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1 Abstract: Proper satellite-based crop monitoring applications at the farm-level often require near-daily
> imagery at medium to high spatial resolution. The synthesizing of ongoing satellite missions by
s ESA (Sentinel 2) and NASA (Landsat7/8) provides this unprecedented opportunity at a global
«  scale; nonetheless, this is rarely implemented because these procedures are data demanding and
s computationally intensive. This study developed a complete stream processing in the Google
¢  Earth Engine cloud platform to generate harmonized surface reflectance images of Landsat7,8 and
»  Sentinel 2 missions. The harmonized images were generated for two agriculture schemes in Bekaa
s (Lebanon) and Ninh Thuan (Vietnam) during the period 2018-2019. We evaluated the performance
o  of several pre-processing steps needed for the harmonization including image co-registration, brdf
1 correction, topographic correction, and band adjustment. This study found the miss-registration
1 between Landsat 8 and Sentinel 2 images, varied from 10 meters in Ninh Thuan, Vietnam to 32
1= meters in Bekaa, Lebanon, and if not treated, posed a great impact on the quality of the harmonized
1z data set. Analysis of a pair overlapped L8-52 images over the Bekaa region showed that after the
1a  harmonization, all band-to-band spatial correlations were greatly improved from (0.57, 0.64, 0.67,
i 0.75,0.76,0.75, 0.79) to (0.87, 0.91, 0.92, 0.94, 0.97, 0.97, 0.96) in bands (blue, green, red, nir,swirl,swir2,
s ndvi) respectively. Finally, we demonstrated the high potential of the harmonized data set for crop
iz  mapping and monitoring. Harmonic (Fourier) analysis was applied to fit the d etected unimodal,
1z bimodal and trimodal shapes in the temporal NDVI patterns during one crop year in Ninh Thuan
1 province. Derived phase and amplitude values of the crop cycles were combined with max-NDVI as
20 an R-G-B image. This image highlighted croplands in bright colors (high phase and amplitude) and
a1 non-crop areas in grey/dark (low phase/amplitude). Generated harmonized data sets (30m spatial
22 resolution) over the two studied sites along with GEE scripts/app used in the study are provided for
23 public usage and testing.

2« Keywords: Landsat; Sentinel 2; harmonization; crop monitoring; Google Earth Engine

s 1. Introduction

N

26 In recent decades, advances in technology and algorithms have made satellite remote sensing
2z Pplayed an ever-increasing role in crop monitoring [1,2]. However, current global satellite missions do
2 not possess enough temporal-spatial resolution to capture crop growth’s dynamic and heterogeneity
20 at the farm level. Number of studies pointed out that high temporal resolution products (e.g. MODIS,
3o MERIS) are generally too coarse (from 250 m to a few kilometers) to capture cropland heterogeneity
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a1 [3,4]. Meanwhile, medium spatial resolution products (e.g. Landsat 30m spatial resolution) potentially
»2 miss the observations at critical growth stages due to long revisit time (16 days)[4-7]. Furthermore,
ss  the applicability of optical remote sensing gets extra challenges in tropical regions with frequent
s« cloud cover (e.g. Vietnam). Not enough satellite observations produce composite images with
35 cloud contamination and eventually reduce the quality of crop mapping [8] or influence the study of
s crop’s phenology [9]. [10] reported properly land monitoring applications would require near-daily
sz observations at medium spatial resolution. One of the effort to archive better data resolution is called
s spatio-temporal image fusion (or sensor fusion). This approach generates fine spatial resolution
s images while trying to maintain the frequency by synthesizing coarse spatial-high temporal products
s (e.g. MODIS) with high spatial-low temporal products (e.g. Landsat) [3,4,11-13]. In sensor fusion,
a1 coincidence pairs of coarse spatial-high temporal images and high spatial-low temporal images
a2 acquired on the same dates (or temporally close) are correlated to find information which is then used
a3 to downscale coarse spatial-high temporal images to the resolution of the high spatial resolution images
4 [12]. Three common image fusion techniques can be identified including image-pair-based, spatial
4 unmixing-based and hybrid methods [13,14]. However, multi-sensors fusion is reported involving
s large uncertainty [13], because of (1) low registration accuracy due to the significant difference in the
4z sensors’s resolution [14] and (2) spectral signatures of small objects can be lost in the fused images
s [14,15].

a9 Recently, there is an increase in the number of medium spatial resolution EO satellites. Since
so 2013, NASA launched Landsat 8, which is currently operating alongside Landsat 7. The combination
s:  of Landsat 7 and Landsat 8 generates three to four observations per month. Since 2015 Sentinel 2
s2 constellation from the European Space Agency is providing global scale imagery within 5-10 days
ss  revisit time at 10 to 60 meters resolution. The proven compatibility between Landsat and Sentinel 2
s« bands producing the opportunity for near-daily global temporal coverage at medium resolution by
ss merging their observations [10,16,17].

56 Nevertheless, synthesizing (or harmonizing) Landsat7/8 and Sentinel 2 is still an intricate process
sz that requires several data transformation steps [10,18]. A research project initiated by NASA has taken
ss  into account Bidirectional Reflectance Distribution Functions (BRDF) correction, sensor misregistration,
se bands re-scaling, and re-projection, as well as small band adjustment [10]. These steps were applied so
e that the multi-sensors images can be reasonably stackable for consistent time series analysis. BRDF
e» model was applied to account for the differences in the field of view angles among satellites because
ez after atmospheric correction, this variation is exaggerated [19]. In extreme cases, the differences in the
es view angle for a ground target can increase up to 20 degree [19]. Additionally, as the consequence of
e« different image registration references, sensor misregistration between Landsat 8 and Sentinel 2 varies
es geographically and can exceed one Landsat pixel (30 meters) [16,17].

o6 Besides sensor transformation, pre-treatment of Sentinel 2 and Landsat images require some
ez attention too. For example, the same atmospheric correction model should be applied to both sensors
es to reduce residual errors from using different atmospheric correction (AC) methods [20,21]. On the
e other hand, unlike predecessor satellites (e.g. Landsat, ASTER, MODIS), Sentinel 2 sensors lack thermal
7 infrared bands, therefore established thermal-based cloud mask algorithms that work well for Landsat
n  (e.g. FMASK) do not guarantee yield similar performance for Sentinel 2. Sentinel 2 cloud detection
72 and optimization are reported as the main issue in the NASA’s harmonized product [10].

73 As a consequence, given the unprecedented opportunity to improve the spatio-temporal resolution
za of EO imagery at a global scale by harmonizing Landsat and Sentinel 2 images; nonetheless, this is
75 rarely implemented because these procedures are data demanding and computationally intensive.

76 Meanwhile, emerging cloud computing platforms such as Google Earth Engine (GEE) which
7z has the planetary-scale archives of remote sensing data [22] including Landsat, Sentinel 2,
7e  significantly reduce the work for data management and speed up analyzing process [23]. Built-in
7 functions/algorithms within the GEE platform help simplify many pre-processing steps allowing
s focus on the interpretation of the core algorithms [22,24].
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81 The objective of this study is to develop a complete stream processing for the harmonization of
»2 Landsat - Sentinel 2 in Google Earth Engine (GEE) to harness the benefit of coherent data structure,
es  built-in functions and computation power in the Google Cloud. In this study, we adapt the BRDF
s« (MODIS-based fixed coefficients c-factor) [25,26] and the topographic correction model (modified
s Sun-Canopy-Sensor Topographic Correction) [27]. These models were implemented in GEE by
e [28]. We adjust the Landsat TOA’s bands (blue, green, red, nir, swirl and swir2) using cross-sensor
sz transformation coefficients derived from [29]. We describe several tests to assess and evaluate the
ss performance of each pre-processing/transforming step. Finally, we demonstrate an application of the
s harmonized dataset to mapping the dynamic of seasonal cropland in Ninh Thuan, Vietnam.

oo 2. Materials and Methods

o1 2.1. Study regions and input data

02 For the variety of test sites, we chose Ninh Thuan province (area 3366 km?2), located in Vietnam
os  (South East Asia) (Figure 1) and an agriculture scheme called Bekaa (area 898 km?2) located in Lebanon
os (Middle East) (Figure 1). For Ninh Thuan province, we processed total 97 TOA satellite images
os gathered from 18 images of Landsat 7 (PATH 123, ROW 52), 18 images of Landsat 8 (PATH 123, ROW
96 52) and 61 images of Sentinel 2 (TILE 49PBN and 49PBP). For Bekaa, we processed total 120 TOA
oz images gathered from 34 images of Landsat 7 (PATH 174, ROW 36 and ROW 37), 19 images of Landsat
os 8 (PATH 174, ROW 37) and 67 images of Sentinel 2 (TILE 365YC).
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Figure 1. Cropland maps of Ninh Thuan, Vietnam [30] (left) and of Bekaa, Lebanon [31] (right)

9o 2.2. Workflow overview

100 In general, we design the workflow into three main steps including pre-processing, sensors
11 harmonization and post-processing (Figure 2). In the pre-processing step, we convert the Top of
102 Atmosphere (TOA) images to surface reflectances (SR) (atmospheric correction) filter too cloudy
103 images and mask out high probability cloudy pixels. We applied atmospheric correction via Python
1s AP, all the other tasks were Code Editor based. Because the BRDF and topographic correction models
15 require DEM data, they are applied only when the images had been co-registered. Theharmonization
106 step refers to re-projection, rescaling and re-alignment (co-registration) of the Landsat7/8 and Sentinel
1z 2 images. Finally, the post-processing step stacks all the harmonized images into a database of GEE
10s  assets. This step also exports harmonized images to Google Drive, making it a shareable geospatial
100 dataset for non-GEE users. The GEE scripts used in the study and links to the generated harmonized
1o datasets that contain surface reflectance images (bands blue, green, red, nir, swirl, swir2, and ndvi at
11 30 meters) over the two studied sites are provided in the Appendix A.
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Figure 2. Workflow of the harmonization in GEE
uz2  2.3. Atmospheric correction
113 . . . . . , ,
To reduce residual errors from using different atmospheric correction (AC) methods [20,21], the

us  same AC model called Py6S was applied to all Landsat7/8 and Sentinel 2 TOA images. Py6S is a
us python interface of 6S radiative transfer model [32] developed by [33] to reduce time and difficulties in
ue setting up numerous input and outputs. Results produced from Py6S will be the same as the results
uzr produced from 6S [33]. [34] tested the performance of 6S with the overall relative error was less than
us 0.8 percent.

119 This study implemented Py6S in GEE based upon the code shared by [35] (Link Github ) which
120 was executed via Python API and Docker container. In the model, the view zenith angle was hardcoded
121 to “0”.

122 2.4. Cloud mask for Landsat images

123 For Landsat 7/8, cloud and cloud shadow is masked using the BQA band [9] which was generated
124 using the CFMask algorithm. CFMask has been the best overall accuracy among many sates of the art
125 cloud detection algorithms [36].

126 2.5. Cloud mask for Sentinel 2 images

127 According to an assessment by [37], the Sentinel 2 L1C product’s cloud mask band (QA60), which
126 is generated based on the blue band (B2) and SWIR bands (B11, B12) [38], generally underestimates
120 the presence of clouds. On the contrary, [39] reported that QA60 cloud masks are adjusted to minimize
130 under-detections, which leads, on the other hand, to over-detections. In either case, the performance
131 of the L1C cloud mask is low, especially under critical conditions.

132 In the GEE environment, [28] applied a cloud scoring algorithm
113 (ee.Algorithms.Landsat.simpleCloudScore) to mask clouds in Landsat 8 and Sentinel 2 images [40].
13 The algorithm exploits the spectral and thermal properties of cloud that is ‘bright and cold but not
15 snow’ [41]. However, our eye inspection showed that this Landsat based algorithm did not yield
136 satisfactory results for Sentinel 2 images over Ninh Thuan, Vietnam. This is likely due to the complex
13z atmospheric condition (e.g. high water vapor content) [37] in Ninh Thuan region and lacking a
138 thermal band in Sentinel 2 images.
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139 Inspired by the work of [42] which showed that cloud detection using a machine learning approach
10 can outperform current states of the art threshold-based cloud detection such as Fmask, Sen2Cor
11 or even MAJA which used multi-temporal method for cloud detection [43]. This study combined
12 the QA60’s mask with a supervised classification approach in GEE. For every Sentinel 2 scene, we
13 trained the RF classifier using the QA60 band as the base field for stratified random sampling. GEE
1aa APl simplified this procedure with two built-in algorithms called ee.Classifier.randomForest() and
s ee.lmage.stratifiedSample() [44,45]. Also, we used the Normalized Difference Snow Index (NDSI) to
16 prevent snow from being masked [28]. We used eye visual inspection to check the performance of this
147 procedure, which showed promising results in such a complicated atmospheric condition like Ninh
1es  Thuan, Vietnam. Figure A2 demonstrated how the cloud was masked in a cloudy Sentinel 2 scene over
1e0  Ninh Thuan, Vietnam.

1s0  2.6. Cloud shadow detection

151 Cloud shadow can be predicted using the cloud’s shape, height and sun position at the time [46].
152 However, this method first depends on the cloud identification ability and poses large uncertainty
153 while projecting the cloud’s shadow on the earth’s surface. This study used Temporal Dark Outlier
1ss  Mask (TDOM) method which greatly improves the detection of cloud shadow via catching dark pixel
15 anomaly [41]. The TDOM method based on the idea that cloud shadow appears dark and disappears
156 quickly as the cloud moves. The implementation of TDOM in GEE was adapted from [28].

w7 2.7. Co-registration between Landsat and Sentinel 2 images

158 The miss alignment (or miss registration) between L8 and S2 images varied geographically
10 and can exceed 38 meters [16]. It is mainly due to the residual geolocation errors in the Landsat-8
160 framework which based upon the Global Land Survey images. In GEE, we used displacement() to
161 measure the displacement between two overlapped S2 and L8 images which were captured at the
162 same time over the studied region. Then displace() function is used to displace or wrap (“rubber-sheet”
163 technique) the L8 image aligned with the S2 image [47]. Because the L8-52 misalignment is reported
1ee  stable for a given area and S2 absolute geodetic accuracy is better than L8 [16], this study aligned
1es all Landsat images (same PATH, ROW) using a common base S2 [48]. We also assumed that the
1es misalignment among the same satellite images is neglectable. The co-alignment step described here is
167 purely an image processing technique. It differs from geo-referencing or geo-correcting which involves
s aligning images to the correct geographic location through ground control points. At the moment, GEE
160 documentation does not explain clearly the underlying of displacement() and displace() algorithms,
170 however, [49] described in great details a similar tool called AROP which is an open-source package
i designed specifically for registration and orthorectification of Landsat and Landsat-like data.

w2 2.8. Re-projection and Scaling

173 Because each band can have a different scale and projection [50] therefore band’s projection was
17a  transformed according to the red band of 52 (WGS84) and band’s resolution was rescaled to 30m using
s ‘bicubic” interpolation [51,52].

176 2.9. BRDF correction

177 The Bidirectional Reflectance Distribution Functions (BRDF) model is applied to reduce the
17e  directional effects due to the differences in solar and view angles between Landsat and Sentinel 2 [10].
17 The implementation of BRDF correction in GEE was developed by [28] based on results from [25]
1o and [26]. This BRDF is MODIS-based fixed coefficients c-factor, originally developed for Landsat but
11 proven to be working for S2 as well [18,25,26]. The view angle is set to nadir and the illumination is set
1.2 based on the center latitude of the tile [10].
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183 2.10. Topographic correction

184 Topographic correction accounts for variations in reflectance due to slope, aspect, and elevation.
s Topographic correction is not always required but can be essential in mountainous or rugged terrain
s [53,54]. The implementation of topographic correction in GEE was developed by [28]. The method
1z based on the modified Sun-Canopy-Sensor Topographic Correction as described in [27]. The digital
1es  elevation model (DEM) used is SRTM V3 product (30m SRTM Plus) which has undergone a void-filling
180 process using open-source data (ASTER GDEM2, GMTED2010, and NED) provided by NASA JPL [55].

10 2.11. Band adjustment

101 Although, efforts have been made into the radiometric and geometric calibration of the
102 independently managed Landsat and Sentinel 2 missions so that their bands are compatible [17],
103 small spectral differences in the common bands still exist [10,17,29]. We adjusted the six Landsat bands
s (blue, green, red, nir, swirl and swir2) using cross-sensor transformation coefficients (Table 1) derived
15 from [29]’s study. [29] used absolute difference metrics and major axis linear regression analysis over
16 10,000 image pairs across the conterminous United States to compute these transformation coefficients.

Table 1. Cross-sensor transformation coefficients for Landsat7/8 [29]

L8 L7
Bands | Intercept  Slope Intercept Slope
Blue -0.0107 1.0946 -0.0139 1.1060
Green 0.0026 1.0043 0.0041 0.9909
Red -0.0015 1.0524 -0.0024 1.0568
NIR 0.0033 0.8954 -0.0076 1.0045
SWIR1 0.0065 1.0049 0.0041 1.0361
SWIR2 0.0046 1.0002 0.0086 1.0401

(With: Sentinel2 = Landsat7/8 * Slope + Intercept)

107 3. Results and Discussions

1s  3.1. Design of the evaluation experiments

109 Because this study employed several transformation models from other studies, for example,
20 BRDF and topographic correction models from [28]; band adjustment coefficients from [29];
21 image co-registration from [47]. However, some studies suggested site-specific models may be
202 required for specific areas of study due to inconsistent regression coefficient values obtained across
203 different study areas [18,56,57]. Therefore, we applied several tests to evaluate the effect of each
204 processing/transformation step on two overlapped 52 and L8 images which were captured at the same
20s time over the studied regions. Rectangular areas without cloud, cirrus or saturated pixels were selected
206 for analysis. Tested image IDs, date, time captured are presented in Table 2. Section 3.2 estimated the
207 reduction in sensor mis-registration, section 3.3 calculated per band spatial Pearson’s correlation and
208 section 3.4 assessed the temporal correlation of NDVI time series.

200 3.2. Reducing the sensors mis-registration

210 Figure 3 showed per pixel offset differences in the tested areas, measured by the magnitude of
2 the vector formed by dX and dY [47], before and after the overlapped pair of L8-52 images were
22 co-registered using the method described in 2.8. For Bekaa, the offset differences were reduced
213 significantly from [22 - 32] meters to less than 8 meters (mostly less than 2 meters). For Ninh
zs Thuan, Vietnam, the mis-alignment was reduced from 12 meters (maximum) to mostly less than 2
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Table 2. Overlapped S2 and L8 images selected for performance evaluation

Products | Acquisition Date Time Image 1D Region

L8 _TOA 07/11/2018 08:10:14 |LANDSAT/LCO08/C01/T1/LC08_174036_20181107 Bekaa

§2_L1C 07/11/2018 08:30:42 |COPERNICUS/S2/20181107T082129_20181107T082732_T36SYC Bekaa

L8 _TOA 11/08/2017 03:01:30 [LANDSAT/LCO8/C01/T1_TOA/LC08_123052_20170811 Ninh Thuan

COPERNICUS/S2/20170811T032319_20170811T032319_T49PBN
52 _L1C 11/08/2017 03:23:19 s - Ninh Thuan
- COPERNICUS/S2/20170811T032319_20170811T032319_T49PBP

x5 meters. These results are in agreement with [16] who also found geographically varied mis-alignments
26 between L8-52. Further analysis in Table 3 showed that the co-registration step contributed the most
21z improvement in band-to-band spatial correlation.
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Figure 3. Per-pixel offset differences between L8 and S2 in the tested areas ((a) Bekaa, Lebanon and
(b) Ninh Thuan, Vietnam) measured by the magnitude of the vector formed by dX and dY. Black
dots are the offset distances between the original images of L8 and S2, red dots are when they were
co-registered.

=ns  3.3. Band to band spatial correlation

210 We analyzed the band-to-band correlation over two separated domains, a flat agricultural area
220 (Figure 4a), and a mountainous area (Figure 4b). Each domain has an area of 0.3 km2, without cloud,
221 cirrus or saturated pixels.

222 Table 3 compared Pearson correlation (r) values of bands (red, nir and ndvi) when each
223 processing/transformation step is applied, in the flat area (Table 3a) and the mountainous area
22 (Table 3b). PO represents the starting point and P5 represents the last step (band adjustment). For
225 the flat area, correlation values increased significantly from (0.67, 0.75, 0.79) to (0.93, 0.95, 0.96) in
226 bands (red, nir, ndvi) respectively. For the mountainous area, r increased from (0.56, 0.45, 0.63) to (0.77,
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(b)

Figure 4. A flat agricultural area (a), and a mountainous area (b) in Bekaa, Lebanon, represented by
true-color composites of the Landsat 8, used for L8-52 band-to-band correlation analysis. Each domain
has an area of 0.3 km2, without cloud, cirrus or saturated pixels.

227 0.72,0.80) in (red, nir, ndvi) bands. There is a higher correlation occurred in the flat area than in the
22 mountainous area is likely due to the impacts of untreated hill shadow or hill’s slope. This result stands
220 in agreement with [53] and [54] who emphasized the importance of properly topographic correction in
230 mountainous or rugged terrain. Table 3 also indicated the co-registration step (P3) contributed the
231 most improvement in band-to-band spatial correlation.

Table 3. L8-S2 cross-comparison of the Pearson correlation (r) values in bands (red, nir and ndvi) when
each processing/transformation step is applied, in the flat area (a) and the mountainous area (b)

(a)

Processing Step | Pearson’sr | Pearson'sr | Pearson’sr
(Red) (NIR) (NDVI)
PO Criginal (BOA) 06665 0.7479 07871
P1 Rescale L8 to 10m 06917 07655 0.808
P2 BRDF correction 06917 07634 0.8089
P3 Co-registration 0.9268 0.9490 0.9637
P4 Topo correction 0.9270 0.9490 0.9637
P5 Band Adjustment 0.9270 0.9490 0.9641
(b)
Processing Step | Pearson’sr | Pearson'sr | Pearson’sr
(Red) (NIR) (NDVI)
PO Original (BOA) 0.5647 0.4453 0.6347
P1 Rescale L& to 10m 0.5773 0.4561 0.6606
P2 BRDF correction 05765 04525 06618
P3 Co-registration 0.7064 0.5860 0.8408
P4 Topo carrection 07718 07193 07969
P5 Band Adjustment 07719 07193 07973
232 For further analysis in the flat domain, Figure Al presented per-pixel scatter plots of all seven

233 bands (blue, green, red, nir, swirl, swir2, and ndvi), compared (r, bias, and RMSE) before and after
23¢  the overlapped L8-52 images were harmonized. These plots showed all bands are in good agreement.
235 Band SWIRI1 reached the highest correlation (r = 0.972) and band Blue has the lowest (r = 0.868).

26 3.4. Affect of band adjustment to temporal correlation in NDVI time series

237 Figure 5a and Figure 5b showed NDVI time series at a typical pixel (lat =, long = ) before and after
28 the band adjustment was applied. Ones can observe that, before band adjustment, the NDVI values
230 of L8 were systematically lower than that of S2 (Figure 9a), but after the band adjustment, the two
2¢0 datasets matched chronologically (Figure 9b). Figure 9c showed the final harmonized ndvi time series
2a1 which gathered data from all sensors. There are gaps existed in the time series because cloudy covered
2e2 images were automatically eliminated in the process.
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Figure 5. First two plots are the temporal NDVI time series over a typical crop pixel in Bekaa, Lebanon
(lat =36.01, long =33.83) before and after band adjustment. The last image showed the harmonized
NDVI time series from all sensors. There are gaps in the time series because the cloudy images were

eliminated in the processing.

243 As previously reported in Table 3b, the spatial band-to-band correlation is low in the mountainous
2a¢  Tegion due to the impacts of the hill’s slope or remaining of untreated hill shadow. This problem is
a5 further visualized in Figure 6 which showed the NDVI time series of a pixel located in a mountainous
2e6  area (lat = 36.04, long = 33.81). After the processing, Landsat’s NDVI values were seen systematically
2ez  lower than that of Sentinel 2. This result suggested that the topographic correction model can be
2es  improved.
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Figure 6. NDVI time series of a pixel located in a mountainous area in Bekaa (lat = 36.04, long = 33.81).
After the processing, Landsat’s NDVI values were seen systematically lower than that of Sentinel 2

200 3.5. Assessing the dynamic cropland variation in Ninh Thuan, Vietnam

250 Ninh Thuan province is the most drought-prone in Vietnam [58]. To cope with water shortage
=1 throughout the next dry season (from Jan to Aug), exceeded rainwater during the rainy season (from
=2 Aug to Nov) is collected via more than 20 small to medium size reservoirs. Water is irrigated for the
23 next two crop seasons which are winter-spring crop (from Dec to Apr) and summer crop (from May
s to Aug). Thus, the extended cropland area is largest during the winter-spring season, then reduced
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25 during the summer because of possible water shortage. Meanwhile, the crop during rainy season can
26 be vulnerable to flood [59].

287 Extended cropland is valuable for the province’s Irrigation Management Company (IMC) to
ze  calculate water distribution volume and predict water demand for the next season. However, because
20 Of seasonal variation, mixed crop rotation and data-scarce, it is difficult for the province to obtain
260 Up-to-date and accurate seasonal extended cropland.

261 As harmonic (or Fourier) analysis has proven useful in characterizing seasonal cycles and variation
22 in land used/land cover types [8,60-63], this study applied harmonic analysis on dense NDVI time
263 series, obtained from the harmonized dataset (L7, L8, and S2), to mapping seasonal cropland in Ninh
2ea Thuan during 2018.

205 Following a methodology described in [8] and implementation of the harmonic model in GEE by
266 [64], we fitted the time series of NDVI data in every pixel. Figure 7 showed NDVI time series and fitted
267 values of regions that have one crop, two crops and three crops per year in Ninh Thuan region. The
2ee phase and amplitude values, which were derived from the harmonic models, will be used to express
260 the temporal signature of NDVI.
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Figure 7. Detected unimodal (a), bimodal (b) and trimodal (c) shapes in the temporal NDVI patterns
of different paddy rice areas during 2018. Fitted values (smaller green dots) are used to calculate the
phase and amplitude of the cycles.

270 Since the first harmonic term represents the annual cycle [60], the cropland’s variation was
2 identified using a composite image of phase, amplitude (of the first harmonic term) and the max NDVI
22 (Figure 8). Because NDVI at cropland pixels are characterized with high temporal variation, high angle
273 Or sharp turn at the peak of crop growth, and high max NDVI values, croplands were highlighted in
27a  the Figure 8 as bright colored pixels. Meanwhile, black or gray pixels represent non-cropland. Within
25 the scope of this study, we only interest in the cropland location, although, specific crop types can be
zre  further identified using a rule-based approach and ground truth parameters [8].
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Figure 8. Cropland variation characterized by R-G-B composite image from amplitude, phase (of the
first harmonic term) and max-NDVI values. This map highlighted croplands in Ninh Thuan during
2018 as colored pixels (high phase and amplitude) and other types of land as grey/dark pixels (low
phase/amplitude).

27z 4. Conclusions

278 In the presented paper, we demonstrated a complete stream workflow in Google Earth Engine to
270 generate harmonized Landsat — Sentinel 2 images for two agriculture schemes in Bekaa, Lebanon, and
220 Ninh Thuan, Vietnam. We evaluated the performance of several pre-processing steps necessary for
ze1 the harmonization including image co-registration, brdf correction, topographic correction, and band
202 adjustment. Band adjustment, although, has little impact on L8-5S2 spatial correlation, it is valuable
2es for matching temporal spectral time series. The offset difference between L8 and S2 images was as
2es large as 32 meters in the Bekaa region and if not treated, posed a great impact on the quality of the
2es harmonized dataset. Although a topographic correction model was applied, the low performance was
2e6 Observed in mountainous areas.

287 The merging of multiple sensors improved crop monitoring as it increased temporal resolution
2es and provided more observations during the growing season. Dense observations also omit the need for
200 data smoothing techniques. We demonstrated an application of the harmonized dataset by mapping
200 the extended cropland via harmonic analysis for Ninh Thuan province in 2018.
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Generated harmonized datasets that contain surface reflectance images (bands blue, green, red, nir,
swirl, swir2, and ndvi at 30 meters) over the two studied sites are provided for public usage and testing.
Data link (Google drive): https://drive.google.com/open?id=1noOMmpL_WASBWzFRmmUWGPMst-
JYMtI-P. GEE app to inspect the NDVI time series and the detected croplands in Ninh Thuan:
https:/ /ndminhhus.users.earthengine.app/view/cropninhthuan2019. All GEE scripts used in the
study are documented at https:/ /github.com/ndminhhus/geeguide.
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Figure Al. Per-pixel scatters plots of all seven bands (blue, green, red, nir, swirl, swir2, and ndvi)
for the flat domain in Bekaa, provided N (total number of the pixels), r, bias, and Root Mean Square
Error-RMSE after the overlapped L8-S2 images were harmonized. The straight line represents the
linear regression.
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Figure A2. Demonstration of cloud masking steps. (a) Cloudy true color image, (b) Cloud & cirrus
masked (yellow) using only QA60 Band, (c) cloud mask using combination of Red and Aerosol Band
(B4 & B1), (d) cloud mask using random forest classification, band QA60 was used as training field (e)
cloud mask combined all together. This scene was acquired by Sentienl2B on May 12, 2019 over Ninh
Thuan, Vietnam (id = COPERNICUS/S2/20190513T030549_20190513T032056_T49PBN).
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