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Abstract: Fish schooling implies an awareness of the swimmers for their companions. In flow 
mediated environments, in addition to visual cues, pressure and shear sensors on the fish body are 
critical for providing quantitative information that assists the quantification of proximity to other 
swimmers. Here we examine the distribution of sensors on the surface of an artificial swimmer 
so that it can optimally identify a leading group of swimmers. We employ Bayesian experimental 
design coupled with two-dimensional Navier Stokes equations for multiple self-propelled swimmers. 
The follower tracks the school using information from its own surface pressure and shear stress. 
We demonstrate that the optimal sensor distribution of the follower is qualitatively similar to the 
distribution of neuromasts on fish. Our results show that it is possible to identify accurately the 
center of mass and even the number of the leading swimmers using surface only information.

Keywords: Bayesian experimental design; optimal sensor placement; schooling; self-propelled 
swimmers; lateral line12

1. Introduction13

Fish navigate in their environments by processing and adapting to cues from the surrounding14

flow fields. The flow environment is replete with mechanical disturbances (pressure, vorticity) that15

can convey information about the sources that generated them. Fish swimming in groups have been16

found to process such external information and balance it with social cues [1,2]. Fish may perceive17

mechanical disturbances in terms of surface pressure and shear stresses through neuromasts. Early18

studies and experiments showed that the functioning of the lateral line is crucial for several tasks [3,4].19

Experiments with trouts in the vicinity of objects showed its importance for Kármán gaiting and bow20

wake swimming as well as energy efficient station keeping [5,6] Additionally, it was shown that the21

flow information allows to determine the cylinder diameter and flow velocity as well as the position22

relative to the generated Kármán vortex street by taking measurements of the flow [7,8]. Using blind23

cave fish a study showed the importance of the lateral line to detect location and shape of surrounding24

objects and avoid obstacles [9–12]. In another study the feeding behavior of blinded mottled sculpin25

was tested and it was found that they use their lateral line system to detect prey [13]. Also it was26

found that blind fish manage to keep their position in schools and lose this ability with disabled lateral27

line organ [14]. Further importance of the lateral line was shown for communicational behavior [15],28

selection of habitats [16] and rheotaxis [17].29

The lateral line consists of two functional classes of receptors: mechanoreceptors and30

electroreceptors. In this work we mimic the mechanosensory receptors, more specifically the31

sub-surface ‘canal’ neuromasts and superficial neuromasts [18,19]. The neuromast on the fish skin are32

used to detect shear stresses, where the ones residing in the lateral line canals are used to detect pressure33
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Figure 1. Parametrization of the fish surface as described in Eq. (1).

gradients [20–24]. Due to the filtering nature of the canals, the detection of small hydrodynamic stimuli34

against background noise is improved for the subsurface neuromasts [25].35

The effectiveness and versatility of the lateral line organ inspired several bio-inspired artificial36

flow sensors [26–29]. Arranging these sensors in arrays on artificial swimmers has attracted attention37

to transform underwater sensing [30–38]. Here, leveraging the intelligent distributed sensing inspired38

by the lateral line showed to be effective in robots moving in aquatic environments [39–41].39

In order to better use and understand the capabilities of the artificial sensors several studies40

regarding the information content in the flow and optimal harvesting of this information were41

performed: The prevalence of information on the position of a vibrating source was shown to be42

linearly coded in the pressure gradients measured by the subsurface neuromasts [42]. Furthermore,43

it was shown that the variance of the pressure gradient correlated with the presence of lateral line44

canals [43]. A study with fish robots equipped with distributed pressure sensors for flow sensing and45

Bayesian filtering for estimating the flow speed, angle of attack, and foil camber [44]. Other studies46

focused on dipole sources to develop methods to extract information and optimize the parameters47

of the sensing devices [45,46]. In a recent study artificial neural networks were employed to classify48

wakes from airfoils [47]. In order to find effective sensor positions weight analysis algorithms were49

employed [48].50

In this study, following earlier work for detection of flow disturbances by single obstacles, [49] we51

examine the optimality of the spatial distribution of sensors in a self-propelled swimmer who infers52

the number in a group of neighboring (here leading) fish and their relative positions. We combine53

numerical simulations of the two-dimensional Navier-Stokes equation and Bayesian optimal sensor54

placement to examine the extraction of flow information by pressure gradients and optimal positioning55

of sensors. The paper is organised as follows: In Section 2.1 we describe the numerical simulations and56

in Section 2.2 the process of Bayesian optimal experimental design. We present our results in Section 357

and conclude in Section 4.58

2. Materials and Methods59

2.1. Flow simulations60

The swimmers are modeled by slender deforming bodies of length L which are characterized by61

their half-width w(s) along the midline [50,51]62

w(s) =


√

2whs− s2, 0 ≤ s < sb

wh − (wh − wt)
(

s−sb
st−sb

)
, sb ≤ s < st

wt
L−s
L−st

, st ≤ s ≤ L .

(1)

A sketch of the parametrization is presented in Fig. 1. Following [52], we use wh = sb = 0.04L,63

st = 0.95L and wt = 0.01L. The swimmers propel themselves by performing sinusoidal undulations64

of their midline. This motion is described by a prescribed time-dependent parameterization of the65

curvature,66
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k(s, t) = A(s) sin

(
2πt
Tp
− 2πs

L

)
. (2)

Here Tp = 1 is the tail-beat period and A is the undulation amplitude which linearly increases from67

A(0) = 0.82/L to A(L) = 5.7/L to replicate the anguilliform swimming motion described by [53].68

Given the curvature along s and a center of mass, the coordinates r(s, t) of the swimmer’s midline69

can be computed by integrating the Frenet–Serret formulas [52]. In turn, the half-width w(s) and the70

coordinates r(s, t) characterize the swimmer’s surface.71

The flow environment is described by numerical simulations of the two-dimensional72

incompressible Navier-Stokes equations (NSE) in velocity-pressure (u− p) formulation. The NSE are73

discretized with second order finite differences and integrated in time with explicit Euler time stepping.74

The fluid-structure interaction is approximated with Brinkman penalization [54–56] by extending75

the fluid velocity u inside the swimmers’ bodies and by including in the NSE a penalization term to76

enforce no-slip and no-through boundary conditions,77

uk+1 − uk

δt
= −∇pk − (uk · ∇)uk + ν∆uk +

Ns

∑
i=1

λχi(uk
s,i − uk) . (3)

Here, ν is the kinematic viscosity, λ = 1/δt is the penalization coefficient, Ns is the number of78

swimmers, uk
s,i is the velocity field imposed by swimmer i (composed of translational, rotational79

and undulatory motions), and χi is its characteristic function which takes value 1 inside the body of80

swimmer i and value 0 outside. The characteristic function χi is computed, given the distance of each81

grid-point from the surface of swimmer i, by a second-order accurate finite difference approximation82

of a Heaviside function [57]. The pressure field is computed by pressure-projection [56,58],83

∆p =
1
δt
∇ · ũk − 1

δt

Ns

∑
i=1

χi∇ · ũk , (4)

where ũk = uk − (uk · ∇)uk + ν∆uk. The terms inside the summation in Eq. (4) are due to the84

non-divergence free deformation of the swimmers.85

2.1.1. Schooling formation86

The tail-beating motion that propels forwards a single swimmer generates in its wake a sequence87

of vortices. The momentum contained in the flow field induces forces to the swimmers that fish88

in schooling formation must overcome to maintain their positions in the group [59]. In this study,89

we maintain the schooling formation for multiple swimmers by employing closed-loop parametric90

controllers. We increase or decrease the tail-beating frequency Tp,i of each swimmer i if it lags behind91

or surpasses a desired position in the direction of the school’s motion,92

Tp,i = Tp(1− ∆xi) . (5)

In order to straighten the school’s trajectory we impose additional curvature kC,i along each swimmer’s93

midline in order to minimize its lateral deviation ∆yi and its angular deflection ∆θi,94

kC,i = [∆yi, 〈∆θi〉]− + [〈∆yi〉, ∆θi]− + [〈∆yi〉, 〈∆θi〉]− . (6)

Here, 〈·〉 defines an exponential moving average with weight δt/Tp, which approximates the integral95

term found in PI controllers and,96
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[a, b]− =

‖a‖ b if ab < 0,

0 otherwise .
(7)

The formulation in Eq. (6) indicates that if both the lateral displacement and the angular deviation97

are positive (or both negative) the swimmer will gradually revert to its position in the formation.98

Conversely, if ∆yi and ∆θi have different signs the displacement has to be corrected by adding (or99

subtracting) curvature to the swimmer’s midline.100

2.1.2. Flow sensors101

We distinguish two types of sensors on the swimmer body. The superficial neuromasts detect102

flow stress and the subcanal neuromasts pressure gradients [28,60,61]. From the numerical solution103

of the 2D Navier-Stokes equation we obtain the flow velocity u = (u, v) and the pressure p at every104

point of the computational grid. The surface values of these quantities are obtained through a bi-linear105

interpolation from the nearest grid points. We perform offline analysis by recording the interpolated106

pressure p and flow velocity u in the vicinity of the body. We remark that we have neglected points107

near the end of the body to reduce the influence of large flow gradients that are generated by the108

motion and sharp geometry of the tail. The shear stresses are computed on the body surface using109

the local tangential velocity in the two nearest grid points. Moreover we compute pressure gradients110

along the surface by first smoothing thes pressure along the surface a using splines implemented in111

SCIPY [62,63].112

2.2. Optimal sensor placement based on Information gain113

In the present work a swimmer is equipped with sensors that are used to identify the size and114

location of a nearby school. The optimal sensor locations are identified using Bayesian experimental115

design [64] so that the information obtained from the collected measurements is maximized. We define116

the information gain as the distance between the prior belief on the quantities of interest and the117

posterior belief after obtaining the measurements. Here, we choose as measure of the distance the118

Kullback-Leibler divergence between the prior and the posterior distribution.119

2.2.1. Bayesian Estimation of Swimmers120

In the present experiment setup, we consider a group of swimmers followed by a single swimmer.121

The follower needs to identify (i) the relative location r of the center of mass and (ii) the population122

n f of the leading group. We denote with ϑ = r or ϑ = n f these unknown quantities and allow the123

follower to update its prior belief p(ϑ) about the leading group of fish by collecting measurements on124

its sensors. These sensors are distributed symmetrically on both sides of the fish and can be represented125

by a single point on its mid-line. We denote the k-th measurements location at the upper and the lower126

part with x1(sk) and x2(sk), respectively (see Fig. 2 for a sketch of the setup).127

We denote by F(ϑ; s) ∈ R2n the flow output and include an error term ε to account for inaccuracies128

such as as numerical errors and imperfections in the sensors. The measurements on the fish body can129

be expressed as,130

y = F(ϑ; s) + ε . (8)

We model the error term by a multivariate Gaussian distribution ε ∼ N (0, Σ(s)) with zero mean and131

covariance matrix Σ(s) ∈ R2n×2n so that the likelihood of a measurement is expressed as,132

p
(
y|ϑ, s

)
=

1√
(2π)2n det(Σ(s))

exp
(
−1

2
(
y− F(ϑ; s)

)T
Σ−1(s)

(
y− F(ϑ; s)

))
. (9)
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Figure 2. Simulation setup used for determining the optimal sensor distribution on a fish-like body.
The follower is initially located inside the rectangular area. The number of fish in the leading group is
varied between one and eight. The sensor-placement algorithm attempts to find the arrangement of
sensors s that allows the follower to determine with lowest uncertainty the relative position r and the
number of fish n f in the leading group of fish. For each sensor si the fish collects measurements y1

i and
y2

i at locations x1(si) and x2(si) on the skin, respectively.

The covariance matrix depends on the sensor positions s and we assume that the prediction errors are133

correlated for measurements on the same side of the swimmer and uncorrelated if they originate from134

opposite sides. Finally, we assume that the correlation is decaying exponentially with the distance of135

the measurement locations. The functional form of the resulting covariance matrix is given by,136

Σij(s) =


σ2 exp

(
− ‖x1(si)−x1(sj)‖

`

)
, if 1 ≤ i, j ≤ n ,

σ2 exp
(
− ‖x2(si−n)−x2(sj−n)‖

`

)
, if n < i, j ≤ 2n ,

0 otherwise .

(10)

where ` > 0 is correlation length and σ is the correlation strength. For all the cases described in this137

work, the correlation length is set to one tenth of the fish length ` = 0.1L. The correlation strength is138

set to be two times the mean over the signal coming from our simulations:139

σ =
1

n Nϑ

2n

∑
j=1

Nϑ

∑
i=1
|F(ϑ(i); sj)| . (11)

We remark that the covariance matrix must be symmetric and positive definite. In order to ensure that140

it is positive definite we have to handle the case where we try to pick a sensor location twice as in this141

case the positive definiteness is violated. We do so by setting the argument of the exponential to 10−7.142

This form of the correlation error reduces the utility when sensors are placed too close together and143

prevents excessive clustering of the sensors [65,66].144

We wish to identify the locations s yielding the largest information gain about the unknown145

parameter ϑ of the disturbance. A measure for information gain is defined through the Kullback-Leibler146

(KL) divergence between the prior belief of the parameter values and the posterior belief, i.e. after147
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measuring the environment. The prior and posterior beliefs are represented through the density148

functions p(ϑ) and p(ϑ|y, s), respectively. We denote by T the support of p(ϑ). The two densities are149

connected through Bayes’ theorem,150

p(ϑ|y, s) =
p(y|ϑ, s) p(ϑ)

p(y)
, (12)

where p(y|ϑ, s) is the likelihood function defined in Eq. (9) and p(y) is the normalization constant.151

The utility function is defined as [67],152

u(s, y) := DKL(p(ϑ|y, s)||p(ϑ)) =
∫
T

ln
p(ϑ|y, s)

p(ϑ)
p(ϑ|y, s)dϑ . (13)

The expected utility is defined as the average value over all possible measurements,153

U(s) : = Ey|s

[
u(s, y)

]
=
∫
Y

u(s, y) p(y|s)dy

=
∫
Y

∫
T

ln
p(ϑ|y, s)

p(ϑ)
p(ϑ|y, s)dϑ p(y|s)dy ,

(14)

where Y is the support of measurements. Using Eq. (12) the expected utility can be expressed as,154

U(s) =
∫
Y

∫
T

ln
p(y|ϑ, s)

p(y|s) p(y|ϑ, s) p(ϑ)dϑ dy . (15)

2.2.2. Estimated expected utility for continuous random variables: school location155

When ϑ = r, the random variable takes values in a continuous domain. The estimator for the156

expected utility in this case can be obtained by approximating the two integrals by Monte Carlo157

integration using Nϑ samples from p(ϑ) and Ny from p(y|ϑ, s) [68]. The resulting estimator is given158

by,159

U(s) ≈ Û(s) =
1

Nϑ Ny

Ny

∑
j=1

Nϑ

∑
i=1

ln p(y(i,j)|ϑ(i), s)− ln

 1
Nϑ

Nϑ

∑
k=1

p(y(i,j)|ϑ(k), s)


 , (16)

where ϑ(i) ∼ pϑ for i = 1, . . . , Nϑ and y(i,j) ∼ N (F(ϑ(i); s), Σ(s)) and j = 1, . . . , Ny. We160

remark that the computational complexity of this procedure is mainly determined by the number161

of Navier-Stokes simulations Nϑ . There is no additional computational burden to compute the Ny162

samples following the measurement error model Eq. (8).163

2.2.3. Estimated expected utility for discrete random variables: school size164

When ϑ is a discrete random variable with finite support taking values in the set {ϑ1, . . . , ϑNϑ
}165

the expected utility in Eq. (15) is given by,166

U(s) =
Nϑ

∑
i=1

p(ϑi)
∫
Y

ln
p(y|ϑi, s)

p(y|s) p(y|ϑi, s) dy . (17)

Here, ϑ = n f represents the number of fish in the leading group. An estimator of the given utility can167

be obtained by Monte Carlo integration using Ny samples from the likelihood distribution p(y|ϑi, s).168

The estimator is given by169
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U(s) ≈ Û(s) =
1

Ny

Ny

∑
j=1

Nϑ

∑
i=1

p(ϑi)

ln p(y(i,j)|ϑi, s)− ln

 Nϑ

∑
k=1

p(ϑk)p(y(i,j)|ϑk, s)


 . (18)

where y(i,j) ∼ p(y|ϑi, s) for j = 1, . . . , Ny. Let ϕ be the random variable representing one of the group170

configurations. Each group configuration is associated with a unique number ϕi,j for j = 1, . . . , ni,171

where ni is the total number of configurations containing i fish. With this notation, ϕ takes values in172

the set {ϕi,j | j = 1, . . . , ni , i = 1, . . . , 8}. For an example of different configurations see Appendix A173

The likelihood can be written in terms of the variable ϕ as174

p(y|ϑ = ϑi, s) = p(y|ϕ = {ϕi,1, . . . ,ϕi,ni}, s) . (19)

Using the fact that for i = 1, . . . , Nϑ ,175

p(y,ϕ = ϕk,`|ϑ = ϑi, s) = 0, for k 6= i ,

and176

p(y|ϑ = ϑi,ϕ = ϕi,`, s) = p(y|,ϕ = ϕi,`, s), for ` = 1, . . . , ni ,

and the assumption177

p(ϕ = ϕi,`|ϑ = ϑi, s) =
1
ni

, for ` = 1, . . . , ni ,

the likelihood in Eq. (19) is written as,178

p(y|ϑ = ϑi, s) =
Nϑ

∑
k=1

ni

∑
`=1

p(y,ϕ = ϕk,`|ϑ = ϑi, s)

=
ni

∑
`=1

p(y,ϕ = ϕi,`|ϑ = ϑi, s)

=
ni

∑
`=1

p(y|ϑ = ϑi,ϕ = ϕi,`, s) p(ϕ = ϕi,`|ϑ = ϑi)

=
1
ni

ni

∑
`=1

p(y|ϕ = ϕi,`, s) .

(20)

Notice that the likelihood is a mixture of distributions with equal weights and that p(y|ϕ = ϕi,`) =179

N (y|F(ϕi,`; s), Σ(s)). In order to draw a sample from the likelihood, first we draw an integer `∗ with180

equal probability from 1 to 8 and them draw yy ∼ p(y|ϕ = ϕi,`∗).181

The final form of the estimator is given by182

Û(s) =
1

Ny

Ny

∑
j=1

Nϑ

∑
i=1

p(ϑi)

ln
1
ni

ni

∑
`=1

p(y(i,j)|ϕi,`, s)− ln

 1
ni

Nϑ

∑
k=1

p(ϑ(k))
ni

∑
`=1

p(y(i,j)|ϕi,`, s)


 . (21)

2.2.4. Optimization of the expected utility function183

In order to determine the optimal sensor arrangement we maximize the utility estimator Û(s)184

described in Eq. (16). It has been observed that the expected utility for many sensors often exhibit185

many local optima [65,69]. Heuristic approaches, such as the sequential sensor placement algorithm186
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(a) (b)

(c)
Figure 3. Snapshots of the pressure field in the environment of the coasting swimmer generated by one
(Fig. 3a), four (Fig. 3b) and seven (Fig. 3c) schooling swimmers. The snapshots are taken at the moment
the measurement was performed for one particular location of the follower in the prior region. High
pressure is shown in red and low pressure in blue.

described by [70], have been demonstrated to be effective alternatives. Here, following [70], we187

perform the optimization iteratively, placing one sensor after the other. We start by placing one sensor188

s?1 by a grid search in the interval [0, 0.9]. In the next step we compute the location of the second sensor189

by setting s = (s?1 , s) and repeating the grid search for the new optimal location s?2 . This procedure is190

then continued by defining191

s?i = argmax
s

Ûi(s) where s = (s?1 , . . . , s?i−1, s) . (22)

We note that the scalar variable s denotes the mid-line coordinate of a single sensor-pair, whereas192

the vector s holds the coordinate of all sensors-pairs. Besides the mentioned advantages, sequential193

placement allows to quantify the importance of each sensor placed and provides further insight into194

the resulting distribution of sensors.195

3. Results196

We examine the optimal arrangement of pressure gradient and shear stress sensors on the surface197

of a swimmer trailing a school of self-propelled swimmers. We consider two sensing objectives: (a) the198

size of the leading school and (b) the relative position of the school. The simulations correspond to a199

Reynolds number Re = L2

ν = 2000. In all experiments we use 4096 points to discretize the horizontal200

direction x ∈ [0, 1] and all artificial swimmers have a length of L = 0.1.201

For the “size of the leading school” experiment the size of the group takes values ϑi = 1, . . . , 8.202

First we regard one configuration per group-size. In this case inferring the configuration is equivalent203

to inferring the number of fish in the group. To increase the difficulty we consider ni different initial204

configurations. In each configuration we assign a number ϕi,` for i = 1, . . . , 8 and ` = 1, . . . , ni. In205

total, we consider Ntot = ∑i ni = 61 distinct configurations each having the same prior probability206

1/Ntot. In Appendix A we present the initial condition for all configurations. The center of mass of207

the school is located at x = 0.3 and in the y-axis in the middle of the vertical extent of the domain. We208
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(a) (b)
Figure 4. Utility curves for the first sensor using pressure measurements. In Fig. 4a the utility estimator
for the “size of the leading school” experiment is presented. Figure 4b corresponds to the utility
estimator for the “relative position” experiment. We show the resulting curves for one, three and seven
fish in the leading group and the total expected utility. We observe that although the form does not
drastically change, the total utility increases with increasing size of the leading group.

use a controller to fix the distance between x and y coordinates of two fish to ∆x = ∆y = 0.15, see209

Section 2.1.1.210

For the “relative position” experiment we consider three independent experiments with one,211

four and seven leading fish. Snapshots of the pressure field for these simulations are presented in212

Fig. 3. The prior probability for the position of the group is uniform in the domain [0.6, 0.8]× [0.1, 0.4].213

The support of the prior probability is discretized with 21× 31 gridpoints. Since the experiments are214

independent, the total expected utility function for the three cases is the sum of the expected utility of215

each experiment [49].216

For both experiments we record the pressure gradient and shear stress on the surface of the fish217

using the methods discussed in Section 2.1.2. The motion of the fish introduces disturbances on it’s218

own surface. In order to distinguish the self-induced from the environment disturbances we freeze the219

movement of the following fish and set its curvature to zero. The freezing time is selected by evolving220

the simulation until the wakes of the leading group are sufficiently mixed and passed the following221

swimmer. We found that this is the case for T = 22. The transition from swimming to coasting motion222

takes place during the time interval [T, T + 1]. Finally, we record the pressure gradient and the shear223

stress at time T + 2. The resulting sensor-signal associated to the midline coordinates s for a given224

configuration ϑ is denoted F(ϑ; s), see Eq. (8).225

3.1. Utility function for the first sensor226

In this section we discuss the optimal location of a single pressure gradient sensor using the227

estimators in Eq. (16) and Eq. (21). Higher values of the expected utility correspond to preferable228

locations for the sensor since the information gain at these sensors is higher. The resulting utilities are229

plotted in Fig. 4. For all experiments we find that the tip of the head (s = 0) exhibits the largest utility230

independent of the number of fish in the leading group.231

At the tip of the head the two symmetrically placed sensors have the smallest distance. In Eq. (10)232

we have assumed that the two fish-halves are symmetric and uncorrelated. Due to the small distance233

of the sensors at the head, spatial correlation between the sensors across the fish-halves would decrease234

the utility of this location. In order to test whether the utility for sensors at the head is influenced by235

this symmetry assumption, we perform experiments where we place a single sensor on one side of the236

fish. Again in this case the location at the head is found to have the highest expected utility.237
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(a) (b)

(c)
Figure 5. Optimal sensor placement for the pressure sensors and the “size of the leading school”
experiment. In Fig. 6a the utility estimator for the first five sensors and in Fig. 6b the value of the utility
estimator at the optimal sensor location for the first 20 sensors are presented. In Fig. 6c the distribution
of the sensors on the fish surface is presented.

Based on the evidence that the head experiences the largest variance of pressure gradients F(ϑ; s)238

and that this is correlated with the density of sub-canal neuromast [43], we examine the variance of the239

values obtained from our solution of the Navier-Stokes equation. We confirm that this observation is240

consistent with our simulations. We find that independent of the number of fish, the variance in the241

sensor signal varϑ(F(ϑ; s)) is largest at s = 0.242

3.2. Sequential sensor placement243

In this section we discuss the results of the sequential sensor placement described in Section 2.2.4.244

For the “size of the leading school” experiment we present the results in Fig. 5. In Fig. 5a the utility245

curve for the first five sensors is shown. We observe that the utility curve becomes flatter as the number246

of sensors increase. Furthermore, we observe that the location where the previous sensor was placed247

is a minimum for the utility for the next sensor. Figure 5b shows the utility estimator at the optimal248

sensor for up to 20 sensors and it is evident that the value of the expected utility reaches a plateau.249

In Fig. 5c the location of the sensors on the skin if the fish is presented. The numbers correspond to the250

iteration in the sequential procedure that the sensor was placed. Note that the sensors are being placed251

symmetrically.252

The optimal sensor placement results for the “relative position” experiment can be found in Fig. 6.253

Similar to the other experiment the utility curves become flatter after every placed sensor and the254

location for the previous sensor is a minimum for the utility for the next sensor (see Fig. 6a). We plot255

the maximum of the utility for up to 20 sensors (see Fig. 6b) and observe a convergence to a constant256

value. In Fig. 6c the location of the first 20 sensors is presented.257

For both experiments it is evident that the utility of the optimal sensor location approaches a258

constant value. This fact can be explained by recalling that the expected utility Eq. (15) is a measure259

of the averaged distance between the prior and the posterior distribution. Increasing the number of260

sensors leads to an increase in the number of measurements. By the Bayesian central limit theorem,261
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(a) (b)

(c)
Figure 6. Optimal sensor placement for the pressure gradient sensors for the “relative position”
experiment. In Fig. 6a the utility estimator for the first five sensors and in Fig. 6b the value of the utility
estimator at the optimal sensor location for the first 20 sensors are presented. In Fig. 6c the distribution
of the sensors on the fish surface is presented.

increasing the number of measurements leads to convergence of the posterior to a Dirac distribution.262

As soon as the posterior has converged, the expected distance from the prior, and thus the expected263

utility, remains constant.264

3.3. Inference of the environment265

In this section we demonstrate the importance of the optimal sensor locations and examine the266

convergence of the posterior distribution. We compute the posterior distribution via Bayes rule given267

in Eq. (12). We set y = F(ϑ, s) and compute the posterior for different values of ϑ in the prior region.268

We consider measurements collected at: (a) the optimal and (b) the worst sensors location.269

The posterior probability for the “size of the leading school” experiment is shown in Fig. 7. We270

observe that the worst sensor location implies an almost uniform posterior distribution, reflecting that271

measurements at this sensor carry no information. On the other hand, the posterior distribution for the272

optimal sensor is more informative. We observe that for groups with small size the follower is able to273

identify the size with more confidence, as opposed to larger groups. We compare the posterior for an274

experiment with only one configuration per group-size to an experiment with multiple configurations.275

For multiple configurations the posterior is less informative. This indicates that the second case276

occurs to be a more difficult problem. Finally, notice that the posterior for one configuration is277

symmetric, where when adding multiple configurations this symmetry is broken. This fact is discussed278

in Appendix B.279

The posterior density for the “relative position” with one leading fish is presented in Fig. 8. The280

posterior for the configuration with three and seven fish is similar. We compute the posterior for281

measurements at the best and the worst location for one and three sensors. For the three sensors the282

worst location has been selected in all three phases of the sequential placement. The results for the283

normalized densities are shown in Fig. 8. We observe that one sensor at the optimal location gives a284

very peaked posterior. Three optimal sensors can infer the location with low uncertainty. This is not285
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Figure 7. (a) Estimated posterior probability for a single sensor optimally placed and a single
configuration per group size. The posterior shows clear peaks at the correct number of fish for
all cases, leading to perfect inference of the parameter of inference. The posterior probability for (b)
optimal and (c) worst sensor location for multiple configurations per group size. Here, for the optimal
sensor location for one, two, three and five fish shows a clear peak for the true size of the group. For
the worst sensor location the posterior is almost uniform and does not allow to extract any information
about the size of group.
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(a) One sensor, best location (b) One sensor, worst location

(c) Three sensors, best location (d) Three sensors, worst location

Figure 8. Estimated posterior for the final location for the best (left column) and worst (right column)
sensor-location for one (upper row) and three sensors (lower row). Light colors correspond to high
probability density values. We marked the actual location with a white star.

the case for the worst sensors, where adding more sensors does not immediately lead to uncertainty286

reduction.287

3.4. Shear stress sensors288

In this section we discuss the results for the optimal positioning of shear stress sensors. We follow289

the same procedure as in Section 3.1 and Section 3.2. Here, we omit the presentation of the results and290

focus on the similarities and differences to the pressure gradient sensors.291

The optimal location for a single sensor for the “size of the leading school” experiment is at292

s∗ = 3.01 · 10−4. For the “relative position” experiment we find the optimal location s∗ = 3.84 · 10−4.293

In contrast to the optimal location for one pressure gradient sensor, the found sensor is not at the tip of294

the head and is at different positions for the two experiments. Examining the variance in the shear295

signal shows quantitatively the same behaviour as the utility. Comparing the location of the maxima296

shows that they do not coincide for shear sensors.297

We perform sequential placement of 20 sensors. The resulting distribution of sensors is shown298

in Fig. 9. In Section 3.2 we argue that the expected utility must reach a plateau when placing299

many sensors using the Bayesian central limit theorem. For shear stress sensors we observe that the300

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 October 2019                   doi:10.20944/preprints201910.0266.v1

Peer-reviewed version available at Biomimetics 2020, 5, 10; doi:10.3390/biomimetics5010010

https://doi.org/10.20944/preprints201910.0266.v1
https://doi.org/10.3390/biomimetics5010010


14 of 23

(a)

(b)
Figure 9. Optimal sensor locations for the shear stress measurements for the “size of the leading school”
in Fig. 9a experiment and “relative position” experiment in Fig. 9b.

convergence is slower compared to the pressure gradient sensors. We conclude that the information301

gain per shear stress sensor placed is lower as for the pressure gradient sensors.302

The posterior density obtained for both experiments is less informative when using the same303

number of sensors. This indicates that shear is a less informative quantity yielding a slower304

convergence of the posterior.305

4. Discussion306

We present a study of the optimal sensor locations on a self-propelled swimmer for detecting307

the number and location of a leading group of swimmers. This optimization combines Bayesian308

experimental design with large scale simulations of the two dimensional Navier-Stokes equations.309

Mimicking the function of sensory organs in real fish, we used the shear stress and pressure gradient310

on the surface of the fish to determine the sensor feedback generated by a disturbance in the flow field.311

The optimization was performed for different configurations of fish, ranging from a simple312

leader-follower configuration with two fish, to a group of up to eight fish leading a single follower.313

We regarded two types of information, the number of fish in the leading group and the relative314

location of the leading group. We find that although the general shape of the utility function varies315

between the two objectives, the preferred location of the first sensor on the head of the fish is consistent.316

Furthermore, we find that the objective is only weakly influenced when varying the number of317

members in the leading group.318

We perform a sequential sensor placement and find that the utility converges to a constant value319

and thus we can conclude that few sensors suffice to infer the quantities of the surrounding flow.320

Indeed we find that the optimal sensor locations correspond to a posterior distribution that is strongly321

peaked around the true value of the quantity of interest.322

In summary, we find that changing the number of fish in the leading group does not influence the323

followers ability to infer the location of the leading group, for groups with small size. Furthermore we324

were able to show that choosing the locations for the measurements in a systematic way we are able to325

infer the number of fish in the leading group and the location of our agent to high accuracy. Ongoing326

work examines the inclusion of further parameters such as the motion of the swimmers in optimally327

detecting disturbances from neighboring fish.328
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Appendix A Configurations341

The configuration used for the number of fish experiment. For the configurations with three rows342

the vertical extent y ∈ [0, 0.5] was discretized using 2048 gridpoints, for the ones with four rows it was343

extended to y ∈ [0, 0.75] and discretized using 3072 gridpoints.344

Figure A1. Configurations for two fish.

Figure A2. Configurations for three fish.
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Figure A3. Configurations for four fish.

Figure A4. Configurations for five fish.
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Figure A5. Configurations for six fish.
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Figure A6. Configurations for seven fish.
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Figure A7. Configurations for eight fish.

Appendix B Posterior is not symmetric345

The posterior in Fig. 7 has no mirror symmetry along the diagonal axis. This observation indicates346

that the posterior is not symmetric with respect to an exchange of the parameter ϑ we try to infer347

and the parameter used in the simulation ϑtrue. In the following we want to formally examine this348

observation. For sake of brevity we neglect the influence on the sensor location s. The posterior for349

some ϑi with i = 1, . . . , 8 is given by Bayes rule350

p(ϑi|y) ∝ p(ϑi)p(y|ϑi) . (A1)

In Section 2.2.3 we showed that for multiple configurations ϕi,` for a given number of fish ϑi the351

likelihood is an equally weighted mixture of Gaussian distributions. Further assuming an uniform352

prior distribution, we have353

p(ϑi)p(y|ϑi) =
1
8

1
ni

ni

∑
`=1

1√
2πσ2

exp

(
−
(y− F(ϕi,`))

2

2σ2

)
. (A2)

Let us take y = F(ϕ∗) for some fixed configuration ϕ∗ belonging to some number of fish ϑ∗. If we354

replace ϕ∗ → ϕi,`∗ for some fixed configuration ϕi,`∗ corresponding to ϑi and ϕi,` → ϕ∗,` for the355

number of fish ϑ∗, we realize that for ni, n∗ 6= 1 the exponents in the resulting sum of Gaussian356

densities are different357
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1
8

1
ni

ni

∑
`=1

1√
2πσ2

exp

(
−
(F(ϕ∗)− F(ϕi,`))

2

2σ2

)
6= 1

8
1

n∗

n∗

∑
`′=1

1√
2πσ2

exp

(
−
(F(ϕi,`∗)− F(ϕ∗,`′))2

2σ2

)
,

(A3)
We remark that in case we have only one configuration ni = 1 for all i = 1, . . . , 8 the contrary is true358

and the posterior becomes symmetric with respect to an exchange of the parameter ϑ we try to infer359

and the parameter used in the simulation ϑtrue.360
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