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Abstract: Proper satellite-based crop monitoring applications at the farm-level often require near-daily 
imagery at medium to high spatial resolution. The synthesizing of ongoing satellite missions by 
ESA (Sentinel 2) and NASA (Landsat7/8) provides this unprecedented opportunity at a global 
scale; nonetheless, this is rarely implemented because these procedures are data demanding and 
computationally intensive. This study developed a complete stream processing in the Google 
Earth Engine cloud platform to generate harmonized surface reflectance images of Landsat7,8 and 
Sentinel 2 missions. The harmonized images were generated for two agriculture schemes in Bekaa 
(Lebanon) and Ninh Thuan (Vietnam) during the period 2018-2019. We evaluated the performance 
of several pre-processing steps needed for the harmonization including image co-registration, brdf 
correction, topographic correction, and band adjustment. This study found the miss-registration 
between Landsat 8 and Sentinel 2 images, varied from 10 meters in Ninh Thuan, Vietnam to 32 
meters in Bekaa, Lebanon, and if not treated, posed a great impact on the quality of the harmonized 
data set. Analysis of a pair overlapped L8-S2 images over the Bekaa region showed that after the 
harmonization, all band-to-band spatial correlations were greatly improved from (0.57, 0.64, 0.67, 
0.75, 0.76, 0.75, 0.79) to (0.87, 0.91, 0.92, 0.94, 0.97, 0.97, 0.96) in bands (blue, green, red, nir,swir1,swir2, 
ndvi) respectively. Finally, we demonstrated the high potential of the harmonized data set for crop 
mapping and monitoring. Harmonic (Fourier) analysis was applied to fit the detected unimodal, 
bimodal and trimodal shapes in the temporal NDVI patterns during one crop year in Ninh Thuan 
province. Derived phase and amplitude values of the crop cycles were combined with max-NDVI as 
an R-G-B image. This image highlighted croplands in bright colors (high phase and amplitude) and 
non-crop areas in grey/dark (low phase/amplitude). Generated harmonized data sets (30m spatial 
resolution) over the two studied sites along with GEE scripts/app used in the study are provided for 
public usage and testing.
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1. Introduction25

In recent decades, advances in technology and algorithms have made satellite remote sensing26

played an ever-increasing role in crop monitoring [1,2]. However, current global satellite missions do27

not possess enough temporal-spatial resolution to capture crop growth’s dynamic and heterogeneity28

at the farm level. Number of studies pointed out that high temporal resolution products (e.g. MODIS,29

MERIS) are generally too coarse (from 250 m to a few kilometers) to capture cropland heterogeneity30

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 October 2019                   doi:10.20944/preprints201910.0275.v1

©  2019 by the author(s). Distributed under a Creative Commons CC BY license.

Peer-reviewed version available at Remote Sens. 2020, 12, 281; doi:10.3390/rs12020281

http://www.mdpi.com
https://doi.org/10.20944/preprints201910.0275.v1
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs12020281


2 of 16

[3,4]. Meanwhile, medium spatial resolution products (e.g. Landsat 30m spatial resolution) potentially31

miss the observations at critical growth stages due to long revisit time (16 days)[4–7]. Furthermore,32

the applicability of optical remote sensing gets extra challenges in tropical regions with frequent33

cloud cover (e.g. Vietnam). Not enough satellite observations produce composite images with34

cloud contamination and eventually reduce the quality of crop mapping [8] or influence the study of35

crop’s phenology [9]. [10] reported properly land monitoring applications would require near-daily36

observations at medium spatial resolution. One of the effort to archive better data resolution is called37

spatio-temporal image fusion (or sensor fusion). This approach generates fine spatial resolution38

images while trying to maintain the frequency by synthesizing coarse spatial-high temporal products39

(e.g. MODIS) with high spatial-low temporal products (e.g. Landsat) [3,4,11–13]. In sensor fusion,40

coincidence pairs of coarse spatial-high temporal images and high spatial-low temporal images41

acquired on the same dates (or temporally close) are correlated to find information which is then used42

to downscale coarse spatial-high temporal images to the resolution of the high spatial resolution images43

[12]. Three common image fusion techniques can be identified including image-pair-based, spatial44

unmixing-based and hybrid methods [13,14]. However, multi-sensors fusion is reported involving45

large uncertainty [13], because of (1) low registration accuracy due to the significant difference in the46

sensors’s resolution [14] and (2) spectral signatures of small objects can be lost in the fused images47

[14,15].48

Recently, there is an increase in the number of medium spatial resolution EO satellites. Since49

2013, NASA launched Landsat 8, which is currently operating alongside Landsat 7. The combination50

of Landsat 7 and Landsat 8 generates three to four observations per month. Since 2015 Sentinel 251

constellation from the European Space Agency is providing global scale imagery within 5-10 days52

revisit time at 10 to 60 meters resolution. The proven compatibility between Landsat and Sentinel 253

bands producing the opportunity for near-daily global temporal coverage at medium resolution by54

merging their observations [10,16,17].55

Nevertheless, synthesizing (or harmonizing) Landsat7/8 and Sentinel 2 is still an intricate process56

that requires several data transformation steps [10,18]. A research project initiated by NASA has taken57

into account Bidirectional Reflectance Distribution Functions (BRDF) correction, sensor misregistration,58

bands re-scaling, and re-projection, as well as small band adjustment [10]. These steps were applied so59

that the multi-sensors images can be reasonably stackable for consistent time series analysis. BRDF60

model was applied to account for the differences in the field of view angles among satellites because61

after atmospheric correction, this variation is exaggerated [19]. In extreme cases, the differences in the62

view angle for a ground target can increase up to 20 degree [19]. Additionally, as the consequence of63

different image registration references, sensor misregistration between Landsat 8 and Sentinel 2 varies64

geographically and can exceed one Landsat pixel (30 meters) [16,17].65

Besides sensor transformation, pre-treatment of Sentinel 2 and Landsat images require some66

attention too. For example, the same atmospheric correction model should be applied to both sensors67

to reduce residual errors from using different atmospheric correction (AC) methods [20,21]. On the68

other hand, unlike predecessor satellites (e.g. Landsat, ASTER, MODIS), Sentinel 2 sensors lack thermal69

infrared bands, therefore established thermal-based cloud mask algorithms that work well for Landsat70

(e.g. FMASK) do not guarantee yield similar performance for Sentinel 2. Sentinel 2 cloud detection71

and optimization are reported as the main issue in the NASA’s harmonized product [10].72

As a consequence, given the unprecedented opportunity to improve the spatio-temporal resolution73

of EO imagery at a global scale by harmonizing Landsat and Sentinel 2 images; nonetheless, this is74

rarely implemented because these procedures are data demanding and computationally intensive.75

Meanwhile, emerging cloud computing platforms such as Google Earth Engine (GEE) which76

has the planetary-scale archives of remote sensing data [22] including Landsat, Sentinel 2,77

significantly reduce the work for data management and speed up analyzing process [23]. Built-in78

functions/algorithms within the GEE platform help simplify many pre-processing steps allowing79

focus on the interpretation of the core algorithms [22,24].80
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The objective of this study is to develop a complete stream processing for the harmonization of81

Landsat - Sentinel 2 in Google Earth Engine (GEE) to harness the benefit of coherent data structure,82

built-in functions and computation power in the Google Cloud. In this study, we adapt the BRDF83

(MODIS-based fixed coefficients c-factor) [25,26] and the topographic correction model (modified84

Sun-Canopy-Sensor Topographic Correction) [27]. These models were implemented in GEE by85

[28]. We adjust the Landsat TOA’s bands (blue, green, red, nir, swir1 and swir2) using cross-sensor86

transformation coefficients derived from [29]. We describe several tests to assess and evaluate the87

performance of each pre-processing/transforming step. Finally, we demonstrate an application of the88

harmonized dataset to mapping the dynamic of seasonal cropland in Ninh Thuan, Vietnam.89

2. Materials and Methods90

2.1. Study regions and input data91

For the variety of test sites, we chose Ninh Thuan province (area 3366 km2), located in Vietnam92

(South East Asia) (Figure 1) and an agriculture scheme called Bekaa (area 898 km2) located in Lebanon93

(Middle East) (Figure 1). For Ninh Thuan province, we processed total 97 TOA satellite images94

gathered from 18 images of Landsat 7 (PATH 123, ROW 52), 18 images of Landsat 8 (PATH 123, ROW95

52) and 61 images of Sentinel 2 (TILE 49PBN and 49PBP). For Bekaa, we processed total 120 TOA96

images gathered from 34 images of Landsat 7 (PATH 174, ROW 36 and ROW 37), 19 images of Landsat97

8 (PATH 174, ROW 37) and 67 images of Sentinel 2 (TILE 36SYC).98

Figure 1. Cropland maps of Ninh Thuan, Vietnam [30] (left) and of Bekaa, Lebanon [31] (right)

2.2. Workflow overview99

In general, we design the workflow into three main steps including pre-processing, sensors100

harmonization and post-processing (Figure 2). In the pre-processing step, we convert the Top of101

Atmosphere (TOA) images to surface reflectances (SR) (atmospheric correction) filter too cloudy102

images and mask out high probability cloudy pixels. We applied atmospheric correction via Python103

API, all the other tasks were Code Editor based. Because the BRDF and topographic correction models104

require DEM data, they are applied only when the images had been co-registered. Theharmonization105

step refers to re-projection, rescaling and re-alignment (co-registration) of the Landsat7/8 and Sentinel106

2 images. Finally, the post-processing step stacks all the harmonized images into a database of GEE107

assets. This step also exports harmonized images to Google Drive, making it a shareable geospatial108

dataset for non-GEE users. The GEE scripts used in the study and links to the generated harmonized109

datasets that contain surface reflectance images (bands blue, green, red, nir, swir1, swir2, and ndvi at110

30 meters) over the two studied sites are provided in the Appendix A.111
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Sentinel 2  L1CLandsat 8 TOALandsat 7 TOA

General Filtering (time, path, row, tile’s cloud cover)

Atmospheric Correction  (Py6S)

Cloud & Shadow Masking, Screening

Re-projection, re-registration

BRDF correction, Topo correction

S2 re-scalingLandsat 7,8 band adjustment 

Stacked harmonized images in Google Earth Engine Assets, Google Drive

30m resolution, decadal composite, projection EPSG: 4326 WGS84

Figure 2. Workflow of the harmonization in GEE

2.3. Atmospheric correction112

To reduce residual errors from using different atmospheric correction (AC) methods [20,21], the113

same AC model called Py6S was applied to all Landsat7/8 and Sentinel 2 TOA images. Py6S is a114

python interface of 6S radiative transfer model [32] developed by [33] to reduce time and difficulties in115

setting up numerous input and outputs. Results produced from Py6S will be the same as the results116

produced from 6S [33]. [34] tested the performance of 6S with the overall relative error was less than117

0.8 percent.118

This study implemented Py6S in GEE based upon the code shared by [35] (Link Github ) which119

was executed via Python API and Docker container. In the model, the view zenith angle was hardcoded120

to “0”.121

2.4. Cloud mask for Landsat images122

For Landsat 7/8, cloud and cloud shadow is masked using the BQA band [9] which was generated123

using the CFMask algorithm. CFMask has been the best overall accuracy among many sates of the art124

cloud detection algorithms [36].125

2.5. Cloud mask for Sentinel 2 images126

According to an assessment by [37], the Sentinel 2 L1C product’s cloud mask band (QA60), which127

is generated based on the blue band (B2) and SWIR bands (B11, B12) [38], generally underestimates128

the presence of clouds. On the contrary, [39] reported that QA60 cloud masks are adjusted to minimize129

under-detections, which leads, on the other hand, to over-detections. In either case, the performance130

of the L1C cloud mask is low, especially under critical conditions.131

In the GEE environment, [28] applied a cloud scoring algorithm132

(ee.Algorithms.Landsat.simpleCloudScore) to mask clouds in Landsat 8 and Sentinel 2 images [40].133

The algorithm exploits the spectral and thermal properties of cloud that is ’bright and cold but not134

snow’ [41]. However, our eye inspection showed that this Landsat based algorithm did not yield135

satisfactory results for Sentinel 2 images over Ninh Thuan, Vietnam. This is likely due to the complex136

atmospheric condition (e.g. high water vapor content) [37] in Ninh Thuan region and lacking a137

thermal band in Sentinel 2 images.138
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Inspired by the work of [42] which showed that cloud detection using a machine learning approach139

can outperform current states of the art threshold-based cloud detection such as Fmask, Sen2Cor140

or even MAJA which used multi-temporal method for cloud detection [43]. This study combined141

the QA60’s mask with a supervised classification approach in GEE. For every Sentinel 2 scene, we142

trained the RF classifier using the QA60 band as the base field for stratified random sampling. GEE143

API simplified this procedure with two built-in algorithms called ee.Classifier.randomForest() and144

ee.Image.stratifiedSample() [44,45]. Also, we used the Normalized Difference Snow Index (NDSI) to145

prevent snow from being masked [28]. We used eye visual inspection to check the performance of this146

procedure, which showed promising results in such a complicated atmospheric condition like Ninh147

Thuan, Vietnam. Figure A2 demonstrated how the cloud was masked in a cloudy Sentinel 2 scene over148

Ninh Thuan, Vietnam.149

2.6. Cloud shadow detection150

Cloud shadow can be predicted using the cloud’s shape, height and sun position at the time [46].151

However, this method first depends on the cloud identification ability and poses large uncertainty152

while projecting the cloud’s shadow on the earth’s surface. This study used Temporal Dark Outlier153

Mask (TDOM) method which greatly improves the detection of cloud shadow via catching dark pixel154

anomaly [41]. The TDOM method based on the idea that cloud shadow appears dark and disappears155

quickly as the cloud moves. The implementation of TDOM in GEE was adapted from [28].156

2.7. Co-registration between Landsat and Sentinel 2 images157

The miss alignment (or miss registration) between L8 and S2 images varied geographically158

and can exceed 38 meters [16]. It is mainly due to the residual geolocation errors in the Landsat-8159

framework which based upon the Global Land Survey images. In GEE, we used displacement() to160

measure the displacement between two overlapped S2 and L8 images which were captured at the161

same time over the studied region. Then displace() function is used to displace or wrap (“rubber-sheet”162

technique) the L8 image aligned with the S2 image [47]. Because the L8-S2 misalignment is reported163

stable for a given area and S2 absolute geodetic accuracy is better than L8 [16], this study aligned164

all Landsat images (same PATH, ROW) using a common base S2 [48]. We also assumed that the165

misalignment among the same satellite images is neglectable. The co-alignment step described here is166

purely an image processing technique. It differs from geo-referencing or geo-correcting which involves167

aligning images to the correct geographic location through ground control points. At the moment, GEE168

documentation does not explain clearly the underlying of displacement() and displace() algorithms,169

however, [49] described in great details a similar tool called AROP which is an open-source package170

designed specifically for registration and orthorectification of Landsat and Landsat-like data.171

2.8. Re-projection and Scaling172

Because each band can have a different scale and projection [50] therefore band’s projection was173

transformed according to the red band of S2 (WGS84) and band’s resolution was rescaled to 30m using174

‘bicubic’ interpolation [51,52].175

2.9. BRDF correction176

The Bidirectional Reflectance Distribution Functions (BRDF) model is applied to reduce the177

directional effects due to the differences in solar and view angles between Landsat and Sentinel 2 [10].178

The implementation of BRDF correction in GEE was developed by [28] based on results from [25]179

and [26]. This BRDF is MODIS-based fixed coefficients c-factor, originally developed for Landsat but180

proven to be working for S2 as well [18,25,26]. The view angle is set to nadir and the illumination is set181

based on the center latitude of the tile [10].182
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2.10. Topographic correction183

Topographic correction accounts for variations in reflectance due to slope, aspect, and elevation.184

Topographic correction is not always required but can be essential in mountainous or rugged terrain185

[53,54]. The implementation of topographic correction in GEE was developed by [28]. The method186

based on the modified Sun-Canopy-Sensor Topographic Correction as described in [27]. The digital187

elevation model (DEM) used is SRTM V3 product (30m SRTM Plus) which has undergone a void-filling188

process using open-source data (ASTER GDEM2, GMTED2010, and NED) provided by NASA JPL [55].189

2.11. Band adjustment190

Although, efforts have been made into the radiometric and geometric calibration of the191

independently managed Landsat and Sentinel 2 missions so that their bands are compatible [17],192

small spectral differences in the common bands still exist [10,17,29]. We adjusted the six Landsat bands193

(blue, green, red, nir, swir1 and swir2) using cross-sensor transformation coefficients (Table 1) derived194

from [29]’s study. [29] used absolute difference metrics and major axis linear regression analysis over195

10,000 image pairs across the conterminous United States to compute these transformation coefficients.196

Table 1. Cross-sensor transformation coefficients for Landsat7/8 [29]

(With: Sentinel2 = Landsat7/8 * Slope + Intercept)

3. Results and Discussions197

3.1. Design of the evaluation experiments198

Because this study employed several transformation models from other studies, for example,199

BRDF and topographic correction models from [28]; band adjustment coefficients from [29];200

image co-registration from [47]. However, some studies suggested site-specific models may be201

required for specific areas of study due to inconsistent regression coefficient values obtained across202

different study areas [18,56,57]. Therefore, we applied several tests to evaluate the effect of each203

processing/transformation step on two overlapped S2 and L8 images which were captured at the same204

time over the studied regions. Rectangular areas without cloud, cirrus or saturated pixels were selected205

for analysis. Tested image IDs, date, time captured are presented in Table 2. Section 3.2 estimated the206

reduction in sensor mis-registration, section 3.3 calculated per band spatial Pearson’s correlation and207

section 3.4 assessed the temporal correlation of NDVI time series.208

3.2. Reducing the sensors mis-registration209

Figure 3 showed per pixel offset differences in the tested areas, measured by the magnitude of210

the vector formed by dX and dY [47], before and after the overlapped pair of L8-S2 images were211

co-registered using the method described in 2.8. For Bekaa, the offset differences were reduced212

significantly from [22 - 32] meters to less than 8 meters (mostly less than 2 meters). For Ninh213

Thuan, Vietnam, the mis-alignment was reduced from 12 meters (maximum) to mostly less than 2214
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Table 2. Overlapped S2 and L8 images selected for performance evaluation

meters. These results are in agreement with [16] who also found geographically varied mis-alignments215

between L8-S2. Further analysis in Table 3 showed that the co-registration step contributed the most216

improvement in band-to-band spatial correlation.217

Figure 3. Per-pixel offset differences between L8 and S2 in the tested areas ((a) Bekaa, Lebanon and
(b) Ninh Thuan, Vietnam) measured by the magnitude of the vector formed by dX and dY. Black
dots are the offset distances between the original images of L8 and S2, red dots are when they were
co-registered.

3.3. Band to band spatial correlation218

We analyzed the band-to-band correlation over two separated domains, a flat agricultural area219

(Figure 4a), and a mountainous area (Figure 4b). Each domain has an area of 0.3 km2, without cloud,220

cirrus or saturated pixels.221

Table 3 compared Pearson correlation (r) values of bands (red, nir and ndvi) when each222

processing/transformation step is applied, in the flat area (Table 3a) and the mountainous area223

(Table 3b). P0 represents the starting point and P5 represents the last step (band adjustment). For224

the flat area, correlation values increased significantly from (0.67, 0.75, 0.79) to (0.93, 0.95, 0.96) in225

bands (red, nir, ndvi) respectively. For the mountainous area, r increased from (0.56, 0.45, 0.63) to (0.77,226
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Figure 4. A flat agricultural area (a), and a mountainous area (b) in Bekaa, Lebanon, represented by
true-color composites of the Landsat 8, used for L8-S2 band-to-band correlation analysis. Each domain
has an area of 0.3 km2, without cloud, cirrus or saturated pixels.

0.72, 0.80) in (red, nir, ndvi) bands. There is a higher correlation occurred in the flat area than in the227

mountainous area is likely due to the impacts of untreated hill shadow or hill’s slope. This result stands228

in agreement with [53] and [54] who emphasized the importance of properly topographic correction in229

mountainous or rugged terrain. Table 3 also indicated the co-registration step (P3) contributed the230

most improvement in band-to-band spatial correlation.231

Table 3. L8-S2 cross-comparison of the Pearson correlation (r) values in bands (red, nir and ndvi) when
each processing/transformation step is applied, in the flat area (a) and the mountainous area (b)

For further analysis in the flat domain, Figure A1 presented per-pixel scatter plots of all seven232

bands (blue, green, red, nir, swir1, swir2, and ndvi), compared (r, bias, and RMSE) before and after233

the overlapped L8-S2 images were harmonized. These plots showed all bands are in good agreement.234

Band SWIR1 reached the highest correlation (r = 0.972) and band Blue has the lowest (r = 0.868).235

3.4. Affect of band adjustment to temporal correlation in NDVI time series236

Figure 5a and Figure 5b showed NDVI time series at a typical pixel (lat =, long = ) before and after237

the band adjustment was applied. Ones can observe that, before band adjustment, the NDVI values238

of L8 were systematically lower than that of S2 (Figure 9a), but after the band adjustment, the two239

datasets matched chronologically (Figure 9b). Figure 9c showed the final harmonized ndvi time series240

which gathered data from all sensors. There are gaps existed in the time series because cloudy covered241

images were automatically eliminated in the process.242
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Figure 5. First two plots are the temporal NDVI time series over a typical crop pixel in Bekaa, Lebanon
(lat =36.01, long =33.83) before and after band adjustment. The last image showed the harmonized
NDVI time series from all sensors. There are gaps in the time series because the cloudy images were
eliminated in the processing.

As previously reported in Table 3b, the spatial band-to-band correlation is low in the mountainous243

region due to the impacts of the hill’s slope or remaining of untreated hill shadow. This problem is244

further visualized in Figure 6 which showed the NDVI time series of a pixel located in a mountainous245

area (lat = 36.04, long = 33.81). After the processing, Landsat’s NDVI values were seen systematically246

lower than that of Sentinel 2. This result suggested that the topographic correction model can be247

improved.248

Figure 6. NDVI time series of a pixel located in a mountainous area in Bekaa (lat = 36.04, long = 33.81).
After the processing, Landsat’s NDVI values were seen systematically lower than that of Sentinel 2

3.5. Assessing the dynamic cropland variation in Ninh Thuan, Vietnam249

Ninh Thuan province is the most drought-prone in Vietnam [58]. To cope with water shortage250

throughout the next dry season (from Jan to Aug), exceeded rainwater during the rainy season (from251

Aug to Nov) is collected via more than 20 small to medium size reservoirs. Water is irrigated for the252

next two crop seasons which are winter-spring crop (from Dec to Apr) and summer crop (from May253

to Aug). Thus, the extended cropland area is largest during the winter-spring season, then reduced254
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during the summer because of possible water shortage. Meanwhile, the crop during rainy season can255

be vulnerable to flood [59].256

Extended cropland is valuable for the province’s Irrigation Management Company (IMC) to257

calculate water distribution volume and predict water demand for the next season. However, because258

of seasonal variation, mixed crop rotation and data-scarce, it is difficult for the province to obtain259

up-to-date and accurate seasonal extended cropland.260

As harmonic (or Fourier) analysis has proven useful in characterizing seasonal cycles and variation261

in land used/land cover types [8,60–63], this study applied harmonic analysis on dense NDVI time262

series, obtained from the harmonized dataset (L7, L8, and S2), to mapping seasonal cropland in Ninh263

Thuan during 2018.264

Following a methodology described in [8] and implementation of the harmonic model in GEE by265

[64], we fitted the time series of NDVI data in every pixel. Figure 7 showed NDVI time series and fitted266

values of regions that have one crop, two crops and three crops per year in Ninh Thuan region. The267

phase and amplitude values, which were derived from the harmonic models, will be used to express268

the temporal signature of NDVI.269

Figure 7. Detected unimodal (a), bimodal (b) and trimodal (c) shapes in the temporal NDVI patterns
of different paddy rice areas during 2018. Fitted values (smaller green dots) are used to calculate the
phase and amplitude of the cycles.

Since the first harmonic term represents the annual cycle [60], the cropland’s variation was270

identified using a composite image of phase, amplitude (of the first harmonic term) and the max NDVI271

(Figure 8). Because NDVI at cropland pixels are characterized with high temporal variation, high angle272

or sharp turn at the peak of crop growth, and high max NDVI values, croplands were highlighted in273

the Figure 8 as bright colored pixels. Meanwhile, black or gray pixels represent non-cropland. Within274

the scope of this study, we only interest in the cropland location, although, specific crop types can be275

further identified using a rule-based approach and ground truth parameters [8].276
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Figure 8. Cropland variation characterized by R-G-B composite image from amplitude, phase (of the
first harmonic term) and max-NDVI values. This map highlighted croplands in Ninh Thuan during
2018 as colored pixels (high phase and amplitude) and other types of land as grey/dark pixels (low
phase/amplitude).

4. Conclusions277

In the presented paper, we demonstrated a complete stream workflow in Google Earth Engine to278

generate harmonized Landsat – Sentinel 2 images for two agriculture schemes in Bekaa, Lebanon, and279

Ninh Thuan, Vietnam. We evaluated the performance of several pre-processing steps necessary for280

the harmonization including image co-registration, brdf correction, topographic correction, and band281

adjustment. Band adjustment, although, has little impact on L8-S2 spatial correlation, it is valuable282

for matching temporal spectral time series. The offset difference between L8 and S2 images was as283

large as 32 meters in the Bekaa region and if not treated, posed a great impact on the quality of the284

harmonized dataset. Although a topographic correction model was applied, the low performance was285

observed in mountainous areas.286

The merging of multiple sensors improved crop monitoring as it increased temporal resolution287

and provided more observations during the growing season. Dense observations also omit the need for288

data smoothing techniques. We demonstrated an application of the harmonized dataset by mapping289

the extended cropland via harmonic analysis for Ninh Thuan province in 2018.290
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Appendix A300

Generated harmonized datasets that contain surface reflectance images (bands blue, green, red, nir,301

swir1, swir2, and ndvi at 30 meters) over the two studied sites are provided for public usage and testing.302

Data link (Google drive): https://drive.google.com/open?id=1no0MmpL_WA8BWzFRmmUWGPMt-303

JYMtI-P. GEE app to inspect the NDVI time series and the detected croplands in Ninh Thuan:304

https://ndminhhus.users.earthengine.app/view/cropninhthuan2019. All GEE scripts used in the305

study are documented at https://github.com/ndminhhus/geeguide.

Figure A1. Per-pixel scatters plots of all seven bands (blue, green, red, nir, swir1, swir2, and ndvi)
for the flat domain in Bekaa, provided N (total number of the pixels), r, bias, and Root Mean Square
Error-RMSE after the overlapped L8-S2 images were harmonized. The straight line represents the
linear regression.

306
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(b)

(a)

(c)

(d)

(e)

Figure A2. Demonstration of cloud masking steps. (a) Cloudy true color image, (b) Cloud & cirrus
masked (yellow) using only QA60 Band, (c) cloud mask using combination of Red and Aerosol Band
(B4 & B1), (d) cloud mask using random forest classification, band QA60 was used as training field (e)
cloud mask combined all together. This scene was acquired by Sentienl2B on May 12, 2019 over Ninh
Thuan, Vietnam (id = COPERNICUS/S2/20190513T030549_20190513T032056_T49PBN).
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