

1 Article

2 Combining Visual Contrast Information with Sound 3 Can Produce Faster Decisions

4 Birgitta Dresp-Langley, Marie Monfouga

5 Centre National de la Recherche Scientifique UMR 7357 ICube Lab, Strasbourg University, FRANCE;
6 birgitta.dresp@unistra.fr

7 * Correspondence: birgitta.dresp@unistra.fr; Tel.: +33-388119117

8

9 Abstract

10 Pieron's and Chocholle's Laws predict that human response time decreases when the luminance
11 contrast between two stimuli or the frequency of a sound increase. Here, we show that the human
12 perceptual system combines visual contrast and sound frequency to produce faster decisions for
13 relative depth of two stimuli with varying contrast intensity difference. Stronger visual contrast
14 combined with higher pure tone sound frequency produces faster response times. The results are
15 predicted by cross-modal audio-visual probability summation.

16 **Keywords:** visual contrast; perceived relative object depth; 2D images; sound frequency; two
17 alternative forced-choice; response times; high-probability decision; readiness to respond;
18 probability summation

19

20 1. Introduction

21 On the basis of predictions derived from Pieron's Law [1], classic psychophysical response
22 times studies using two-alternative forced choice techniques have shown that human response time
23 to contrast information decreases when the luminance intensity of a stimulus, or the contrast
24 between two stimuli, increases [2]. Moreover, for a constant luminance or contrast level, response
25 times decrease when the visual area of contrast increases because of a probability summation effect
26 [3] in the contrast processing channels of the visual brain. Ahead of Piéron, psychophysicists like
27 Exner, Wundt, Cattell, and Chocholle [4,5,6] had already emphasized the inverse relationship
28 between human response time and stimulus intensity, in different sensory modalities including
29 sound. Chocholle [7] and subsequently Stevens [8] systematically investigated human motor
30 response time as a function of loudness (dB) and/or sound frequency (Hz), showing that an increase
31 in either parameter may produce a decrease in response times, or the perceptual system's readiness
32 to respond. Since these early and seminal psychophysical studies, further research has shown that
33 sound information impacts on information processing by other senses including vision, and may
34 considerably influence our decisions in response to signals we receive [9, 10].

35 The human brain's capacity to exploit combined information of visual contrast and sound in
36 motor response behavior [11] has important implications in the context of a variety of operator tasks
37 in the context of human-computer interaction systems where optimal motor performance is critical
38 [12, 13, 14]. The goal of this study here was to bring to the fore the ability of individuals to use visual
39 contrast and sound effectively for making faster perceptual decisions by taking into account the well
40 documented capacity of the human perceptual system to extract subjective cues of relative depth
41 from planar (2D) object configurations on the basis of physical variations in luminance contrast
42 [15-27]. As shown previously, in 2D configurations with higher contrast and a lower contrast visual

43 objects, those with the higher contrast will be consistently perceived as “nearer” by human
44 observers. The greater the difference in contrast between two objects in a 2D image, the higher is the
45 probability for the stronger contrast to be perceived as “nearer” [18] and, as a direct consequence of
46 Piéron’s Law [1], the shorter will be the time taken to reach that perceptual decision [18].

47 Combining visual contrast differences with pure sounds of varying frequency should produce
48 summative effects on response times for “nearer” in this context under a probability summation
49 hypothesis, where stronger contrasts combined with higher sound frequencies lead to faster
50 perceptual decisions. This hypothesis was investigated taking into account that identical sounds, in
51 terms of physical intensity (dB), with higher frequencies have higher average energy for any given
52 section of the sound wave compared with lower frequency sounds. This results in the perception of
53 differences in pitch [28], where sounds with a higher frequency are subjectively assimilated to
54 sounds of a higher intensity [29] although physically they have the same intensity in dB.

55 2. Materials and Methods

56 Stimulus sequences (images and sounds) in the different experimental conditions,
57 corresponding to individual trial sessions, and data acquisition were computer controlled. The
58 experimental task was a classic psychophysical two-alternative forced choice (2AFC) task [30],
59 yielding perceptual decisions relative to perceived relative pattern depth in this study here, and
60 their associated decision times, more generally referred to as choice response times.
61

62 *Research ethics and participants*

63 The experiments were conducted in conformity with the Helsinki Declaration for scientific
64 experiments on human individuals and placed under the Ethics Board of the corresponding author's
65 host institution, Centre National de la Recherche Scientifique (CNRS-COMETS-01-08-2019, 181). Ten
66 healthy young individuals, five men and five women, took part in the experiments as undergraduate
67 study volunteers. All had normal vision and hearing, and provided informed consent to participate
68 as subjects. Their identity is not revealed.
69

70 *Image and sound conditions*

71 Image configurations for the experiments were computer generated and displayed on a high
72 resolution color monitor (EIZO COLOR EDGE CG 275W, 2560 x 1440) connected to a DELL T5810
73 computer (Intel Xeon CPU E5-1620), equipped with an NVidia GForce GTX980 graphics card and a
74 sound card with port for plugging in headphones. Color and luminance calibration of the RGB
75 channels of the monitor was performed using the inbuilt Color Navigator self-calibration software,
76 which is delivered with the screen and runs under Windows 7. RGB values here correspond to
77 ADOBE RGB. All luminance levels were cross-checked with an external photometer (OPTICAL,
78 Cambridge Research Systems). RGB coordinates and luminance parameters (cd/m²) of the different
79 patterns in the image configurations and their dark and light backgrounds are given in Table 1.
80 Weber contrasts (*LumC*) in the different positive and negative polarity displays produced systematic
81 differences in contrast (*dC*) between left and right patterns (Table 1) of an image pair. Within this
82 range, *dC* are predicted to produce a high -probability (between .95 and 1) “foreground” effect in the
83 stronger of the two pattern contrasts, as explained in the introduction. Patterns had variable number
84 of elements across image pairs, but never within (see Figure 1). The size of each square surface in the
85 patterns was 16x16 pixels, the size of a single pixel on the screen being 0.023 cm. Lighter and darker
86 patterns were paired (Figure 1), and randomly displayed to the left and to the right in alternation.
87 All configurations were displayed centrally on the monitor in computer controlled sequences on
88 their dark or light backgrounds. Task sessions and data generation were controlled by a program
89 written in Python for Windows.
90

91 **Table 1.** RGB values and luminance parameters (*Lum*) in *candela* per square meter (cd/m²) for
92 patterns with positive (light on dark) and negative (dark on light) contrast sign (polarity). Lighter

93 and darker patterns were paired in the image configurations (Figure 1) and displayed to the left and
 94 to the right. *LumC* corresponds to Weber contrasts, calculated as given in (1). The difference between
 95 the Weber contrasts (*dC*) of two patterns in a pair determines the perceived difference in relative
 96 pattern depth.

97

98

99

	R	G	B	<i>Lum</i>	<i>LumC</i>	<i>dC</i>
Dark image background	5	5	5	2.5 (cd/m ²)		
Light image background	250	250	250	95 (cd/m ²)		
Positive-sign light-on-dark pairs						
' <i>dC</i> +' lighter patterns	250	250	250	95 (cd/m ²)	37	
' <i>dC</i> +' darker patterns	150	150	150	52 (cd/m ²)	20	17
' <i>dC</i> ++' lighter patterns	250	250	250	95 (cd/m ²)	37	
' <i>dC</i> ++' darker patterns	100	100	100	30 (cd/m ²)	11	26
' <i>dC</i> ++' lighter patterns	250	250	250	95 (cd/m ²)	37	
' <i>dC</i> ++' darker patterns	50	50	50	10 (cd/m ²)	3	34
Negative-sign dark-on-light pairs						
' <i>dC</i> -' darker patterns	5	5	5	2.5 (cd/m ²)	37	
' <i>dC</i> -' lighter patterns	50	50	50	10 (cd/m ²)	8.5	28.5
' <i>dC</i> - -' darker patterns	5	5	5	2.5 (cd/m ²)	37	
' <i>dC</i> - -' lighter patterns	100	100	100	30 (cd/m ²)	2.2	34.8
' <i>dC</i> - - -' darker patterns	5	5	5	2.5 (cd/m ²)	37	
' <i>dC</i> - - -' lighter patterns	150	150	150	52 (cd/m ²)	0.8	36.2

100

101

102

103 Positive-sign and negative-sign pattern contrasts are expressed here in terms of Weber contrast
 104 (*LumC*), which is given by

105

106

107

$$\text{LumC} = (\text{Lum}_{\text{max}} - \text{Lum}_{\text{min}}) / \text{Lum}_{\text{min}} \quad (1).$$

108

109

110

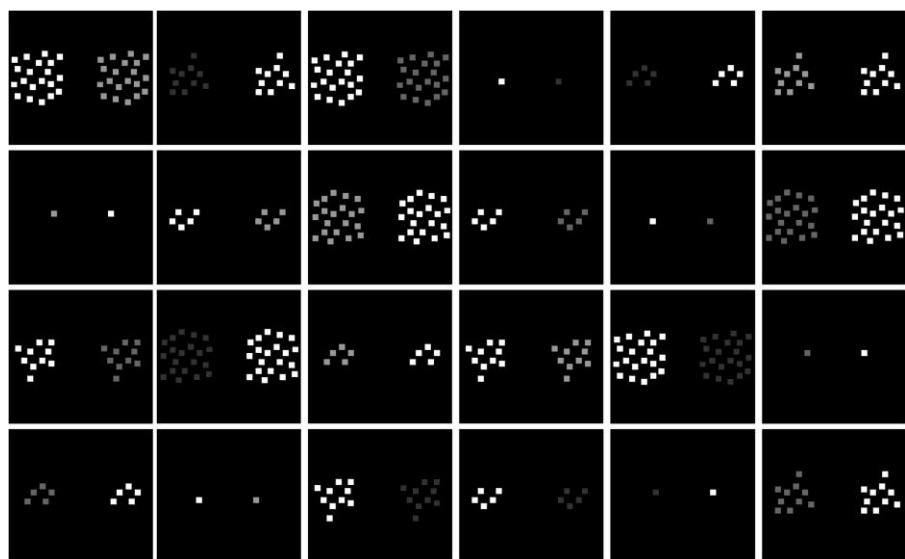
111

112

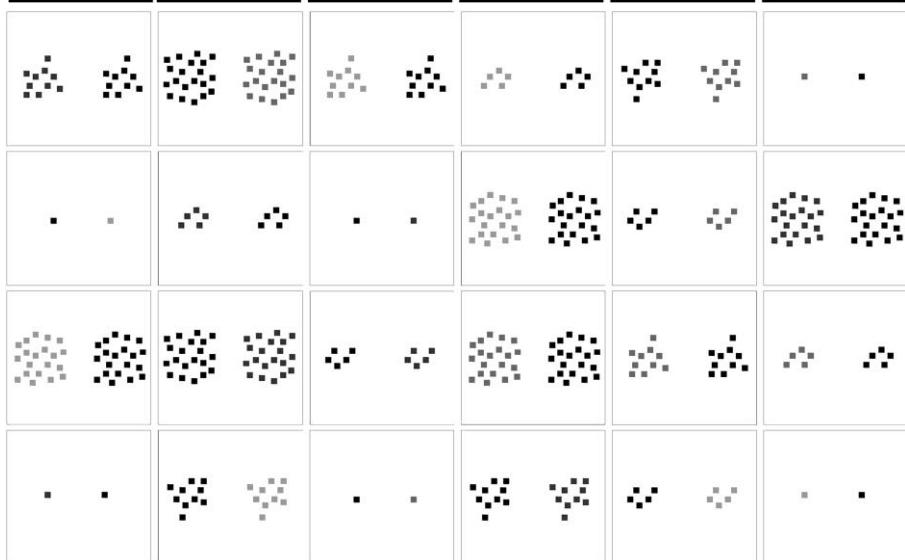
113

114

115


116

The difference in visual contrast (*dC*) between two patterns in a pair is given by


$$dC = \text{LumC}_{\text{max}} - \text{LumC}_{\text{min}} \quad (2).$$

117

118

119

120

121

122

Figure 1. 48 paired image configurations with variable contrast intensities used as stimuli in the experiments. 24 pairs had positive (a) and 24 pairs negative (b) contrast polarity. Each such pair was preceded by a 70 dB pure tone sound signal (200, 1000, or 2000 Hz) in test conditions with sound.

123

124

125

126

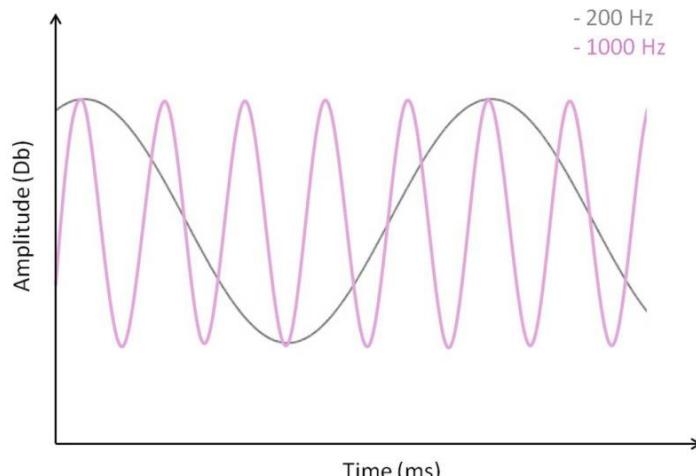
127

128

129

130

131


132

133

134

135

Pure tone sound signals with three different sound frequencies, corresponding to 200, 1000 and 2000 hertz (Hz), with identical amplitude of 70 decibels (Db), were generated from a wav file. Sound frequency (Hz) measures the speed with which a sound wave propagates and determines the pitch of a sound. Human individuals with normal hearing are perfectly able to discriminate variations in pitch within an acoustic range between 20 Hz and 20 000 Hz. Within that range, higher pitch sounds are perceived as “sharper” than lower pitch sounds of the same amplitude. For illustration, sound waves of 200 Hz and 100 Hz with identical amplitude are displayed here below in Figure 2.

136
137

138 **Figure 2.** Illustration of a 200 Hz, and a 1000 Hz sound wave of identical amplitude (Db). Within the
139 audible frequency range (20 Hz to 20 000 Hz) for humans, higher frequency (higher pitch) sounds of a given
140 amplitude are perceived as “sharper” than lower frequency sounds of identical amplitude.
141

142 *Experimental design*

143 Pattern pairs of light-on-dark and dark-on-light contrast with varying number of pattern
144 elements (Figure 1) were displayed in a random order in separate counterbalanced experimental
145 sessions for each of the two conditions of the contrast polarity factor (*Polarities*₂). The number of
146 pattern elements (E) on both sides of a pair varied between n=1, n=5, n=10, and n=20 (see Figure 1 for
147 illustration), yielding another factor of systematic variation with four levels (*Elements*₄). The contrast
148 intensity of patterns in image pairs varied in such a way that the strongest pattern contrast (see Table
149 1) was always associated with a weaker pattern contrast of the same polarity, and presented to the
150 left and to the right in alternation in a given image pair. This produced three levels of difference in
151 pattern contrast (*dC*), within and across polarity conditions, yielding a factor of systematic variation
152 with three levels (*dC*₃), and a secondary factor of relative location with two levels (*Locations*₂), not
153 expected to produce any systematic effects on perceptual responses. Each image pair was preceded
154 by a 100 millisecond (ms) pure tone sound signal with a frequency of either 200 Hz, 1000 Hz, 2000
155 Hz, or 0 Hz (‘no sound’ control condition), yielding another factor of systematic variation with four
156 levels (*Sound*₄). The delay between the end of a given sound signal and the beginning of a given
157 image presentation on each single trial was 800 milliseconds. Different sound conditions were
158 presented in separate counterbalanced experimental sessions. With ten individuals (*Individual*₁₀) run
159 in separate trial block sessions, we have the following experimental design plan: *Individuals*₁₀ x
160 *Polarities*₂ x *dC*₃ x *Locations*₂ x *Elements*₄ x *Sounds*₄, producing a total number of N = 1920 experimental
161 observations, with 192 data per subject, in terms of response times and their associated perceptual
162 decisions.
163

164 *Procedure and task instructions*

165 The subject was comfortably seated in front of the computer at a distance of about 80 cm from
166 the screen in a semi-dark room (mesopic viewing condition) and adapted to surrounding conditions
167 for about five minutes. He/she was informed that images with two abstract patterns, one on the left
168 and one on the right, will be shown in sequences, preceded or not by a brief tone, and that his/her
169 task was to decide as quickly as possible which of the two patterns, the *left* or the *right* one, in a given
170 image appeared to “stand out as if it were nearer” in terms of apparent (subjective) visual depth, as
171 previously in [17, 18, 21, 23, 24]. A response had to be delivered by pressing ‘1’ for ‘*left*’ or ‘2’ for
172 ‘*right*’, and was recorded and stored in a labeled data column of an excel file. The response time, i.e.
173 the time between an image onset and the moment a response key was pressed, was also recorded by

174 the computer, and stored in a second labeled data column of the same excel file. As soon as a response was given, the image disappeared from the screen, and 900 milliseconds later the next image of a given sequence appeared. In the conditions where the images were preceded by a 100 ms sound signal of a given frequency, the sound was delivered after 800 milliseconds following the previous response.

179 **3. Results**

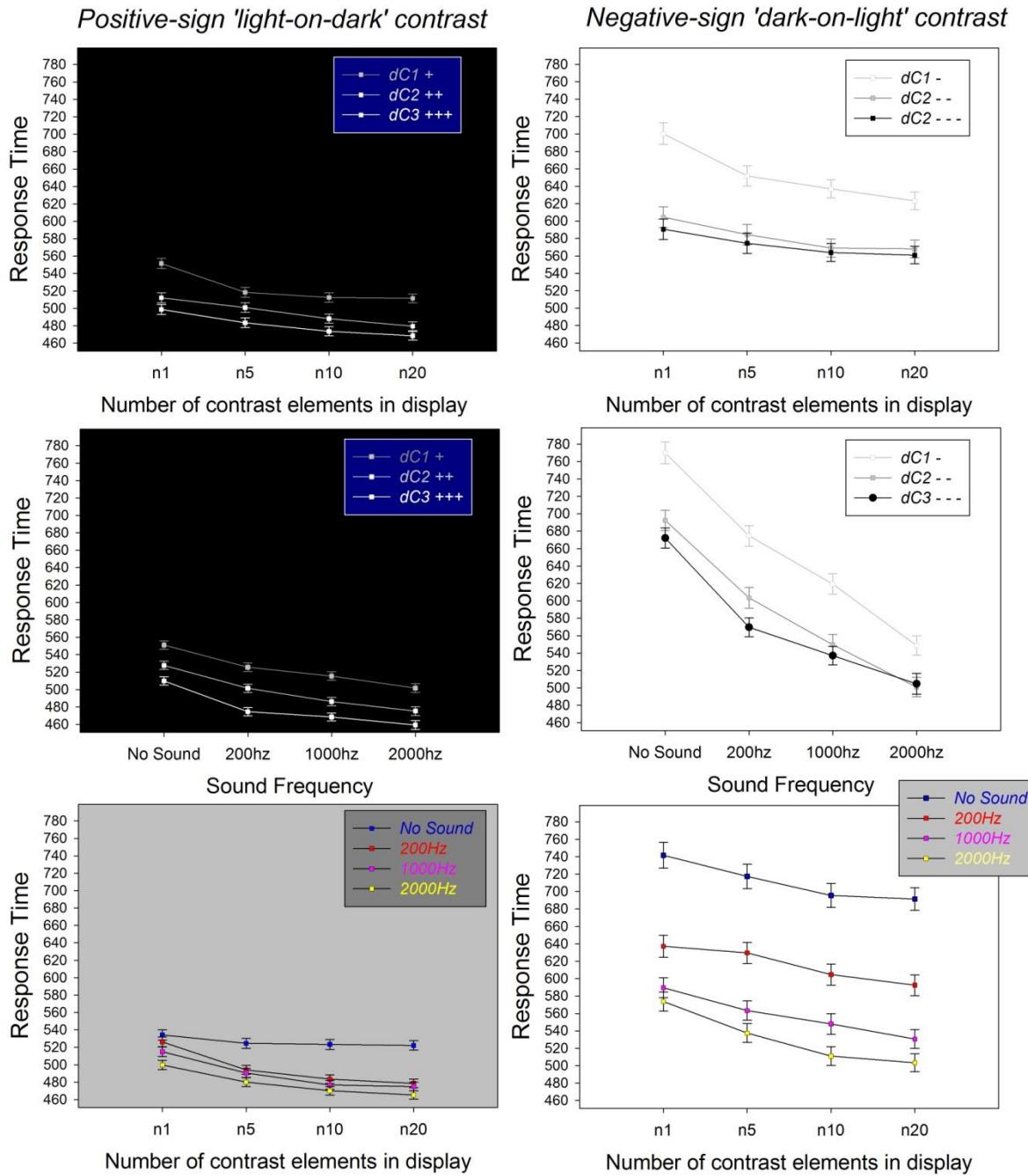
180 The choice response time data and their associated perceptual decisions ('nearer on left' *versus* 181 'nearer on right') were analyzed to evaluate combined effects of visual contrast information and 182 sound frequency, i.e. pitch, on the time taken to make a perceptual decision.

183

184 *Perceptual decisions relative to expected depth effects ("nearer")*

185 As explained in the introduction, such an analysis makes sense provided the perceptual 186 decisions are 'high-probability', i.e. reflect very little stimulus uncertainty. To meet this requirement, 187 the contrast differences between patterns of a pair in the images here were chosen in the light of 188 previous studies [17, 18], under the prediction that they would produce high-probability effects of 189 perceived relative depth reflected by a 95% to 100% decision rate for "nearer" in response to the 190 stronger contrast patterns of the pairs. This prediction was confirmed. For the 24 positive contrast 191 polarity images, a 98% response rate for "nearer" to the stronger contrast pattern in a pair was 192 recorded, and for the 24 negative contrast polarity images, we have a 96% response rate for "nearer" 193 to the stronger contrast pattern of a pair.

194


195 *Effects of experimental factors on response times*

196 Response time data were analyzed in terms of means and standard errors for a graphical 197 representation, shown here below in Figure 3, of effects of the different experimental factors. The 198 individual response time data were fed into a Four-Way ANOVA (Analysis Of Variance) to assess 199 the statistical significance of these effects. The analysis plan corresponds to the experimental design 200 plan *Individuals*₁₀ × *Polarities*₂ × *dC*₃ × *Locations*₂ × *Elements*₄ × *Sounds*₄ with a total number of 1920 data 201 points for individual response times. The source of random variability is the subject factor 202 *Individuals*₁₀. The two levels of the secondary factor *Locations*₂, relative to counterbalanced variations 203 in the spatial location of stronger/weaker patterns in a pair (left or right), are not associated with any 204 hypothesis and, as expected, did not produce a noticeable difference in response times, as revealed 205 by comparison between the means for these two secondary factor levels. The results of the ANOVA 206 yielding statistically significant effects are summarized here below in Table 2, which shows the F 207 statistics relative to effects, and their respective probability limits. The full set of raw data 208 (individual response times) from which the analyses here are drawn is provided in Table S1 of the 209 Supplementary Materials Section.

210

211 *Contrast polarity*

212 Effects of the polarity of pattern contrast on response times are shown here when comparing the 213 graphs on the left of Figure 3 to the graphs on the right of Figure 3. Positively signed light-on-dark 214 pattern pairs (Figure 3, graphs on left) produced shorter response times in comparison with 215 negatively signed dark-on-light pattern pairs (Figure 3, graphs on right) despite the fact that the 216 pattern pairs with negative contrast sign displayed moderately stronger differences in visual 217 contrast (*dC*) between patterns in a pair. This effect of contrast polarity is statistically significant 218 (Table 2). It is explained by the well-documented functional asymmetry between the so-called "on" 219 and "off" contrast processing channels in the human brain [18, 20, 27, 31]. One of the perceptual 220 consequences of this functional asymmetry is that positively signed contrast configurations, 221 processed by the "on" channels of the visual brain, produce stronger effects of figure-ground 222 segregation [24] and relative depth [17], with shorter perceptual decision times, as confirmed by this 223 result here.

224
225
226 **Figure 3.** Graphic representation of the effects of relative visual contrast between patterns in a pair (dC),
227 contrast sign, number of contrast elements, and sound on perceptual decision times from this study. Mean
228 response times and their standard errors are plotted to show effect sizes and interactions.
229

230 *Contrast difference (dC) in a pattern pair*

231 Effects of the difference in visual Weber contrast (dC) between two patterns of a pair on response
232 times are displayed in the two graphs on top as a function of contrast sign and number of contrast
233 elements, and in the two graphs in the middle of Figure 3 as a function of contrast sign and sound
234 frequency. These plots show that response times consistently decrease as the dC increases, in pattern
235 pairs with positive contrast sign (Figure 3, top and middle left) and in pattern pairs with negative
236 contrast sign (Figure 3, top and middle right). This effect of dC on response times reflecting
237 perceptual decisions for relative depth ("nearer") is statistically significant (Table 2), and predicted
238 by results from previous studies [17, 18], as explained in the introduction, and summarized further
239 here below in the discussion.

240 *Number of contrast elements in a pattern pair*

241 Effects of the number of contrast elements in a pattern pair on perceptual response times for
 242 “nearer” are displayed in the two graphs on top of Figure 3 as a function of contrast sign and
 243 number of contrast elements, and in the two graphs at the bottom of Figure 3 as a function of
 244 contrast polarity and sound frequency. These plots show that response times consistently decrease
 245 as the number of contrast elements in the patterns increases, in pattern pairs with positive contrast
 246 sign (Figure 3, top and bottom left) and in pattern pairs with negative contrast sign (Figure 3, top
 247 and bottom right). This effect of the number of contrast elements in the patterns on response times
 248 is also statistically significant (Table 2), and is explained by spatial probability summation in the
 249 “on” and “off” contrast processing channels of the visual brain, as pointed out again further below
 250 in the discussion.

251

252 *Sound Frequency*

253 Effects of sound frequency on perceptual response times for “nearer” are displayed in the two
 254 graphs in the middle of Figure 3 as a function of contrast sign, and in the two graphs at the bottom
 255 of Figure 3 as a function of the number of contrast elements. These plots show that response times
 256 consistently decrease as the sound frequency increases, in pattern pairs with positive contrast sign
 257 (Figure 3, middle and bottom left) and in pattern pairs with negative contrast sign (Figure 3, middle
 258 and bottom right). The effect of sound frequency on response times is statistically significant
 259 (Table 2).

260

261 **Table 2.** Results from the 4-Way ANOVA on the response time data (N = 1920) with F statistics
 262 relative to effects of factors and their interactions, degrees of freedom (*df*) of the given comparison,
 263 and statistical probability limits (*p*).

264

Factor	<i>df</i>	F	<i>p</i>
Polarity	1	231.926	<.001
Nelements	3	3.397	<.017
<i>dC</i>	2	24.990	<.001
Sound Frequency	3	49.835	<.001

Interactions

Nelements x <i>dC</i>	6	0.872	.515 NS
Nelements x Sound Frequency	9	0.307	.973 NS
<i>dC</i> x Sound Frequency	6	0.727	.628 NS
Nelements x Polarity	3	0.845	.535 NS
<i>dC</i> x Polarity	2	3.891	<.021
Sound Frequency x Polarity	3	20.880	<.001

265

266 *Interactions*

267 Possible interaction between effects of the factors tested here are shown graphically in Figure 3.
 268 There is no significant interaction between the number of contrast elements (Nelements) and any of
 269 the other three factors (Table 2), nor is there a significant interaction between the sound frequency
 270 and the difference in visual contrast (*dC*) of patterns in a pair (Table 2). Interactions between *dC* and
 271 contrast polarity, and between sound frequency and contrast polarity are statistically significant
 (Table 2). Post-hoc paired comparisons (Holm-Sidak tests) were computed for factor levels relative

272 to the significant interactions to unravel which paired comparisons between factor levels yield
273 statistical significance. The results from these analyses are provided in Table S2 of the
274 Supplementary Materials Section.

275

276 4. Discussion

277

278 As predicted by probability summation [1, 2, 3, 4, 7, 8], combinations of visual contrast and
279 sounds of varying frequency should produce additive effects on choice response times. This
280 prediction is confirmed by the results of the experiments here. Variations in luminance contrast were
281 used to manipulate relative depth in 2D images producing perceptual decisions for “nearer” [17, 18].
282 It is shown that stronger contrasts combined with higher sound frequencies lead to faster perceptual
283 decisions [17, 18]. This facilitating effect of sound frequency on response times for “nearer” was
284 consistently stronger in the positively signed, light-on-dark, contrast configurations, as predicted by
285 functional asymmetries between the “on” and “off” contrast processing channels of the visual brain
286 [18, 21, 27, 31]. Moreover, as the number of contrast elements in the 2D patterns increases, the effect
287 of sound on response times also increases statistically, regardless of the contrast sign of the
288 patterns, as predicted by spatial probability summation in the “on” and “off” contrast processing
289 channels of the visual brain. There is no interaction between number of contrast elements in the
290 patterns and their contrast polarity. These results lead to conclude that sound frequencies can be
291 effectively used to produce faster decisions in specific visual tasks where the processing of contrast
292 information is critical. The pure tone sound signals preceding the visual contrast stimuli here had
293 three different sound frequencies and identical amplitude, generated to manipulate the speed with
294 which the sound wave propagates and determines the perceived pitch of each sound. Within the
295 audible frequency range, higher pitch sounds are generally perceived as “sharper” or “louder” than
296 lower pitch sounds of the same amplitude. After the experimental trials here, all subjects in the
297 post-test debriefing stated having perceived some of the tones as considerably “sharper” or “louder”
298 than others. In terms of the effect of the different tones on the times taken to reach perceptual
299 decisions for “nearer”, the 2000 Hz tones with the most wave energy, potentially yielding the highest
300 pitch, consistently produced the strongest facilitation effects on response times compared with the
301 no-sound control condition.

302

303 The human brain has to analyze and react in real time to an enormous amount of information
304 from the eyes, ears and other senses. How all this information is efficiently represented and
305 processed in the nervous system is a complex topic in nonlinear and complex systems research. It
306 has been suggested that dynamical attractors may form the basis of all neural information
307 processing [24, 28, 29, 31]. The auditory and visual systems are, indeed, complex and highly
308 nonlinear physiological systems. The combined processing of information from different sensory
309 channels carries perceptual and functional meaning, as highlighted by the results from this study
here.

310

311 **Supplementary Materials:** The following are available online, [Table S1](#): Raw data (individual response times)
312 for the different experimental conditions as fed into the 4-Way ANOVA [Table S2](#): Results of the *post-hoc* paired
313 comparisons (Holm-Sidak tests) between factor levels relative to significant interactions.

314

Funding: This research was funded internally by the CNRS and received no external funding.

315

Conflicts of Interest: The author declares no conflict of interest.

316

317 References

318

1. Piéron, H. *The Sensations*. 1952; New Haven, CT: Yale University Press.
2. Pins, D, Bonnet, C. On the relation between stimulus intensity and processing time: Pieron's law and choice reaction time. *Perception & Psychophysics*. 1996; 58: 390–400.
3. Bonnet, C, Gurlekian, J, Harris, P. Reaction time and visual area: Searching for the determinants *Bulletin of the Psychonomic Society*. 1992; 30 (5): 396-398.

319

320

321 4. Cattell, J. M. The influence of the intensity of the stimulus on the length of the reaction time. *Brain*. 1886;
322 8: 512-515.

323 5. Exner, S. Ueber die zu einer Gesichtswahrnehmung noetige Zeit. *Sitzungsberichte der Kaiserlichen Akademie*
324 *der Wissenschaften*, 1868; 57: 601-632.

325 6. Wundt, W. *Grundzüge der Physiologischen Psychologie*. 1874 ; Leipzig: Engelmann.

326 7. Chocholle, R. (1940). Variation des temps de réaction auditifs en fonction de l'intensité a diverses
327 fréquences. *L'Année Psychologique*. 1940; 41/42 :65-124.

328 8. Stevens, SS. *Psychophysics: Introduction to its perceptual neural and social prospects*. 1975; New York: Wiley.

329 9. Altmann J. Acoustic weapons: a prospective assessment. 2001; *Sci Glob Secur* 9: 165-234. Doi:
330 10.1080/08929880108426495

331 10. Beckerman J. The sonic boom. how sound transforms the way we think, feel, and buy. 2014; Boston,
332 New York: Houghton Mifflin Harcourt.

333 11. Hanes, D, Schall, J. Neural control of voluntary movement initiation. *Science*. 1996; 274: 427-430

334 12. Batmaz AU, de Mathelin M, Dresp-Langley B. Getting nowhere fast: Trade-off between speed and
335 precision in training to execute image-guided hand-tool movements. *BMC Psychology*. 2016a; 4: 55.
336 doi:10.1186/s40359-016-0161-0.

337 13. Batmaz, AU, de Mathelin, M, Dresp-Langley, B. Seeing virtual while acting real: Visual display and
338 strategy effects on the time and precision of eye-hand coordination. *PLoS One*. 2017; 12: e0183789.

339 14. Dresp-Langley, B. Principles of perceptual grouping: implications for image-guided surgery, *Frontiers in*
340 *Psychology*, 2015; 6: 1565.

341 15. Farnè, M. Brightness as an indicator to distance: relative brightness *per se* or contrast with the background?
342 *Perception*. 1977; 6: 287-293.

343 16. Egusa, H. Effects of brightness, hue, and saturation on the perceived depth between adjacent regions in
344 the visual field. *Perception*. 1983; 12: 167-175.

345 17. Dresp, B, Durand, S, Grossberg, S. Depth perception from pairs of overlapping cues in pictorial displays,
346 *Spatial Vision*. 2002; 15: 255-276.

347 18. Guibal C, Dresp, B. Interaction of color and geometric cues in depth perception: When does "red" mean
348 "near"?" *Psychological Research*, 2004; 10: 167-178.

349 19. Qiu, T. Sugihara, von der Heydt, R. Figure-ground mechanisms provide structure for selective attention.
350 *Nature Neuroscience*. 2007; 11, 1492-9.

351 20. Dresp, B, Fischer, S. Asymmetrical contrast effects induced by luminance and colour configurations.
352 *Perception & Psychophysics*. 2001; 63: 1262-1270.

353 21. Dresp-Langley, B, Reeves, A. Simultaneous brightness and apparent depth from true colors on grey:
354 Chevreul revisited. *Seeing and Perceiving*. 2012; 25: 597-618.

355 22. Dresp-Langley, B, Reeves, A. Color and figure-ground: From signals to qualia. In S. Magnussen, M.
356 Greenlee, J. Werner, A. Geremek (Eds.): *Perception beyond Gestalt: Progress in Vision Research*. 2014;
357 Psychology Press, Abingdon (UK), pp. 159-71.

358 23. Dresp-Langley, B., Reeves, A. Effects of saturation and contrast polarity on the figure-ground organization
359 of color on gray. *Frontiers in Psychology*, 2004; 5: 1136.

360 24. Dresp-Langley, B, Grossberg, S. Neural Computation of Surface Border Ownership and Relative Surface
361 Depth from Ambiguous Contrast Inputs, *Frontiers in Psychology*. 2016; 7: 1102.

362 25. von der Heydt, R. Figure-ground and the emergence of proto-objects in the visual cortex, *Frontiers in*
363 *Psychology*. 2015; 6: 1695.

364 26. Dresp-Langley, B, Reeves, A. Colour for behavioural success. *i-Perception*. 2018; 9(2): 1-23.

365 27. Spillmann, L, Dresp-Langley, B, Tseng, CH. Beyond the classic receptive field: The effect of contextual
366 stimuli. *Journal of Vision*. 2015 15: 7.

367 28. Oxenham AJ. Pitch perception. *J Neurosci*. 2012;32(39):13335-13338. doi:10.1523/JNEUROSCI.3815-12.2012

368 29. Patel, A., Balaban, E. Human pitch perception is reflected in the timing of stimulus-related cortical
369 activity. *Nature*. 2001; 4(8): 839-844.

370 30. Green, DM, Swets, JA. *Signal detection theory and psychophysics*. 1973; Krieger Publishing, Huntington, NY.

371 31. Schiller PH, Sandell JH, Maunsell JH. Functions of the ON and OFF channels of the visual system. *Nature*.
372 1986; 322(6082):824-5.