the main exceptions being some marginal contacts in helices α1 and α3 (FBS) and α4 (DBS) (Figure 2B
 269 and S7B). Thus, our HDX analyses support that the conformational ensemble of NQO1_{apo} is
 270 essentially populated by states non-competent for FAD or dicoumarol binding due to the high
 271 structural dynamics of their binding sites [9, 14, 34].

272 *3.2. Complex HDX kinetics*

273 To provide deeper insight into the structural dynamics of NQO1_{apo}, we carefully analyzed the
 274 HDX kinetics for all protein segments (Figure S5). It should be noted that these HDX kinetics were
 275 very consistent with those obtained directly from peptides experimentally characterized (Figure S6
 276 and S10). For the majority of the cases, HDX kinetics was described very well by a simple function
 277 with two kinetic phases (see Figure S5-S6 for fittings, and Table S1-S2 for the best-fit values): a
 278 burst-phase corresponding to HDX mostly occurring within the experimental dead time (i.e. very
 279 few seconds), and thus characterized by a single parameter: its amplitude A_{burst} ; and a slow phase
 280 that occurred typically in a scale of several seconds to minutes, characterized by two parameters: its
 281 amplitude A_{slow} and an apparent first-order rate constant (k_{slow}), following this equation:

$$282 \% D(t) = A_{burst} + A_{slow} \cdot (1 - \exp^{-k_{slow} \cdot t})$$

283 We chose to use this phenomenological description of HDX kinetics mainly for two reasons.
284 First, it provided a simple scenario from which, using three characteristic parameters (A_{burst} , A_{slow}
285 and k_{slow}) we could compare the HDX kinetics of different segments of $NQO1_{apo}$ (see Figure 3; note
286 that this approach worked also very well with the HDX kinetics of $NQO1_{holo}$ and $NQO1_{dic}$; see Figure
287 S5-S6 and Table S1-S2). Second, although the HDX kinetics analyzed using more complex functions
288 (e.g. the two kinetic phases containing each a characteristic rate constant) may provide in some cases
289 better fits, this would put the analyses at two intertwined risks: increasing the fitting parameters
290 would make comparisons between behaviors more difficult, and importantly, in many cases these
291 fittings show evident signs of overparametrization.

292 Kinetic analyses of HDX for protein segments considered as exchanging (> 20%D after 3 h)
293 revealed certain interesting behaviours. First, for many protein segments (of different lengths), we
294 observed a significant contribution to the HDX kinetics from both the burst and slow phases (Figure
295 3 and S8, and Table S1-S2). As indicated above, the HDX kinetics of $NQO1$ in all three ligation states
296 is vastly consistent with EX2 kinetics, and thus, the observed kinetics depends to some extent on the
297 equilibrium constant between non-exchanging and exchanging states [40]. Therefore, the presence
298 of two clearly differentiated kinetic phases suggests the existence of complexity (i.e. heterogeneity)
299 in the conformational ensemble of $NQO1_{apo}$, and plausibly, the significant population of at least two
300 conformational substates with different HDX behavior which may or may not significantly
301 reequilibrate upon the intrinsic HDX step. Interestingly, although ligand binding affects these two
302 kinetic phases ($NQO1_{holo}$ and $NQO1_{dic}$, see Figure S5-S6 and Table S1-S2), both these phases still
303 contribute to the HDX kinetics in these ligation states, suggesting that certain degree of
304 conformational heterogeneity remains upon ligand binding. Second, although in the EX2 scenario
305 the overall kinetics depends on the intrinsic HDX rate constant, and therefore, on the individual
306 backbone amides and their vicinity [40], some sort of correlated behavior at larger scales than small
307 protein segments (e.g. secondary structure elements) is observed (Figure 3B and S8). Consistent with
308 the above-mentioned proposal of a stable core of $NQO1_{apo}$ with highly dynamic FBS and DBS
309 (simply made by analysis of % D after 3 h, Figure 2), these kinetic analyses suggest that secondary
310 structure elements outside the stable core typically exchanged quite fast (i.e. with large burst phases
311 and with k_{slow} often in the range of 10^{-1} to 10^{-2} s $^{-1}$; Figure 3B and S8).

312

313

314 **Figure 3. Segment-specific HDX kinetics of NQO1_{apo}.** (A) Fittings of HDX kinetics for selected
 315 segments typically showing at least 50 % D incorporation after 3 h and considered part of the
 316 functional sites (MMI, FBS and DBS). (B) Plots of the amplitudes for the burst- and slow-phase in
 317 HDX for segments (upper panel) and rate constant for the slow phase (lower panel) for segments
 318 with at least 20% D after 3 h. The elements of secondary structure along the protein sequence are also
 319 indicated.

320

321 **Figure 4. Overall HDX kinetics for segments of NQO1 upon binding FAD and dicoumarol.** (A and
 322 B) HDX for segments of NQO1_{apo}, NQO1_{holo} and NQO1_{dic}. Panel A shows % D after 3 h and Panel B
 323 the difference in this parameter between NQO1_{holo} or NQO1_{dic} and NQO1_{apo}. Residues belonging to
 324 the MMI, FBS and DBS were indicated (retrieved as described in Figure 2). (C) % D after 3h in NQO1
 325 upon FAD and dicoumarol binding plotted onto the NQO1 structure (PDB 2F1O). For comparison,
 326 the left panel shows the location of MMI, FBS and DBS, the middle and right panels show those
 327 residues belonging to the these sites that displayed at least a decrease of 10% D after 3 h in NQO1_{holo}
 328 (middle panel) or NQO1_{dic} (right panel) vs. NQO1_{apo}.

329 3.3. FAD and dicoumarol binding cause large-scale changes in protein structural dynamics

330 FAD binding to NQO1_{apo} is known to cause significant overall changes in protein structure and
 331 dynamics: it increases the content in ordered secondary structure, reduces the protein
 332 hydrodynamic volume, and substantially enhances protein stability and resistance towards
 333 proteolytic attack [9, 14, 22, 34, 35]. In addition, structural and biophysical analyses have shown
 334 that NQO1 must contain bound FAD in order to bind dicoumarol with high affinity [9, 14]. We first
 335 compared the % D incorporated to NQO1_{holo} and NQO1_{apo} after 3h of reaction (Figure 4A-B),
 336 observing some interesting changes upon FAD binding. Particularly large differences were observed
 337 in loop L1 (involved in the MMI and the FBS), loop L4 (involved in the MMI, the FBS and the DBS)
 338 and helix α5 (involved in the FBS). The stabilization observed for the MMI thus explain the increased
 339 thermostability of the NQO1 dimer upon FAD binding. The much lower structural dynamics of the
 340 FBS upon FAD binding is also consistent with a induced-fit mechanism, in which binding competent
 341 states (with high structural stability) are marginally populated in the absence of FAD, according to a
 342 recent proposal based on binding structure-thermodynamic relationships [34]. Interestingly, these
 343 results also imply that FAD is not only required for dicoumarol binding as a part of the DBS, but also

344 that FAD binding modifies the dynamics of protein structural elements involved in the binding of
 345 the inhibitor (Figure 4C). It is worth noting that FAD binding also slows down significantly (3- to
 346 5-fold) HDX of other regions such as sheet β 6, helix α 7 and loop L3 (Figure 5 and S5, and Table S1),
 347 some of them not directly involved in the MMI, FBS or DBS.

348 Dicoumarol binding to NQO1_{holo} is also known to increase the protein ordered secondary
 349 structure, thermal stability and resistance of N-terminal domain towards proteolysis [9, 14].
 350 According to this evidence, we observed that dicoumarol binding to NQO1_{holo} decreased the % D
 351 after 3 h even to a larger extent than FAD binding, and these effects seemed to propagate to more
 352 distant regions in the protein structure, extensively affecting regions involved in the MMI, the FBS
 353 and DBS (Figure 4). The regions affected by dicoumarol binding actually affected the very same set
 354 of structural regions affected by FAD binding with the exception of helix α 5 (Figure 4). In contrast to
 355 FAD, dicoumarol binding also caused a dramatic reduction of % D in sheet β 4 and loop L5, that
 356 contain residues belonging to the MMI and the DBS (Figure 4). In addition, dicoumarol binding
 357 slowed down the HDX kinetics of helix α 7 and loops L4 and L5 (Figure 5 and S5-S6, and Table S1-S2)
 358 by several orders of magnitude.

359

360 **Figure 5. Changes in segment-specific HDX kinetics of NQO1 upon FAD and dicoumarol binding.**
 361 Right panels show fittings of HDX kinetics for selected individual segments using a single
 362 exponential function with a burst-phase for NQO1_{apo} (grey), NQO1_{holo} (black) and NQO1_{dic} (red).
 363 These data were used to calculate $\Delta\%D_{av}$, as average of the time points with maximal differences
 364 between a given NQO1 form (NQO1_{holo}, black; NQO1_{dic}, red) and NQO1_{apo}, as a single metric to
 365 quantify changes in HDX kinetics (left panels).

366 Clearly, the HDX kinetics of NQO1 in all three ligation states (NQO1_{apo}, NQO1_{holo} and NQO1_{dic})
 367 were overall complex (Figure 5 and S5-S6). Therefore, it was not straightforward to provide a single
 368 metric from the global kinetic analysis reported so far in this work, even when a simple kinetic
 369 model was used. To quantify the effects of ligand binding (and potentially of mutations) on the
 370 structural dynamics of NQO1, we sought for a single metric that would respond, at least
 371 semi-quantitatively, to the different types of change observed upon ligand binding (Figure 4 and 5).
 372 We must note that these changes include a variety of effects on the amplitudes of the two kinetic
 373 phases (sometimes increasing, decreasing, not changing or even shifting between the amplitudes of
 374 the burst and the slow phases upon ligand binding) and also on the rate constant of the slow phase
 375 (in some cases this phase was too fast or slow to be measured adequately)(see Table S1 and S2).
 376 Notably, all these effects on the HDX kinetics can be simplified to a common effect: at least a few of

377 the data in the time-dependent measurements differ from two samples when these samples are
 378 paired for a given time point (see Figure 5 for representative examples). Thus, we decided to simply
 379 calculate the difference between the two paired protein species for a given time and protein
 380 segment, and for each segment, to average the three time points with a maximal difference in these
 381 time series. Indeed, this simple metric (called $\Delta\%D_{av}$) was able to detect and rank the effects of
 382 ligand binding on NQO1 HDX due to changes in amplitudes and kinetic rate constants (Figure 5).

383

384 **Figure 6. Changes in HDX kinetics of NQO1 upon binding FAD and dicoumarol as changes**
 385 **in %Dav ($\Delta\%D_{av}$)**. A) $\Delta\%D_{av}$ for NQO1 segments upon binding FAD (NQO1_{holo}) and dicoumarol
 386 (NQO1_{dic}) using of NQO1_{apo} as a reference. Residues belonging to the MMI, FBS and DBS are
 387 indicated (retrieved as in Figure 2). B) Representation of ($\Delta\%D_{av}$) onto the structure of NQO1 (using
 388 PDB code 2F1O). The upper row shows results for $\Delta\%D_{av}$ for NQO1_{holo} and the lower row represents
 389 NQO1_{dic}. Different panels in each row show results for residues involved in the FBS, DBS or MMI.

390 We compared again the behavior of NQO1_{holo} vs. NQO1_{apo} using $\Delta\%D_{av}$ (Figure 6A and S9A).
 391 The results showed that FAD binding substantially reduced the backbone dynamics of residues
 392 11-20 (loop L1 and helix α 1), 46-76 (loops L2 and L3, helix α 7 and sheet β 6), 103-113 (sheet β 6 and
 393 loop L4), 149-165 (loop L6) and 191-211 (loop L7 and helix α 5)(Figure 6A). These regions include
 394 most of the residues involved in the MMI and FBS, and also some belonging to the DBS (Figure
 395 6A-B). When we evaluated the effect of dicoumarol binding, we observed further structural
 396 stabilization of all these regions (with the exception of residues 191-211) and a specific stabilization
 397 of two additional regions mostly involved in the MMI and DBS; i) a dramatic stabilization of the
 398 segment 120-141 (loop 5); ii) a moderate effect in the segment 223-240 (loops L8 and L9 and sheet
 399 β 8 and β 9).

400 *3.4. Insights into cooperative effects upon FAD and dicoumarol binding from analysis of structural dynamics*

401 In addition to the overall conformational and functional consequences of FAD and dicoumarol
 402 binding to NQO1, some experimental techniques have revealed some complexity in the functional
 403 chemistry of this enzyme [22, 23, 41]. This behavior is not unexpected since binding of FAD to
 404 NQO1_{apo} and dicoumarol to NQO1_{holo} is described by a general formalism for binding of a ligand (L)
 405 to a macromolecule (P, NQO1 dimer) with two binding sites (Scheme 2) [42]:

407 **Scheme 2.** General formalism for a macromolecule P (NQO1 dimer) with two ligand (L) binding
 408 sites.

409 in which K_1 and K_2 describe the step-wise equilibrium constants as follows:

410

$$K_1 = \frac{[PL]}{[P] \cdot [L]}$$

411

$$K_2 = \frac{[PL_2]}{[PL] \cdot [L]}$$

412 For a P with two equivalent and non-interacting binding sites, these two step-wise equilibrium
 413 binding constants are related through a simple relationship: $4 \cdot K_1 = K_2$. Significant deviations from
 414 this relationship imply the existence of non-equivalent or interacting sites: $4 \cdot K_1 > K_2$ implies either
 415 negative cooperativity or non-equivalent binding sites, while $4 \cdot K_1 < K_2$ unequivocally identifies
 416 positive cooperativity. It must be noted that, in this scenario, the largest differences between
 417 cooperative and non-cooperative binding are found for the dependence of the population of the
 418 half-ligated species PL (e.g. NQO1 dimer with one FAD bound) on [L] [22, 23, 42].

419 The NQO1 dimer contains two binding sites for either FAD or dicoumarol. Interestingly,
 420 calorimetric titrations of NQO1_{apo} with FAD and NQO1_{holo} with dicoumarol, as well as inhibition
 421 studies in the case of dicoumarol, have identified the existence of negative cooperativity in the
 422 binding of both ligands [22, 23, 41]. A detailed structural characterization of the communication
 423 between ligand binding sites underlying these cooperative effects are challenging for several reasons.
 424 First, in the ligand binding equilibrium, the unligated (P), half-ligated (PL) and fully-ligated (PL₂)
 425 species contribute structurally and energetically to the observed cooperative binding. However, to
 426 date, no structural information of the P or PL states for FAD binding are available (i.e. no
 427 high-resolution structure of NQO1_{apo} or the intermediate species with a single FAD molecule bound
 428 per dimer), while for dicoumarol binding no structural information for PL (NQO1_{holo} with a single
 429 dicoumarol molecule bound per dimer) is available. Although our current HDXMS study does not
 430 report on half-ligated species, we were capable of identifying a network of interacting residues in
 431 NQO1_{apo} that connect structurally and energetically the FBS and the DBS between monomers
 432 through the MMI interface. Therefore, our results suggest the existence of a highly dynamic
 433 structural network connecting these binding sites between the monomers in NQO1, and these
 434 results may also provide a blueprint for future experimental and computational mutagenesis studies
 435 aimed at perturbing and analyzing the role of this network in ligand binding energetics and
 436 cooperativity. In support of this hypothesis, recent work has shown that the Gly151Ser mutation
 437 (Gly150 according to the crystal structure) essentially prevents the communication of ligand binding
 438 effects between the two DBS across the NQO1 dimer [41]. Gly151 is located in the beginning of loop
 439 L6, and it undergoes a noticeable decrease in structural dynamics upon dicoumarol binding (Figure
 440 6), which might constitute part of the allosteric signal generated by dicoumarol binding to one site
 441 (to form the half-ligated state PL) that communicates to the other subunit contributing to the
 442 negative cooperativity for dicoumarol binding. More globally, our analyses from HDXMS support
 443 the idea that dicoumarol binding triggers changes in NQO1 dynamics for certain (but not all)

444 regions predicted by studies using a Gaussian network approach on structural models for the P and
445 PL states [41]. In agreement with this recent study, we observed that dicoumarol binding affected
446 the dynamics of loops L3 and L5, sheets β 6 and β 7, and helices α 2, α 5 and α 7, which showed the
447 largest changes in dynamics when the slowest frequency modes were analyzed upon formation of
448 the PL state by a Gaussian network model (Figure 6 vs. [41]).

449 **4. Conclusions**

450 The multifunctional nature of NQO1 is likely controlled, to a large extent, by changes in protein
451 structural dynamics triggered by the binding of small molecules (FAD, NAD(P)H, substrates,
452 inhibitors) as well as by interaction with other biomacromolecules (proteins and nucleic acids).
453 These structural and energetic aspects are critical to improve our understanding of these interactions
454 under physiological and pathological conditions. In this work, we showed that the use of HDXMS
455 can be instrumental to provide unprecedented detail of the effects of ligand binding on the
456 functional chemistry of NQO1 linked to changes in protein structural dynamics. This approach may
457 provide novel insights into the regulation of NQO1 activity and stability *in vivo*, as well as the
458 mechanisms by which these properties are regulated and/or dysregulated by disease-associated
459 single amino acid exchanges and post-translational modifications.

460 NQO1 is one of the human flavoproteins for which intracellular protein levels are more
461 strongly coupled to intracellular availability of the flavin cofactor [25]. Our current understanding
462 of this phenomenon proposes that this sensitivity of protein stability is due to efficient recognition
463 and degradation of human apo-flavoproteins by the ubiquitin-dependent proteasomal pathway [14,
464 25, 30]. The lack of high resolution information on the structure and dynamics of human
465 apo-flavoproteins, due to the instability of these apo-proteins, has prevented us from a deep
466 understanding of these recognition mechanisms. The detailed analysis reported herein for NQO1_{apo}
467 support that HDXMS can be also used to improve our understanding of this phenomenon as well as
468 the mechanisms by which disease-associated mutations and post-translational modifications may
469 alter protein structural dynamics leading to alternative recognition mechanisms by the proteasomal
470 degradation pathway [14, 30, 34, 36].

471 In this work we identified a minimally stable core that allows NQO1_{apo} to exist as a dimer,
472 although this dimer constitutes a highly dynamic conformational ensemble and with marginal
473 conformational stability. This core may serve as a wiring network that allows communication of
474 ligand binding and mutational effects between domains and between subunits through this
475 minimally stable MMI (see [9, 22, 23, 32, 33] and cooperative effects upon FAD and dicoumarol
476 binding [22, 23, 41].

477 Our study also allows us to discuss the deleterious effects of the common cancer-associated
478 polymorphism Pro187Ser. Pro187 belongs to sheet β 5, as a part of the stable core of the monomer in
479 NQO1_{apo} state (Figure 2). Thus, the strong structural perturbation presumably caused by the
480 Pro187Ser substitution could readily cause long-range effects on the structural dynamics of NQO1_{apo}
481 by disrupting this stable core, and these effects could propagate within the monomer and between
482 subunits in the dimer. This interpretation agrees with previous experimental, computational and
483 structural perturbation analyses carried out on the Pro187Ser variant [5, 14, 22, 30, 32, 33, 34, 36].
484 Consequently, even in the NQO1_{apo}, the cancer-associated polymorphism Pro187Ser would
485 destabilize the NQO1 monomer and this effect could easily propagate to the MMI, the FBS and the
486 DBS, thus contributing to explain the low conformational stability of P187S *in vitro*, its low affinity
487 for FAD and dicoumarol and its accelerated degradation by the proteasome [9, 10, 14, 22, 23, 24, 25,
488 34].

489 Our analyses also support that HDXMS can provide unprecedented structural insight into the
490 catalytic cycle of NQO1. First, our results indicate that FAD binding shifts the conformational

491 ensemble of NQO1 towards more stable and competent states for either NAD(P)H or dicoumarol
492 binding (i.e. at the DBS). This effect is further strengthened upon binding of the inhibitor, suggesting
493 that the structural dynamics of the DBS (and plausibly of the NAD(P)H binding site; [15]) acts by
494 limiting the available ligand binding poses of NAD(P)H. This would optimize hydride transfer from
495 the adenine dinucleotide coenzyme to the FAD, thus contributing to high rate constants
496 experimentally measured for the reductive half-reaction catalyzed by NQO1 [10].

497 **Supplementary Materials:** The following are available online. In the Supplementary information file, Figure
498 S1-S10 and Tables S1 and S2 can be found.

499 **Author Contributions:** conceptualization, A.L.P; methodology, P.V., P.M and A.L.P.; software, P.V. and P.M;
500 validation, P.V., P.M. and A.L.P; formal analysis, P.V., P.M. and A.L.P; investigation, P.V., E.S., P.M. and A.L.P;
501 resources, E.S., P.M. and A.L.P; data curation, P.V., D.J.T., P.M. and A.L.P; writing-original draft preparation,
502 P.V., P.M. and A.L.P; writing-review and editing, P.V., E.S., D.J.T., P.M. and A.L.P; visualization, P.M. and
503 A.L.P; supervision, P.M. and A.L.P; project administration, P.M. and A.L.P; funding acquisition, E.S., P.M. and
504 A.L.P.

505 **Funding:** This research was funded by the ERDF/Spanish Ministry of Science, Innovation and Universities -
506 State Research Agency (Grant RTI2018-096246-B-I00, to A.L.P.), the Spanish Ministry of Economy and
507 Competitiveness (Grant SAF2015-69796 to E.S.) and Junta de Andalucía (Grant P11-CTS-07187, to ALP).

508 **Acknowledgments:** We acknowledged assistance from Dr. Noel Mesa-Torres in protein expression and
509 purification. Access to a EU_FT-ICR_MS network installation was funded by the EU Horizon 2020 grant 731077.
510 Additional support from Aula FUNCANIS-UGR, EU and MEYS CZ funds CZ.1.05/1.1.00/02.0109, LQ1604 and
511 LM2015043 is gratefully acknowledged.

512 **Conflicts of Interest:** The authors declare no conflict of interest.

513 **References**

- 514 1. Beaver, S.K.; Mesa-Torres, N.; Pey, A.L.; Timson, D.J. NQO1: A target for the treatment of
515 cancer and neurological diseases, and a model to understand loss of function disease mechanisms.
516 *Biochim Biophys Acta Proteins Proteom* 2019, **1867**, 663-676.
- 517 2. Ross, D.; Siegel, D. Functions of NQO1 in Cellular Protection and CoQ10 Metabolism and its
518 Potential Role as a Redox Sensitive Molecular Switch. *Front Physiol* 2017, **8**, 595.
- 519 3. Ross, D.; Siegel, D. NQO1 in protection against oxidative stress. *Current Opinion in Toxicology*
520 2018, **7**, 67-72.
- 521 4. Pey, A.L.; Megarity, C.F.; Medina-Carmona, E.; Timson, D.J. Natural Small Molecules as
522 Stabilizers and Activators of Cancer-Associated NQO1 Polymorphisms. *Curr Drug Targets* 2016, **17**,
523 1506-1514.
- 524 5. Pey, A.L.; Megarity, C.F.; Timson, D.J. NAD(P)H quinone oxidoreductase (NQO1): an enzyme
525 which needs just enough mobility, in just the right places. *Biosci Rep* 2019, **39**.
- 526 6. Dinkova-Kostova, A.T.; Talalay, P. NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1), a
527 multifunctional antioxidant enzyme and exceptionally versatile cytoprotector. *Arch Biochem Biophys*
528 2010, **501**, 116-123.
- 529 7. Siegel, D.; Gustafson, D.L.; Dehn, D.L.; Han, J.Y.; Boonchoong, P.; Berliner, L.J.; Ross, D.
530 NAD(P)H:quinone oxidoreductase 1: role as a superoxide scavenger. *Mol Pharmacol* 2004, **65**,
531 1238-1247.
- 532 8. Siegel, D.; Dehn, D.D.; Bokatzian, S.S.; Quinn, K.; Backos, D.S.; Di Francesco, A.; Bernier, M.;
533 Reisdorff, N.; de Cabo, R.; Ross, D. Redox modulation of NQO1. *PLoS One* 2018, **13**, e0190717.

534 9. Medina-Carmona, E.; Neira, J.L.; Salido, E.; Fuchs, J.E.; Palomino-Morales, R.; Timson, D.J.; Pey, A.L. Site-to-site interdomain communication may mediate different loss-of-function mechanisms in 535 a cancer-associated NQO1 polymorphism. *Scientific Reports* 2017, 7, 44352.

537 10. Lienhart, W.D.; Gudipati, V.; Uhl, M.K.; Binter, A.; Pulido, S.A.; Saf, R.; Zangger, K.; Gruber, K.; 538 Macheroux, P. Collapse of the native structure caused by a single amino acid exchange in human 539 NAD(P)H:quinone oxidoreductase(1.). *FEBS J* 2014, 281, 4691-4704.

540 11. Faig, M.; Bianchet, M.A.; Talalay, P.; Chen, S.; Winski, S.; Ross, D.; Amzel, L.M. Structures of 541 recombinant human and mouse NAD(P)H:quinone oxidoreductases: species comparison and 542 structural changes with substrate binding and release. *Proc Natl Acad Sci U S A* 2000, 97, 3177-3182.

543 12. Li, R.; Bianchet, M.A.; Talalay, P.; Amzel, L.M. The three-dimensional structure of 544 NAD(P)H:quinone reductase, a flavoprotein involved in cancer chemoprotection and chemotherapy: 545 mechanism of the two-electron reduction. *Proc Natl Acad Sci U S A* 1995, 92, 8846-8850.

546 13. Chen, S.; Deng, P.S.; Bailey, J.M.; Swiderek, K.M. A two-domain structure for the two subunits 547 of NAD(P)H:quinone acceptor oxidoreductase. *Protein Sci* 1994, 3, 51-57.

548 14. Medina-Carmona, E.; Palomino-Morales, R.J.; Fuchs, J.E.; Padín-Gonzalez, E.; Mesa-Torres, N.; 549 Salido, E.; Timson, D.J.; Pey, A.L. Conformational dynamics is key to understanding loss-of-function 550 of NQO1 cancer-associated polymorphisms and its correction by pharmacological ligands. *Scientific 551 Reports* 2016, 6, 20331.

552 15. Asher, G.; Dym, O.; Tsvetkov, P.; Adler, J.; Shaul, Y. The crystal structure of NAD(P)H quinone 553 oxidoreductase 1 in complex with its potent inhibitor dicoumarol. *Biochemistry* 2006, 45, 6372-6378.

554 16. Moscovitz, O.; Tsvetkov, P.; Hazan, N.; Michaelevski, I.; Keisar, H.; Ben-Nissan, G.; Shaul, Y.; 555 Sharon, M. A mutually inhibitory feedback loop between the 20S proteasome and its regulator, 556 NQO1. *Mol Cell* 2012, 47, 76-86.

557 17. Asher, G.; Tsvetkov, P.; Kahana, C.; Shaul, Y. A mechanism of ubiquitin-independent 558 proteasomal degradation of the tumor suppressors p53 and p73. *Genes Dev* 2005, 19, 316-321.

559 18. Oh, E.T.; Kim, J.W.; Kim, J.M.; Kim, S.J.; Lee, J.S.; Hong, S.S.; Goodwin, J.; Ruthenborg, R.J.; Jung, 560 M.G.; Lee, H.J.; Lee, C.H.; Park, E.S.; Kim, C.; Park, H.J. NQO1 inhibits proteasome-mediated 561 degradation of HIF-1alpha. *Nat Commun* 2016, 7, 13593.

562 19. Lata, S.; Ali, A.; Sood, V.; Raja, R.; Banerjea, A.C. HIV-1 Rev downregulates Tat expression and 563 viral replication via modulation of NAD(P)H:quinone oxidoreductase 1 (NQO1). *Nat Commun* 2015, 6, 564 7244.

565 20. Di Francesco, A.; Di Germanio, C.; Panda, A.C.; Huynh, P.; Peaden, R.; Navas-Enamorado, I.; 566 Bastian, P.; Lehrmann, E.; Diaz-Ruiz, A.; Ross, D.; Siegel, D.; Martindale, J.L.; Bernier, M.; Gorospe, 567 M.; Abdelmohsen, K.; de Cabo, R. Novel RNA-binding activity of NQO1 promotes SERPINA1 568 mRNA translation. *Free Radic Biol Med* 2016, 99, 225-233.

569 21. Betancor-Fernandez, I.; Timson, D.J.; Salido, E.; Pey, A.L. Natural (and Unnatural) Small 570 Molecules as Pharmacological Chaperones and Inhibitors in Cancer. *Handb Exp Pharmacol* 2018, 45, 571 345-383.

572 22. Pey, A.L.; Megarity, C.F.; Timson, D.J. FAD binding overcomes defects in activity and stability 573 displayed by cancer-associated variants of human NQO1. *Biochim Biophys Acta* 2014, 1842, 2163-2173.

574 23. Claveria-Gimeno, R.; Velazquez-Campoy, A.; Pey, A.L. Thermodynamics of cooperative
575 binding of FAD to human NQO1: Implications to understanding cofactor-dependent function and
576 stability of the flavoproteome. *Arch Biochem Biophys* 2017, 636, 17-27.

577 24. Siegel, D.; Anwar, A.; Winski, S.L.; Kepa, J.K.; Zolman, K.L.; Ross, D. Rapid polyubiquitination
578 and proteasomal degradation of a mutant form of NAD(P)H:quinone oxidoreductase 1. *Mol
579 Pharmacol* 2001, 59, 263-268.

580 25. Martinez-Limon, A.; Alriquet, M.; Lang, W.H.; Calloni, G.; Wittig, I.; Vabulas, R.M. Recognition
581 of enzymes lacking bound cofactor by protein quality control. *Proc Natl Acad Sci U S A* 2016, 113,
582 12156-12161.

583 26. Luo, S.; Su Kang, S.; Wang, Z.H.; Liu, X.; Day, J.X.; Wu, Z.; Peng, J.; Xiang, D.; Springer, W.; Ye,
584 K. Akt Phosphorylates NQO1 and Triggers its Degradation, Abolishing its Antioxidative Activities
585 in Parkinson's Disease. *J Neurosci* 2019.

586 27. Nolan, K.A.; Scott, K.A.; Barnes, J.; Doncaster, J.; Whitehead, R.C.; Stratford, I.J. Pharmacological
587 inhibitors of NAD(P)H quinone oxidoreductase, NQO1: structure/activity
588 relationships and functional activity in tumour cells. *Biochem Pharmacol* 2010, 80, 977-981.

589 28. Nolan, K.A.; Zhao, H.; Faulder, P.F.; Frenkel, A.D.; Timson, D.J.; Siegel, D.; Ross, D.; Burke, T.R.,
590 Jr.; Stratford, I.J.; Bryce, R.A. Coumarin-based inhibitors of human NAD(P)H:quinone
591 oxidoreductase-1. Identification, structure-activity, off-target effects and in vitro human pancreatic
592 cancer toxicity. *J Med Chem* 2007, 50, 6316-6325.

593 29. Scott, K.A.; Barnes, J.; Whitehead, R.C.; Stratford, I.J.; Nolan, K.A. Inhibitors of NQO1:
594 identification of compounds more potent than dicoumarol without associated off-target effects.
595 *Biochem Pharmacol* 2011, 81, 355-363.

596 30. Medina-Carmona, E.; Rizzuti, B.; Martin-Escalano, R.; Pacheco-Garcia, J.L.; Mesa-Torres, N.;
597 Neira, J.L.; Guzzi, R.; Pey, A.L. Phosphorylation compromises FAD binding and intracellular
598 stability of wild-type and cancer-associated NQO1: Insights into flavo-proteome stability. *Int J Biol
599 Macromol* 2019, 125, 1275-1288.

600 31. Mesa-Torres, N.; Betancor-Fernández, I.; Oppici, E.; Cellini, B.; Salido, E.; Pey, A.L. Evolutionary
601 Divergent Suppressor Mutations in Conformational Diseases. *Genes* 2018, 9, E352.

602 32. Medina-Carmona, E.; Betancor-Fernández, I.; Santos, J.; Mesa-Torres, N.; Grottelli, S.; Batlle, C.;
603 Naganathan, A.N.; Oppici, O.; Cellini, B.; Ventura, S.; Salido, E.; Pey, A.L. Insight into the specificity
604 and severity of pathogenic mechanisms associated with missense mutations through experimental
605 and structural perturbation analyses. *Human Molecular Genetics* 2019, 28, 1-15.

606 33. Pey, A.L. Biophysical and functional perturbation analyses at cancer-associated P187 and K240
607 sites of the multifunctional NADP(H):quinone oxidoreductase 1. *Int J Biol Macromol* 2018, 118,
608 1912-1923.

609 34. Munoz, I.G.; Morel, B.; Medina-Carmona, E.; Pey, A.L. A mechanism for cancer-associated
610 inactivation of NQO1 due to P187S and its reactivation by the consensus mutation H80R. *FEBS Lett*
611 2017, 591, 2826-2835.

612 35. Lienhart, W.D.; Strandback, E.; Gudipati, V.; Koch, K.; Binter, A.; Uhl, M.K.; Rantasa, D.M.;
613 Bourgeois, B.; Madl, T.; Zangerer, K.; Gruber, K.; Macheroux, P. Catalytic competence, structure and
614 stability of the cancer-associated R139W variant of the human NAD(P)H:quinone oxidoreductase 1
615 (NQO1). *FEBS J* 2017, 284, 1233-1245.

616 36. Medina-Carmona, E.; Fuchs, J.E.; Gavira, J.A.; Mesa-Torres, N.; Neira, J.L.; Salido, E.;
617 Palomino-Morales, R.; Burgos, M.; Timson, D.J.; Pey, A.L. Enhanced vulnerability of human proteins
618 towards disease-associated inactivation through divergent evolution. *Human Molecular Genetics* 2017,
619 26, 3531-3544.

620 37. Zhang, Z.; Smith, D.L. Determination of amide hydrogen exchange by mass spectrometry: a
621 new tool for protein structure elucidation. *Protein Sci* 1993, 2, 522-531.

622 38. Trcka, F.; Durech, M.; Vankova, P.; Chmelik, J.; Martinkova, V.; Hausner, J.; Kadek, A.; Marcoux,
623 J.; Klumpler, T.; Vojtesek, B.; Muller, P.; Man, P. Human Stress-inducible Hsp70 Has a High
624 Propensity to Form ATP-dependent Antiparallel Dimers That Are Differentially Regulated by
625 Cochaperone Binding. *Mol Cell Proteomics* 2019, 18, 320-337.

626 39. Bai, Y. Hydrogen exchange experiments: detection and characterization of protein folding
627 intermediates. In *Protein folding, misfolding and aggregation*; Muñoz, V., Ed. Royal Society of
628 Chemistry: Cambridge, UK., 2008; pp. 70-83.

629 40. Konermann, L.; Pan, J.; Liu, Y.H. Hydrogen exchange mass spectrometry for studying protein
630 structure and dynamics. *Chem Soc Rev* 2011, 40, 1224-1234.

631 41. Megarity, C.F.; Abdel-Bettley, H.; Caraher, M.C.; Scott, K.A.; RA, W.; Jowitt, T.A.; Gutierrez, A.;
632 Bryce, R.A.; Nolan, K.A.; Stratford, I.J.; Timson, D.J. Negative cooperativity in NADP(H) quinone
633 oxidoreductase 1 (NQO1). *ChemBioChem* 2019. doi: 10.1002/cbic.201900313.

634 42. Wyman, J.; Gill, S.J. *Binding and Linkage. Functional Chemistry of Biological Macromolecules*;
635 University Science Books: Mill Valley, 1990.

636