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Abstract

New modified Hayward metric of magnetically charged non-singular
black hole spacetime in the framework of nonlinear electrodynamics is
constructed. When the fundamental length introduced, characterising
quantum gravity effects, vanishes one comes to the general relativ-
ity coupled with the Bronnikov model of nonlinear electrodynamics.
The metric can have one (an extreme) horizon, two horizons of black
holes, or no horizons corresponding to the particle-like solution. Cor-
rections to the Reissner−Nordström solution are found as the radius
approaches to infinity. As r → 0 the metric has a de Sitter core
showing the absence of singularities. The asymptotic of the Ricci and
Kretschmann scalars are obtained and they are finite everywhere. The
thermodynamics of black holes, by calculating the Hawking tempera-
ture and the heat capacity, is studied. It is demonstrated that phase
transitions take place when the Hawking temperature possesses the
maximum. Black holes are thermodynamically stable at some range
of parameters.

1 Introduction

It is well-known that General Relativity (GR) is ultraviolet (UV) incomplete.
In addition, there is a problem of singularities in the classical Einstein the-
ory of gravity. Thus, solutions of the Einstein equations for charged (the
Reisner−Nordström metric) black holes (BHs) have curvature singularities
in the center (r = 0). Therefore, GR should be modified when the curvature
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is large. There are some attempts to overcome problems in the classical Ein-
stein theory of gravity. So, if one adds curvature terms of the higher order
or terms with higher derivatives, the UV behaviour of the Einstein gravity
will be improved [1]. But the price for this is the existence of ghosts (non-
physical degrees of freedom). A ghost free modification of the GR, which
is UV-complete, was considered in [2], [3], [4]. But such theory is non-local
and has an infinite number of derivatives. Because the fundamental quan-
tum gravity theory (UV-complete) is absent some phenomenological models
can be useful to solve problems of singularities. Following [5], [6], [7] (see
also [8]), we assume that there is a critical energy µ and the corresponding
length l = µ−1 in such a way that the metric is modified when the spacetime
curvature be in the order of l−2. The length scale, characterising quantum
gravity effects, is smaller than l and one may use the classical metric gµν .
In addition, we suppose that the limiting curvature condition R ≤ cl−2 (R
is one of curvature invariants, c is dimensionless constant depending on the
curvature invariant) is satisfied [5], [6], [7]. A simple metric satisfying the
above conditions was proposed by Hayward [9] for a neutral BH. This is the
phenomenological approach that we explore here.

The first pioneering work representing a regular BH in GR is [10]. It
was shown in [11] that the Bardeen model can describe the gravitational
field of a nonlinear magnetic monopole. In the papers [12], [13] the regular
electrically charged BH solution in GR was presented, where the source is a
nonlinear electrodynamics (NED) field satisfying the weak energy condition.
It worth noting that in accordance with [14] regular electric solutions, with
the Maxwell weak-field limit, can be described only by different NED theories
in different parts of spacetime. Thus, there is a significant shortcoming in
the models of [12], [13].

In this paper we consider the spherically symmetric non-singular model
of the magnetically charged BH based on NED. In some NED, the electric
field in the center of point-like charges is finite [15]-[19] and the self-energy of
charges is finite unlike classical electrodynamic It worth mentioning that
quantum corrections to Maxwell’s electrodynamics, within QED, lead to
NED [20]. The universe inflation also can be explained in the framework
of the GR coupled with NED [21]-[28].

Here, with the help of the modified Hayward metric, we study regular
magnetically charged BH solutions within NED considered in [14]. The BH
thermodynamics and phase transitions are investigated. In [29] and [30] au-
thors also considered BH solutions with the modified Hayward metric based
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on NED proposed in [31] and [32], respectively. The thermodynamics for a
magnetically charged regular BH, which comes from the action of GR and
NED, was investigated in [33]. These authors also used NED proposed in
[14]. The similar study was performed in [34], [35]. The work of [36] analyzes
the minimal model proposed by Hayward for an uncharged BH within GR.
The authors introduced an anisotropic fluid and postulated the expressions
for the energy density and pressure but the Lagrangian corresponding to the
stress tensor was not obtained. In the present study we use NED of [14],
explore a phenomenological extension of GR by introducing a fundamental
length l, using the modified Hayward metric, and investigate the magneti-
cally charged BH.

The paper is organized as follows. In Section 2 the modified Hayward
metric is studied and we obtain the asymptotic of the metric and mass func-
tions as r → 0 and r → ∞. Corrections to the Reissner−Nordström (RN)
solution are found. The asymptotic of the Ricci and Kretschmann scalars are
calculated and we show that curvature singularities are absent. In Section
3 we calculate the Hawking temperature and the heat capacity of BHs. We
demonstrate that the second-order phase transitions occur. It is shown that
in some range of parameters BHs are stable. Section 4 is a conclusion.

2 A regular magnetized BH solution

To describe the magnetically charged BH solution we consider the Lagrangian
density of NED [14]

L = − F
cosh2 4

√
|βF|

, (1)

where F = (1/4)FµνF
µν = (B2−E2)/2 and the field tensor is Fµν = ∂µAν −

∂νAµ. The parameter β in Eq. (1) is positive and it possesses the dimension
of (length)4. At the weak field limit the Lagrangian density (1) becomes

L → −F βF � 1, (2)

i.e. the correspondence principle holds. We will derive the metric function
representing the static magnetic regular BH. Let us consider the spherically
symmetric line element which is given by

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2(dϑ2 + sin2 ϑdφ2). (3)
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The Hayward metric function [9] is given by

f(r) = 1− 2GMr2

r3 + 2GMl2
, (4)

where G is the Newton constant, M=constant and l is the fundamental
length. We interpret this metric, in the framework of an extension of GR, for
an uncharged source and replace the Schwarzschild metric. It should be noted
that in GR the metric function (4) may be obtained as a solution within NED
with a nonzero magnetic charge [37]. But in this case the NED Lagrangian is
ill-defined. At the weak-field limit the NED Lagrangian does not approach to
the Maxwell Lagrangian. One can consider and investigate other geometries
of the horizon in Eq. (3). At l = 0 we come to the Schwarzschild metric
of a BH which is a solution to Einstein’s equation without sources. Now we
suppose that the BH is magnetically charged. Then the mass function of a
BH varies with r and is

M(r) = m0 +
∫ r

0
ρ(r)r2dr = m0 +

∫ ∞
0

ρ(r)r2dr −
∫ ∞
r

ρ(r)r2dr, (5)

where m0 is the Schwarzschild mass, ρ(r) is the magnetic energy density and
mM =

∫∞
0 ρ(r)r2dr is the magnetic mass of the BH. In [14] the mass m0,

which can be considered as a constant of integration, was not introduced.
But the case m0 6= 0 allows us to consider the uncharged BH when the
charge q = 0. Indeed, if q = 0 (ρ(r) = 0) in Eq. (5), the mass function
M becomes constant and we come to the Hayward metric function (4). At
E = 0 the magnetic energy density, corresponding to Eq. (1), is given by

ρ(r) = −L =
F

cosh2 4

√
|βF|

, (6)

where F = B2/2 = q2/(2r4), and q is a magnetic charge. Then the mass
function (5) becomes

M(r) = m0 +mM −
q3/2

23/4β1/4
tanh

(
β1/4√q
21/4r

)
, (7)

where the BH magnetic mass is given by [35]

mM =
∫ ∞
0

ρ(r)r2dr =
q3/2

23/4β1/4
. (8)
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The total BH mass is M(∞) ≡ m = m0 + mM . Then the metric function
corresponding to a charged BH is

f(r) = 1− 2GM(r)r2

r3 + 2GM(r)l2
, (9)

where M(r) is given by (7).
For a convenience we introduce the dimensionless parameter x = 21/4r/(β1/4√q).

Then from Eqs. (7)-(9) one obtains the metric function

f(x) = 1− Ax2g(x)

x3 +Bg(x)
, (10)

where

A =

√
2Gq√
β
, B =

2Gl2

β
, C =

23/4β1/4m0

q3/2
, g(x) = C+1−tanh

(
1

x

)
. (11)

From Eqs. (10) and (11) we find the asymptotic of the metric function as
r →∞ and r → 0

f(r) = 1− 2Gm

r
+
Gq2

r2
− G

r4

(√
βq3

3
√

2
− 4Gl2m2

)
+O(r−5) r →∞, (12)

f(r) = 1− r2

l2
+

r5

2Gm0l4
+O(r6) r → 0. (13)

Equation (12) shows the corrections to the RN solution that are in the order
of O(r−4). At l = 0 and m0 = 0 (when the total BH mass is the magnetic
mass) Eq. (12) is converted into the equation obtained in [35]. As r → ∞
we have f(∞) = 1, and the spacetime becomes flat. According to Eq. (13)
limr→0 f(r) = 1. Thus, the spacetime has a smooth de Sitter core and the
BH is regular. If β = 0, l = 0 one has the RN solution. The plot of the
function f(x) is depicted in Fig. 1. This plot is typical for any regular
solution described by the metric (3) (see, e.g., [12]). In accordance with Fig.
1 at A < 3.93 (B = 1, C = 0) horizons are absent and we have particle-like
solution. At A ≈ 3.93 the horizons shrink into one horizon (the extreme
solution). If > 3.93, we have two horizons of a BH. The horizon radii xh are
roots of the equation f(xh) = 0. From Eq. (10), at B = 1, C = 0 one finds
the inner x− (x− = 21/4r−/(β

1/4√q)) and outer x+ (x+ = 21/4r+/(β
1/4√q))

horizon radii of the BH that are given in Table 1.
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Figure 1: The plot of the function f(x) for B = 1 and C = 0 (m0 = 0). The
dashed-dotted line corresponds to A = 6, the solid line corresponds to A = 2
and the dashed line corresponds to A = 3.93.

The asymptotic of the Ricci and Kretschmann scalars can be obtained
from the relations

R = −f ′′(r)− 4

r
f ′(r)− 2

f(r)− 1

r2
, (14)

K = f ′′2(r) +

(
2f ′(r)

r

)2

+
4 (f(r)− 1)2

r4
. (15)

From Eqs. (14) and (15) we find

R =
12

l2
− 21r3

Gm0l4
+O(r4) r → 0, (16)

R = −86Gm

r3
+

12Gq2

r4
− 34G

r6

(√
βq3

3
√

2
− 4Gl2m2

)
+O(r−7) r →∞, (17)

K =
24

l4
− 84r3

Gm0l6
+O(r4) r → 0, (18)
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Table 1: The BH inner and outer horizon radii (B = 1, C = 0)

A 4 5 6 7 8 9 10 15

x− 1.56 1.04 0.88 0.78 0.72 0.68 0.64 0.54

x+ 2.11 3.58 4.71 5.78 6.82 7.84 8.87 13.92

K =
48G2m2

r6
− 96G2mq2

r7
+O(r−8) r →∞. (19)

As r →∞ the Ricci and Kretschmann scalars vanish and the spacetime be-
comes flat. Equations (16)-(19) indicate that solutions obtained are regular.

3 Thermodynamics and phase transitions

Let us study the thermal stability of magnetized BHs and the possible phase
transitions. The Hawking temperature is given by [38]

TH =
κ

2π
=
f ′(rh)

4π
, (20)

where κ is the surface gravity and rh is the horizon radius. Making use of
Eqs. (10) and (20) we obtain the Hawking temperature

TH =

√
qG

25/4πβ3/4(x3h +Bg(xh))

(
−2xhg(xh)

− 1

cosh2(1/xh)
+
g(xh)(B + 3x4h cosh2(1/xh))

(x3h +Bg(xh)) cosh2(1/xh)

)
. (21)

The horizon radii rh (and xh) are defined as roots of the equation f(rh) = 0
(and f(xh) = 0). From Eq. (10) we obtain

Gq√
β

=
x3h +Bg(xh)√

2x2hg(xh)
. (22)

According to Eq. (22) the horizon radius rh (and xh) depends on the magnetic
charge q and the model parameter β. Substituting Gq/

√
β from Eq. (22)

into Eq. (21) we obtain the final equation for the Hawking temperature

TH =
1

27/4π
√
qβ1/4g(xh)x2h

(
−2xhg(xh)
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− 1

cosh2(1/xh)
+
g(xh)(B + 3x4h cosh2(1/xh))

(x3h +Bg(xh)) cosh2(1/xh)

)
. (23)

The plot of the reduced Hawking temperature TH
√
qβ1/4 is depicted in Fig.

2 for different values of the parameter B (or l). It follows from Fig. 2 that
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Figure 2: The plot of the function TH
√
qβ1/4 vs. horizons xh for C = 0

(m0 = 0). The dashed-dotted line corresponds to B = 10, the solid line
corresponds to B = 1 and the dashed line corresponds to B = 5.

at the bigger value of l (or B) the maximum of the Hawking temperature
shifts to the bigger value of the horizon radius. The temperature curve
has one extremum (maximum) resulting in one phase transition during the
evaporation. Similar form of the temperature curve for a BH takes place
in the models studied in [35]. The heat capacity at the constant charge is
defined by the relation [39]

Cq = TH

(
∂S

∂TH

)
q

=
TH∂S/∂rh
∂TH/∂rh

=
2πrhTH

G∂TH/∂rh
. (24)

The entropy obeys the Hawking area low S = A/(4G) = πr2h/G. When the
Hawking temperature has the extremum (∂TH/∂rh = 0) the heat capacity
is singular and the second-order phase transition takes place. In Fig. 3 the
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function GCq/(
√
βq) vs. the horizon radius xh for different values of B for

C = 0 (m0 = 0) is presented. Figure 2 shows the similarity in the considered
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Figure 3: The plot of the function CqG/(
√
βq) vs. xh for C = 0 (m0 = 0).

The dashed-dotted line corresponds to B = 10, the solid line corresponds to
B = 1 and the dashed line corresponds to B = 5.

thermodynamics of our model and the thermodynamics of a neutral regular
BH. It is seen from Fig. 3 that second-order phase transitions at the discon-
tinuity points occur between negative and positive heat capacities. Figure 2
shows that the maximum of the temperature (the Davies point), where the
phase transitions take place, separates areas with increasing and decreasing
BH temperatures. The unstable point between the positive and negative
heat capacities has a discontinuity. The positive heat capacity corresponds
to the late stage and the negative capacity to the early stage of the ther-
modynamics process. Thus, there is an interval of the horizon radius where
the heat capacity is positive and the BH is stable. In accordance with Figs.
2 and 3, the heat capacity possesses a discontinuity at the horizon where
the Hawking temperature possesses a maximum. When the parameter B is
bigger, the second-order phase transition of the BH occurs at the larger value
of the horizon radius rh (xh). For the large value of xh the BH is unstable
(Cq < 0).
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4 Conclusion

Solutions of a magnetically charged regular BH in the new model were ob-
tained. This model is of interest because of its simplicity. We found the
mass and metric functions possessing simple analytical structures. The BH
can have one (an extreme horizon), two horizons (trapping horizons), or no
horizons (untrapped surface, see Fig. 1). These plots are typical for any reg-
ular solution described by the metric (3). One can find the same behavior of
the metric function in [12] for another BH model. Corrections to the RN so-
lution that are in the order of O(r−4) were obtained as the radius approaches
to infinity. As r → ∞ the spacetime becomes flat. The model of a electri-
cally charged BH [12] was formulated in so called P -frame (the Hamiltonian
framework). But the Lagrangian dynamics is specified in F -framework. It
was shown in [14] that the regular electric solution in P -frame corresponds
to different Lagrangians in different parts of the space if the function P (F )
is not monotonic. But this problem is absent for magnetic solutions. Thus,
in the model [12] the problem of singularities was not solved completely
[40]. We calculated the asymptotic of the Ricci and Kretschmann scalars
as r → ∞ and r → 0 showing the absence of singularities. It was shown
that the spacetime as r → 0 has a de Sitter core (the flatness at the center).
Thus, the singularity at r = 0 has been smoothed out. Our solution describes
nonsingular BH with the finite curvature everywhere including r = 0. The
regular behavior of the Ricci and Kretschmann scalars also was observed in
the work [12]. The Hawking temperature and the heat capacity of the BH
were found demonstrating that second-order phase transitions take place. It
was shown that second-order phase transitions separate areas between neg-
ative and positive heat capacities and areas with increasing and decreasing
BH temperatures. For small values of the horizon radius, depending on the
parameters of the model, the Hawking temperature is negative (see Fig. 2).
The thermodynamic stabilities of black holes were studied and it was shown
that in some range of horizon radii the BHs are stable (the heat capacity is
positive) (see Fig. 3). The long standing problem of singularities is solved
in this model, at r = 0 curvature invariants are finite and the BH is regular.
In addition, at the weak field limit NED (1) becomes the Maxwell electrody-
namics i.e. the correspondence principle holds. It worth noting that in the
Bardeen model the correspondence principle breaks out [11].

10

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 December 2019                   

Peer-reviewed version available at Universe 2019, 5, 225; doi:10.3390/universe5120225

https://doi.org/10.3390/universe5120225


References

[1] K. S. Stelle, Gen. Rel. Grav. 9, 353371 (1978); Phys. Rev. D 16, 953969
(1977).

[2] T. Biswas, E. Gerwick, T. Koivisto, and A. Mazumdar, Phys. Rev. Lett.
108, 031101 (2012).

[3] T. Biswas, A. Conroy, A. S. Koshelev, and A. Mazumdar, Class. Quant.
Grav. 31, 015022 (2014).

[4] L. Modesto, Phys. Rev. D 86, 044005 (2012).

[5] M. A. Markov, JETP Letters 36, 266 (1982).

[6] M. A. Markov, Ann. Phys. 155, 333 (1984).

[7] J. Polchinski, Nucl. Phys. B 325 (1989).

[8] V. P. Frolov, Phys. Rev. D 94, 104056 (2016).

[9] S. A. Hayward, Phys. Rev. Lett. 96, 031103 (2006).

[10] J. Bardeen, In Proceedings of GR5, Tiis, U.S.S.R. (1968).

[11] E. Ayon-Beato and A. Garcia, Phys. Lett. B 493, 149 (2000).

[12] E. Ayon-Beato and A. Garcia, Phys. Rev. Lett. 80, 5056 (1998).

[13] E. Ayon-Beato and A. Garcia, Phys. Lett. B 464, 25 (1999).

[14] K. A. Bronnikov, Phys. Rev. D 63, 044005 (2001)

[15] M. Born and L. Infeld, Proc. Royal Soc. (London) A 144, 425 (1934).

[16] D. M. Gitman and A. E. Shabad, Eur. Phys. J. C 74, 3186 (2014).

[17] S. I. Kruglov, Ann. Phys. 353, 299 (2015).

[18] S. I. Kruglov, Annalen Phys. (Berlin) 527, 397 (2015).

[19] S. I. Kruglov, Commun. Theor. Phys. 66, 59 (2016).

[20] W. Heisenberg and H. Euler, Z. Physik, 98, 714 (1936).

11

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 December 2019                   

Peer-reviewed version available at Universe 2019, 5, 225; doi:10.3390/universe5120225

https://doi.org/10.3390/universe5120225
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