

Article

Harmonization of Landsat and Sentinel 2 for Crop Monitoring in Drought Prone Areas: Case Studies of Ninh Thuan (Vietnam) and Bekaa (Lebanon)

Minh D. Nguyen ^{1,2}, Oscar B. Villanueva ², Duong D. Bui ^{3*}, Phong T. Nguyen ¹ and Lars Ribbe ²

¹ Vietnam Academy for Water Resources, Ministry of Agricultural and Rural Development, Hanoi, Vietnam

² Institute for Technology and Resources Management in the Tropics and Subtropics (ITT), Cologne University of Applied Science, Germany

³ National Center for Water Resources Planning and Investigation, Ministry of Natural Resources and Environment, Hanoi, Vietnam

* Correspondence: duongdubui@gmail.com(Duong D. Bui)

Abstract: Proper satellite-based crop monitoring applications at the farm-level often require near-daily imagery at medium to high spatial resolution. The synthesizing of ongoing satellite missions by ESA (Sentinel 2) and NASA (Landsat7/8) provides this unprecedented opportunity at a global scale; nonetheless, this is rarely implemented because these procedures are data demanding and computationally intensive. This study developed a complete stream processing in the Google Earth Engine cloud platform to generate harmonized surface reflectance images of Landsat7,8 and Sentinel 2 missions. The harmonized images were generated for two agriculture schemes in Bekaa (Lebanon) and Ninh Thuan (Vietnam) during the period 2018-2019. We evaluated the performance of several pre-processing steps needed for the harmonization including image co-registration, brdf correction, topographic correction, and band adjustment. This study found the miss-registration between Landsat 8 and Sentinel 2 images, varied from 10 meters in Ninh Thuan, Vietnam to 32 meters in Bekaa, Lebanon, and if not treated, posed a great impact on the quality of the harmonized data set. Analysis of a pair overlapped L8-S2 images over the Bekaa region showed that after the harmonization, all band-to-band spatial correlations were greatly improved from (0.57, 0.64, 0.67, 0.75, 0.76, 0.75, 0.79) to (0.87, 0.91, 0.92, 0.94, 0.97, 0.97, 0.96) in bands (blue, green, red, nir, swir1, swir2, ndvi) respectively. Finally, we demonstrated the high potential of the harmonized data set for crop mapping and monitoring. Harmonic (Fourier) analysis was applied to fit the detected unimodal, bimodal and trimodal shapes in the temporal NDVI patterns during one crop year in Ninh Thuan province. Derived phase and amplitude values of the crop cycles were combined with max-NDVI as an R-G-B image. This image highlighted croplands in bright colors (high phase and amplitude) and non-crop areas in grey/dark (low phase/amplitude). Generated harmonized data sets (30m spatial resolution) over the two studied sites along with GEE scripts/app used in the study are provided for public usage and testing.

Keywords: Landsat; Sentinel 2; harmonization; crop monitoring; Google Earth Engine

1. Introduction

In recent decades, advances in technology and algorithms have made satellite remote sensing played an ever-increasing role in crop monitoring [1,2]. However, current global satellite missions do not possess enough temporal-spatial resolution to capture crop growth's dynamic and heterogeneity at the farm level. Number of studies pointed out that high temporal resolution products (e.g. MODIS, MERIS) are generally too coarse (from 250 m to a few kilometers) to capture cropland heterogeneity

[3,4]. Meanwhile, medium spatial resolution products (e.g. Landsat 30m spatial resolution) potentially miss the observations at critical growth stages due to long revisit time (16 days)[4–7]. Furthermore, the applicability of optical remote sensing gets extra challenges in tropical regions with frequent cloud cover (e.g. Vietnam). Not enough satellite observations produce composite images with cloud contamination and eventually reduce the quality of crop mapping [8] or influence the study of crop's phenology [9]. [10] reported properly land monitoring applications would require near-daily observations at medium spatial resolution. One of the effort to archive better data resolution is called spatio-temporal image fusion (or sensor fusion). This approach generates fine spatial resolution images while trying to maintain the frequency by synthesizing coarse spatial-high temporal products (e.g. MODIS) with high spatial-low temporal products (e.g. Landsat) [3,4,11–13]. In sensor fusion, coincidence pairs of coarse spatial-high temporal images and high spatial-low temporal images acquired on the same dates (or temporally close) are correlated to find information which is then used to downscale coarse spatial-high temporal images to the resolution of the high spatial resolution images [12]. Three common image fusion techniques can be identified including image-pair-based, spatial unmixing-based and hybrid methods [13,14]. However, multi-sensors fusion is reported involving large uncertainty [13], because of (1) low registration accuracy due to the significant difference in the sensors's resolution [14] and (2) spectral signatures of small objects can be lost in the fused images [14,15].

Recently, there is an increase in the number of medium spatial resolution EO satellites. Since 2013, NASA launched Landsat 8, which is currently operating alongside Landsat 7. The combination of Landsat 7 and Landsat 8 generates three to four observations per month. Since 2015 Sentinel 2 constellation from the European Space Agency is providing global scale imagery within 5-10 days revisit time at 10 to 60 meters resolution. The proven compatibility between Landsat and Sentinel 2 bands producing the opportunity for near-daily global temporal coverage at medium resolution by merging their observations [10,16,17].

Nevertheless, synthesizing (or harmonizing) Landsat7/8 and Sentinel 2 is still an intricate process that requires several data transformation steps [10,18]. A research project initiated by NASA has taken into account Bidirectional Reflectance Distribution Functions (BRDF) correction, sensor misregistration, bands re-scaling, and re-projection, as well as small band adjustment [10]. These steps were applied so that the multi-sensors images can be reasonably stackable for consistent time series analysis. BRDF model was applied to account for the differences in the field of view angles among satellites because after atmospheric correction, this variation is exaggerated [19]. In extreme cases, the differences in the view angle for a ground target can increase up to 20 degree [19]. Additionally, as the consequence of different image registration references, sensor misregistration between Landsat 8 and Sentinel 2 varies geographically and can exceed one Landsat pixel (30 meters) [16,17].

Besides sensor transformation, pre-treatment of Sentinel 2 and Landsat images require some attention too. For example, the same atmospheric correction model should be applied to both sensors to reduce residual errors from using different atmospheric correction (AC) methods [20,21]. On the other hand, unlike predecessor satellites (e.g. Landsat, ASTER, MODIS), Sentinel 2 sensors lack thermal infrared bands, therefore established thermal-based cloud mask algorithms that work well for Landsat (e.g. FMASK) do not guarantee yield similar performance for Sentinel 2. Sentinel 2 cloud detection and optimization are reported as the main issue in the NASA's harmonized product [10].

As a consequence, given the unprecedented opportunity to improve the spatio-temporal resolution of EO imagery at a global scale by harmonizing Landsat and Sentinel 2 images; nonetheless, this is rarely implemented because these procedures are data demanding and computationally intensive.

Meanwhile, emerging cloud computing platforms such as Google Earth Engine (GEE) which has the planetary-scale archives of remote sensing data [22] including Landsat, Sentinel 2, significantly reduce the work for data management and speed up analyzing process [23]. Built-in functions/algorithms within the GEE platform help simplify many pre-processing steps allowing focus on the interpretation of the core algorithms [22,24].

81 The objective of this study is to develop a complete stream processing for the harmonization of
 82 Landsat - Sentinel 2 in Google Earth Engine (GEE) to harness the benefit of coherent data structure,
 83 built-in functions and computation power in the Google Cloud. In this study, we adapt the BRDF
 84 (MODIS-based fixed coefficients c-factor) [25,26] and the topographic correction model (modified
 85 Sun-Canopy-Sensor Topographic Correction) [27]. These models were implemented in GEE by
 86 [28]. We adjust the Landsat TOA's bands (blue, green, red, nir, swir1 and swir2) using cross-sensor
 87 transformation coefficients derived from [29]. We describe several tests to assess and evaluate the
 88 performance of each pre-processing/transforming step. Finally, we demonstrate an application of the
 89 harmonized dataset to mapping the dynamic of seasonal cropland in Ninh Thuan, Vietnam.

90 2. Materials and Methods

91 2.1. Study regions and input data

92 For the variety of test sites, we chose Ninh Thuan province (area 3366 km²), located in Vietnam
 93 (South East Asia) (Figure 1) and an agriculture scheme called Bekaa (area 898 km²) located in Lebanon
 94 (Middle East) (Figure 1). For Ninh Thuan province, we processed total 97 TOA satellite images
 95 gathered from 18 images of Landsat 7 (PATH 123, ROW 52), 18 images of Landsat 8 (PATH 123, ROW
 96 52) and 61 images of Sentinel 2 (TILE 49PBN and 49PBP). For Bekaa, we processed total 120 TOA
 97 images gathered from 34 images of Landsat 7 (PATH 174, ROW 36 and ROW 37), 19 images of Landsat
 98 8 (PATH 174, ROW 37) and 67 images of Sentinel 2 (TILE 36SYC).

Figure 1. Cropland maps of Ninh Thuan, Vietnam [30] (left) and of Bekaa, Lebanon [31] (right)

99 2.2. Workflow overview

100 In general, we design the workflow into three main steps including pre-processing, sensors
 101 harmonization and post-processing (Figure 2). In the pre-processing step, we convert the Top of
 102 Atmosphere (TOA) images to surface reflectances (SR) (atmospheric correction) filter too cloudy
 103 images and mask out high probability cloudy pixels. We applied atmospheric correction via Python
 104 API, all the other tasks were Code Editor based. Because the BRDF and topographic correction models
 105 require DEM data, they are applied only when the images had been co-registered. The harmonization
 106 step refers to re-projection, rescaling and re-alignment (co-registration) of the Landsat7/8 and Sentinel
 107 2 images. Finally, the post-processing step stacks all the harmonized images into a database of GEE
 108 assets. This step also exports harmonized images to Google Drive, making it a shareable geospatial
 109 dataset for non-GEE users. The GEE scripts used in the study and links to the generated harmonized
 110 datasets that contain surface reflectance images (bands blue, green, red, nir, swir1, swir2, and ndvi at
 111 30 meters) over the two studied sites are provided in the Appendix A.

Figure 2. Workflow of the harmonization in GEE

112 *2.3. Atmospheric correction*

113 To reduce residual errors from using different atmospheric correction (AC) methods [20,21], the
 114 same AC model called Py6S was applied to all Landsat7/8 and Sentinel 2 TOA images. Py6S is a
 115 python interface of 6S radiative transfer model [32] developed by [33] to reduce time and difficulties in
 116 setting up numerous input and outputs. Results produced from Py6S will be the same as the results
 117 produced from 6S [33]. [34] tested the performance of 6S with the overall relative error was less than
 118 0.8 percent.

119 This study implemented Py6S in GEE based upon the code shared by [35] ([Link Github](#)) which
 120 was executed via Python API and Docker container. In the model, the view zenith angle was hardcoded
 121 to "0".

122 *2.4. Cloud mask for Landsat images*

123 For Landsat 7/8, cloud and cloud shadow is masked using the BQA band [9] which was generated
 124 using the CFMask algorithm. CFMask has been the best overall accuracy among many sates of the art
 125 cloud detection algorithms [36].

126 *2.5. Cloud mask for Sentinel 2 images*

127 According to an assessment by [37], the Sentinel 2 L1C product's cloud mask band (QA60), which
 128 is generated based on the blue band (B2) and SWIR bands (B11, B12) [38], generally underestimates
 129 the presence of clouds. On the contrary, [39] reported that QA60 cloud masks are adjusted to minimize
 130 under-detections, which leads, on the other hand, to over-detections. In either case, the performance
 131 of the L1C cloud mask is low, especially under critical conditions.

132 In the GEE environment, [28] applied a cloud scoring algorithm
 133 (`ee.Algorithms.Landsat.simpleCloudScore`) to mask clouds in Landsat 8 and Sentinel 2 images [40].
 134 The algorithm exploits the spectral and thermal properties of cloud that is 'bright and cold but not
 135 snow' [41]. However, our eye inspection showed that this Landsat based algorithm did not yield
 136 satisfactory results for Sentinel 2 images over Ninh Thuan, Vietnam. This is likely due to the complex
 137 atmospheric condition (e.g. high water vapor content) [37] in Ninh Thuan region and lacking a
 138 thermal band in Sentinel 2 images.

139 Inspired by the work of [42] which showed that cloud detection using a machine learning approach
140 can outperform current states of the art threshold-based cloud detection such as Fmask, Sen2Cor
141 or even MAJA which used multi-temporal method for cloud detection [43]. This study combined
142 the QA60's mask with a supervised classification approach in GEE. For every Sentinel 2 scene, we
143 trained the RF classifier using the QA60 band as the base field for stratified random sampling. GEE
144 API simplified this procedure with two built-in algorithms called ee.Classifier.randomForest() and
145 ee.Image.stratifiedSample() [44,45]. Also, we used the Normalized Difference Snow Index (NDSI) to
146 prevent snow from being masked [28]. We used eye visual inspection to check the performance of this
147 procedure, which showed promising results in such a complicated atmospheric condition like Ninh
148 Thuan, Vietnam. Figure A2 demonstrated how the cloud was masked in a cloudy Sentinel 2 scene over
149 Ninh Thuan, Vietnam.

150 2.6. Cloud shadow detection

151 Cloud shadow can be predicted using the cloud's shape, height and sun position at the time [46].
152 However, this method first depends on the cloud identification ability and poses large uncertainty
153 while projecting the cloud's shadow on the earth's surface. This study used Temporal Dark Outlier
154 Mask (TDOM) method which greatly improves the detection of cloud shadow via catching dark pixel
155 anomaly [41]. The TDOM method based on the idea that cloud shadow appears dark and disappears
156 quickly as the cloud moves. The implementation of TDOM in GEE was adapted from [28].

157 2.7. Co-registration between Landsat and Sentinel 2 images

158 The miss alignment (or miss registration) between L8 and S2 images varied geographically
159 and can exceed 38 meters [16]. It is mainly due to the residual geolocation errors in the Landsat-8
160 framework which based upon the Global Land Survey images. In GEE, we used displacement() to
161 measure the displacement between two overlapped S2 and L8 images which were captured at the
162 same time over the studied region. Then displace() function is used to displace or wrap ("rubber-sheet"
163 technique) the L8 image aligned with the S2 image [47]. Because the L8-S2 misalignment is reported
164 stable for a given area and S2 absolute geodetic accuracy is better than L8 [16], this study aligned
165 all Landsat images (same PATH, ROW) using a common base S2 [48]. We also assumed that the
166 misalignment among the same satellite images is neglectable. The co-alignment step described here is
167 purely an image processing technique. It differs from geo-referencing or geo-correcting which involves
168 aligning images to the correct geographic location through ground control points. At the moment, GEE
169 documentation does not explain clearly the underlying of displacement() and displace() algorithms,
170 however, [49] described in great details a similar tool called AROP which is an open-source package
171 designed specifically for registration and orthorectification of Landsat and Landsat-like data.

172 2.8. Re-projection and Scaling

173 Because each band can have a different scale and projection [50] therefore band's projection was
174 transformed according to the red band of S2 (WGS84) and band's resolution was rescaled to 30m using
175 'bicubic' interpolation [51,52].

176 2.9. BRDF correction

177 The Bidirectional Reflectance Distribution Functions (BRDF) model is applied to reduce the
178 directional effects due to the differences in solar and view angles between Landsat and Sentinel 2 [10].
179 The implementation of BRDF correction in GEE was developed by [28] based on results from [25]
180 and [26]. This BRDF is MODIS-based fixed coefficients c-factor, originally developed for Landsat but
181 proven to be working for S2 as well [18,25,26]. The view angle is set to nadir and the illumination is set
182 based on the center latitude of the tile [10].

183 *2.10. Topographic correction*

184 Topographic correction accounts for variations in reflectance due to slope, aspect, and elevation.
 185 Topographic correction is not always required but can be essential in mountainous or rugged terrain
 186 [53,54]. The implementation of topographic correction in GEE was developed by [28]. The method
 187 based on the modified Sun-Canopy-Sensor Topographic Correction as described in [27]. The digital
 188 elevation model (DEM) used is SRTM V3 product (30m SRTM Plus) which has undergone a void-filling
 189 process using open-source data (ASTER GDEM2, GMTED2010, and NED) provided by NASA JPL [55].

190 *2.11. Band adjustment*

191 Although, efforts have been made into the radiometric and geometric calibration of the
 192 independently managed Landsat and Sentinel 2 missions so that their bands are compatible [17],
 193 small spectral differences in the common bands still exist [10,17,29]. We adjusted the six Landsat bands
 194 (blue, green, red, nir, swir1 and swir2) using cross-sensor transformation coefficients (Table 1) derived
 195 from [29]'s study. [29] used absolute difference metrics and major axis linear regression analysis over
 196 10,000 image pairs across the conterminous United States to compute these transformation coefficients.

Table 1. Cross-sensor transformation coefficients for Landsat7/8 [29]

Bands	L8		L7	
	Intercept	Slope	Intercept	Slope
Blue	-0.0107	1.0946	-0.0139	1.1060
Green	0.0026	1.0043	0.0041	0.9909
Red	-0.0015	1.0524	-0.0024	1.0568
NIR	0.0033	0.8954	-0.0076	1.0045
SWIR1	0.0065	1.0049	0.0041	1.0361
SWIR2	0.0046	1.0002	0.0086	1.0401

(With: Sentinel2 = Landsat7/8 * Slope + Intercept)

197 **3. Results and Discussions**

198 *3.1. Design of the evaluation experiments*

199 Because this study employed several transformation models from other studies, for example,
 200 BRDF and topographic correction models from [28]; band adjustment coefficients from [29];
 201 image co-registration from [47]. However, some studies suggested site-specific models may be
 202 required for specific areas of study due to inconsistent regression coefficient values obtained across
 203 different study areas [18,56,57]. Therefore, we applied several tests to evaluate the effect of each
 204 processing/transformation step on two overlapped S2 and L8 images which were captured at the same
 205 time over the studied regions. Rectangular areas without cloud, cirrus or saturated pixels were selected
 206 for analysis. Tested image IDs, date, time captured are presented in Table 2. Section 3.2 estimated the
 207 reduction in sensor mis-registration, section 3.3 calculated per band spatial Pearson's correlation and
 208 section 3.4 assessed the temporal correlation of NDVI time series.

209 *3.2. Reducing the sensors mis-registration*

210 Figure 3 showed per pixel offset differences in the tested areas, measured by the magnitude of
 211 the vector formed by dX and dY [47], before and after the overlapped pair of L8-S2 images were
 212 co-registered using the method described in 2.8. For Bekaa, the offset differences were reduced
 213 significantly from [22 - 32] meters to less than 8 meters (mostly less than 2 meters). For Ninh
 214 Thuan, Vietnam, the mis-alignment was reduced from 12 meters (maximum) to mostly less than 2

Table 2. Overlapped S2 and L8 images selected for performance evaluation

Products	Acquisition Date	Time	Image ID	Region
L8_TOA	07/11/2018	08:10:14	LANDSAT/LC08/C01/T1/LC08_174036_20181107	Bekaa
S2_L1C	07/11/2018	08:30:42	COPERNICUS/S2/20181107T082129_20181107T082732_T36SYC	Bekaa
L8_TOA	11/08/2017	03:01:30	LANDSAT/LC08/C01/T1_TOA/LC08_123052_20170811	Ninh Thuan
S2_L1C	11/08/2017	03:23:19	COPERNICUS/S2/20170811T032319_20170811T032319_T49PBN COPERNICUS/S2/20170811T032319_20170811T032319_T49PBP	Ninh Thuan

215 meters. These results are in agreement with [16] who also found geographically varied mis-alignments
 216 between L8-S2. Further analysis in Table 3 showed that the co-registration step contributed the most
 217 improvement in band-to-band spatial correlation.

Figure 3. Per-pixel offset differences between L8 and S2 in the tested areas ((a) Bekaa, Lebanon and (b) Ninh Thuan, Vietnam) measured by the magnitude of the vector formed by dX and dY . Black dots are the offset distances between the original images of L8 and S2, red dots are when they were co-registered.

218 *3.3. Band to band spatial correlation*

219 We analyzed the band-to-band correlation over two separated domains, a flat agricultural area
 220 (Figure 4a), and a mountainous area (Figure 4b). Each domain has an area of 0.3 km², without cloud,
 221 cirrus or saturated pixels.

222 Table 3 compared Pearson correlation (r) values of bands (red, nir and ndvi) when each
 223 processing/transformation step is applied, in the flat area (Table 3a) and the mountainous area
 224 (Table 3b). P0 represents the starting point and P5 represents the last step (band adjustment). For
 225 the flat area, correlation values increased significantly from (0.67, 0.75, 0.79) to (0.93, 0.95, 0.96) in
 226 bands (red, nir, ndvi) respectively. For the mountainous area, r increased from (0.56, 0.45, 0.63) to (0.77,

(a)

(b)

Figure 4. A flat agricultural area (a), and a mountainous area (b) in Bekaa, Lebanon, represented by true-color composites of the Landsat 8, used for L8-S2 band-to-band correlation analysis. Each domain has an area of 0.3 km², without cloud, cirrus or saturated pixels.

0.72, 0.80) in (red, nir, ndvi) bands. There is a higher correlation occurred in the flat area than in the mountainous area is likely due to the impacts of untreated hill shadow or hill's slope. This result stands in agreement with [53] and [54] who emphasized the importance of properly topographic correction in mountainous or rugged terrain. Table 3 also indicated the co-registration step (P3) contributed the most improvement in band-to-band spatial correlation.

Table 3. L8-S2 cross-comparison of the Pearson correlation (*r*) values in bands (red, nir and ndvi) when each processing/transformation step is applied, in the flat area (a) and the mountainous area (b)

(a)		Processing Step	Pearson's <i>r</i> (Red)	Pearson's <i>r</i> (NIR)	Pearson's <i>r</i> (NDVI)
P0	Original (BOA)	0.6665	0.7479	0.7871	
P1	Rescale L8 to 10m	0.6917	0.7655	0.808	
P2	BRDF correction	0.6917	0.7634	0.8089	
P3	Co-registration	0.9268	0.9490	0.9637	
P4	Topo correction	0.9270	0.9490	0.9637	
P5	Band Adjustment	0.9270	0.9490	0.9641	

(b)		Processing Step	Pearson's <i>r</i> (Red)	Pearson's <i>r</i> (NIR)	Pearson's <i>r</i> (NDVI)
P0	Original (BOA)	0.5647	0.4453	0.6347	
P1	Rescale L8 to 10m	0.5773	0.4561	0.6606	
P2	BRDF correction	0.5765	0.4525	0.6618	
P3	Co-registration	0.7064	0.5860	0.8408	
P4	Topo correction	0.7719	0.7193	0.7969	
P5	Band Adjustment	0.7719	0.7193	0.7973	

For further analysis in the flat domain, Figure A1 presented per-pixel scatter plots of all seven bands (blue, green, red, nir, swir1, swir2, and ndvi), compared (*r*, bias, and RMSE) before and after the overlapped L8-S2 images were harmonized. These plots showed all bands are in good agreement. Band SWIR1 reached the highest correlation (*r* = 0.972) and band Blue has the lowest (*r* = 0.868).

3.4. Affect of band adjustment to temporal correlation in NDVI time series

Figure 5a and Figure 5b showed NDVI time series at a typical pixel (lat =, long =) before and after the band adjustment was applied. Ones can observe that, before band adjustment, the NDVI values of L8 were systematically lower than that of S2 (Figure 9a), but after the band adjustment, the two datasets matched chronologically (Figure 9b). Figure 9c showed the final harmonized ndvi time series which gathered data from all sensors. There are gaps existed in the time series because cloudy covered images were automatically eliminated in the process.

Figure 5. First two plots are the temporal NDVI time series over a typical crop pixel in Bekaa, Lebanon (lat = 36.01, long = 33.83) before and after band adjustment. The last image showed the harmonized NDVI time series from all sensors. There are gaps in the time series because the cloudy images were eliminated in the processing.

As previously reported in Table 3b, the spatial band-to-band correlation is low in the mountainous region due to the impacts of the hill's slope or remaining of untreated hill shadow. This problem is further visualized in Figure 6 which showed the NDVI time series of a pixel located in a mountainous area (lat = 36.04, long = 33.81). After the processing, Landsat's NDVI values were seen systematically lower than that of Sentinel 2. This result suggested that the topographic correction model can be improved.

Figure 6. NDVI time series of a pixel located in a mountainous area in Bekaa (lat = 36.04, long = 33.81). After the processing, Landsat's NDVI values were seen systematically lower than that of Sentinel 2

3.5. Assessing the dynamic cropland variation in Ninh Thuan, Vietnam

Ninh Thuan province is the most drought-prone in Vietnam [58]. To cope with water shortage throughout the next dry season (from Jan to Aug), exceeded rainwater during the rainy season (from Aug to Nov) is collected via more than 20 small to medium size reservoirs. Water is irrigated for the next two crop seasons which are winter-spring crop (from Dec to Apr) and summer crop (from May to Aug). Thus, the extended cropland area is largest during the winter-spring season, then reduced

255 during the summer because of possible water shortage. Meanwhile, the crop during rainy season can
 256 be vulnerable to flood [59].

257 Extended cropland is valuable for the province's Irrigation Management Company (IMC) to
 258 calculate water distribution volume and predict water demand for the next season. However, because
 259 of seasonal variation, mixed crop rotation and data-scarce, it is difficult for the province to obtain
 260 up-to-date and accurate seasonal extended cropland.

261 As harmonic (or Fourier) analysis has proven useful in characterizing seasonal cycles and variation
 262 in land used/land cover types [8,60–63], this study applied harmonic analysis on dense NDVI time
 263 series, obtained from the harmonized dataset (L7, L8, and S2), to mapping seasonal cropland in Ninh
 264 Thuan during 2018.

265 Following a methodology described in [8] and implementation of the harmonic model in GEE by
 266 [64], we fitted the time series of NDVI data in every pixel. Figure 7 showed NDVI time series and fitted
 267 values of regions that have one crop, two crops and three crops per year in Ninh Thuan region. The
 268 phase and amplitude values, which were derived from the harmonic models, will be used to express
 269 the temporal signature of NDVI.

Figure 7. Detected unimodal (a), bimodal (b) and trimodal (c) shapes in the temporal NDVI patterns of different paddy rice areas during 2018. Fitted values (smaller green dots) are used to calculate the phase and amplitude of the cycles.

270 Since the first harmonic term represents the annual cycle [60], the cropland's variation was
 271 identified using a composite image of phase, amplitude (of the first harmonic term) and the max NDVI
 272 (Figure 8). Because NDVI at cropland pixels are characterized with high temporal variation, high angle
 273 or sharp turn at the peak of crop growth, and high max NDVI values, croplands were highlighted in
 274 the Figure 8 as bright colored pixels. Meanwhile, black or gray pixels represent non-cropland. Within
 275 the scope of this study, we only interest in the cropland location, although, specific crop types can be
 276 further identified using a rule-based approach and ground truth parameters [8].

Figure 8. Cropland variation characterized by R-G-B composite image from amplitude, phase (of the first harmonic term) and max-NDVI values. This map highlighted croplands in Ninh Thuan during 2018 as colored pixels (high phase and amplitude) and other types of land as grey/dark pixels (low phase/amplitude).

277 4. Conclusions

278 In the presented paper, we demonstrated a complete stream workflow in Google Earth Engine to
279 generate harmonized Landsat – Sentinel 2 images for two agriculture schemes in Bekaa, Lebanon, and
280 Ninh Thuan, Vietnam. We evaluated the performance of several pre-processing steps necessary for
281 the harmonization including image co-registration, brdf correction, topographic correction, and band
282 adjustment. Band adjustment, although, has little impact on L8-S2 spatial correlation, it is valuable
283 for matching temporal spectral time series. The offset difference between L8 and S2 images was as
284 large as 32 meters in the Bekaa region and if not treated, posed a great impact on the quality of the
285 harmonized dataset. Although a topographic correction model was applied, the low performance was
286 observed in mountainous areas.

287 The merging of multiple sensors improved crop monitoring as it increased temporal resolution
288 and provided more observations during the growing season. Dense observations also omit the need for
289 data smoothing techniques. We demonstrated an application of the harmonized dataset by mapping
290 the extended cropland via harmonic analysis for Ninh Thuan province in 2018.

291 **Author Contributions:** M.N. contributed to the study's design, data analysis, programming and writing the
292 manuscript, O.V. and L.R. made contribution to the design, statistical analyses and supervised at all stages of the
293 study, O.V, L.R., D.B., P.N. instructed and discussed the results. All authors read and approved the submitted
294 manuscript

295 **Funding:**

296 **Acknowledgments:** The author acknowledges support by Vingroup Innovation Foundation (VINIF) in project
297 code VINIF.2019.DA17 and Vietnam National Foundation for Science and Technology Development (NAFOSTED)
298 under grant number NE/S002847/1

299 **Conflicts of Interest:**

300 **Appendix A**

301 Generated harmonized datasets that contain surface reflectance images (bands blue, green, red, nir,
 302 swir1, swir2, and ndvi at 30 meters) over the two studied sites are provided for public usage and testing.
 303 Data link (Google drive): https://drive.google.com/open?id=1no0MmpL_WA8BWzFRmmUWGPMt-JYMTI-P. GEE app to inspect the NDVI time series and the detected croplands in Ninh Thuan:
 304 <https://ndminhh.us.earthengine.app/view/cropninhthuan2019>. All GEE scripts used in the
 305 study are documented at <https://github.com/ndminhhus/geeguide>.

306 **Figure A1.** Per-pixel scatters plots of all seven bands (blue, green, red, nir, swir1, swir2, and ndvi) for the flat domain in Bekaa, provided N (total number of the pixels), r, bias, and Root Mean Square Error-RMSE after the overlapped L8-S2 images were harmonized. The straight line represents the linear regression.

Figure A2. Demonstration of cloud masking steps. (a) Cloudy true color image, (b) Cloud & cirrus masked (yellow) using only QA60 Band, (c) cloud mask using combination of Red and Aerosol Band (B4 & B1), (d) cloud mask using random forest classification, band QA60 was used as training field (e) cloud mask combined all together. This scene was acquired by Sentinel2B on May 12, 2019 over Ninh Thuan, Vietnam (id = COPERNICUS/S2/20190513T030549_20190513T032056_T49PBN).

307 References

308 1. Bégué, A.; Arvor, D.; Bellon, B.; Betbeder, J.; De Abelleira, D.; PD Ferraz, R.; Lebougeois, V.; Lelong, C.;
309 Simões, M.; R Verón, S. Remote sensing and cropping practices: A review. *Remote Sensing* **2018**, *10*, 99.

310 2. Cheng, T.; Yang, Z.; Inoue, Y.; Zhu, Y.; Cao, W. Preface: Recent advances in remote sensing for crop growth
311 monitoring, 2016.

312 3. He, M.; Kimball, J.; Maneta, M.; Maxwell, B.; Moreno, A.; Beguería, S.; Wu, X. Regional crop gross primary
313 productivity and yield estimation using fused landsat-MODIS data. *Remote Sensing* **2018**, *10*, 372.

314 4. Yang, D.; Su, H.; Zhan, J. MODIS-Landsat Data Fusion for Estimating Vegetation Dynamics - A Case Study
315 for Two Ranches in Southwestern Texas. *Proceedings of 1st International Electronic Conference on Remote
316 Sensing* **2015**.

317 5. Hansen, M.C.; Loveland, T.R. A review of large area monitoring of land cover change using Landsat data.
318 *Remote sensing of Environment* **2012**, *122*, 66–74.

319 6. Whitcraft, A.; Becker-Reshef, I.; Justice, C. A framework for defining spatially explicit earth observation
320 requirements for a global agricultural monitoring initiative (GEOGLAM). *Remote Sensing* **2015**, *7*, 1461–1481.

321 7. Hilker, T.; Wulder, M.A.; Coops, N.C.; Seitz, N.; White, J.C.; Gao, F.; Masek, J.G.; Stenhouse, G. Generation
322 of dense time series synthetic Landsat data through data blending with MODIS using a spatial and
323 temporal adaptive reflectance fusion model. *Remote Sensing of Environment* **2009**, *113*, 1988–1999.

324 8. Ghazaryan, G.; Dubovik, O.; Löw, F.; Lavreniuk, M.; Kolotii, A.; Schellberg, J.; Kussul, N. A rule-based
325 approach for crop identification using multi-temporal and multi-sensor phenological metrics. *European
326 Journal of Remote Sensing* **2018**, *51*, 511–524.

327 9. USGS. US Geological Survey (USGS) Landsat Collection 1 Level-1 Quality Assessment
328 Band. https://www.usgs.gov/land-resources/nli/landsat/landsat-collection-1-level-1-quality-assessment-band?qt-science_support_page_related_con=0#qt-science_support_page_related_con, 2019.
329 Accessed: 2019-09-09.

330 10. Claverie, M.; Ju, J.; Masek, J.G.; Dungan, J.L.; Vermote, E.F.; Roger, J.C.; Skakun, S.V.; Justice, C. The
331 Harmonized Landsat and Sentinel-2 surface reflectance data set. *Remote sensing of environment* **2018**,
332 *219*, 145–161.

333 11. Boschetti, L.; Roy, D.P.; Justice, C.O.; Humber, M.L. MODIS–Landsat fusion for large area 30 m burned
334 area mapping. *Remote Sensing of Environment* **2015**, *161*, 27–42.

335 12. Ma, J.; Zhang, W.; Marinoni, A.; Gao, L.; Zhang, B. An improved spatial and temporal reflectance unmixing
336 model to synthesize time series of landsat-like images. *Remote Sensing* **2018**, *10*, 1388.

337 13. Wang, Q.; Zhang, Y.; Onojeghuo, A.O.; Zhu, X.; Atkinson, P.M. Enhancing spatio-temporal fusion of
338 modis and landsat data by incorporating 250 m modis data. *IEEE Journal of Selected Topics in Applied Earth
339 Observations and Remote Sensing* **2017**, *10*, 4116–4123.

340 14. Dong, J.; Zhuang, D.; Huang, Y.; Fu, J. Advances in multi-sensor data fusion: Algorithms and applications.
341 *Sensors* **2009**, *9*, 7771–7784.

342 15. Behnia, P. Comparison between four methods for data fusion of ETM+ multispectral and pan images.
343 *Geo-Spatial Information Science* **2005**, *8*, 98–103.

344 16. Storey, J.; Roy, D.P.; Masek, J.; Gascon, F.; Dwyer, J.; Choate, M. A note on the temporary misregistration of
345 Landsat-8 Operational Land Imager (OLI) and Sentinel-2 Multi Spectral Instrument (MSI) imagery. *Remote
346 Sensing of Environment* **2016**, *186*, 121–122.

347 17. Barsi, J.A.; Alhammoud, B.; Czapla-Myers, J.; Gascon, F.; Haque, M.O.; Kaewmanee, M.; Leigh, L.;
348 Markham, B.L. Sentinel-2A MSI and Landsat-8 OLI radiometric cross comparison over desert sites.
349 *European Journal of Remote Sensing* **2018**, *51*, 822–837.

350 18. Zhang, H.K.; Roy, D.P.; Yan, L.; Li, Z.; Huang, H.; Vermote, E.; Skakun, S.; Roger, J.C. Characterization of
351 Sentinel-2A and Landsat-8 top of atmosphere, surface, and nadir BRDF adjusted reflectance and NDVI
352 differences. *Remote sensing of environment* **2018**, *215*, 482–494.

353 19. Franch, B.; Vermote, E.; Skakun, S.; Roger, J.C.; Santamaría-Artigas, A.; Villaescusa-Nadal, J.L.; Masek, J.
354 Towards Landsat and Sentinel-2 BRDF normalization and albedo estimation: a case study in the Peruvian
355 Amazon forest. *Frontiers in Earth Science* **2018**, *6*, 185.

356 20. Ilori, C.O.; Pahlevan, N.; Knudby, A. Analyzing Performances of Different Atmospheric Correction
357 Techniques for Landsat 8: Application for Coastal Remote Sensing. *Remote Sensing* **2019**, *11*, 469.

358

359 21. Doxani, G.; Vermote, E.; Roger, J.C.; Gascon, F.; Adriaensen, S.; Frantz, D.; Hagolle, O.; Hollstein, A.;
360 Kirches, G.; Li, F.; others. Atmospheric correction inter-comparison exercise. *Remote Sensing* **2018**, *10*, 352.

361 22. Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine:
362 Planetary-scale geospatial analysis for everyone. *Remote Sensing of Environment* **2017**, *202*, 18–27.

363 23. Kumar, L.; Mutanga, O. Google Earth Engine applications since inception: Usage, trends, and potential.
364 *Remote Sensing* **2018**, *10*, 1509.

365 24. Kennedy, R.; Yang, Z.; Gorelick, N.; Braaten, J.; Cavalcante, L.; Cohen, W.; Healey, S. Implementation of the
366 LandTrendr Algorithm on Google Earth Engine. *Remote Sensing* **2018**, *10*, 691.

367 25. Roy, D.P.; Li, J.; Zhang, H.K.; Yan, L.; Huang, H.; Li, Z. Examination of Sentinel-2A multi-spectral
368 instrument (MSI) reflectance anisotropy and the suitability of a general method to normalize MSI reflectance
369 to nadir BRDF adjusted reflectance. *Remote Sensing of Environment* **2017**, *199*, 25–38.

370 26. Roy, D.P.; Zhang, H.; Ju, J.; Gomez-Dans, J.L.; Lewis, P.E.; Schaaf, C.; Sun, Q.; Li, J.; Huang, H.; Kovalskyy,
371 V. A general method to normalize Landsat reflectance data to nadir BRDF adjusted reflectance. *Remote
372 Sensing of Environment* **2016**, *176*, 255–271.

373 27. Soenen, S.A.; Peddle, D.R.; Coburn, C.A. SCS+ C: A modified sun-canopy-sensor topographic correction in
374 forested terrain. *IEEE Transactions on geoscience and remote sensing* **2005**, *43*, 2148–2159.

375 28. Poortinga, A.; Tenneson, K.; Shapiro, A.; Nquyen, Q.; San Aung, K.; Chishtie, F.; Saah, D. Mapping
376 Plantations in Myanmar by Fusing Landsat-8, Sentinel-2 and Sentinel-1 Data along with Systematic Error
377 Quantification. *Remote Sensing* **2019**, *11*, 831.

378 29. Chastain, R.; Housman, I.; Goldstein, J.; Finco, M. Empirical cross sensor comparison of Sentinel-2A and 2B
379 MSI, Landsat-8 OLI, and Landsat-7 ETM+ top of atmosphere spectral characteristics over the conterminous
380 United States. *Remote sensing of environment* **2019**, *221*, 274–285.

381 30. NinhThuan-DONRE. Shapefiles "paddy rice, secondary crop and perennial trees in Ninh Thuan, surveyed
382 2015". *Project data 2015*.

383 31. eLEAF B.V. Summary Methodology of Level 3 Land Cover Mapping. *Project data 2015*.

384 32. Vermote, E.F.; Tanré, D.; Deuze, J.L.; Herman, M.; Morcette, J.J. Second simulation of the satellite signal in
385 the solar spectrum, 6S: An overview. *IEEE transactions on geoscience and remote sensing* **1997**, *35*, 675–686.

386 33. Wilson, R. Py6S: A Python interface to the 6S Radiative Transfer. http://rtwilson.com/academic/Wilson_2012_Py6S_Paper.pdf, 2012. Accessed: 2019-09-09.

387 34. Kotchenova, S.Y.; Vermote, E.F. Validation of a vector version of the 6S radiative transfer code for
388 atmospheric correction of satellite data. Part II. Homogeneous Lambertian and anisotropic surfaces.
389 *Applied optics* **2007**, *46*, 4455–4464.

390 35. Sam, M. Atmospheric correction of Sentinel 2 imagery in Google Earth Engine using Py6S. <https://github.com/samsammurphy/gee-atmcorr-S2>, 2018. Accessed: 2019-09-09.

391 36. Foga, S.; Scaramuzza, P.L.; Guo, S.; Zhu, Z.; Dilley Jr, R.D.; Beckmann, T.; Schmidt, G.L.; Dwyer, J.L.;
392 Hughes, M.J.; Laue, B. Cloud detection algorithm comparison and validation for operational Landsat data
393 products. *Remote sensing of environment* **2017**, *194*, 379–390.

394 37. Coluzzi, R.; Imbrenda, V.; Lanfredi, M.; Simoniello, T. A first assessment of the Sentinel-2 Level 1-C cloud
395 mask product to support informed surface analyses. *Remote sensing of environment* **2018**, *217*, 426–443.

396 38. ESA. Level-1C Cloud Masks - Sentinel-2 MSI Technical Guide - Sentinel Online. <https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-2-msi/level-1c/cloud-masks>, 2019. Accessed: 2019-09-09.

397 39. Clerc, S.; Devignot, O.; Pessiot, L. S2 MPC TEAM S2 MPC Data Quality Report - 2015-11-30. <https://sentinels.copernicus.eu/documents/247904/685211/Sentinel-2+Data+Quality+Report>, 2015. Accessed:
398 2019-09-09.

399 40. GEE. Landsat Algorithms in Google Earth Engine API. <https://developers.google.com/earth-engine/landsat>, 2019. Accessed: 2019-09-09.

400 41. Housman, I.; Chastain, R.; Finco, M. An Evaluation of Forest Health Insect and Disease Survey Data
401 and Satellite-Based Remote Sensing Forest Change Detection Methods: Case Studies in the United States.
402 *Remote Sensing* **2018**, *10*, 1184.

403 42. Zupanc, A. Improving Cloud Detection with Machine Learning. <https://medium.com/sentinel-hub/improving-cloud-detection-with-machine-learning-c09dc5d7cf13>, 2017. Accessed: 2019-09-09.

410 43. Hagolle, O.; Huc, M.; Pascual, D.V.; Dedieu, G. A multi-temporal method for cloud detection, applied
411 to FORMOSAT-2, VENµS, LANDSAT and SENTINEL-2 images. *Remote Sensing of Environment* **2010**,
412 *114*, 1747–1755.

413 44. Breiman, L. Random forests. *Machine learning* **2001**, *45*, 5–32.

414 45. GEE. Supervised Classification in Google Earth Engine API. <https://developers.google.com/earth-engine/classification>, 2019. Accessed: 2019-09-09.

416 46. Hollstein, A.; Segl, K.; Guanter, L.; Brell, M.; Enesco, M. Ready-to-use methods for the detection of clouds,
417 cirrus, snow, shadow, water and clear sky pixels in Sentinel-2 MSI images. *Remote Sensing* **2016**, *8*, 666.

418 47. GEE. Registering Images in Google Earth Engine API. <https://developers.google.com/earth-engine/register>, 2019. Accessed: 2019-09-09.

420 48. Claverie, M.; Jeffrey, G.M.; Junchang, J.; Jennifer, L.D. Harmonized Landsat-8 Sentinel-2 (HLS) Product
421 User's Guide. https://hls.gsfc.nasa.gov/wp-content/uploads/2017/08/HLS.v1.3.UserGuide_v2-1.pdf,
422 2017. Accessed: 2019-09-09.

423 49. Gao, F.; Masek, J.G.; Wolfe, R.E. Automated registration and orthorectification package for Landsat and
424 Landsat-like data processing. *Journal of Applied Remote Sensing* **2009**, *3*, 033515.

425 50. GEE. Projections in Google Earth Engine API. <https://developers.google.com/earth-engine/projections>,
426 2019. Accessed: 2019-09-09.

427 51. GEE. Resampling and Reducing Resolution in Google Earth Engine API. <https://developers.google.com/earth-engine/resample>, 2019. Accessed: 2019-09-09.

429 52. Keys, R. Cubic convolution interpolation for digital image processing. *IEEE transactions on acoustics, speech,
430 and signal processing* **1981**, *29*, 1153–1160.

431 53. COLBY, J. TOPOGRAPHIC NORMALIZATION IN RUGGED TERRAIN. *PHOTOGRAMMETRIC
432 ENGINEERING AND REMOTE SENSING* **1991**, *57*, 531–537.

433 54. Vanonckelen, S.; Lhermitte, S.; Van Rompaey, A. The effect of atmospheric and topographic correction
434 methods on land cover classification accuracy. *International Journal of Applied Earth Observation and
435 Geoinformation* **2013**, *24*, 9–21.

436 55. GEE. SRTM Digital Elevation Data 30m. https://developers.google.com/earth-engine/datasets/catalog/USGS_SRTMGL1_003, 2019. Accessed: 2019-09-09.

438 56. Mandanici, E.; Bitelli, G. Preliminary comparison of sentinel-2 and landsat 8 imagery for a combined use.
439 *Remote Sensing* **2016**, *8*, 1014.

440 57. Flood, N. Comparing Sentinel-2A and Landsat 7 and 8 using surface reflectance over Australia. *Remote
441 Sensing* **2017**, *9*, 659.

442 58. VAWR. Report "Strengthening the agro-climatic information system to improve the agricultural drought
443 monitoring and early warning system in Vietnam (NEWS), pilot study in the Ninh Thuan province". *Project
444 inception report 2017*.

445 59. NinhThuan-MPI. Report "Review and update irrigation planning of the Ninh Thuan province to 2020,
446 vision to 2030 under climate change scenario". *Project report 2015*.

447 60. Jakubauskas, M.E.; Legates, D.R.; Kastens, J.H. Crop identification using harmonic analysis of time-series
448 AVHRR NDVI data. *Computers and electronics in agriculture* **2002**, *37*, 127–139.

449 61. Jakubauskas, M.E.; Legates, D.R.; Kastens, J.H.; others. Harmonic analysis of time-series AVHRR NDVI
450 data. *Photogrammetric engineering and remote sensing* **2001**, *67*, 461–470.

451 62. Jakubauskas, M.; Legates, D.R. Harmonic analysis of time-series AVHRR NDVI data for characterizing
452 US Great Plains land use/land cover. *International Archives of Photogrammetry and Remote Sensing* **2000**,
453 *33*, 384–389.

454 63. Shumway, R.H.; Stoffer, D.S. *Time series analysis and its applications: with R examples*; Springer, 2017.

455 64. Nick, C. Time Series Analysis in Earth Engine. <https://goo.gl/lMwd2Y>, 2017. Accessed: 2019-09-09.