

1 Article

2

Bending, Nanoindentation and Plasticity Noise in

3

FCC Single and Poly Crystals

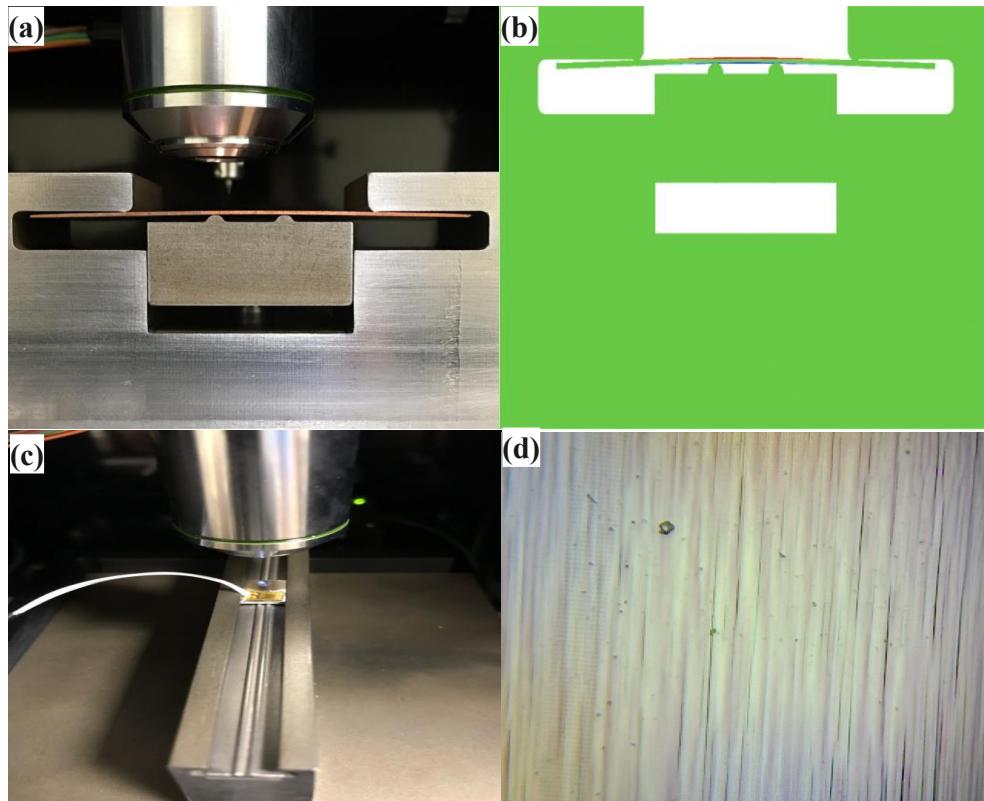
4 Ryder Bolin ¹, Hakan Yavas ^{1,2,3}, Hengxu Song ^{1,2}, Kevin J Hemker ² and Stefanos Papanikolaou
5 ^{1,2,4*}6 ¹ Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV 26506;
7 rcbolin@mix.wvu.edu8 ² Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21216;9 ³ Department of Control Engineering, Faculty of Electrical Engineering, Czech Technical University in
10 Prague, Technika 2, Prague 6, Czech Republic;11 ⁴ Department of Physics, West Virginia University, Morgantown, WV 26506;

12 * Correspondence: sp0045@mix.wvu.edu

13

14 **Abstract:** We present a high-throughput nanoindentation study of *in-situ* bending effects on
15 incipient plastic deformation behavior of polycrystalline and single-crystalline pure aluminum and
16 pure copper at ultra-nano depths (<200nm). We find that hardness displays a statistically inverse
17 dependence on in-plane stress for indentation depths smaller than 10nm, and the dependence
18 disappears for larger indentation depths. In addition, plastic noise in the nanoindentation force and
19 displacement displays statistically robust noise features, independently of applied stresses. Our
20 experimental results suggest the existence of a regime in FCC crystals where ultra-nano hardness is
21 sensitive to residual applied stresses, but plasticity pop-in noise is insensitive to it.22 **Keywords:** nanoindentation, pop-in, crystal plasticity, hardness, avalanches, noise, face-centered
23 cubic.

24


25

1. Introduction

26 Nano-indentation provides a unique opportunity to probe mechanical deformation at the
27 nanoscale of any solid surface. While numerous experimental nanoindentation studies have been
28 conducted to understand nano and micro scale plasticity [1–18], it has been elusive to use surface
29 nanoindentation to distinguish *surface* from *bulk* crystal plasticity features. In a dislocation-free region,
30 nanoindentation turns from elastic to plastic through a sudden burst, labeled as primary "pop-ins"
31 [19–28]. However, in a dislocation-rich region, nanoindentation is characterized by a noisy response,
32 with multiple secondary pop-in bursts at multiple depths [29]. Nanoindentation primary pop-in
33 bursts initiate crystal plasticity and are known to be driven by surface dislocation nucleation [30] due
34 to large stress concentrations at the indentation tip. Surface-induced primary pop-in events have been
35 very useful in revealing fundamental mechanisms of surface-induced crystal plasticity in annealed
36 crystals, and they appear to provide an onset signature of local plasticity in dislocation-starved
37 surface locations. In this work, we investigate the role and character of the secondary pop-ins, namely
38 the collective noise that emerges during nanoindentation at low depths (<200nm) in determining
39 mechanical properties of FCC crystals. We find that this secondary noise is robust across FCC single
40 and poly- crystals, as well as across applied in-situ tension, even though hardness displays strong
41 sensitivity.

42 Nanoindentation has been used in investigations of *in-situ* mechanically loaded metallic samples
43 using a variety of indentation protocols, geometries and depths [31-37]. The main outcome of these
44 works is a strong dependence of the apparent hardness on tensile stress, which nevertheless
45 disappears if the nanoindentation surface contact area is scaled appropriately [38, 39]. However,
46 nanoscale effects of pop-in events, either primary or secondary ones, and especially in *in-situ* loaded
47 samples with large pre-existing dislocation density [30,31] (namely, pre-strained and *in-situ* loaded)
48 have been ambiguous [35]. In particular, the question that rises is the ability to distinguish bulk
49 dislocation density populations through the thorough investigation of noise features in force and
50 hardness measurements at the ultra-nanoscale regime (<200nm).

51 In this paper, we focus on the statistical features of the noise in the nanoindentation force-depth
52 curves at very shallow depths (<200nm). We concentrate our efforts on common FCC metals, in
53 particular single and poly crystalline pure aluminum, and single crystal pure copper. In addition, we
54 explore the effect of in-situ bending stress on nanoindentation at very shallow depths. At shallow
55 depths, plasticity is not primarily controlled by the shape of the indenter tip and the most pronounced
56 evidence of this fact is the well known observation that the post-indentation surface profile is
57 stochastic at these depths and does not *exactly* follow the indenter tip's shape [30,31]. We study two
58 tips, Berkovich and spherical with radius 5 μm , and we find qualitative agreement. In this work, we

Figure 1: Representative images of experimental device (a) custom 4pt-bending fixture, side view of the stage for poly-crystalline sample, (b) finite element modeling, using ABAQUS, assisted design, (c), top view of 4pt-bending fixture for single-crystalline sample, strain gauge is glued on the top surface of the sample. (d) optical image of surface steps when strain is larger than 0.1% in single crystalline copper sample.

59 report on high-throughput indentation measurements on *pre-stressed* FCC samples and statistically
60 analyze large datasets of load-displacement curves, focusing on the behavior of hardness and pop-in

61 noise. High-throughput indentations may be averaged to statistically nullify the effects of *uncorrelated*
62 surface roughness and/or grain orientation, thus providing us the opportunity of only focusing on
63 intrinsic microstructural effects. Single crystalline samples were oriented at {100} orientation, since
64 uniaxial tension along this orientation leads to multi-slip dislocation plasticity [40]. The material
65 selection of Cu and Al provided also some testing on the variability of stacking fault energies and
66 propensity for cross-slip in two distinct microstructures [41,42].
67

68 2. Materials and Methods

69 Electropolished commercial aluminum polycrystals (99.99% purity, Plasma Materials Inc.,
70 US) and commercial aluminum and copper single crystals at orientation (100) (99.99% purity,
71 MTI Corporation., US), of dimensions 2mm x 5mm x 10mm, were used in this study.
72 Custom-made 4-point loading fixtures (see Figure 1(a),(c)) were designed to apply in-plane
73 tension at the sample top central region during nanoindentation, controlling the local strain
74 at the top central surface area through a screw element at the bottom of the fixture. The strain
75 was measured *in situ* by using commercial strain gauges (see Fig.1c). High-throughput
76 nanoindentations were performed in the center (1mm)² surface areas of the samples, with
77 typical distances between nanoindentation sites being 10μm in each direction. Given that
78 nanoindentation depths did not exceed 250nm, the distance between nanoindentation sites
79 may be regarded independent [35]. For the estimation of the applied tension at the
80 nanoindentation sites, independently measured elastic moduli and yield stresses were
81 exported into finite element simulations, performed using the ABAQUS software (see an
82 example in Figure (1)b and also in the Supplementary Material (SM)). Through systematic
83 calculations and testing, tables for strain/stress/plastic-strain mapping were developed for
84 each material (see Tables 1,2 for a particular example of polycrystalline, as well as single-
85 crystalline aluminum). The applied strain on the samples extended, in small steps, up to 0.5%,
86 well in the crystal plasticity regime. Clear surface steps (primarily due to dislocation
87 plasticity) formed after 0.2% strain in all the materials tested (example seen in Fig.1d for a
88 single crystal copper sample), naturally influencing the indentation results at small depths.
89 Our main results are focused on small loads/strains which should not be influenced by such
90 steps, but more details on these issues are discussed in the SM.

91 Nanoindentation experiments were performed with an iNano (Nanomechanics Inc., TN)
92 nanoindenter with Berkovich (apex roundness of 20nm) and spherical (5μm) tips, acquired
93 by Microstar Inc.. The details of the materials preparation, bending fixture and
94 nanoindentation protocols are discussed in the SM.

Deflection, μm	Total strain, %	Plastic strain, %	Tensile stress, MPa
0	0	0	0
97	0.031	0	19.1
226	0.065	0	40.13
316	0.11	0.04	41.86
403	0.15	0.08	43.21
493	0.2	0.127	44.6
583	0.24	0.165	45.9
717	0.31	0.233	47.12
823	0.36	0.283	47.35

Table 1: Example of Bending deflection-Strain-Stress Correspondence: Polycrystal Al: Measured total strain and calculated stress and plastic strain.

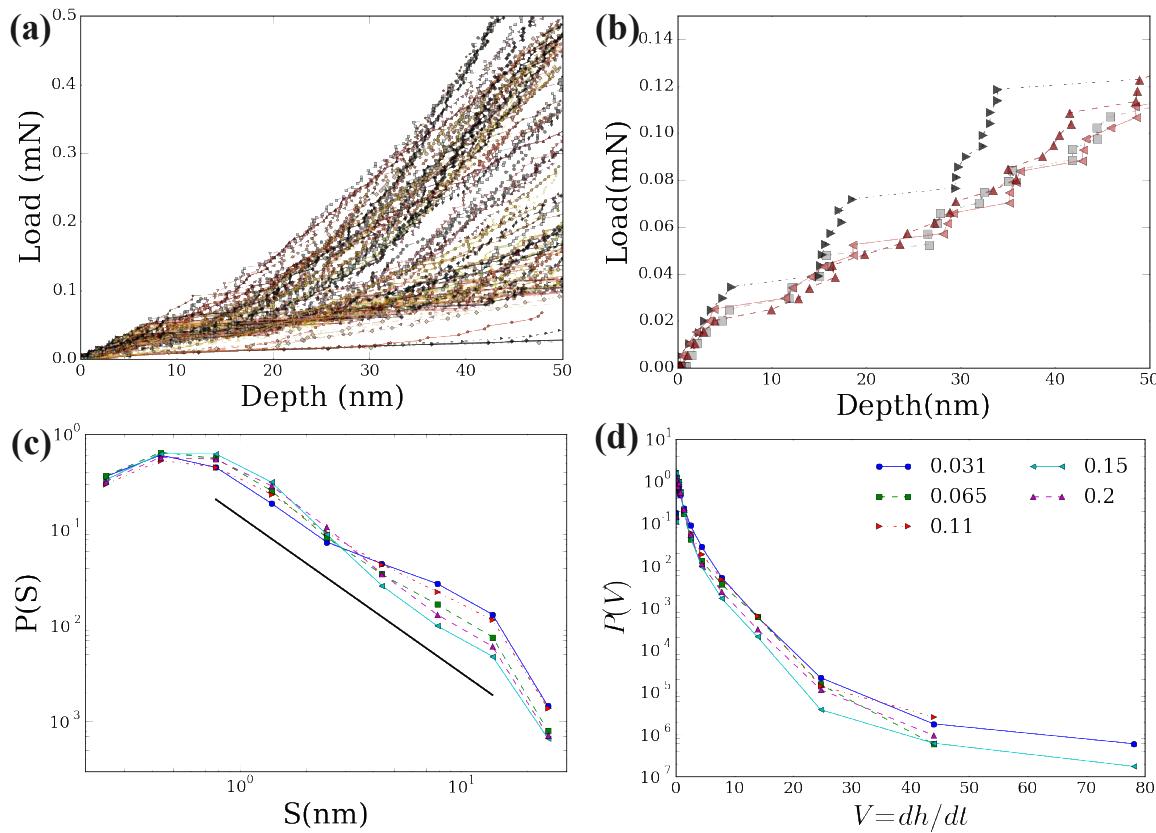
95

96

Deflection, μm	Total strain, %	Plastic strain, %	Tensile stress, MPa
2.3	0.005	0	3.5
9.3	0.05	0.009	20
11.2	0.1	0.04	20.11

Table 2: Example of Bending deflection-Strain-Stress Correspondence: Single Crystal Al: Measured total strain and calculated stress and plastic strain.

97


3. Results

98 In the following, we present our main results on the correlation between hardness and secondary
 99 pop-in bursts in FCC polycrystalline pure aluminum, single-crystalline pure aluminum and single
 100 crystalline pure copper. Our data is also supported by the SM which provides additional details. In
 101 each of the cases, we focused on two main observables: i) the raw force-depth curves and ii) the
 102 Continuous Stiffness Method (CSM)[35]-estimated hardness. Both observables were analyzed in
 103 statistical terms, by defining histograms of hardness or large fluctuations in depth, as the applied
 104 tension is modified. For the pop-in event probability distributions, the pop-in noise event size is
 105 defined so that $S = \sum_{i \text{ for } \delta h > h_{thr}} \delta h_i$, to analyze the displacement bursts in a quantitative manner,
 106 using the threshold h_{thr} being equal to the machine noise threshold $h_{thr} = 0.2\text{nm}$, which was
 107 independently tested, given the laboratory's environmental conditions.

108

109

110

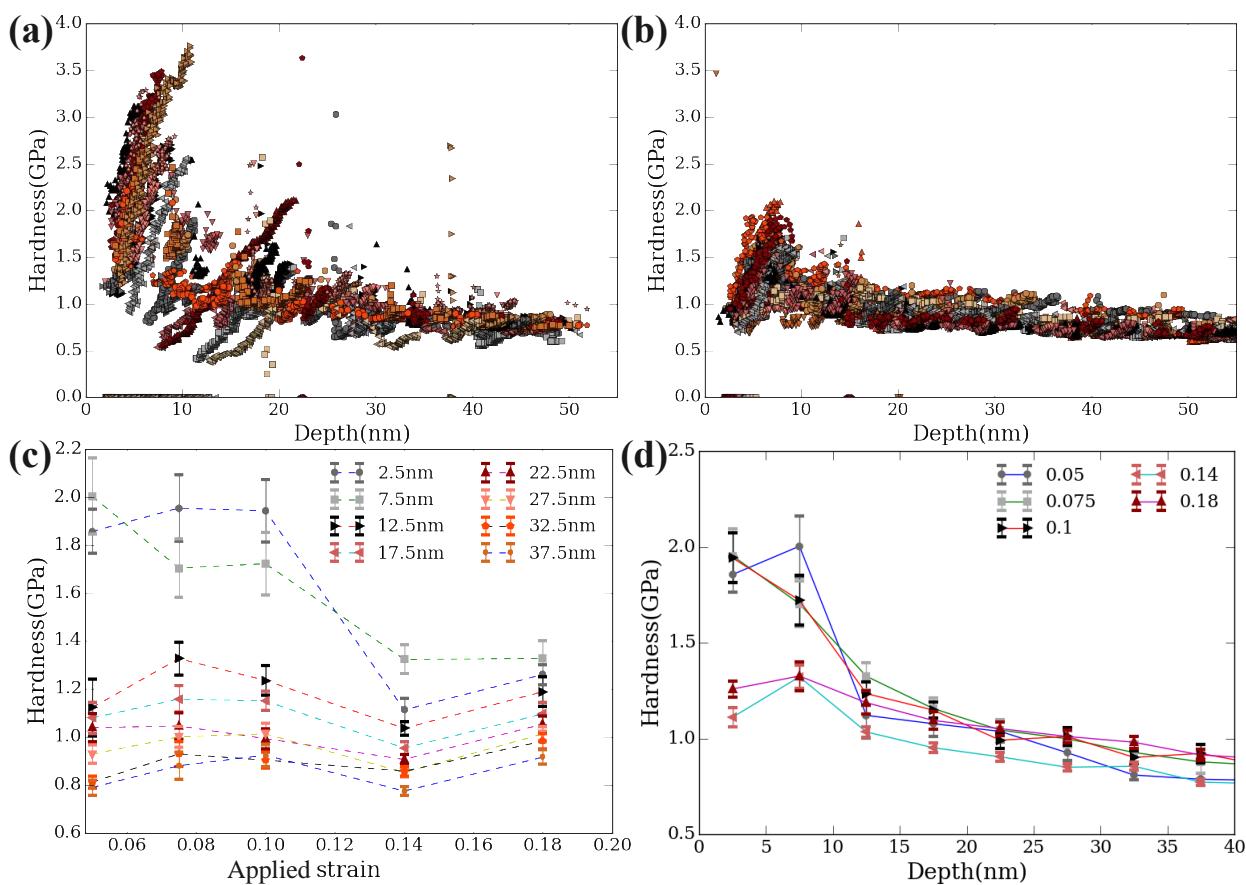


Figure 2: Pop-in Events in polycrystalline aluminum (a) A representative sample of nanoindentation load-depth curves in Al non-stressed samples over a region of 1mm^2 on the top surface, (b) Detailed load-depth behavior at four randomly selected locations on non-stressed sample top surface, (c) Probability event distribution $P(S)$ as function of event size S (described in text) for applied total in-plane strain of 0.031 (●) (blue), 0.065 (■) (green), 0.11 (►) (red), 0.15 (◄) (cyan), 0.2 (▲) (purple). The solid line is a guide to the eye and represents $y \sim x^{-1.6}$ (d) Probability distribution $P(V)$ of the “pop-in noise” intensity $V = dh/dt$ (described in text) (total strain shown in legend).)

111 Polycrystalline Al: In order to investigate the influence of the applied in-plane stresses on the load-
 112 displacement curves, we carried out indentation tests across a large surface area of $1 \times 1 \text{ mm}^2$ in the
 113 centerline of three polycrystalline specimens (for each sample $\sim 5,000$ indentations at each stress level
 114 given in Table 1). Samples were electropolished before being loaded and indented.

115 In all cases, load-displacement curves show a continuous elastic response followed by multiple
 116 measurable displacement bursts (see Figure 2(b)). These bursts are at depths large compared to the
 117 expected oxide film in aluminum, and therefore may statistically attributed to the mechanical
 118 response of polycrystalline aluminum. This intrinsic material noise is attributed to both surface
 119 roughness and stochasticity of crystalline plastic deformation. In Figure 2(c), S is the magnitude of a
 120 single displacement burst, while $P(S)$ is the probability density. The event distributions display a
 121 remarkable stability into a form that resembles $P(S) = A * S^{-1.6} \exp(-S/S_0)$, where A is a normalization
 122 constant and S_0 defines the cutoff of the distribution (here, $\sim 12\text{nm}$ in all applied tensions).
 123 Interestingly, the applied tension appears to consistently suppress large events, however the
 124 robustness of the power-law response ($P(S) \sim S^{-1.6}$) seems clear. It is worth noting that this power-law
 125 response is observed in other nanomechanical studies [7,43], and it is suspected to hold across

126 nanomechanical responses in a material-independent and loading-independent, thus universal,
 127 manner [41,44,45,46]. The current study represents the first evidence of this kind in nanoindentation
 128 of FCC crystals. Following Ref.[45] and in the effort to corroborate the evidence of Figure 2(c), we
 129 also investigated the behavior of the local event "intensity", defined as the recorded rate of depth
 130 changes dh/dt . In Figure 2(d), the probability distribution of the local event intensity $P(V)$ is presented
 131 as obtained data from depth vs. time ($h-t$) curves. The observed behavior is reminiscent of typical
 132 avalanche dynamics in various mean-field models [45] and appears independent of the applied

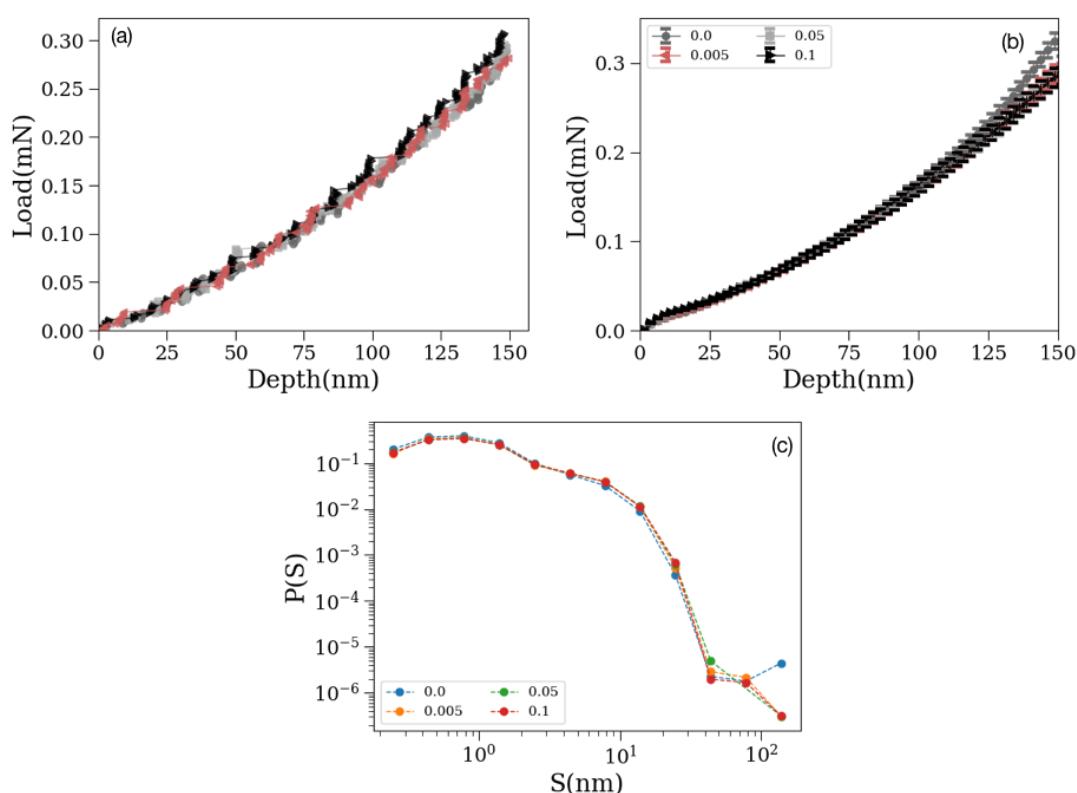


Figure 3: Hardness in poly-crystalline Aluminum: Variation of hardness as a function of indentation depth for multiple samples at in-plane stress (a) zero and (b) 43.21 MPa (with 0.08% plastic strain (see Table 1)). In (c) we show the change of average and binned hardness with applied in-plane strain at various indentation depths (depths shown in legend), while in (d) we show the change of average and binned hardness with depth at various total applied strains (corresponding strains shown in legend).

133 tension.

134 A distinct dimension in the investigation of nanoindentation is provided by the behavior of
 135 hardness. While not an exact measurement, the CSM method [35] provides a concrete continuous
 136 measure of hardness that is expected to be consistent in relative terms, especially for the same
 137 material class and sample. Figures 3(a) to 3(d) show the variation of hardness as a function of
 138 indentation depth at different in-plane stresses, for a large multitude of indented locations and five
 139 different samples. Hardness displays a strong size effect dependence on depth for all in-situ tension
 140 levels. These size effects are well known from various prior studies of Berkovich indentation on FCC
 141 metals [27,30,35 and references therein]. Hardness values first increase with increasing indentation
 142 depth until it reaches a peak (approximately 2 GPa for zero applied in-plane stress and zero strain,

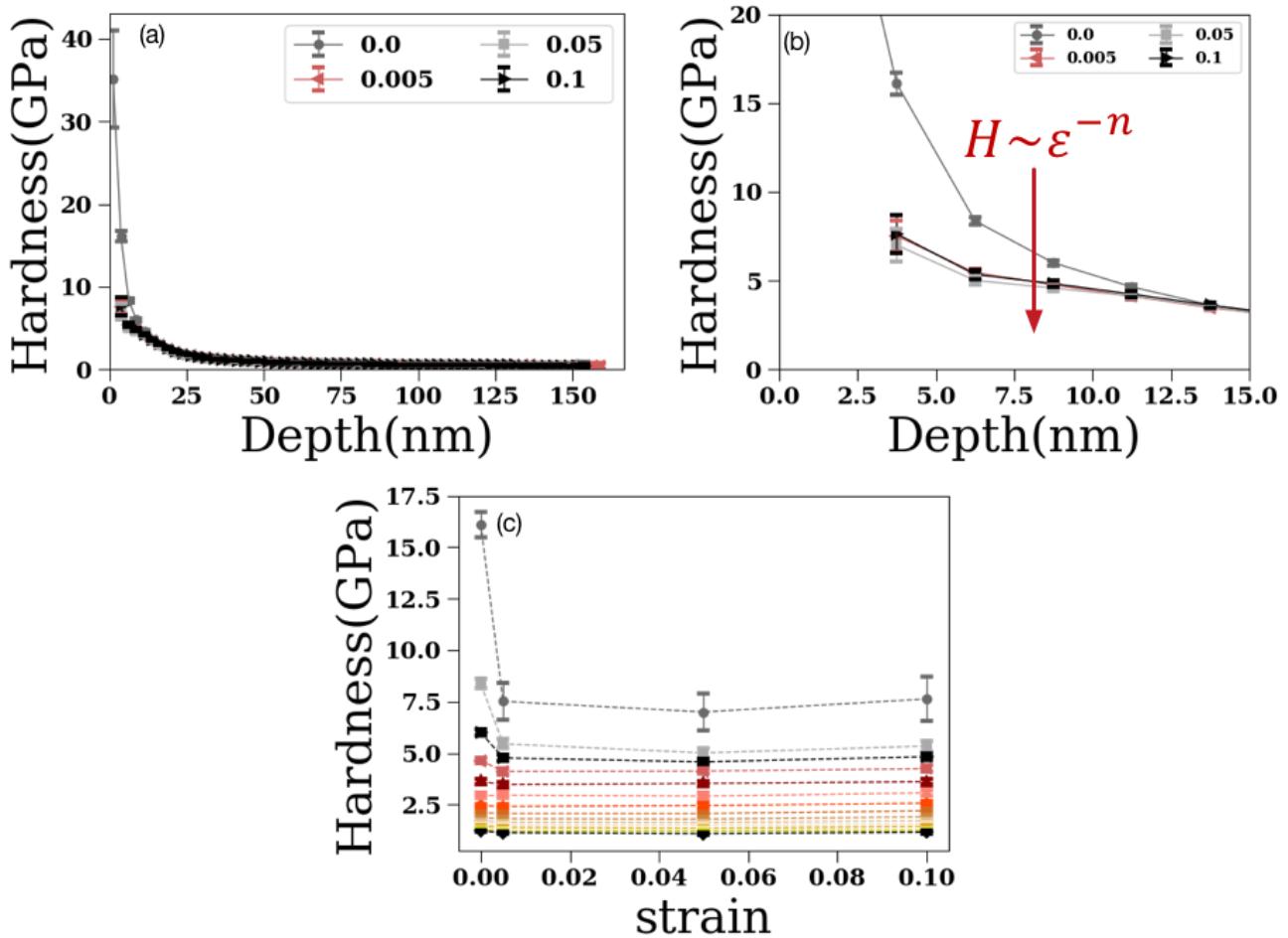

143 see Fig. 2c and 2d) and then decreases towards a plateau at approximately 1 GPa consistent with prior
 144 studies [22,24,26,36,37]. However, we notice an additional, overall, unseen before, effect of *in-situ*
 145 tension on hardness, which becomes clear when Figure 3(a) (low tension) is contrasted to Figure 3(b)
 146 (high tension). Despite natural data variability due to extrinsic (roughness) and intrinsic (dislocation
 147 bursts) reasons, there is a strikingly strong correlation between the depth-dependent hardness and
 148 the applied in-plane stress. At up to 43.21 MPa in-plane stresses, the hardness shifts towards lower
 149 values. As it can be seen in Figures 3(b), 3(c), 3(d), the hardness below depths of 10 nm shows a clear
 150 dependence on the applied in-plane stress (strain), while for larger depths such dependence
 151 disappears.

Figure 4: Pop-in Events in single crystal aluminum (a) Representative samples of nanoindentation load-depth curves in Al non-stressed samples, (b) Sample-averaged load-depth behavior as function of applied total tensile strain levels (0%, 0.005%, 0.05%, 0.1%). There are about 1000 tests averaged per strain. (c) Probability event distribution $P(S)$ as function of event size as function of the applied in-plane tensile strain.

152 Single-crystalline Al: Samples at orientation (100), of ultra-high purity, were mechanically polished
 153 to nanometer scale as purchased from manufacturer. Analogously to the case of polycrystalline Al,
 154 Figures 3 (a) and (b), (c) show force-displacement curves and the statistics of pop-in events, for
 155 different applied tension levels. Figure 3(a) displays the actual response of four individual
 156 indentation sites, demonstrating the existence of non-trivial displacement jumps that extend to 10nm,
 157 even at depths of 100nm. If these curves are averaged across indentation sites, then the average
 158 dependence on the applied tension can be distinguished at very low depths (<20nm) as well as large
 159 depths (>125nm). Nevertheless, the histograms of displacement bursts through all indentation sites
 160 at a given stress level display a wide distribution that has a marked independence on the applied
 161 tension. While the power-law behavior appears similar to the one observed in polycrystalline Al, the

162 behavior resembles $P(S) = A^* S^{-1.3} \exp(-(S/S_0)^{1.5})$. These differences may signify distinct
 163 micromechanical mechanisms, as expected [45,46].

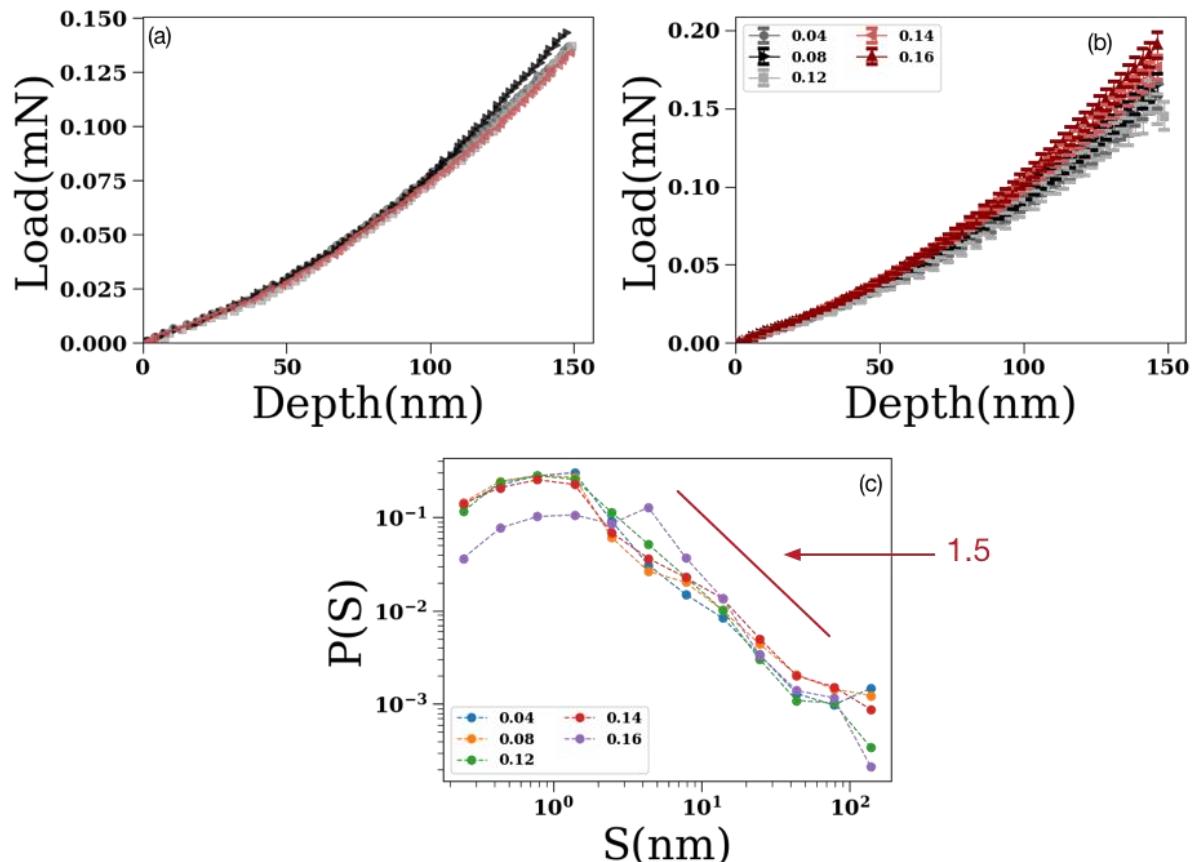
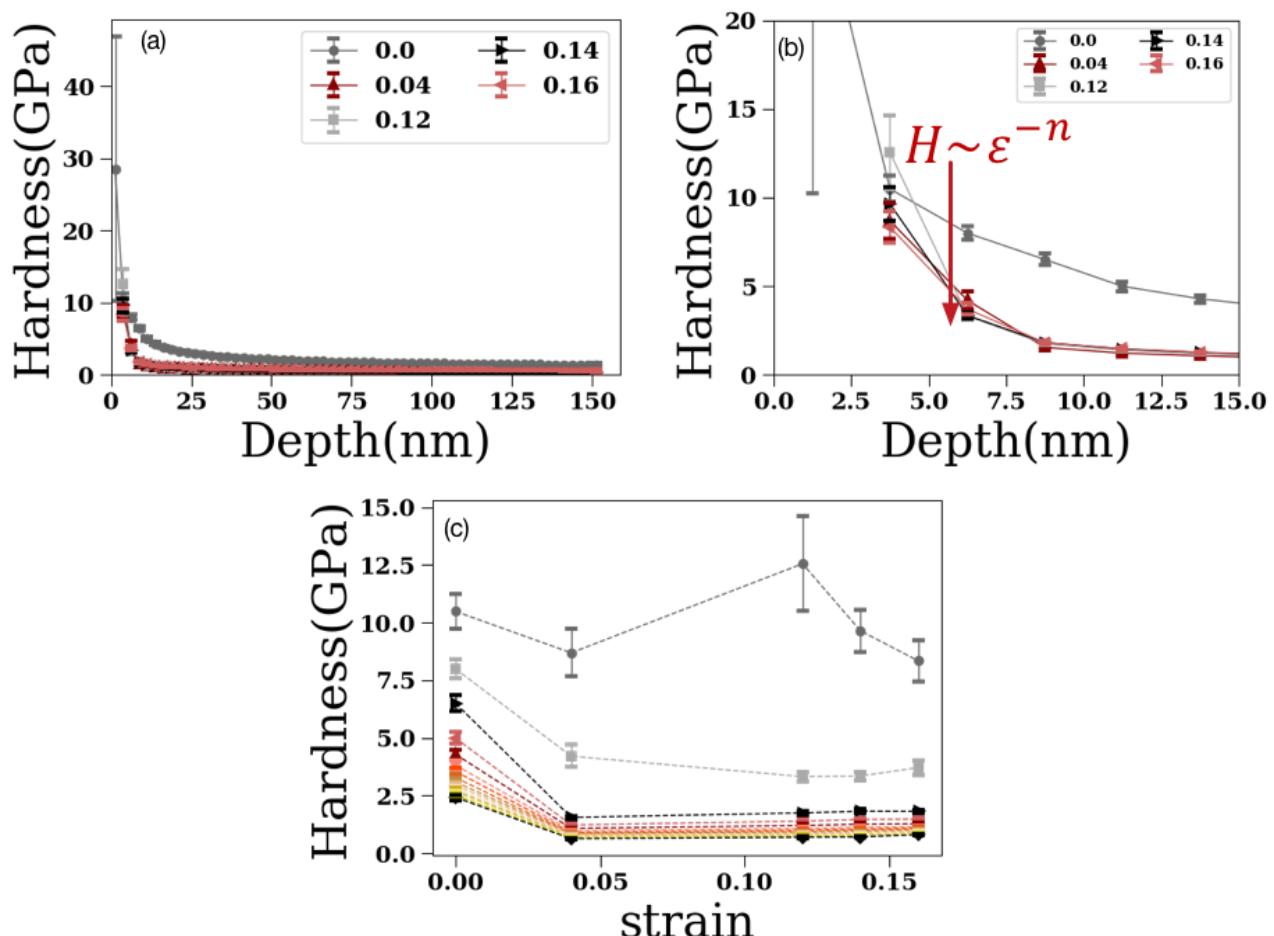


Figure 5: Hardness & Statistics in Single-Crystalline Aluminum: (a) Sample-averaged hardness-depth measurements carried on single crystals (100) at multiple tensile strain levels (0%, 0.005%, 0.05%, 0.1%). (b) Average hardness for 4 strains (zoomed in) showing that the behavior is consistent with a strong dependence on applied tensile strain, analogously to the behavior in polycrystalline *Al*, showing that hardness is proportional to a power law of the applied tensile strain. Different symbols/colors indicate different applied tensile strains. Each figure has almost 1000 indentations averaged in each strain. (c) shows the full hardness averages with respect to the applied tensile strains, for a given depth bin.

164 The behavior of the CSM hardness for single crystalline *Al* is quite consistent with the
 165 polycrystalline case. As seen in Figure 5(a), the sample-averaged hardness shows that the applied
 166 tension drastically decreases the small-depth hardness by a factor of 30. As shown in Figure 5(b), the
 167 decrease of the hardness at depths less than 15 nm is proportional to the applied strain at a high
 168 negative power $n < -3$. Figure 3(d) shows the sample-average hardness at various depths as function
 169 of applied tensile strain, showing both the saturation at larger strains and the drastic decrease as soon
 170 as tension is applied. AFM analysis and indentation arrays of the single crystalline films signify the
 171 indentation site independence (see SM for details).

172 Single-crystalline Cu: Samples at orientation (100), of ultra-high purity, were mechanically polished
 173 to nanometer scale as purchased from manufacturer. Analogously to the other materials tested,
 174 results display a universal set of displacement bursts at small depths in conjunction to a strong
 175 sensitivity of the CSM hardness on *in-situ* applied tension. Figure 6(a) shows sample responses at

176 individual indentation sites. Displacement bursts are clear but evidently smaller than in Aluminum.
 177 The sample-averaged force-displacement curves in Figure 6(b) show a clear dependence on the
 178 applied tension at all tested depths. In Figure 6(c), the histogram of displacement bursts show the
 179 existence of a clear power-law behavior that resembles the one found for polycrystalline aluminum
 180 following the form $P(S)=A * S^{-1.6} \exp(-S/S_0)$.


Figure 6: Force-Displacement and Pop-in Events in single crystal copper (a) Representative samples of nanoindentation load-depth curves in *Cu* non-stressed samples, (b) Sample-averaged load-depth behavior as function of applied total tensile strain levels (0.04%, 0.08%, 0.12%, 0.14%, 0.16%). There are about 1000 tests averaged per strain. (c) Probability event distribution $P(S)$ as function of event size as function of the applied in-plane tensile strain. The statistical behavior is similar to the one observed for poly crystal copper (not shown [47]), and consistently similar to the behaviors observed for single crystal and poly crystal *Al*.

181 The behavior of the CSM hardness for single crystalline *Cu* is quite consistent with the
 182 polycrystalline case. As seen in Figure 5(a), the sample-averaged hardness shows that the applied
 183 tension drastically decreases the small-depth hardness by a factor of 30. As shown in Figure 5(b), the
 184 decrease of the hardness at depths less than 15nm is proportional to the applied strain at a high
 185 negative power $n < -2$. Figure 3(d) shows the sample-average hardness at various depths as function
 186 of applied tensile strain, showing again, both the saturation at larger strains and the drastic decrease
 187 as soon as tension is applied.

188

189

190

Figure 7: Hardness & Statistics in single-crystalline copper: (a) Sample-averaged hardness-depth measurements carried on single crystals (100) at multiple tensile strain levels (0%, 0.04%, 0.08%, 0.16%). (b) Average hardness for 4 strains (zoomed in) showing that the behavior is consistent with a strong dependence on applied tensile strain, analogously to the behavior in single and poly crystalline Al, showing that hardness is proportional to a power law of the applied tensile strain. Different symbols/colors indicate different applied tensile strains. Each figure has almost 1000 indentations averaged in each strain. (c) shows the full hardness averages with respect to the applied tensile strains, for a given depth bin. (a-c) shows that the hardness at shallow depths transitions almost immediately, but the effect is still present till 15nm.

191

192 **4. Discussion**

193 The variation of depth-dependent hardness at the ultra-nano regime has remained a challenging
 194 concept: Early studies [22,24,36,48] used the strain gradient plasticity approaches using geometrically
 195 necessary dislocations concepts. However, further experimental investigations were not convincing
 196 enough to support the overall conclusions, particularly at nanometer-scale depths [37]. Specifically,
 197 the Nix-Gao model overestimates the hardness values at very small depths [48]. Poole et al. suggested
 198 that the overestimation is due to the strong repulsion of the geometrically necessary dislocations
 199 (GND) at shallow depths, causing an expansion of the effective volume of geometrically necessary
 200 dislocations [49,50]. Similarly, Nix and Feng reported similar observations in later studies [51].

201 According to their study, a significant number of dislocations that spreads out of the plastic zone
 202 causes relaxation. In brief, the nanoscale plausible plasticity is governed by two main mechanisms,
 203 either dislocation nucleation at the surface or interactions, movement and nucleation of the pre-
 204 existing bulk (but close to the surface) dislocations. While the former case has been well known, the
 205 precise role of the latter effect is the focus of this work. In order to understand the effect of bulk
 206 dislocation interactions and nucleation, we decided to perform simulations in the absence of surface
 207 dislocation nucleation – in this way, the overall qualitative effect of bulk dislocation driving is
 208 explored and understood.

209 To explore possible physical phenomena that could lead to the observed hardness deviation, we
 210 have used two-dimensional discrete dislocation dynamics (2D DDD) simulations [51] (see also SM)
 211 to account for the effect of in-plane stress and indentation depth. We assumed that bulk dislocation
 212 sources are prevalent and also, indentation depths are small so that indentation is primarily
 213 dominated by close-to-surface but bulk dislocation nucleation and movement. In this way, we did
 214 not explicitly model surface dislocation nucleation. Details of the 2D DDD model can be found in the
 215 SM and in Ref.[51]. The density of pre-existing dislocations was set at $3 \times 10^{12} m^2$. We noticed that
 216 for depths smaller than $10 nm$, and holding the depth fixed, the increase of in-plane stress results in a
 217 sharp decrease of the indentation force. This result is consistent with the experimental findings
 218 reported in this work.

219 Furthermore, one may apply small-scale plasticity considerations using a local yield stress
 220 picture framework. Gerberich et al. [52] linked the indentation size effect in the nanometer scale to a
 221 ratio between the energy of newly created surface and plastic strain energy dissipation. The hardness

222 in the nanometer scale then follows, $H \approx \frac{\sigma_f}{\left(\frac{S}{V}\right)^{2/3}} \frac{1}{(2\delta R)^{1/3}}$ for spherical indentation (tip radius R)

223 where S/V is the plastic surface area over volume ratio, δ is indentation depth. Based on the data of
 224 Au in table 2 of [52], $\frac{S}{V} \sqrt{d}$ decreases at small indentation depth. We define σ_f as the local material
 225 flow stress, which is a function of the local dislocation density. In nanoindentation, the local flow
 226 stress should determine the measured hardness. The local flow stress is expected to[53] have a
 227 complex non-monotonic dependence on the local dislocation density at the nanoscale, in analogy
 228 with early theoretical suggestions as well as studies of metallic nanopillars [54]. Following Ref. [54],
 229 we suggest that the local flow stress during indentation is a function of the local dislocation density:

230 $\sigma_f \propto \frac{\beta}{R \sqrt{\varrho}} + \alpha b \sqrt{\varrho}$, where ϱ is the local dislocation density, R is the nanoindenter's radius, b is the
 231 magnitude of the Burgers vector, and β, α are dimensionless fitting parameters which in our case
 232 take the values 1.76×10^{-3} and 0.46, respectively. For the indentation depth of $5 nm$, our estimate of
 233 hardness vs. in-plane stress is shown in Fig. 4b (dashed line), which qualitatively agrees with our
 234 simulation and experimental findings.

235 In the light of our nanoindentation experiments and their agreement with the simple DDD
 236 simulations [51], we propose an alternative explanation for hardness size effects at the ultra-nano
 237 regime [29]: for small indentation depths (below $10 nm$ for a Berkovich tip, but more generally below

238 the overall depth at which pop-ins would be expected), the applied stress-induced dislocation motion
239 *statistically* dominates the deformation, in the sense of ensemble-averaged behavior over many
240 indentation locations. At that length-scale, initial dislocation density controls the deformation
241 behavior of the sample. This behavior is analogous to the source-limited regime found in pillar
242 compression [43,44,54]. For indentation depths above 10nm, the dislocation density saturates, and the
243 system reaches the critical GND density threshold and is independent of the applied in-plane stress.
244 As the indentation depth increases, the dislocation density is controlled by dislocation source
245 nucleation, and the effect of dislocations generated by in-plane tension disappears at large
246 indentation depth (>50 nm).

247 5. Conclusions

248 In summary, we employed large arrays of nanoindentation tests on polycrystalline and single
249 crystalline pure FCC metals (Cu, Al) at different in-plane tensions to investigate the incipient
250 plasticity transition and size effect dependences. The depth-dependent hardness measurements show
251 a clear transition at ~10 nm, as the applied in-plane stress increased to ~50MPa and the estimated in-
252 plain strain rose to 0.3%. That is indicative of the high stochastic behavior as small indentation depths
253 disappeared at high in-plane stresses, while pop-in statistics indicate that displacement bursts are
254 insensitive to in-plane tension. The experiments are comparable to 2D DDD simulations and a
255 plausible constitutive dislocation density model.

256 **Author Contributions:** Conceptualization, S.P., K.J.H. and H.S.; methodology, H.Y., R.B., S.P.; software, S.P., H.S.;
257 validation, S.P., H.Y., K.J.H. and R.B.; formal analysis, R.B., S.P., H.S.; investigation, H.Y., R.B., S.P., H.S.; resources,
258 S.P., K.J.H.; data curation, H.Y., R.B., K.J.H.; writing—original draft preparation, S.P., H.Y.; writing—review and
259 editing, S.P., K.J.H., H.S.; visualization, S.P., R.B., H.S.; supervision, S.P., K.J.H.; project administration, S.P., K.J.H.;
260 funding acquisition, S.P., K.J.H.

261 **Funding:** This research was funded by the U.S. Department of Energy (DOE), Office of Sciences, Basic Energy
262 Sciences (BES), DE-SC0014109, and also, the National Science Foundation (NSF), Award #1709568.

263 **Acknowledgments:** We would like to thank Bryan Crawford for technical support throughout the work.

264 **Conflicts of Interest:** The authors declare no conflict of interest. The funders had no role in the design of the
265 study.

266 References

- 267 [1] Kese, K.O., Li, Z.C. and Bergman, B., 2004. Influence of residual stress on elastic modulus and hardness of
268 soda-lime glass measured by nanoindentation. *Journal of materials research*, 19(10), pp.3109-3119.
- 269 [2] Zhou, X., Jiang, Z., Wang, H. and Yu, R., 2008. Investigation on methods for dealing with pile-up errors in
270 evaluating the mechanical properties of thin metal films at sub-micron scale on hard substrates by
271 nanoindentation technique. *Materials Science and Engineering: A*, 488(1-2), pp.318-332.
- 272 [3] Bufford, D., Liu, Y., Wang, J., Wang, H. and Zhang, X., 2014. In situ nanoindentation study on plasticity
273 and work hardening in aluminium with incoherent twin boundaries. *Nature communications*, 5, p.4864.
- 274 [5] Schuh, C.A. and Lund, A.C., 2004. Application of nucleation theory to the rate dependence of incipient
275 plasticity during nanoindentation. *Journal of Materials research*, 19(7), pp.2152-2158.
- 276 [6] Wang, L., Bei, H., Gao, Y.F., Lu, Z.P. and Nieh, T.G., 2011. Effect of residual stresses on the hardness of bulk
277 metallic glasses. *Acta Materialia*, 59(7), pp.2858-2864.
- 278 [7] Uchic, M.D., Dimiduk, D.M., Florando, J.N. and Nix, W.D., 2004. Sample dimensions influence strength
279 and crystal plasticity. *Science*, 305(5686), pp.986-989.

280 [8] Bolshakov, A.P.G.M. and Pharr, G.M., 1998. Influences of pileup on the measurement of mechanical
281 properties by load and depth sensing indentation techniques. *Journal of materials research*, 13(4), pp.1049-1058.

282 [9] Chen, X., Yan, J. and Karlsson, A.M., 2006. On the determination of residual stress and mechanical
283 properties by indentation. *Materials Science and Engineering: A*, 416(1-2), pp.139-149.

284 [10] Voyatzis, G.Z. and Peters, R., 2010. Size effects in nanoindentation: an experimental and analytical
285 study. *Acta mechanica*, 211(1-2), pp.131-153.

286 [11] Yang, R., Zhang, Q., Xiao, P., Wang, J. and Bai, Y., 2017. Two opposite size effects of hardness at real
287 nano-scale and their distinct origins. *Scientific reports*, 7(1), p.16053.

288 [12] Hou, X.D. and Jennett, N.M., 2017. A method to separate and quantify the effects of indentation size,
289 residual stress and plastic damage when mapping properties using instrumented indentation. *Journal of Physics
290 D: Applied Physics*, 50(45), p.455304.

291 [13] Jarausch, K.F., Kiely, J.D., Houston, J.E. and Russell, P.E., 2000. Defect-dependent elasticity:
292 nanoindentation as a probe of stress state. *Journal of Materials Research*, 15(8), pp.1693-1701.

293 [14] Sun, K., Shi, J. and Ma, L., 2017. Atomistic Insights into the Effects of Residual Stress during
294 Nanoindentation. *Crystals*, 7(8), p.240.

295 [15] Larsson, P.L., 2017. On the influence of elastic deformation for residual stress determination by sharp
296 indentation testing. *Journal of Materials Engineering and Performance*, 26(8), pp.3854-3860.

297 [16] Khan, M.K., Fitzpatrick, M.E., Hainsworth, S.V. and Edwards, L., 2011. Effect of residual stress on the
298 nanoindentation response of aerospace aluminium alloys. *Computational Materials Science*, 50(10), pp.2967-2976.

299 [17] Zhu, L.N., Xu, B.S., Wang, H.D. and Wang, C.B., 2015. Measurement of residual stresses using
300 nanoindentation method. *Critical Reviews in Solid State and Materials Sciences*, 40(2), pp.77-89.

301 [18] Xu, Z.H. and Li, X., 2006. Estimation of residual stresses from elastic recovery of nanoindentation.
302 *Philosophical Magazine*, 86(19), pp.2835-2846.

303 [19] Shen, T.D., Koch, C.C., Tsui, T.Y. and Pharr, G.M., 1995. On the elastic moduli of nanocrystalline Fe, Cu,
304 Ni, and Cu–Ni alloys prepared by mechanical milling/alloying. *Journal of Materials Research*, 10(11), pp.2892-2896.

305 [20] Pharr, G.M., 1998. Measurement of mechanical properties by ultra-low load indentation. *Materials Science
306 and Engineering: A*, 253(1-2), pp.151-159.

307 [21] Oliver, W.C. and Pharr, G.M., 1992. An improved technique for determining hardness and elastic modulus
308 using load and displacement sensing indentation experiments. *Journal of materials research*, 7(6), pp.1564-1583.

309 [22] Liu, Y. and Ngan, A.H.W., 2001. Depth dependence of hardness in copper single crystals measured by
310 nanoindentation. *Scripta Materialia*, 44(2), pp.237-241.

311 [23] Kucharski, S., Jarząbek, D., Piątkowska, A. and Woźniacka, S., 2016. Decrease of nano-hardness at ultra-
312 low indentation depths in copper single crystal. *Experimental Mechanics*, 56(3), pp.381-393.

313 [24] Durst, K., Backes, B., Franke, O. and Göken, M., 2006. Indentation size effect in metallic materials: Modeling
314 strength from pop-in to macroscopic hardness using geometrically necessary dislocations. *Acta Materialia*, 54(9),
315 pp.2547-2555.

316 [25] Oliver, W.C. and Pharr, G.M., 2004. Measurement of hardness and elastic modulus by instrumented
317 indentation: Advances in understanding and refinements to methodology. *Journal of materials research*, 19(1),
318 pp.3-20.

319 [26] Catoor, D., Gao, Y.F., Geng, J., Prasad, M.J.N.V., Herbert, E.G., Kumar, K.S., Pharr, G.M. and George, E.P.,
320 2013. Incipient plasticity and deformation mechanisms in single-crystal Mg during spherical nanoindentation.
321 *Acta Materialia*, 61(8), pp.2953-2965.

322 [27] Lorenz, D., Zeckzer, A., Hilpert, U., Grau, P., Johansen, H. and Leipner, H.S., 2003. Pop-in effect as
323 homogeneous nucleation of dislocations during nanoindentation. *Physical review B*, 67(17), p.172101.

324 [28] Jiapeng, S., Cheng, L., Han, J., Ma, A. and Fang, L., 2017. Nanoindentation induced deformation and
325 pop-in events in a silicon crystal: molecular dynamics simulation and experiment. *Scientific reports*, 7(1),
326 p.10282.

327 [29] Tsui, T.Y., Oliver, W.C. and Pharr, G.M., 1996. Influences of stress on the measurement of mechanical
328 properties using nanoindentation: Part I. Experimental studies in an aluminum alloy. *Journal of Materials Research*,
329 11(3), pp.752-759.

330 [30] Bei, H., Xia, Y.Z., Barabash, R.I. and Gao, Y.F., 2016. A tale of two mechanisms: Strain-softening versus
331 strain-hardening in single crystals under small stressed volumes. *Scripta Materialia*, 110, pp.48-52.

332 [31] Voyadjis, G.Z. and Yaghoobi, M., 2017. Review of nanoindentation size effect: Experiments and
333 atomistic simulation. *Crystals*, 7(10), p.321.

334 [32] Lee, Y.H. and Kwon, D., 2004. Estimation of biaxial surface stress by instrumented indentation with sharp
335 indenters. *Acta Materialia*, 52(6), pp.1555-1563.

336 [33] Gu, Y., Nakamura, T., Prchlik, L., Sampath, S. and Wallace, J., 2003. Micro-indentation and inverse analysis
337 to characterize elastic-plastic graded materials. *Materials Science and Engineering: A*, 345(1-2), pp.223-233.

338 [34] Zhu, L.N., Xu, B.S., Wang, H.D. and Wang, C.B., 2012. Effect of residual stress on the nanoindentation
339 response of (100) copper single crystal. *Materials Chemistry and Physics*, 136(2-3), pp.561-565.

340 [35] Oliver, W.C. and Pharr, G.M., 2004. Measurement of hardness and elastic modulus by instrumented
341 indentation: Advances in understanding and refinements to methodology. *Journal of materials research*, 19(1),
342 pp.3-20.

343 [36] Kucharski, S., Jarząbek, D., Piątkowska, A. and Woźniacka, S., 2016. Decrease of nano-hardness at ultra-
344 low indentation depths in copper single crystal. *Experimental Mechanics*, 56(3), pp.381-393.

345 [37] Feng, G. and Nix, W.D., 2004. Indentation size effect in MgO. *Scripta materialia*, 51(6), pp.599-603.

346 [38] Bolshakov, A., Oliver, W.C. and Pharr, G.M., 1996. Influences of stress on the measurement of mechanical
347 properties using nanoindentation: Part II. Finite element simulations. *Journal of Materials Research*, 11(3), pp.760-
348 768.

349 [39] Tsui, T.Y., Oliver, W.C. and Pharr, G.M., 1996. Influences of stress on the measurement of mechanical
350 properties using nanoindentation: Part I. Experimental studies in an aluminum alloy. *Journal of Materials Research*,
351 11(3), pp.752-759.

352 [40] Asaro, R. and Lubarda, V., 2006. *Mechanics of solids and materials*. Cambridge University Press.

353 [41] Cockayne, D.J.H., Jenkins, M.L. and Ray, I.L.F., 1971. The measurement of stacking-fault energies of pure
354 face-centred cubic metals. *Philosophical Magazine*, 24(192), pp.1383-1392.

355 [42] Ludwigson, D.C., 1971. Modified stress-strain relation for FCC metals and alloys. *Metallurgical Transactions*,
356 2(10), pp.2825-2828.

357 [43] Uchic, M.D., Shade, P.A. and Dimiduk, D.M., 2009. Plasticity of micrometer-scale single crystals in
358 compression. *Annual Review of Materials Research*, 39, pp.361-386.

359 [44] Papanikolaou, S., Dimiduk, D.M., Choi, W., Sethna, J.P., Uchic, M.D., Woodward, C.F. and Zapperi, S., 2012.
360 Quasi-periodic events in crystal plasticity and the self-organized avalanche oscillator. *Nature*, 490(7421), p.517.

361 [45] Papanikolaou, S., Bohn, F., Sommer, R.L., Durin, G., Zapperi, S. and Sethna, J.P., 2011. Universality beyond
362 power laws and the average avalanche shape. *Nature Physics*, 7(4), p.316.

363 [46] Budrikis, Z., Castellanos, D.F., Sandfeld, S., Zaiser, M. and Zapperi, S., 2017. Universal features of
364 amorphous plasticity. *Nature communications*, 8, p.15928.

365 [47] R. Bolin, *Masters Thesis*, West Virginia University 2018.

366 [48] Nix, W.D. and Gao, H., 1998. Indentation size effects in crystalline materials: a law for strain gradient
367 plasticity. *Journal of the Mechanics and Physics of Solids*, 46(3), pp.411-425.

368 [49] Poole, W.J., Ashby, M.F. and Fleck, N.A., 1996. Micro-hardness of annealed and work-hardened copper
369 polycrystals. *Scripta Materialia*, 34(4), pp.559-564.

370 [50] Ma, Z.S., Zhou, Y.C., Long, S.G. and Lu, C., 2012. On the intrinsic hardness of a metallic film/substrate
371 system: Indentation size and substrate effects. *International journal of plasticity*, 34, pp.1-11.

372 [51] Song, H., Yavas, H., Van der Giessen, E. and Papanikolaou, S., 2019. Discrete dislocation dynamics
373 simulations of nanoindentation with pre-stress: Hardness and statistics of abrupt plastic events. *Journal of the*
374 *Mechanics and Physics of Solids*, 123, pp.332-347.

375 [52] Gerberich, W.W., Tymiak, N.I., Grunlan, J.C., Horstemeyer, M.F. and Baskes, M.I., 2002. Interpretations of
376 indentation size effects. *Journal of applied mechanics*, 69(4), pp.433-442.

377 [53] Zhou, C. and LeSar, R., 2012. Dislocation dynamics simulations of plasticity in polycrystalline thin films.
378 *International Journal of Plasticity*, 30, pp.185-201.

379 [54] El-Awady, J.A., 2015. Unravelling the physics of size-dependent dislocation-mediated plasticity. *Nature*
380 *communications*, 6, p.5926.