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Abstract:  We examine data assimilation coupling between meteorology and chemistry in the 

stratosphere from both weak and strong coupling strategies.  The study was performed with 

the Canadian operational weather prediction Global Environmental Multiscale (GEM) model 

coupled online with the photochemical stratospheric chemistry developed at the Belgian 

Institute for Space Aeronomy, described in Part I.  Here, the Canadian Meteorological Centre’s 

operational variational assimilation system was extended to include errors of chemical 

variables and cross-covariances between meteorological and chemical variables in a 3D-Var 

configuration, and we added the adjoint of tracer advection in the 4D-Var configuration.  

Our results show that the assimilation of limb sounding observations from the MIPAS 

instrument on board Envisat can be used to anchor the AMSU-A radiance bias correction 

scheme.  Also, the added value of limb sounding temperature observations on meteorology 

and transport is shown to be significant.  Weak coupling data assimilation with ozone-

radiation interaction is shown to give comparable on meteorology whether a simplified 

linearized or comprehensive ozone chemistry scheme is used.  Strong coupling data 

assimilation, using static error cross-covariances between ozone and temperature in a 3D-

Var context, produced inconclusive results with the approximations we used.  We 

have also conducted the assimilation of long-lived species observations using 4D-Var to 

infer winds.  Our results showed the added value of assimilating several long-lived species, 

and an improvement in the zonal wind in the Tropics within the troposphere and lower 
32 
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stratosphere.  4D-Var assimilation also induced a correction of zonal wind in the surf zone33 

34 

35 

36 

37 

 and a temperature bias in the lower tropical stratosphere. 

Keywords: coupled chemistry-meteorology data assimilation; weak and strong data 

assimilation coupling, Canadian Quick Covariance method (CQC), assimilation of MIPAS 

temperature observations, ozone-temperature cross-covariance, tracer-wind 4D-Var 

assimilation. 38 

39 

1. Introduction40 

Data assimilation is a process by which observations are integrated into a model of the 41 

atmosphere thereby changing the model state and its associated forecast.  Tropospheric 42 

observations related to dynamical variables such as temperature, wind and humidity are 43 

continuously collected and routinely assimilated in weather prediction models. In the 44 

stratosphere, there are fewer observations available and these are mostly related to temperature, 45 

however, there are several research satellites measuring chemical composition in this region [1]. 46 

Important missions began in the early 1990’s with the Upper Atmosphere Research Satellite 47 

(UARS) [2-4] followed by the Environmental Satellite Envisat [5-7] and NASA’s Earth Observing 48 

System (EOS) Aura [8-9].  Instruments on board these satellites typically perform measurements 49 

which are tangent to the atmosphere (also called limb soundings) and provide height-resolved 50 

retrievals of a number of chemical species as well as temperature.  Since chemical 51 

transformations, especially those related to stratospheric ozone have an impact on the 52 

temperature while winds change the distribution of chemical tracers (i.e. long-lived species), a 53 

natural question which then arises is “To what extent does the assimilation of chemical observations, 54 

and in particular those provided by limb measurements, impact the meteorology on time scales relevant to 55 

numerical weather prediction?”.  This is the main objective of this study.  In part I we focused on 56 

modelling aspects and introduced the coupled model GEM-BACH.  Here we will discuss how 57 

these research satellite observations can provide useful information. Also we will present weak 58 

and strong data assimilation coupling experiments. 59 

Coupled data assimilation is a relatively new area of research and development, where 60 

assimilation systems can broadly be classified as either weakly or strongly coupled [10-11].  In 61 

weakly coupled data assimilation system, each geophysical component (e.g. chemistry, 62 

meterology) has its own independent analysis.  The analyses are then used to initialize a coupled 63 
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model, which produces a coupled model forecast (i.e. the coupling arises through the model 64 

forecast and not throught the analysis).  In a strongly coupled data assimilation system, the 65 

analysis is carried out on all variables together.  Thus, observations of one geophysical 66 

component can have a direct impact on the analysis of the other geophysical component.  Weak 67 

and strong data assimilation coupling strategies were developed for atmosphere-ocean [12-22] 68 

and atmosphere-land-surface coupled systems [23-27].   69 

Coupled meteorology-chemistry data assimilation has primarily been examined in the 70 

context tropospheric aerosol-radiation interaction on short time-scales [28-30], on subseasonal 71 

prediction [31] and decadal time scales [32] (also see [33] for a review of chemical data 72 

assimilation).  It was also used to estimate parameters in the activation of aerosols into cloud 73 

droplets [34], and in determining cross-covariance between temperature and constituents (O3, 74 

NO2 and SO2) using the coupled tropospheric model WRF-CHEM and an ensemble based 75 

approach [35].  Coupling can also occur through coupled observation operators.  For example, 76 

infrared channels of operational meteorological satellites are sensitive to ozone and CO2 and can 77 

benefit from using an ozone assimilation [36] and a CO2 assimilation [37],  78 

Data assimilation coupling in the stratosphere was also investigated in perspective of weak 79 

coupling through ozone-radiation interaction and as strong coupling using the tracer-wind 80 

relation.  Weak coupling was investigated at numerical weather prediction centers, such as 81 

ECMWF, by considering the ozone-radiation interaction [38] and at the Canadian Meteorological 82 

Center (CMC) with the experimental model GEM-BACH [39].  The experiments conducted at 83 

ECMWF were performed with a linearized ozone chemistry and using nadir-sounding 84 

stratospheric measurements, whereas those at CMC used a relatively low resolution model but 85 

with the full stratospheric chemistry and using limb sounding observations.  The CMC study 86 

showed showed an impact on forecast in the lower stratosphere predictability. 87 

Strong data assimilation coupling has been considered in the context of using chemical tracer 88 

observations to infer winds.  In some of the earlier studies using an extended Kalman filter with 89 

a simplified two-dimensional transport model, it was shown that wind recovery is very sensitive 90 

to the accuracy of chemical observations, and to the concentration fields having sufficient 91 

horizontal gradients and small data voids [40].  It was also shown that constituents in zones of 92 
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convergence could only determine the winds nearby.  Experiments conducted with a one-93 

dimensional model also showed that wind information can still be obtained in the case of a flat 94 

concentration field if there are gradients in the concentration error covariances [41].  Using the 95 

barotropic vorticity equation with a 4D-Var assimilation system, Riishøjgaard [42] examined the 96 

issues of data density and length of the assimilation window, and arrived at similar conclusions. 97 

Using column measurements of ozone with a NWP model and 4D-Var method, a small 98 

improvement in the winds was obtained using simulated observations, but a deterioration using 99 

real observations [43].  The negative impact was suspected to be result from observational bias.  100 

In another study using an operational NWP model with a 4D-Var assimilation system, a small 101 

impact (about 0.1 ms-1) was found on zonal wind with no reduction of error standard deviation 102 

[44].  These unsuccessful results conducted in an operational context suggested that additional 103 

studies were necessary.  Using an ensemble Kalman filter and an intermediate-complexity 104 

model, Milewski and Bourqui [45] demonstrated that information about the ozone-wind cross-105 

covariance is essential in constraining dynamical fields when ozone only is assimilated.  106 

Moreover they showed that a further reduction in error can be obtained with an Ensemble Kalman 107 

smoother [46].  In a series of studies using 4D-Var and ensemble Kalman filter, Allen et al [47-49] 108 

showed that poorly-specified observation error could lead to an increase in RMS wind error, also 109 

that observational coverage is important wind so that wind extraction could be improved if 110 

several chemical tracers were used, and that the balance between wind and temperature could be 111 

offset by the wind recovery from tracer measurements.  We should note that the wind extraction 112 

from tracer observation is part of a more general class of joint state-parameter estimation 113 

problems (e.g. [50-51]). 114 

The present study took place in the period 2005-2009 with funding, in part, from ESA/ESTEC 115 

[52].  This article, henceforth referred to as Part II summarized the data assimilation aspects. 116 

First, we present the extension of the CMC variational assimilation system to include chemical 117 

variables in Section 2, where we discuss in particular the analysis splitting and preconditioning, 118 

the extension of balance operators with chemical variables, and the validity of an incremental 119 

formulation of adjoint tracer operators for 4D-Var assimilation of long-lived species.  In Section 120 

3 we describe the error statistics of chemical variables using the Hollingsworth-Lönnberg method 121 

to estimate the error variances, and using the Canadian Quick Covariance (CQC) method to 122 

obtain non-separable error correlations. We also discuss the method and issues related to the 123 

cross-covariances between temperature and ozone.  In Sections 4 and 5 we illustrate the benefits 124 

of using limb sounding temperatures from MIPAS to improve the AMSU-A bias correction and 125 
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better simulation of temperature and transport in the stratosphere.  We then discuss weak 126 

coupling data assimilation experiment involving ozone and its impact on meteorological 127 

forecasts, which indicates that a simplified linearized ozone chemistry is sufficient to obtain most 128 

of the desired results.  Then in Sections 7 and 8 we discuss results from strong coupling 129 

experiments, first in a 3D-Var context using a balance operator between ozone and temperature, 130 

and then in 4D-Var assimilation of several long-lived species, i.e. O3, CH4 and N2O to correct the 131 

winds. 132 

2. Extension of 3D-Var and 4D-Var for chemical-meteorological coupling133 

The assimilation system scheme ued here consists of a model integration step to obtain a 6-134 

hour forecast (called the background state), and an assimilation step in which observations are 135 

used to correct the background state and obtain an analysis. This analysis is then used to initialize 136 

the next 6-hour forecast, and the cycle is repeated. In this study, the assimilation step employs a 137 

variational analysis solver that can be run in one of three modes:  138 

• 3D-Var: in this case, all observations collected over the 6-hour assimilation window are139 

assumed to be valid at the central time.  Observation departures from the model state (called 140 

innovations) are computed with respect to the background state valid at the central time of the 141 

window [53].  142 

• 3D-FGAT (First Guess at Analysis Time): this scheme is a variant of 3D-Var in which the143 

innovations are evaluated by comparing each observation with the model output valid at the 144 

observation time [54] (actually closest to a 1-hour bin).  145 

• 4D-Var: extending 3D-Var to 4D-Var can be achieved by including the forward model146 

integration as part of the observation operator (the observation operator computes the model 147 

equivalent of the observation) [55-56].   148 

It is generally assumed in variational analysis that observation errors and background errors 149 

are uncorrelated, both unbiased, and Gaussian distributed.  Producing a minimum variance 150 

estimate, called the analysis, leads numerically to a large-scale minimization problem of a 151 

quadratic function that can be solved by unconstrained minimization techniques.  This requires 152 

suitable preconditioning, and an adjoint observation operator (that is equivalent of a matrix 153 

transpose of the Jacobian of the non-linear observation operator). 154 

4D-Var mode also requires the adjoint of the linearized model, commonly called the adjoint 155 

model.  The linearization is made about a nonlinear model solution, but in the incremental form 156 

of 4D-Var, the linearized model is not required to be at the same resolution nor contain the same 157 
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physics.  In this study, however, the linearized model on which the adjoint model is based is at 158 

the same resolution (following the discussion in Section 6 Part I) but has no ozone-radiation 159 

interaction and no chemistry.  No physical parameterization is used in the adjoint model except 160 

for diffusion and a linearized planetary boundary layer scheme.  For 4D-Var long-lived species 161 

chemical assimilation experiments the adjoint model is that of passive tracer advection.   162 

Background error covariances and observation error covariances are needed to compute the 163 

minimum variance estimate.  The background error correlation model used in this study for each 164 

variable is homogeneous and isotropic (i.e. invariant under rotation) on a sphere, and non-165 

separable, meaning that the vertical and horizontal correlation structures are interconnected. 166 

The cross-variable error correlations are obtained by a transformation of variables, involving what 167 

are called balance operators obtained from a regression analysis following a Gram-Schmidt 168 

orthogonalization procedure [Section 2.3].  For the dynamical model variables, there are balance 169 

operators to represent the geostrophic and hydrostatic balance, and also the Ekman balance in the 170 

planetary boundary layer.  In this study we introduced a balance operator between ozone and 171 

temperature that was obtained either from a linearized photochemical model such as LINOZ [57] 172 

(see [58] for its implementation with semi-Lagrangian transport), or from correlations in the 173 

model output.  174 

Applying the above variable transformations and representing the error correlations in 175 

spherical harmonics, it is possible to completely diagonalize the error correlation matrix [59]. 176 

The covariances in physical space and between all variables can then be obtained through a series 177 

of transformations on a vector.  With this formulation and a reduction due to spectral transform 178 

and vertical eigenfunctions, the background error covariance matrix can be, in principle, easily 179 

expanded to include other variables in addition to the dynamical variables.  This approach was 180 

taken to extend our meteorological data assimilation system to a coupled chemistry-dynamics 181 

data assimilation solver.  The numerical coding effort began in another Canadian study [60] and 182 

was completed here with cross dynamics-chemistry balance operators and the 4D-Var chemical 183 

extension (passive tracer). 184 

The last step of the development concerns the preconditioning, which will be discussed in 185 

Section 2.1.  In principle, the control vector should contain all the meteorological and chemical 186 

variables and which, in our case, consists of 57+4 = 61 three-dimensional fields.  In developing 187 

the preconditioning, it was realized, however, that only the observed variables had to be added 188 

to the control variable.  In our case, this amounts to 10 three-dimensional fields (horizontal 189 

winds, temperature, water vapor, O3, CH4, NO2, N2O, HNO3 and ClONO2). As far as unobserved 190 
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constituents, their minimum 191 

192 

 

constituents that have a background correlated with observed 

variance estimate can be obtained off-line after the minimization.  

2.1 Analysis splitting between observed and unobserved variables 193 

The state of a chemical-meteorological model prognostic meteorological and comprises all the 194 

prognostic chemical model variables, which, in our case, represents more than 61 three-195 

dimensional fields (the chemistry model alone accounts for 57 advected species).  In principle, a 196 

state estimate should be conducted on all prognostic variables.  Yet, only a small fraction of these 197 

variables is observed.  For example, MIPAS/ESA chemical observations are mostly limited to O3, 198 

N2O, NO2, CH4, and HNO3.  We will derive in this section a computational simplification that 199 

allows splitting the analysis into observed and unobserved variables parts. 200 

Let Z be the complete chemical-meteorological state vector be decomposed into observed 201 

variables X and unobserved variables U, i.e. 202 

 
  
 

X
Z

U
. (1) 203 

The analysis of all state variables using a 3D-Var algorithm consists of minimizing the following 204 

cost function, 205 

T -1 T -11 1
( ) ( ) ( ) ( ( )) ( ( ))

2 2

f fJ H H     Z Z Z B Z Z y Z R y Z , (2) 206 

where y denotes the observation vector (i.e. all observations of all observed variables at a given 207 

time), H is the observation operator, R the observation error covariance matrix, and B is the full 208 

state background error covariance matrix that can be decomposed into, 209 

 
  
 

XX XU

UX UU

B B
B

B B
, (3) 210 

which includes covariances and cross-covariances between observed and unobserved variables. 211 

Developing a preconditioning for the cost function in Equation (2) with the full state vector Z 212 

we found that the minimization of ( )J Z  can be split into two parts: A minimization of the cost 213 

function involving only the observed variables and observations, which takes the form 214 

1 1
( ) ( ) ( ) ( ( )) ( ( ))

2 2

f T f

B OJ H H J J        1 1

XX
X X X B X X y X R y X  , (4)215 
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 with the increments 216 and a regression between the analysis increments of the unobserved variables 

of the observed variables, of the form, 217 

 a f a f  1

UX XX
U U B B X X . (5) 218 

This property is called analysis splitting.  Note that the cost function in Equation (4) is composed 219 

of two parts, the background cost function BJ and the observation cost function. OJ . We220 

should also note that analysis splitting is quite general, and holds, in particular, when the 221 

observation operator is nonlinear (the derivation in presented in Appendix A). 222 

Analysis splitting concept is interesting and practical for a number of reasons.  Consider the 223 

behavior of unobserved variables U in either a strongly-coupled or weakly-coupled data 224 

assimilation system.  The analysis increment in a strongly coupled data assimilation system 225 

would use a
U  (Equation (5)) as part of the initial condition initial ( , )a a TZ X U  for a coupled 226 

model.  In a weakly-coupled data assimilation system, we would use f
U (instead of a

U ) to 227 

initialize the unobserved space, and furthermore 
a

X  would be obtained from an uncoupled 228 

analysis.  That means that, for example, in weakly-coupled chemistry-meteorology data 229 

assimilation, ( , )a a a TX   , so that in the coupled model the initial condition is given by 230 

initial ( , , )a a f TZ μ χ U . 231 

Analysis splitting is also practical as it reduces the optimization state space dimension for the 232 

3D-Var.  It also offers the possibility to examine the impact of the analysis on unobserved 233 

variables independently of the core variational optimization.  In the absence of adequate 234 

information about cross-covariances between observed and unobserved variables, the increments 235 

of unobserved variables can be selectively removed from of the analysis in a simple manner.   236 

237 

2.2 General description of the 3D-Var-CHEM 238 

The CMC 3D-Var scheme developed for meteorology [53] and extended to include chemical 239 

variables [60] was further extended in this study to include cross-covariances between observed 240 

species and between observed and unobserved variables using a balance operator.  The general 241 
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framework will be explained in Section 2.3 and the associated error statistics in Section 3.3. 242 

Cross-covariances involving chemical variables was estimated point-wise, while the 243 

meteorological variable error covariances (and cross-covariances) were computed in spectral 244 

space as in by Derber and Bouttier [61]. 245 

The coupled chemical-meteorological model state used in the 3DVar-Chem in Equation (4) 246 

consists of  X = [,,T,ln(q),c1,…, cN,ps]T, where  is the streamfunction,  the velocity potential, 247 

T the temperature, q the (tropospheric) water vapor mixing ratio, ps the surface pressure and N 248 

observed tracers, or chemical constituent mixing ratios c1, …, cN.  The state vector in 3D Var-249 

Chem is such that all 3D fields are grouped together, followed by the 2D field ps .  As explained 250 

in Section 2.1, the state augmentation is limited only to observed variables/species.   251 

A flow chart of the 3D-Var-Chem (omitting some intermediate steps) is given in Figure S1 252 

(Supplementary Material).  The 3D-Var-CHEM code can be used for: 1- general assimilation, 2- 253 

identification of observation outliers (background check), 3- monitoring (determination of O-P 254 

only), 4- testing by way of single observation experiments, and 5- stand-alone analysis splitting, 255 

i.e. Equation (5).256 

The minimization of the cost function in Equation (4) is performed after a transformation of257 

variables,  LX  where T
XX

B LL , which simplifies the background penalty term to a simple 258 

quadratic of the form, ( )( )f f T     - a transformation step called preconditioning.  The259 

minimization is then performed on the transformed variable ξ  using an efficient quasi-Newton 260 

algorithm adapted for large-scale problems [62].  The preconditioning used in 3DVar-Chem 261 

follows what is done for the meteorological variables [53]. The key aspect of this computation 262 

resides in the fact that L times a vector X, can be obtained as a sequence of operators, without the 263 

need to store any large matrices.  This property arises principally from the assumption that the 264 

horizontal error correlation are assumed to be homogeneous and isotropic on the sphere.  For 265 

such correlations, the spectral representation is diagonal in spectral space (see for example [63, 266 

64,53,59]). The sequence of operations then becomes as follows: 1 – We multiply the spectral 267 

representation of the state with the square root of the spectral coefficient of the correlation model, 268 
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2 – Perform a transform from spectral to physical space, 3 – Multiply the resulting fields by the 269 

error variances, and 4 – Using balance operators, transform the primary fields into fields of 270 

physical significance accounting for cross-correlations between them.  This is how we obtain, for 271 

example, the velocity potential from the stream function and an unbalanced velocity potential. 272 

This last operation is obtained through a balance operator. 273 

Before we discuss the balance operators, we should note two things: 1- The CMC 3D-Var 274 

system uses a non-separable error correlation model.  It means that for each horizontal 275 

wavenumber there is a unique vertical correlation matrix, which introduces a dependence 276 

between horizontal and vertical scales; 2 - Although it is usual in meteorological applications to 277 

perform the minimization on an analysis grid of lower resolution than the model grid (e.g. [53] 278 

and in 4D-Var is called an incremental formulation [65]), as we argued in Part I Section 6, the 279 

meteorological model and analysis increment, as well as the chemical forecast model and the 280 

chemical analysis increment should all be on the same grid, in order to avoid a loss of information. 281 

2.3 Balance operators 282 

Balance operators have been introduced in meteorological data assimilation to account 283 

implicitly for the balance between mass and momentum in the background error covariance either 284 

through deterministic relationships (e.g. linear balance equation) [53,66-68] or through statistical 285 

regression [69,61].  For coupled meteorology-chemistry the multilinear regression approach [69] 286 

can easily be extended to include chemical species.  In particular the streamfunction  , 287 

velocity potential  , temperature T , and ozone  3
O which are known to be correlated, can288 

be transformed into a set of uncorrelated background error variables (denoted with a superscript 289 

u), as follows 290 

1

1 1

1 1 1

3 3 .

u u u

u u u u u u

u

u

u u

u u u

 

  

   

    



 

  



 

  

   
3 3 3

T T

O O O T T T

B B

T B B B B

O O B B B B B B T

 

    

    

 

  

  

 

(6)291 
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The transformation from any set of correlated errors to uncorrelated error variables, as in 292 

Equation (6), can also be explained geometrically by adopting a Hilbert space representation of 293 

the random variables [70,71] and followed by Gram-Smidt orthogonalization (see Appendix B for 294 

this geometrical derivation).   295 

296 

Backsubstituting, we recover the transformation from uncorrelated variables to correlated 297 

variables, in the form 298 

3 3

u u

u u

u u

u u

  

  

  

  

      
      
       
      
          

      3

I 0 0 0

E I 0 0
M

T N 0 I 0 T T

O G 0 F I O O

  

  
, (7) 299 

where 300 

1 1 1 1
u u u

      
3 3

T O O T T T
E B B N B B G B B F B B     

(8) 301 

and where, to simplify, we have neglected all cross-covariances involving the uncorrelated 302 

velocity potential, u .  Equation (8) consists of the balance operators, and what is displayed are 303 

the main variables only.  The list of variables and their associated balance operator in Equation 304 

(7) is actually incomplete. To be complete it should include surface pressure, which follows the305 

same structure as temperature, and humidity, which is assumed to be uncorrelated with any other 306 

meteorological variable.  In chemistry, we could have also introduced a cross-covariance 307 

between long-lived species such as (N2O, CH4) or chemically related species such as (O3, NO2), 308 

but we have not done so here. 309 

From Equation (7) we obtain the background error covariances, which can be rewritten by 310 

splitting the covariances into variances and correlations as follows, 311 

3 3 3 3

u u u u

u u u u

u u u u

T T T

   
   
   

    
   
   
   

XX XX XX

T T T T

O O O O

B 0 0 0 C 0 0 0

0 B 0 0 0 C 0 0
B M M M M

0 0 B 0 0 0 C 0

0 0 0 B 0 0 0 C

 

   
  (9)312 
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where 3 3diag( , , , )u u u uu u O OXX T T       is a diagonal matrix of error standard deviations for all313 

uncorrelated variable.  Also, note that each correlation matrix C, is actually represented 314 

spectrally as 1C S S  where S and 1
S  are the spectral transform and   is a diagonal or 315 

block-diagonal ( nlev nlev ) matrices of spectral coefficients.  For computational efficiency, the 316 

balance operators in M are simplified as block diagonal matrices ( nlev nlev ) for each latitude, 317 

and an error variance that depends on height and latitude (using a Legendre polynomial 318 

expansion).   319 

Finally, the implementation of balance operators in a 3D-Var or 4D-Var using preconditioning 320 

requires the inverse of the square root of 
XX

B , and thus we need to know the inverse of M, which 321 

turns out to be easy to obtain as 322 

1

 
 

 
 
 

  

I 0 0 0

E I 0 0
M

N 0 I 0

NF G 0 F I

(10) 323 

324 

2.4  4D-Var tracer extension 325 

The 3D-Var algorithm can be extended to 4D-Var by including the model integration as part 326 

of the observation operator [55,56].  The minimization of the 4D-Var cost function with the 327 

adjoint of the original model including the full physics can be difficult and computationally 328 

demanding.  Instead, an incremental formulation of 4D-Var [65] can be used where the 329 

minimization of the 4D-Var cost function is approximated by a series of minimizations involving 330 

the adjoint of a tangent linear model with simplified physics and at a lower resolution [65,72,73], 331 

called the inner-loop and where its solution is used to update the full model trajectory in an outer-332 

loop.  The outer-loop trajectories defines new innovations and a new cost function and the 333 

method cycles through several outer loops, each of which requires the minimization in an inner 334 

loop .  At CMC, the physics component of the adjoint model includes only the vertical diffusion, 335 

surface drag, orography blocking, stratiform condensation and convection.  The simplified 336 

adjoint model is also run at a resolution of 1.5° x 1.5°, which is the same resolution as that of the 337 

GEM-BACH model.  For the chemistry component of GEM-BACH, the adjoint is simplified by 338 

considering only the adjoint of advection transport.  There is no adjoint of chemistry.  The 339 
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 Polavarapu [74] and the 340 

 

tangent-linear model of semi-Lagrangian advection was discussed in 

properties of the adjoint in Tanguay and Polavarapu [75].  The key element in the 341 

implementation of 4D-Var for GEM-BACH is that the minimization is performed within the inner 342 

loop which uses the tracers of observed species only (with the simplified physics).  The outer-343 

loop uses the full chemistry and physics. 344 

4D-Var assimilation of ozone was conducted between 300 hPa and 10 hPa where it behaves as 345 

a passive tracer.  To illustrate the validity of the incremental tracer approach for ozone, Figure 1 346 

shows the observation cost function Jo as a function of iteration.  The solid black is the result of 347 

the first inner loop (up to iterate 42), while the dashed line refers to the cost function after the first 348 

update of the outerloop, during the second inner loop. We observe a nearly continuous decrease 349 

in the observation cost function except for a small adjustment between the last iterate of the first 350 

inner loop and the beginning of the second inner loop. 351 

352 

Figure 1 Observation component of the cost function for ozone assimilation as a 353 

function of iteration.  Solid line is associated with the value of Jo of the first inner loop 354 

and the dashed line the value of Jo of the second inner loop.  355 

3. Error statistics356 

An accurate estimation of the observation and background error statistics is important in data357 

assimilation as these control (at analysis time) the weight of the observations and the structure 358 

functions that spread information in space and to other model variables. The innovations contain 359 

the basic information to estimate the observation and background error statistics but this 360 

information is actually combined, i.e. not separated in its respective components.  Under the 361 
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assumption that observation errors are spatially uncorrelated and background errors are spatially 362 

correlated it is, however, possible to separate the observation and background error statistics. 363 

The Hollingsworth-Lönnberg (HL) method [76,77] does precisely this and is based on computing 364 

the distance between pair of observations that fit well with geographically fixed observations. 365 

Here, we demonstrate that this method can also be used with a polar orbiting limb sounder such 366 

as MIPAS, because the distance between observation profiles is uniform.  With this approach, 367 

we were able to derive the observation and background error statistics of the observed chemical 368 

species.  We should add that there are other methods based on innovations that can provide 369 

observation and background error statistics, such as Desroziers [78] and Desroziers and Ivanov 370 

[79], but these are based on different assumptions (see [80]). 371 

Any of the innovation-based methods are limited as they can only estimate error statistics of 372 

the observed variables in the observation space, which is insufficient to prescribe the error 373 

statistics needed for an assimilation system.  Additional information can be obtained by using 374 

model output methods, such as the ensemble methods and the lagged-forecast method also 375 

known as the NMC method.  Ensemble methods require an ensemble of model forecasts, but 376 

conducting an ensemble of the GEM-BACH model runs would be computationally demanding, 377 

and would require tuning of model error (i.e. inflation) and localization parameters.  The lagged-378 

forecast method, widely used in meteorology, is based on having a complete observations 379 

coverage.  Bouttier [81] has argued that the lagged-forecast method is strongly related to the 380 

difference between the forecast error covariance and analysis error covariance, and not specifically 381 

on the forecast error covariance.  Consequently, the lagged-forecast method cannot be used in a 382 

large region where there are no observations, as the difference between the forecast and analysis 383 

error covariances is close to zero.   384 

Also, we should note that the lagged-forecast method is generally used to obtain the 385 

background error correlations, not the error covariances.  The error variances are obtained 386 

through other means by using the innovation variance or estimates obtained by the HL method. 387 

In atmospheric chemistry, the observational coverage is generally not uniform and often has large 388 

data voids in each analysis.  In this study, in particular, our main observational source is a single 389 

polar orbiting satellite, i.e. MIPAS.  The horizontal coverage of MIPAS in 6 hours (analysis time 390 

window) is limited to about a quarter or third of the global domain.  In addition, some chemical 391 

components have a strong diurnal cycle.  The use of the lagged-forecast method in this context 392 

is thus questionable. An alternative method that has been used in stratospheric and mesospheric 393 

data assimilation consists of obtaining statistical information from 6-hour differences of a single 394 
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(personal communication) is 395 model output.  This method, originally developed by Yves Rochon 

known as the Canadian Quick Covariance (CQC) [60].  396 

Table 1. Summary of error estimation methods 397 

398 

Variable type 
Statistical 

parameters 

Statistical assumption and methods 

Observation error Background error 

meteorological 
variances innovation-based 

combination of 

innovation-based and 

lagged-forecast (NMC) 

methods 

correlations spatially uncorrelated lagged-forecast method 

chemical 

variances 

Hollingsworth-

Lönnberg (HL) method 

as function of height 

Hollingsworth-

Lönnberg (HL) method 

as function of height 

correlations spatially uncorrelated 
6-hour difference

(CQC) method

399 
In this study, we used a combination of these methods depending on the variable type, i.e. 400 

meteorological or chemical, as summarized in Table 1.  The newer approaches, such as the CQC 401 

method and the HL method used with MIPAS, will be described in the following subsections.   402 

403 

3.1 Estimation of error variances by autocorrelation of innovations along the satellite track 404 

405 

The observation error obtained from innovations comprises: the instrument error, the forward 406 

modeling and retrieval errors, the error due to the interpolation from observation location to 407 

model grid point, and the representativeness error due in part to the subgrid scale variability not 408 

resolved by the atmospheric model [82].  The model forecast error is generally correlated 409 

horizontally over large distances, typically 500-1000 km.  As we shall see, we can assume that 410 

observation error is either spatially uncorrelated or correlated over much shorter distances, 411 

allowing us to estimate the observation error variance and forecast error variance by constructing 412 

spatial autocorrelation function of innovations.  The intercept of the spatially correlated part of 413 

the innovation can be attributed to the model forecast error variance while and the remaining part 414 

measures the spatially uncorrelated part attributed to the observation error variance, which is in 415 

essence the HL method. 416 
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To illustrate the use of the HL method with chemical species we have conducted an 417 

assimilation of methane observations from MIPAS over a period of three weeks in August-418 

September 2003, using 10% error for the background error and the retrieval error provided by the 419 

instrument team for observation error. We shall refer to these first guess error statistics as the old 420 

error statistics.  These are not be taken as the true error statistics but are used only to derive a first 421 

set of innovation statistics from the assimilation cycle.  Since MIPAS observational profiles are 422 

spaced uniformly at about 530 km along the satellite track [7], we construct an along-track spatial 423 

auto-covariance of the innovations, which is illustrated in Figure 2 at 63hPa. 424 

425 

Figure 2 Spatial autocovariance of innovation for MIPAS CH4 at 63 hPa.  Abscissa 426 

are units of horizontal separation between profiles (each unit is around 530 km).  The 427 

red stars represent the sample autocovariance values, and the dashed curve are linear 428 

interpolation between the sample points. Note that at zero separation the sample 429 

covariance is at the top of the graph (near 36 x10-15), and no interpolation between the 430 

zero distance and lag-1 is done. 431 

432 

The units of the horizontal axis are profile lag points along the satellite track, with spacing of 433 

530 km. We note that at zero separation the innovation variance is 36x10-15 and is distinctively 434 

different from the extrapolated intercept of the spatially correlated part, estimated to be around 435 

8x10-15 .  Such a separation of values at zero distance is observed at all levels and for all species. 436 

This supports our assumption that the observation error is either spatially uncorrelated or that 437 

the spatial correlation length is much shorter than the background error correlation. 438 
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The estimates of observation and background error variances for MIPAS CH4, obtained from 439 

HL method are displayed in the left panel of Figure 3.  We note that the MIPAS CH4 observation 440 

error variance is significantly larger than the (model) background error except in the region 441 

between 2 and 0.5 hPa.  This indicates that it is not everywhere that MIPAS CH4 observations 442 

will have an impact on the analysis, the main impact region is limited to 2 to 0.5 hPa, and perhaps 443 

also the lower stratosphere between 100 and 50 hPa.  444 

Comparison of three different estimates of observation error variance is shown in Figure 3 445 

(right panel).  One is the observation error variance provided by the instrument, i.e. the blue 446 

curve.  We note that the instrument error variance is always smaller than or equal to the 447 

estimated observation error obtained with the HL method.  This is consistent with the fact that 448 

the estimated observation error using innovation statistics includes the representativeness error, 449 

which is usually significant.  The estimate of observation error variance using the Desroziers 450 

method [78] is shown in green and is close to the HL estimate in the mid-to-lower stratosphere 451 

from 100 hPa to 3hPa.  However, at higher altitudes important differences are noted.  Since the 452 

Desroziers method [78] relies on the assumption that the Kalman gain is nearly optimal (i.e. close 453 

to the truth) [80], explains the discrepancy between HL and Desroziers estimates of observation 454 

error variance.  455 

456 

457 
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Figure 3 Estimated error variance for CH4/MIPAS as a function of height.  Left 458 

panel, shows the estimated background error variance (green with squares) and 459 

observation error variance (red with triangles) as a function of height using the HL 460 

method.  Right panel illustrates three different estimates of observation error 461 

variance.  Blue with stars is the estimate given by the instrument team (i.e. the 462 

instrument error), red with circles is the observation error variance obtained from the 463 

HL method (note that this is the same as the red triangle in the left panel), and green 464 

with triangles is the observation error variance estimate from the Desroziers method 465 

[78].   466 

467 

One way to summarize the estimated error variances is to look at the scalar form of the Kalman 468 

gain, which involves only the ratio of estimated error variances. A scalar Kalman gain close to 469 

one indicates that the solution is determined mostly by the observations while a gain of zero 470 

implies that the observations have no influence. In the supplementary material (Figure S2) the 471 

reader will find the scalar Kalman gain for O3, CH4, N2O, NO2, HNO3 and H2O that were 472 

assimilated in the course of this study.  We note for instance that for O3 the gain is about 0.2 in 473 

the lower stratosphere and steadily increases to about 0.6 in the upper stratosphere. A similar 474 

situation was found for the long-lived species CH4 and N2O.  However, the NO2 gain is close to 475 

one in the upper stratosphere, indicating that the model as a small impact at these altitudes. As 476 

for HNO3, the gain increases with height and reaches a maximum value of 0.8 at 4hPa, then 477 

decreases with altitude.  Chemical water vapor (H2O) is presented in terms of the log of 478 

concentration. 479 

3.2 The Canadian Quick Covariance method 480 

Let us first recall that the NMC method consists of obtaining a homogeneous isotropic and 481 

horizontal/vertical non-separable correlation model on a sphere using a spherical harmonics 482 

representation of 48-hour minus 24-hour model forecasts valid at the same time (see Errera and 483 

Ménard [59] for a description on the use of spherical harmonics and how to construct error 484 

correlations, and Gauthier [69] for aspects related to meteorological applications).  The Canadian 485 

Quick Covariance (CQC) method [60] is similar to the NMC method except that it uses 6-hour 486 

differences of pure model forecasts.  The CQC method does not involve an assimilation cycle and 487 
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thus does not depend on observation density, and can be obtained for any variables, observed or 488 

not.  This latter feature is particularly interesting for atmospheric chemistry, where many species 489 

are unobserved, or the observational coverage is limited.  It should be stressed that each 490 

difference is computed using forecast valid at two different times.  The information that the CQC 491 

method represents is actually the tendency, comprising advection and model physics.  Writing 492 

a model equation in the form, 493 

( )F
t


 


  


V , (11) 494 

the CQC method thus derives its spatial error statistics from the 6-hour differences which 495 

represent model tendencies, 496 

 
6

0

( ( 6)) ( ( )) ( )x t x t F d          V . (12) 497 

It has been argued [60] that since the large-scale motion doesn’t change in a 6hr time period, it 498 

may explain why the stream function and unbalanced temperature correlation obtained from the 499 

CQC method have less signal in wavenumbers 10 and lower in comparison with the correlation 500 

using the NMC method.  But, it is known that the NMC method has a tendency to give too much 501 

spectral error variance at these wavenumbers for meteorological correlations fields [83].  It is 502 

thus unclear whether the CQC method has an actual deficiency at large scales.  The latitudinal 503 

power spectra of the species that were used in the assimilation are shown in Figure S3 504 

(Supplementary Material) and indicate generally a maximum in power at the large scales 505 

(wavenumber 8-10) as one would expect. 506 

To compute the background error correlation with the CQC method we first need to compute 507 

the variance of 6-hour differences of pure model forecasts.  These zonal-mean variances as a 508 

function of height are presented in Figure S4 (Supplementary Material).  We then normalize the 509 

6-hour differences by the square root of these error variances to obtain an ensemble set of model510 

variables that will be used to represent the error correlations.  This ensemble set is then 511 

represented spectrally, as in the NMC method, from which by using the spectral representation 512 

of a non-separable correlation model we obtain, for each horizontal wave number n, a vertical 513 

correlation matrix nlev nlev  (see [59] or [53] for details).  In a non-separable correlation model, 514 

we can compute a power spectrum as a function of the horizontal wavenumber n and vertical 515 

level, shown is illustrated in Figure S3 (Supplementary Material).  A horizontal-vertical 516 

separable correlation model has a horizontal power spectrum that does not change with height. 517 

The results shown in Figure S3 indicate that for most chemical species the correlation is 518 
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horizontal-vertical separable except for O3, HNO3 and H2O at large scales (for wavenumbers 519 

smaller than 20). 520 

The resulting correlation length can also be computed.  Figure S5 of Supplementary Material, 521 

shows the horizontal correlation length for six constituents, that typically varies from 200 km (in 522 

the troposphere) to 400 km in the upper stratosphere.  These correlation length-scales seem to be 523 

too small if we visually compare the correlation length we get from the spatial autocovariance of 524 

innovations.  Figure 2 shows a decorrelation length scale of 2 or 3 orbits, which corresponds to 525 

about 1000 to 1500 km.  Despite the fact the HL method has a tendency in practice to overestimate 526 

the spatial correlation length scale compared with length-scale obtained with the maximum 527 

likelihood method [84], the correlation length scale obtained with the CQC method for chemical 528 

constituents seem too small.  However, since we have no means to correct for these deficiencies, 529 

we continue to use the spectral coefficients as is in the correlation models of the chemical 530 

constituents. 531 

The background error covariance is then obtained by using the background error variance 532 

estimated by the HL method to the correlation estimated using the CQC method.  Thus, the 533 

background error variance is identical at all latitudes and longitudes and varies as a function of 534 

height only.  We conducted a series of univariate constituent data assimilation experiments, 535 

using the background error covariance above and the observation error obtained from the HL 536 

method and computed the mean analysis increment over the period of August 17 to September 537 

5, 2003.  During this time period a strong energetic particle precipitation from the mesosphere 538 

affected the polar region down to the middle stratosphere and created large NO2 and HNO3 539 

mixing ratio increments [85].  Figure 4 presents the mean analysis increment for HNO3. 540 

541 

HNO3  old statistics HNO3  new statistics 542 

543 
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Figure 4 Analysis increment for HNO3.  Left panel using the first guess or old 544 

statistics.  Right panel using the new statistics consisting of CQC correlation and HL 545 

error variances.  The value of the increment should be scaled by 10-9 vmr. 546 

547 

We note that the analysis increment of HNO3 with the new statistics is larger and self-548 

organized, indicating vertical descent of HNO3 in the polar vortex [85], while the old statistics 549 

give random results with numerous small-scale features.  The analysis increments for chemically 550 

active species such as O3 and NO2 also appear to be larger and also physically coherent, while 551 

those of passive tracer (CH4, N2O) are not changed significantly, remaining spatially random, with 552 

both old and new statistics, with the difference that the increments with the new statistics are of 553 

somewhat larger scales (see Figures S6 in Supplementary Material). 554 

3.3 Cross-covariance estimates 555 

The use of cross-covariances between meteorological and chemical variables in a 3D-Var 556 

assimilation is a distinctive feature of our study.  As discussed in Part I (Section 2.1), ozone and 557 

temperature are related by photochemistry above 10 hPa.  Empirical relations of the form given 558 

by Equation (1) Part I, show that temperature perturbations are negatively correlated with ozone 559 

perturbations, and this adjustment takes place on time scale of less than 20 days (see Figure 2, 560 

Part I).  In the lower stratosphere, between 10 and 30 hPa, the relation between ozone and 561 

temperature is due to the infrared cooling, which take place on a time scale of about a month. 562 

Below 10 hPa, the photochemical lifetime of ozone is so long that it can be considered as a tracer. 563 

Interestingly, these correlations clearly show up with the CQC method.  564 

To compute the cross-correlation between two variables, u and v, using the 6-hour model 565 

differences method (i.e. the CQC method) a number of simplifications of the cross-correlation 566 

representation are required.  In principle, collecting statistics of 6-hour differences over a month 567 

(assuming here 30 days), the cross-covariance is obtained as 568 

4*30

( ) 6 ( ) ( ) 6 ( ) ( ) 6 ( ) ( ) 6 ( )

1

1
( ) ( ) ( ) ( )

4*30

T
T

t i t i t i t i t i t i t i t i

i

   



          
   uv u uv v

B u u u u v v v v C  (13) 569 

where ,
u v

  are diagonal matrices of error standard deviations of the 6-hour differences, and 570 

the index i is for the four 6-hour time periods in a day  However, uv
C is a full 6-dimensional 571 

matrix and needs to be significantly simplified to be computed from statistics.  We generally 572 

represented it as a zonal field of point correlations, thus neglecting the horizontal and vertical 573 
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 impact on the zonal-574 

 

correlations.  It was found the neglecting the vertical correlation has a small 

mean representation of B. 575 

The cross-correlation between ozone and temperature computed for the month of July 2003 is 576 

shown in Figure 5.  The pattern for August and October 2003 is very similar (result not shown). 577 

As discussed previously, the region above the 10hPa is photochemistry-dominated, while below 578 

10hPa the ozone behaves like a tracer although its radiative effect is important on a time-scale of 579 

20 days to a month.  At around 10 hPa the photochemistry time scale is about 10 days and 580 

decreases to one day at 3 hPa, and to half a day at 2 hPa.  At this altitude the photochemical time-581 

scale decreases with latitude in the northern hemisphere summer (as shown in Figure 2, Part I). 582 

We observe in Figure 5, that the maximum anti-correlation between temperature and ozone 583 

occurs at about 2 hPa, a region in which 6-hour differences are able to capture the photochemical 584 

signal of half a day.  The maximum anti-correlation is also not centered at the equator, but rather 585 

in the northern hemisphere summer due to the asymmetry between hemispheres in the 586 

photochemical time-scales (see Figure 2, Part I).  We note a weaker but positive correlation 587 

between temperature and ozone below 10 hPa.  However, this positive correlation is not very 588 

different between interactive and non-interactive runs, with the caveat that the interactive run 589 

shows a stronger positive correlation in the northern hemisphere summer between 10 and 100 590 

hPa.  At those altitudes the radiative time-scale is on the order of 20 days to a few months.  The 591 

6-hour differences method clearly cannot capture a signal on time-scales of weeks and months,592 

and this is why there is little difference between the interactive and non-interactive runs.  The 593 

difference between interactive and non-interactive runs in the northern hemisphere between 10 594 

and 100 hPa is slightly larger if instead of 6 -hour differences we use 24-hour differences to derive 595 

the cross-correlation (Figure S8, Supplementary Material). 596 

597 

Non-interactive ozone Interactive ozone 598 

599 
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Figure 5 Cross-correlation between ozone and temperature derived from 6-hr 600 

differences (i.e. CQC method) for July 2003.  Left panel refers to a non-interactive 601 

ozone-radiation run of GEM-BACH and right panel for an interactive ozone-radiation 602 

run. 603 

604 

Generally, the positive correlation between temperature and ozone below 10 hPa is not of 605 

radiative origin but is due to the impact of short-term (e.g. 6 hour) temperature effects on ozone 606 

transport.  Large positive correlations are observed near the NH and SH tropopause and in the 607 

equatorial region around 20-70 hPa.  608 

Construction of the balance operator F (see Section 2.3) requires the unbalanced component of 609 

temperature.  However, the unbalanced temperature is not directly accessible from 6-hour 610 

model differences, and would require a sequential reprocessing respecting the Gram-Smith 611 

orthogonalization of model differences, which we have not attempted to do here.  Instead, we 612 

used an approximation.  We recall that what needs to be computed is
3

1
u u u

 O T T TF B B but what613 

we have readily available from the statistics is 
3

1 O T TTA B B . We will approximate F by A in the 614 

following way. 615 

To understand the approximation, we first note that, 616 

3

33

1

3 3

1 1

3 3

( ) ( )

( ) ( ) u

T u T

u T T T T

    

   



 

   

   

TT O T T

T O TO T

B A B O T O T B B

O T O ψ B B B B B B

 

    


, (14) 617 

where we used Equation (6).  The correlation between O3 as a tracer and the streamfunction 618 

relates to the tracer-wind coupling discussed in Section 2.3 Part I.  It has long been an elusive 619 

goal to obtain [86-88] (see also discussion in Section 7).  It was argued that in regions of Rossby 620 

wave breaking activity, that potential vorticity is correlated with ozone as a chemical tracer in the 621 

lower stratosphere.  Figure S7 (Supplementary Material) shows scatter plots of O3 concentration 622 

and streamfunction between 10 and 100 hPa for March 2003 for different latitude bands.  We 623 

note, however, that streamfunction and ozone have no significant correlation except at the highest 624 

latitudes in the northern hemisphere.  We thus make the simplification that globally the correlation 625 

between O3 and streamfunction can be neglected.  This also implies that the balance operator G 626 

(Equation 8) can be neglected.  Regarding Equation (5) we thus make the approximation that, 627 

3 3
u

O T O T
B B . (15) 628 
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Now, concerning the temperature error covariance, it can be calculated by taking the outer-629 

product of T  using the temperature equation from Equation (6) while neglecting u as in (7), 630 

wich yields 631 

1 1 1( ) ( )( ) u u

T u u T T

T T               
TT T TT T

B T T T B B T B B B B B B      . (16) 632 

By using the matrix inversion lemma, we then obtain its inverse as, 633 

 
1

1 1 1 1 1
u u u u u u u u

T T


      
TT T T T TT T T T T T T T

B B B B B B B B B B      . (17) 634 

In this study, however, for practical reasons, we will use the approximation, 635 

1 1
u u

 
TT T T

B B (18) 636 

to compute the balance operator.  Thus with the approximations in Equation (21) and the 637 

limitations imposed by the statistics (as discussed at the beginning of this section) the balance 638 

operator F (Equation 8) which is a function of latitude and pressure only, is approximated as 639 

33

1 1( , ) ( , )u u up p    
O T TTO T T T

F B B A B B . (19) 640 

The corresponding ozone error covariance, using the formulation Equation (6) and taking into 641 

account the cross-covariance between ozone and temperature, yields 642 

3 3 3 3 3 3

( , ) ( , )u u u u u u u u

T Tp p    
O O O O T T O O T T

B B FB F B A B A . (20) 643 

To construct the operator A we use the cross-correlation obtained from point-wise statistics 644 

derived from the CQC method for ozone-temperature cross-correlation, and point-wise statistics 645 

derived from the NMC method for temperature covariance.  This contrasts with the balance 646 

operators introduced by Derber and Bouttier [61] where the regression statistics are derived in 647 

spectral space – an approach used for the balance operator between meteorological variables used 648 

here in the CMC 3D-Var meteorology.  The point-wise statistics used for A are dependent on 649 

latitude and pressure (the hybrid vertical coordinate to be precise).  We have investigated the 650 

use of a vertical correlation (but not horizontal correlation) in the operator A and observed little 651 

difference (results not shown).  However, the important aspect is which error variances are 652 

considered to obtain the cross-covariance 
3O TB  and covariance TTB .  For temperature error 653 

variance, we adopted the procedure used in the meteorological CMC 3D-Var which consist of 654 

renormalizing the NMC error variances using the innovation statistics [53].  For ozone, we used 655 

the error variance estimates obtained from the HL method and made it dependent only on height 656 

as described above in Section 3.1.  Figure 6 (left panel) illustrate the cross-covariance thus 657 

obtained, which we will denote by CQC NMC
A . 658 

659 
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CQC NMC
A

LINOZ
A660 

661 

Figure 6 Balance operator between ozone and temperature for July 2003.  Left 662 

panel, CQC NMC
A , which uses CQC and NMC methods, and right panel, LINOZ

A , as 663 

derived from the LINOZ scheme. 664 

665 

We also calculated the cross-covariance obtained using the LINOZ model, which is derived in 666 

Appendix B using the stationary solution of the cross-covariance evolution equation between 667 

ozone and temperature, and which we denote by LINOZ
A , displayed in the right panel of Figure 668 

6. The ratio of the unexplained variance to the total variance for the operator CQC NMC
A  is shown 669 

in Figure S16 (Supplementary Material).  The most important feature of the cross-covariance of 670 

the LINOZ model is that it contains only the effects due to photochemistry (radiative effects are 671 

absent). The cross-covariance is negative as we would expect, but in general nearly matches the 672 

ozone climatology (as explained in Appendix B), with 2

32 10LINOZ O  A . 673 

4. Harmonization of AMSU-A radiances with MIPAS temperatures674 

The microwave sounder AMSU-A (Advanced Microwave Sounding Unit) on board several675 

operational NOAA satellites has been the main source of temperature-sensitive measurements 676 

for NWP in the stratosphere (for the period considered in these experiments).  AMSU is a nadir-677 

looking and horizontally-scanning instrument.  The coverage of AMSU-A on board NOAA-15 678 

and NOAA-16 during any 6-hour window is almost entirely global (Figure S9 Supplementary 679 

Material).  The horizontal coverage is in fact too dense to consider all profiles with horizontally 680 

uncorrelated observation errors, and so thinning (i.e. discarding profiles) is usually performed in 681 

operational data assimilation (also illustrated in Figure S9).  Channels 10-14 are sensitive to 682 

stratospheric temperature but have rather coarse vertical resolution (Figure S10 – Supplementary 683 

Material).  Limb sounding instruments such as MIPAS are another important source of 684 
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temperature measurements in the stratosphere.  A description of MIPAS and HALOE is given in 685 

Part I, Section 7.1.  For the time period we have considered (i.e. 2003) AMSU-A and MIPAS are 686 

the two most important source of stratospheric temperature measurements, with the exception of 687 

radiosondes that rise up to 30 km in tropical regions (and lower altitudes elsewhere). 688 

The main issue with AMSU-A radiances is that the geolocated and calibrated radiances (i.e. 689 

level 1B) need to be bias-corrected and this is usually done by using the meteorological model 690 

short-term forecast as an “unbiased” estimate.  This procedure is well adapted in the troposphere 691 

where other unbiased observations have a significant effect on the analysis, thus by comparing 692 

model-simulated radiances with observed radiances can be used effectively to separate model 693 

bias from observational bias.  Such observations are often referred to as “anchor” observations 694 

in a bias correction scheme.  Observation bias-correction schemes can be either static or online 695 

with the analysis, as in the Variation Bias Correction scheme [89].  However, it is found that the 696 

application of bias correction in the upper stratosphere is problematic in the absence of “anchor” 697 

observations [90].  DiTomaso and Bormann [90] have proposed assimilating AMSU-A channel 698 

14 without any bias correction as a way to anchor the meteorological analysis in the mid to upper 699 

stratosphere.  Here, we propose another approach, which consists of assimilating MIPAS 700 

temperature observations to anchor the stratospheric analysis and derive from it a new set of 701 

AMSU-A bias corrected radiances.  This also has the effect of harmonizing these two sets of 702 

observations.   703 

MIPAS-retrieved temperatures in the stratosphere are considered to be of good quality and 704 

compare well with HALOE temperatures (see Part I, Section 7.2.1).  We thus conducted an 705 

assimilation of MIPAS temperature observations without AMSU-A (stratospheric) channel 10-14 706 

as an “anchor” run.  To generate this assimilation run, we used as observation error for MIPAS 707 

temperatures the estimates obtained from the HL method as described in Section 3.1, and for the 708 

meteorological error statistics a combination of innovation variance consistency with the NMC 709 

method as summarized in Table 1.  From this anchor run, a new set of bias correction coefficients 710 

was obtained, as well as a new set of AMSU-A radiances with a bias correction based on MIPAS 711 

temperature. 712 

The results are compared for August 12-31, 2003 in Figure 7.  Radiance innovations based on 713 

AMSU-A stratospheric channels and using the standard bias correction used at CMC are in shown 714 

blue, and using only the model in the stratosphere and the new bias correction using an 715 

assimilation of MIPAS temperatures are shown in red.  This evaluation was also conducted over 716 

other time periods; January 14-31, and October 12-18, 2003 with similar results (not shown). 717 
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718 

719 

720 

Figure 7 Mean (lower curves) and standard deviation (upper curves) of the 721 

AMSU-A radiance observations minus the forecast (6 hours) for channels 11 to 14.  In 722 

blue are the results using the standard CMC bias correction scheme, which uses only 723 

the model in the stratosphere, and in red using only MIPAS temperature in the 724 

stratosphere.  725 

726 

We observe a net reduction in radiance bias for channels 11-13 with the new bias correction 727 

based on MIPAS temperatures, with a slight reduction in the standard deviation.  The mean 728 
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analysis increment at 10 hPa is presented in Figure S11 (Supplementary Material) for September 729 

2003 and a zonal mean analysis increment in Figure S12. These results indicate a significant 730 

reduction in the mean analysis increment everywhere except in the polar regions in the upper 731 

levels of the model (1 hPa and higher), which may be due to the model pole problem or the sponge 732 

layer.  Following the above results, all further assimilation experiments were conducted using 733 

the new AMSU-A bias correction based on the assimilation of MIPAS temperatures.  734 

5. The added value of the assimilation of limb sounding (MIPAS) temperatures735 

Let us first examine the benefit of assimilating MIPAS temperature in addition to AMSU-A736 

radiances, with the new bias correction (Section 4).  An assimilation from August 17 to 737 

September 30, 2003 was conducted and the global verification results are presented in Figure 8. 738 

In green is the assimilation of AMSU-A only, and in black the assimilation of MIPAS temperature 739 

and AMSU-A.   740 

741 

Verification against MIPAS  Verification against HALOE 742 

743 

Figure 8 Global verification (observation-minus-forecast) of temperatures for two 744 

assimilation runs.  All AMSU-A data are processed with the new bias correction. 745 

The left panel illustrates verification against MIPAS temperatures, and the right panel, 746 

verification against HALOE temperatures. The green squares on the far right of the 747 

panels indicate significance according the the Student t-test of means, and the green 748 

dots on the far right of the panels indicate significance according to the Fisher test of 749 

variances. 750 

We observe an improved bias and reduction in error variance in the mid to upper stratosphere 751 

(from 10 hPa to 0.3 hPa) with the combined assimilation of MIPAS and AMSU-A, whether the 752 
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verification is performed against MIPAS and HALOE as independent observations.  The larger 753 

impact in the mid to upper stratosphere may be due to the fact that there are more AMSU-A 754 

channels sensitive to the lower stratosphere, or that the limb sounding observations provided by 755 

MIPAS have a definite advantage in the mid to upper stratosphere where only one channel of 756 

AMSU-A (i.e. channel 14) provides information.  To address this question we have performed an 757 

assimilation of AMSU-A only versus MIPAS only.   758 

Verification against HALOE temperatures (Figure 9) shows very little difference with respect 759 

the combined assimilation results (right panel of Figure 8), but more pronounced in the lower 760 

stratosphere. Similar results for individual latitude regions were found in both experiments 761 

(results not shown).  Thus, we see the importance of height resolving observations in the 762 

stratosphere. 763 

764 

765 

Figure 9 Global verification (observation-minus-forecast) against HALOE 766 

temperatures for two assimilation runs.  In black is the assimilation of AMSU-A, and 767 

in green is the assimilation of MIPAS temperatures only.  Otherwise similar to Figure 768 

8. 769 

Next, we conducted another set of experiment that directly illustrate the impact of the 770 

assimilation of limb-sounding temperature observations on model temperature and on transport 771 

of ozone.  In this set of experiments, and contrary to the results presented in Figure 8 and 9, we 772 

activate ozone-radiation interaction in the model.  But as we shall see in the following section 773 

(Section 6), the ozone-radiation interaction has very little impact on verification of 6-hour forecast. 774 

The impact actually develops over a time period of several days, so that for all practical purposes 775 
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we can consider the following results to be essentially independent of the presence of ozone-776 

radiation interaction. 777 

To better illustrate the impact of limb sounding observations, we conducted a meteorological 778 

assimilation of MIPAS temperatures where stratospheric AMSU-A channels (11-14) are excluded 779 

(in red) and compared it with an assimilation of MIPAS temperature where all AMSU-A channels 780 

are retained (in black).  The new AMSU-A bias correction scheme was applied in both cases. 781 

782 

Verification against MIPAS temperatures Verification against HALOE temperatures 783 

784 

Figure 10 Global verification (observation-minus-forecast) of temperature for two 785 

assimilation runs.  In red, is the assimilation of MIPAS temperature and AMSU-A 786 

with no stratospheric channels, and in black is the assimilation of MIPAS 787 

temperatures with all the AMSU-A channels.  The left panel illustrates the 788 

verification against MIPAS temperatures, and on the right panel, the verification 789 

against HALOE temperatures.   790 

Figure 10 displays the global verification results of assimilation runs from August 17 to 791 

October 31, 2003.  In general, for the mid and upper stratosphere, both in terms of bias and error 792 

standard deviation, the assimilation of MIPAS data with no stratospheric channels of AMSU-A 793 

performs better than assimilation using all stratospheric channels.  This conclusion is valid 794 

whether the verification is against MIPAS temperatures (left panel) or against independent 795 

temperature measurements from HALOE (right panel).  This positive impact is also seen in 796 

temperature forecasts but gradually disappears over a forecast period of 10 days (see Figure S13 797 

in Supplementary Material). 798 

For the same set of experiments, the impact on ozone is illustrated in Figure 11.  We observe 799 

a systematic reduction in the standard deviation of observation-minus-forecast (6 hours) error 800 

whether it is verified against MIPAS ozone (left panel) or HALOE ozone (right panel).  801 
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802 

Verification against MIPAS O3 Verification against HALOE O3 803 

804 

Figure 11 Same as Figure 10 but for verification of ozone MIPAS on the left and 805 

ozone HALOE on the right.   806 

The reduction in the random error is markebly larger in the lower stratosphere where 807 

transport and the vertical gradient of ozone are important.  A larger reduction in standard 808 

deviation is observed over Antarctica (results not shown).  A reduction in the error standard 809 

deviation is also observed for CH4 above 3 hPa.  Thus, we see that the presence of AMSU-A 810 

temperatures in the assimilation actually degrades the vertical structure, because of the coarse 811 

vertical resolution sensitivity of the associated channels, which is apparent in the transport of 812 

chemical species in regions of strong vertical concentrations. 813 

6. Weak coupling assimilation due to ozone-radiation interaction814 

We know (form Part I, section 2.1) that the ozone-radiative interaction time-scale varies from815 

about a week at 1hPa to about a month at 25 hPa, while the ozone photochemical time-scale is a 816 

few hours at 1hPa and is on the order of three months at 25 hPa (see Part I, Section 2.1).  It is 817 

around 10 hPa that these two interactions have comparable time-scales, i.e. about 2 weeks (see 818 

Part I, Figure 2).  This implies that the assimilation of ozone will have little impact on 819 

temperatures above 10 hPa, but the impact, which is radiative in nature, will be noticeable in the 820 

lower stratosphere and will build up slowly over time.  The assimilation of temperature on the 821 

other hand will influence the photochemistry of ozone above 10hPa and will influence ozone 822 

transport in the lower stratosphere. 823 

To examine these effects in the context of assimilation we will focus on assimilating only limb 824 

sounding observations.  As stated in Section 5, the assimilation of limb sounding temperatures 825 

while excluding stratospheric AMSU-A channels has a stronger impact on both temperature and 826 
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ozone transport than using the stratospheric AMSU-A channels, which tends to spread out the 827 

temperature information vertically. 828 

An assimilation of MIPAS temperatures without stratospheric AMSU-A channels (i.e. using 829 

only channels 1-8) was performed for the period August 17 to September 5, 2003.  The global 830 

verification of observation-minus-forecast (6 hours) temperatures and ozone is presented in 831 

Figure 12.   832 

833 

834 

Figure 12 Impact of ozone radiation interaction with the assimilation of MIPAS 835 

temperature only and AMSU-A channels 1-8.  Left panel shows the global impact 836 

on MIPAS observation-minus-forecast temperatures, and the right panel the ozone 837 

impact against MIPAS observations.  No interaction (black), ozone-radiation 838 

interaction (red). 839 

Red curves correspond to assimilation with the GEM-BACH model with ozone-radiation 840 

interaction activated while black curves correspond to an experiment where the radiation is 841 

computed from a monthly ozone climatology, not the transported ozone.  We note that in these 842 

temperature-only assimilation experiments, ozone-radiation interaction creates very little change 843 

in the temperature and ozone analyses (or 6 hour forecasts) except for small differences in the 844 

upper-stratospheric mean temperature and the variance of lower stratospheric ozone.   845 

The small mean difference in temperature between the two experiments around 5hPa and 846 

above can be explained by the fact the GEM-BACH model has an ozone deficit of 15% at those 847 

altitudes (as suggested by the right panel of Figure 12, and discussed in Section 7.2.3, Part I). 848 

Thus, with the interactive model, the lower model ozone concentrations leads to cooler 849 

temperatures, which the assimilation of temperature can only partially correct since it is a 850 

systematic error.   851 
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In the lower stratosphere, the O-P variance is increased in the case of ozone-radiation 852 

interaction.  We recall that there is no assimilation of ozone in these experiments, and the impact 853 

on ozone can be understood by considering ozone as an unobserved variable as defined in Section 854 

2.1.  The impact on unobserved variables can be computed from the cross-variable increment, 855 

Equation (5), and here in particular, the balance operator A between ozone and temperature.  The 856 

associated background (or model) error covariance is given by Equation (20) and using the 857 

operator A.  We have shown already in Figure 5 that ozone-radiation interaction increases the 858 

correlation between temperature and ozone between 10 and 100 hPa (in the northern latitude 859 

summer).  Consequently, the error-cross covariance and its effect on variance of ozone is 860 

increased, and this is what it is observed in the lower panel of Figure 12 .  861 

Although the impact of ozone-interaction is nearly absent in analyses (or 6-hour forecasts), it 862 

gradually accumulates in forecasts.  De Grandpré et al. [39] have reported results of assimilation 863 

of temperature and ozone on the temperature predictability using the GEM-BACH with 864 

essentially the same experimental setup discussed here.  A gradual increase in the anomaly 865 

correlation for the period of August 11 to September 5, 2003 was shown reaching nearly half a 866 

day in the lower stratosphere as a result of ozone-radiation interaction (either with assimilation 867 

of temperatures only or with assimilation of temperature and ozone).  Here we show anomaly 868 

correlation results in which the assimilation of MIPAS temperature was conducted over a longer 869 

time period from August 15 to October 5, 2003 that essentially corroborate the published results.  870 

For a description of the calculation of the anomaly correlation (i.e. correlation between forecast 871 

and analysis valid at the same time) we refer the reader to de Grandpré et al. [39] 872 

873 
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Figure 13 Anomaly correlation at 10 (red), 50 (green) and 100 (purple) hPa in the 874 

southern hemisphere (20S-90S) for ozone-radiation interactive (dashed lines) and 875 

non-interactive ozone (solid lines) experiments. 876 

The above improvement comes from a better representation of ozone radiative heating in the 877 

lower stratosphere region. This radiative forcing persists throughout the forecast period due to 878 

the long photochemical lifetime of ozone which is much longer than the radiative time-scale in 879 

this region 880 

The precise chemistry model used has in fact little impact on these results.  To show this we 881 

have conducted a similar ozone-radiation interaction assimilation experiment using a linearized 882 

chemistry model LINOZ [57] for daily mean values (with semi-Lagrangian transport [58]) 883 

3

1 2 3 3 3 4 3 3( ( ) ( )
d O

c c O O c T T c O O
d t

        , (21) 884 

where the coefficients 1 2 3 4, , ,c c c c are determined using a chemical box model, the overbar ( )  885 

represents climatological values, and   represents the overhead column.  The coefficient 886 

32 1/ Oc   is related to the photochemical time-scale of ozone (see also Section 2.1, Part I). 887 

Figures 14 and 15 show the impact of assimilating temperature and ozone with ozone-radiation 888 

interaction activated using the LINOZ ozone model and the BASCOE chemistry model. 889 

890 

891 
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Figure 14 Total column ozone (DU) over the South Pole region on October 3, 2003 892 

resulting from the assimilation of MIPAS temperature and ozone.  Left panel, 893 

experiment using the BASCOE chemistry scheme. Right panel, experiment using the 894 

LINOZ linearized ozone chemistry scheme. 895 

896 

897 

Figure 15 Time series of ozone at 70hPa over the South Pole region resulting from 898 

the assimilation of MIPAS temperature and ozone.  Black curve, experiment using 899 

the BASCOE chemistry scheme.  Green curve, experiment using the LINOZ 900 

linearized ozone chemistry scheme. 901 

We conclude from these figures that the analysis and time evolution of ozone over the South 902 

Pole region with GEM-BACH ozone-radiation interaction are similar whether we use the 903 

comprehensive (BASCOE) chemistry or the linearized (LINOZ) chemistry.  Figure 16 shows the 904 

temperature forecast, bias and the error standard deviation at 50hPa over the Northern 905 

Hemisphere in comparison with MIPAS temperature analyses.  906 

907 
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908 

Figure 16 15-day forecast of temperature at 70hPa verified against analyses over 909 

the South Pole region resulting from the assimilation of MIPAS temperature and 910 

ozone.  In black using the BASCOE chemistry and in green using the LINOZ 911 

linearized ozone chemistry. 912 

Green curves correspond to a forecast with the climatological ozone in the radiation 913 

calculation.  Red and blue curves correspond to forecast runs were prognostic ozone in the 914 

radiation calculation was used.  Although there is a drift in the temperature forecast in all 915 

experiments, we note that the interactive runs using BASCOE and LINOZ chemistry both exhibit 916 

relatively slow growth of temperature random error, while a faster growth of error is seen when 917 

using the ozone climatology.  This result is coherent with the anomaly correlation results 918 

presented in Figure 13 (and [39]) which indicate greater forecast skill with ozone-radiation 919 

interaction than using climatological ozone.  The result illustrated in Figure 16, also suggest that 920 

an anomaly correlation computed using the LINOZ chemistry should lead to improvement over 921 

the climatological ozone run. 922 

Thus, we conclude that weak coupling due to ozone-radiation interaction does not change 923 

significantly the analysis.  However, it has an effect on the forecast skill that is observed with 924 

either using the full chemistry or a simplified (linearized) ozone chemistry schemes. 925 

7. Strongly coupled temperature-ozone assimilation with 3D-Var926 

The 3D-Var-Chem developed in this study allows for cross-covariances between927 

meteorological and chemical variables and between chemical variables themselves.  To examine 928 
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the effect of adding cross-covariances between temperature and ozone in the context of 3D-Var, 929 

we have conducted experiments using the balance operators CQC NMC
A  and LINOZ

A  described in 930 

Section 3.3. 931 

We have conducted three assimilation experiments using MIPAS O3 and AMSU-A 932 

temperature (all channels) for a period of 2 weeks from August 17 to September 4, 2003.  Figure 933 

17 shows the verification over the globe in the three case: univariate (red), multivariate with the 934 

balance operator CQC NMC
A  (green), and multivariate with the LINOZ balance operator LINOZ

A935 

(blue). 936 

We note that in general there is little change between all three experiments, indicating no 937 

advantage in using multivariate cross-covariances between temperature and ozone in a 3D-Var 938 

assimilation system.  The exceptions being for the upper stratosphere temperature where the 939 

LINOZ operator reduces slightly the temperature bias (although not significantly), and for ozone 940 

an increase of variance for both LINOZ and CQC-NMC operators in the lower stratosphere. 941 

942 

Temperature Ozone 943 

944 

Figure 17 Multivariate temperature-ozone assimilation. Univariate ozone and 945 

temperature assimilation (red), multivariate assimilation performed with the LINOZ 946 

balance LINOZ
A  (blue) and CQC-NMC balance CQC NMC

A  (green). The solid lines 947 

denote average differences (biases) and the dashed lines indicate the standard 948 

deviations (by σ). Left panel, temperature O-P (observation minus 6-hour forecast) 949 

statistics from comparisons to MIPAS observations. Right panel, ozone O-P statistics. 950 

The significance tests (green squares and dots) are between the red and green 951 

experiments. 952 
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The above results can be explained by the fact that, as we showed in Section 6, the ozone-953 

radiation interaction increases the error cross-covariance in the region between 10 and 100 hPa, 954 

while above 2 hPa the photochemical time-scale of ozone is so short that any adjustment due to 955 

the analysis is lost in a 6-hour time period.   956 

These results suggest that the modeling assumption of using the temperature instead of the 957 

unbalanced temperature, i.e. Equation (7), in the CQC-NMC balance operator, has a detrimental 958 

effect.  The error correlations below 10 hPa (see Figure 5) are dominated by transport – thus 959 

contain the balanced temperature.  Although we have not continued this experiment further, it 960 

seems necessary to construct balance operators between ozone and unbalanced temperature to 961 

truly isolate ozone-radiation from transport in the lower stratosphere. 962 

8. Strongly coupled tracer-meteorology assimilation with 4D-Var963 

The information about winds inferred from tracers can either be mechanistic or statistical in964 

nature. The evolution of quantities transported by the atmospheric flow field contains implicit 965 

information about the underlying winds.  This is the basis for a mechanistic inference.  As 4D-966 

Var considers a time series of observations, it extracts wind information from time series of 967 

quantities like humidity and passive tracer concentrations [90],[41].  On the other hand, Daley 968 

[40] has alluded to the fact that spatial variation of error variance can also provide information969 

about the winds (this is related to statistical inference).  To understand how this works, let us 970 

consider a steady state example of a two-dimensional non-divergent flow.  In steady state the 971 

streamfunction is identical to the trajectories or streamlines.   972 

We recall that streamlines X are solutions of 973 

( , )
d

x t
dt


X

V (22) 974 

where V is the horizontal velocity vector at coordinate x and time t.  X is the Lagrangian solution 975 

of the flow, and since a tracer is a Lagrangian-conserved quantity, the concentration of a chemical 976 

tracer c depends only on X, i.e. ( )c c X .  On the other hand, a non-divergent flow can be 977 

described entirely by a streamfunction  , 978 

;u v
y x

  
  
 

(23) 979 

where ( , )u vV , such that 0 V .  However, since streamfunctions also have the property 980 

that 0 V , in a steady-state case where 0t  , the material derivative of   is zero. In 981 

this case, the streamfunction   is constant following the material particles, and thus the 982 
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streamline and streamfunction coincide, and could thus use the streamfunction as a proxy for the 983 

concentrations.  The cross-covariance between the streamfunction and the wind is obtained from 984 

2 21 1
;

2 2
u v

y x
   

 
  

 
, (24) 985 

and thus is clearly depends on the spatial variation of the streamfunction error variance. 986 

Given our steady state assumption with non-divergent winds, the streamfunction and the 987 

tracer concentrations are related through the Lagrangian coordinate X.  From a statistical point 988 

of view, the cross-covariance ,u c v c  between wind and the concentration plays a 989 

fundamental role in our ability to infer information about wind from concentration.  If these 990 

cross-covariances are zero, statistical inference is not possible.  Thus, we can see that statistical 991 

inference of winds from tracer in a steady-state non-divergent flow depends on gradients of 992 

concentration error variance.   993 

The above argument stresses the importance of having correct error statistics to be able to infer 994 

correct winds.  In preliminary experiments using the old error statistics (Section 3.1) with the 995 

assimilation of MIPAS methane data in 4D-Var, the impact on the wind increments was small. It 996 

was noticed that the weight given to these observations was small. The observation and 997 

background error statistics of Polavarapu [60] were reevaluated using the HL method described 998 

in Section 3.1 and this experiment was repeated with the new error statistics in order to examine 999 

the sensitivity to changes in the error statistics. The emphasis here will be on the wind information 1000 

obtained in 4D-Var from passive tracer information.  Note that wind magnitude, plotted as 1001 

contours, is more intense with the HL (i.e. new) statistics than with the old (first-guess) statistics, 1002 

although mechanistically there is no difference between the two cases, since the initial 1003 

concentration and the wind trajectories are the same in both cases.   1004 

The 4D-Var assimilation of MIPAS methane data with the old error statistics resulted in the 1005 

wind analysis increment shown in Figure 18 (left panel), while Figure 18 (right panel) shows the 1006 

equivalent from an experiment that used the revised background error statistics for chemical 1007 

species. The results are shown at 100 hPa, a level where methane induces the most significant 1008 

wind corrections. The background error was increased near the North Pole, which reduced the 1009 

wind correction in the region. However, in the Southern Hemisphere, the reduction in 1010 

observation error caused significant increases in the wind correction. One also has to keep in mind 1011 

that the wind analysis increments shown in this figure are limited to regions where observations 1012 

are available, and depend on the concentration analysis increments themselves.   1013 

1014 
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Old statistics New (HL) statistics 1015 

1016 
Figure 18 Wind analysis increments in response to MIPAS CH4 observations obtained 1017 

with a) the first estimate of background-error statistics for chemical constituents, and b) 1018 

the new statistics estimated using the Hollingsworth-Lönnberg method. Results are 1019 

shown here at the 100-hPa level 1020 

Next, a set of experiments was carried out using the new HL statistics where we produced 1021 

wind analysis increments generated by assimilating individually the three species O3, CH4, N2O 1022 

and all three together. The results shown at 10 hPa in Figure 19 indicate the additive nature of the 1023 

wind increments as the three species lead to different impacts at different locations. Analysis wind 1024 

increments obtained at 50 and 100 hPa are displayed in Figures S17-18 (Supplementary Material). 1025 

The differences in the increments can be explained “mechanistically” by differences in the 1026 

distribution of the constituents at different levels. Figure S19 (Supplementary Material) shows 1027 

that the distribution of N2O is more homogenized than that of O3 at 100 hPa.  Ozone, generated 1028 

in the tropical lower stratosphere, is transported in the Southern Hemisphere on a relatively short 1029 

time scale.  Gradients in the ozone field are more important than the gradient of N2O, and thus 1030 

provide more information about the underlying winds. When observations are present, the 1031 

presence of these gradients yields the most significant wind increments. Nitrous oxide 1032 

observations (N2O) are also involved but the weaker wind gradients in this field make it more 1033 

difficult to accurately locate the displacement, which contains the wind information. 1034 

1035 
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1036 

1037 

Figure 19  Wind analysis increments at 10 hPa obtained by assimilating CH4 (top left), 1038 

O3 (top right), N2O (bottom left) and all three species (bottom right). 1039 

The above results indicate that the assimilation of ozone, methane and nitrous oxide yields 1040 

significant wind increments. A validation of the winds was performed by comparing it with wind 1041 

measurements from radiosondes. The results are shown in Figure 20 and indicate a reduction in 1042 

the zonal wind bias all the way to the mid troposphere. The results shown here are based in 1043 

assimilation cycles covering the period August 15th to October 5th 2003, over which the results 1044 

were averaged. 1045 
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1046 

Figure 20  Verification against radiosondes data over the tropical region (20°S – 20°N) 1047 

for the period August 15th to October 5th 2003. The results in red correspond to a 4D-Var 1048 

assimilation experiment with assimilation of ozone, methane and nitrous oxide. Results 1049 

in blue are 4D-Var experiments but without assimilation of the long-lived species. 1050 

Tables in green on the left and right side of the panel indicate also the statistical 1051 

significance of the results for the bias (on the left) and for the variance (on the right).  1052 

The difference between the 4D-Var wind analyses with and without the assimilation of passive 1053 

chemical tracers (i.e. no chemistry) is shown in Figure 21.  We note that the wind correction in 1054 

the tropical troposphere and lower stratosphere is about 0.5 ms-1 to 3 ms-1 agrees for the most part 1055 

with the radiosonde data (Figure 20), except near 20 hPa where the difference in 4D-Var is about 1056 

3 ms-1 while the radiosondes observations indicate a correction of about 1 ms-1.  Also, we note 1057 

large mid-latitude corrections especially in the Southern Hemisphere just outside the polar vortex, 1058 

in the surf-zone, i.e. the region of Rossby-wave breaking.  However, there is a suspicious large 1059 

wind increment in the Tropics near 2-3 hPa.  We have noted in the zonal mean ozone a curious 1060 

vertical transport as a result of 3D-Var meteorological analysis exactly at the same location, where 1061 

the model developed a very large vertical diffusion coefficient.  The origin of this problem was 1062 

completely elucidated but seems to be due in part to the vertical discretization (non-staggered) 1063 

coordinate of the model and to the treatment of the error variance in the tropical region, wich 1064 

assumes that wind and temperature analysis become univariate close to the equator.   1065 
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1066 

Figure 21 Difference between the wind vector intensity of the analyses obtained from two 1067 

assimilation cycles executed with and without the assimilation of ozone, methane and 1068 

nitrous oxide. The results are averaged over the period August 15 to October 5, 2003. The 1069 

zonal mean average is shown here. 1070 

We also observed changes in the temperature that are very small throughout the lower 1071 

stratosphere below 10 hPa, where constituents are assimilated. Slight differences appear in the 1072 

Tropics but also in the Northern Hemisphere lower stratosphere which indicates some 1073 

propagation of the effect into the extra-tropical regions. Figure 22 depicts the O-P temperature 1074 

time series at 20 hPa in the Northern Hemisphere and indicates a buildup of systematic 1075 

differences between both assimilation systems throughout the period.  For the assimilated 1076 

species (O3, CH4, N2O) changes induced by the perturbation of the meteorological fields are small 1077 

throughout the lower stratosphere.   1078 

1079 

Figure 22 OmP temperature time series between the radiosondes and the 3D-Var (blue) 1080 

and 4D-var (red) assimilation cycles at 20 hPa in the North Hemisphere. 1081 
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The impact of the correction on the wind and transport of chemical species is a second-order 1082 

effect and more difficult to assess, as the 4D-Var assimilated those constituents to produce a wind 1083 

correction. For ozone, for instance, differences appear mainly in the winter hemisphere (Southern 1084 

Hemisphere) where dynamical processes are more important.  Figure S20 (Supplementary 1085 

Material) shows the comparison of ozone from the assimilation against MIPAS O3 observations 1086 

for the period September 20th to October 5th below 10 hPa in the Southern Hemisphere mid-1087 

latitudes and polar regions.  Results from 4D-Var show significant improvement in bias at the 1088 

South Pole but the Southern Hemisphere mid-latitude region appears to have a smaller bias near 1089 

100 hPa in the 3D-var system.  In the case of methane and nitrous oxide, differences between 1090 

both analyses appear in the Tropics and are mainly driven by changes in the zonal wind.   1091 

9. Summary and conclusions1092 

We investigated the issues and particularities of coupled meteorology-chemistry data1093 

assimilation in the context of the stratosphere where there is an abundance of vertically-resolved 1094 

observations and we performed a number of weak and strong coupling data assimilation 1095 

experiments.   1096 

One of the key issues in these assimilation problems is the difference between the large number 1097 

of prognostic model variables compared and the number of observed variables.  In a variational 1098 

data assimilation formulation, the following question arises “Do we make an approximation with 1099 

a BJ term containing only observed variables, or should we consider the full state vector ?”, 1100 

which in the case of the coupled model considered here (i.e. GEM-BACH) where there is over 61 1101 

prognostic variables and in the order of 10 observed variables.  We showed through the 1102 

preconditioning of the variational minimization problem, that there is a split between observed 1103 

and unobserved variables.  The minimization of the cost function can be carried out involving 1104 

only the observed variables in the BJ term, with the “analysis increment” of the unobserved1105 

variables deduced offline using the analysis increment of the observed variables, provided we 1106 

have knowledge of the cross-covariance between observed and unobserved variables.   1107 

We extended the concept of balance operators in a 3D-Var context to include any variable (here 1108 

chemical species variables) in addition to meteorological variables.  In fact, any set of correlated 1109 

random variables  1 2 3, , , , kv v v v can be transformed into a set of uncorrelated random 1110 

variables  1 2 3, , , , ku u u u  via a Gram-Schmidt orthogonalization procedure provided we 1111 

define a proper inner product for random variables by using the mathematical expectation 1112 
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operator.  The Hilbert space representation for random variables is a powerful tool that can be 1113 

used in other contexts such as in cross-validation and optimization of covariance parameters [70]. 1114 

The procedure to construct balance operators is not new, but the way we presented here capture 1115 

more easily the general nature of the approach which can be translated into any geophysical 1116 

context. 1117 

In order to obtain error statistics of chemical variables that are observed with a single polar 1118 

orbiting satellite requires some adjustment and modification of the standard methods used in the 1119 

data-rich meteorological context.  For example, we adapted the Hollingsworth-Lonnberg 1120 

method assuming that the statistics is homogeneous on a sphere, depends only on height, and 1121 

using the distance between consecutive profiles along the satellite track as a measure of distance 1122 

to construct the autocovariance function.  We showed that we can extract a spatially correlated 1123 

and uncorrelated component, from which we assign the observation error variance and the 1124 

background error variance.  Since the NMC method assumes implicitly a wide coverage of 1125 

observations per analyses, we used instead the Canadian Quick Covariance method (CQC) [60], 1126 

which consist of using 6-hour differences of the forecasts.  The CQC method actually represents 1127 

the spatial statistics due to advection with physical forcing terms.  These difference fields are 1128 

then used to obtain the parameters of a horizontal-vertical non-separable spectral correlations 1129 

model.  We show that spatial correlation of most species are in fact separable in the stratosphere 1130 

except for O3, HNO3 and H2O on large scales (wavenumber 20 and smaller).  However, the 1131 

resulting horizontal correlation length appears to be too small.  With the CQC approach, we also 1132 

computed the cross-covariance between ozone and temperature, and showed it contains signals 1133 

not only from photodissociation and ozone-radiation interaction but also transport, which is 1134 

undesirable.  The cross-covariance should in fact be computed between ozone and the 1135 

unbalanced temperature rather than temperature, but this requires additional development of the 1136 

CQC method. 1137 

Despite these approximations and limitations, we conducted several assimilation experiments. 1138 

First, we showed the added-value of limb sounding temperature measurements in the 1139 

stratosphere.  By assimilating MIPAS temperatures without the stratospheric AMSU channels, 1140 

we created a model state that could effectively be used as an anchor run for a bias correction of 1141 

the stratospheric AMSU channels.  Secondly, the assimilation of vertically-resolved MIPAS 1142 

temperatures is shown to reduce the temperature error variance and bias in the mid and upper 1143 

stratosphere more than the bias-corrected AMSU radiances can render, despite the increased 1144 

horizontal density and spatial coverage of AMSU. 1145 
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We then examined further the weak coupling due to ozone-radiation interaction and showed 1146 

that the impact on analysis is nearly negligible but develops over the forecast time.  Also, that it 1147 

arises with a simplified linearized ozone chemistry model and does not require a full chemical 1148 

representation.  1149 

We also conducted a strong coupling assimilation experiment between ozone and temperature 1150 

using a 3D-Var assimilation scheme with a balance operator between ozone and temperature 1151 

using the CQC method.  The strong 3D-Var data assimilation coupling experiment has virtually 1152 

no impact in the upper stratosphere because of the very fast time-scale of the model adjustment 1153 

process (photochemical and radiative), while the impact in the lower stratosphere is a small 1154 

degradation in error variances.  We suspect that the use of a balance operator using temperature 1155 

instead of the unbalanced temperature is partially responsible for this degradation. 1156 

Finally, we used a strong constraint 4D-Var to assimilate long-lived chemical species (O3, CH4 1157 

and N2O) observations from the limb sounder MIPAS to infer winds in the stratosphere. 1158 

Inference on winds can be mechanistic in nature, that means recovering wind information from a 1159 

time series of the distribution of the concentration (e.g. a uniform concentration has no 1160 

mechanistic capability in inferring winds). The inference can also be statistical in nature, where 1161 

gradients in concentration error variance introduce cross-covariances between winds and 1162 

chemical tracers [40,41,45].  Our experiments demonstrated the importance of having correct 1163 

chemical background and observation error covariances, thus supporting the statistical inference 1164 

nature of the problem.  The use of multiple tracers was also shown to be complementary, as the 1165 

horizontal distribution of concentration gradients and vertical distribution of background error is 1166 

different for different chemical tracers.  Overall, an improvement in the tropical zonal winds was 1167 

found in the lower stratosphere and a large portion of the troposphere, as assessed with 1168 

radiosonde observations.  A zonal-wind increment of about 2.5ms-1 was also found in the surf-1169 

zone above 5hPa but it is unclear if this helped the transport of chemical constituents, possibly 1170 

due to the fact that chemical tracers that are assimilated in the first place so this increment is a 1171 

second-order effect which is not easily detectable.  We also observed the buildup of a 1172 

temperature bias in the tropical lower stratosphere (at 20 hPa) associated with the tropical wind 1173 

correction – a wind correction that is supported by the radiosonde observations.   1174 

Overall, the coupled meteorology-chemistry data assimilation experiments have shown some 1175 

interesting results, but also how delicatly the error covariances need to respect the wide range of 1176 

time-scales involved.  Due to the scope of this study, the wide range of expertise needed, and 1177 
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accounting for the resources and time limitation such a study requires, it was not possible to 1178 

answer all remaining questions, however the authors encourage further development in this area. 1179 

Appendix A.  Derivation of analysis splitting between observed and unobserved variables 1180 

Mathematically the problem is posed as follows (the derivation was first publish in a 1181 

conference proceedings [92]).  Let us find a change of variable that would simplify the Jb term to 1182 

a simple inner product term.  The way to accomplish this transformation of variable is by 1183 

factoring B into square root and invertible matrix S,  1184 

TB SS . (A.1) 1185 

Defining   such that 1186 

z S (A.2) 1187 

the Jb term then simplifies to 1188 

( ) ( ) ( ) ( )f T f f T f    1
z z B z z     . (A.3) 1189 

Introducing a representation of observed and unobserved variables in the B covariance matrix 1190 

leads to a decomposition of the form, 1191 

 
  
 

xx xu

ux uu

B B
B

B B
 . (A.4) 1192 

The inverse of B is then of the form 1193 

  
 
 

1
D E

B
F G

(A.5) 1194 

where 1195 

 

 

1
1

1

1

1

.











 





 

xx xu uu ux

xx xu

uu ux

1

uu ux xx xu

D B B B B

E B B G

F B B D

G B B B B

(A.6) 1196 

To obtain the square root S, let it first be represented in the form, 1197 

 
 
 

d e
S

f g
 . (A.7) 1198 

Then from Equation (A.1) we get 1199 
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.

T T

T T

T T

T T

 

 

 

 

xx

xu

ux

uu

B dd ee

B fd ge

B df eg

B ff gg

(A.8) 1200 

There is more than one solution that satisfies these four equations.  One of the solutions that leads 1201 

to a triangular form consists of letting e 0 .  We can then easily invert S.  So letting e 0  in 1202 

Equation (A.8) we first get 1203 

 T

xx
B dd . (A.9) 1204 

This is the square-root form of the background error covariance matrix used in 3D-Var, which is 1205 

usually denoted as L, thus we have1206 

d L . (A.10) 1207 

From the second line of Equation (A.8) we get, 1208 

T T  
ux ux

B f L f B L , (A.11) 1209 

and the third equation is satisfied trivially.  Finally the fourth equation of Equation (A.8) takes 1210 

the form, 1211 

1T T T        1 1

uu ux xu uu ux xx xu
B B L L B gg gg B B B B G (A.12) 1212 

where we used the fact that T  1 1

xx
B L L . Thus g is the square-root of the inverse of G 1213 

 1
g G  . (A.13) 1214 

Now let 1215 

 
  
 

x
z

u
, (A.14) 1216 

where the tilde variables are departures from the forecast, i.e. , ,f f f     x x x u u u z z z . 1217 

Then consider the transformed variable,  1218 

 1
B z , (A.15) 1219 

which allows us to write, 1220 

T T 1
z B z   . (A.16) 1221 
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Specifically, we have, 1222 

1

2
T 

   
            

1

ux

L 0x
z B S

u B L G


 


(A.17) 1223 

and this system is easily inverted to give, 1224 

 

1

1

2







  1

ux xx

L x

G u B B x




(A.18) 1225 

The cost function Equation (2) (main text) written in terms of these variables yields 1226 

   

   

   

1 1

1

1 1

1 1 1 1 2 2 2 2 1 1

1 1 2 2

2 ( , )

(

( ) ) ( ) )

2 ( ) 2 ( )

T

T

Tf T f

T
f T f f T f

J H H

H H

H H

J J

 





   
      
   

   

        

 

1

x x
x u B y x R y x

u u

y L R y L

y L R y L

         

         

 

(A.19) 1227 

which has the interesting property that the minimization with respect to 1 is independent of the 1228 

minimization with respect to 2 . The minimization with respect to 1 is given by minimizing the1229 

cost function 1230 

       1 1
1 1 1 1 1 1 1 12 2
( )

T Tf fJ H H     1
y L R y L       ,  (A.20) 1231 

and that with respect to 2 with the cost function 1232 

   1
2 2 2 2 2 22
( )

T
f fJ        . (A.21) 1233 

The minimization of Equation (A.21) has the trivial solution 1234 

2 2

f  0  . (A.22) 1235 

Now, assuming that G  is invertible, the solution (A.22) yields 1236 

 a f a f  1

ux xx
u u B B x x  . (A.23) 1237 

The minimization of the cost function  1 1J   (A.20) is actually identical to the form 3D-Var takes 1238 

written after preconditioning.  Indeed in normal form with the non-transformed variables, (A.20) 1239 

takes the form, 1240 

1 1
( ) ( ) ( ) ( ) ( )

2 2

f T f TJ H H      1 1

xx
x x x B x x y x R y x . (A.24) 1241 
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Appendix B.  Geometric interpretation of the derivation of the balance equations 1242 

Balance between different variables occur, in fact, in many geophysical problems.  Here in the 1243 

context of chemistry, it occurs between long-lived species, or between ozone and temperature 1244 

(which we will develop in detail below).  Using the statistical regression modeling allows to 1245 

formulate the balance operators in a general context for any geophysical problem. 1246 

To simplify the representation of the background error covariance 
XX

B , the set of correlated1247 

variables is transformed via a Gram-Smidt orthogonalization procedure into a set of uncorrelated 1248 

variables whose covariance representation is then block-diagonal.  The transformation from 1249 

uncorrelated variables back to the original variables is achived through what is called, a balance 1250 

operator or in fact, linear regression. 1251 

Random variables (and random vectors) can be represented as a Hilbert space provided we 1252 

use the mathematical expectation to define the inner product [70] (or see [71] Section 1.2).  For 1253 

random variables (vectors) that have a non-zero mean, the proper definition of an inner product 1254 

is 1255 

, ( ( ))( ( )) cov( , )TE E E     x y x x y y x y , (B.1) 1256 

where x and y are random vectors.  The effect of an inner product in a Hilbert space of random 1257 

variables is thus to create a non-random variable.  In Equation (B.1), ,x y  is a matrix where 1258 

each entry is non-random.  The square of the norm is then the variance, 
2

var( )x x , and the1259 

correlation matrix θ , between variables x and y is obtained as  cos( ) , /θ x y x y . 1260 

Therefore, uncorrelated random variables, cov( , ) x y 0  are orthogonal, i.e. , x y 0 . 1261 

A set  1 2 3, , , , kv v v v  of variables of a Hilbert space can always be transformed into a set of 1262 

orthogonal variables  1 2 3, , , , ku u u u via the Gram-Schmidt orthogonalization procedure as 1263 

follows, 1264 
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1

1 2

1 1

2 2 2

3 3 3 3

proj ( )

proj ( ) proj ( )



 

  

u

u u

u v

u v v

u v v v
(B.2) 1265 

where the projection (proj) is defined as 1266 

,
proj ( )

,
u

v u
v u

u u
. (B.3) 1267 

Applying this procedure to random vectors using Equation (B.1) and specifically to (unbiased) 1268 

model background errors of the streamfunction  , velocity potential  , temperature T , and 1269 

ozone 
3

O which are known to be correlated, we obtain the transformed uncorrelated background1270 

error variables (denoted with a superscript u), Equation (6). 1271 

Appendix C – Error covariance from the LINOZ scheme 1272 

The coefficients 1 2 3 4, , ,c c c c of the LINOZ scheme for September, determined using a box 1273 

model, are illustrated in Figure S14 (Supplementary Material), and the mean state in Figure S15. 1274 

Note that in the Equation (21) the concentration is expressed as a mixing ratio (in ppmv) and is 1275 

thus typically on the order of 10-6 .   1276 

The overhead column in Dobson units (DU) is calculated as follows.  By definition one DU is 1277 

equivalent to 0.01 mm of ozone at standard temperature and pressure and is equal to 2.69 10+16 1278 

molecules cm-2.  The overhead number of molecules of ozone is  1279 

3O ( )
z

n z dz



  (C.1) 1280 

where n is the number density, expressed generally in molecules-m-3.  The volume mixing ratio is 1281 

the ratio of the number density of the gas over the number density of (dry) air, i.e. 1282 

3O

3O
A

n

n
  . (C.2) 1283 

Using the relationship, 1284 

A A A an M N (C.3) 1285 

where AM is the molecular weight of air (equal to 0.028964 kg mol-1 ), aN  is Avogadro’s number 1286 

(equal to 6.02252 10+23 molecules mol-1 ), and A is the density of air, the overhead number of 1287 

ozone molecules can then be rewritten as   1288 
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3

0

3

O 3

z

O ( )
( ) O ( ) ( )a a

A

A Az p

N N p
n z dz z z dz dp

M M g


  
          . (C.4) 1289 

Taking perturbations of ozone, 3O , and temperature, T , in (1) gives the following evolution 1290 

equation for the perturbations 1291 

0

3

2 3 3 4 3

O
O O ( )

D
p

D
c c T kc p dp

t
     , (C.5) 1292 

where k is a constant that accounts for expressing the overhead column in DU. In Equation (C.5) 1293 

we have neglected the changes in wind due to temperature perturbation.  The last term of 1294 

Equation (C.5) contributes primarily in the lower stratosphere. 1295 

To establish an error cross-covariance between temperature and ozone let us first neglect the 1296 

overhead ozone component in Equation (C.5), and let’s assume for now that the material 1297 

derivative of temperature perturbations is small compared to that of ozone, which agrees with 1298 

the fact that temperature changes to ozone perturbations that occur on a much longer time-scale 1299 

than photochemical perturbations (ozone changes due to temperature perturbations), i.e. let us 1300 

assume 1301 

0
DT

Dt
 (C.6) 1302 

3

2 3 3

O
O

D

D
c c T

t
  . (C.7) 1303 

Multiplying (C.6) by 3O and (C.7) by T , adding the resulting equations and taking the1304 

expectation gives, 1305 

3 2

2 3 3

O
O .

D T
c T c T

Dt
  (C.8) 1306 

In Equation (C.7) the error cross-covariance is between any pressure levels.  Carrying out the 1307 

derivation more explicitly with pressure levels, Equation (C.8) can be rewritten as 1308 

3

2 3 3

O ( ) ( )
( ) O ( ) ( ) ( ) ( ) ( )

D p T p
c p p T p c p T p T p

Dt


   (C.9) 1309 

where p and p are two distinct pressure levels.  Multiplying Equation (C.6) by T   also gives, 1310 
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( ) ( )
0

D T p T p

Dt


  . (C.10) 1311 

Similarly a covariance evolution for ozone can be derived as follows.  Multiplying Equation 1312 

(C.7) at pressure level p with 3O ( )p , and multiplying Equation (C.7) at pressure level p  with 1313 

3O ( )p , adding the equations and taking the expectation gives,1314 

 
3 3

2 2 3 3 3 3 3 3

O ( )O ( )
( ) ( ) O ( )O ( ) ( ) ( )O ( ) ( ) O ( ) ( )

D p p
c p c p p p c p T p p c p p T p

Dt


        (C.11) 1315 

In matrix form Equation (C.9) is rewritten as, 1316 

3

3

O

2 O 3

T

T TT

D

Dt
 

P
C P C P (C.12) 1317 

where 2C and 3C are diagonal matrices, i.e. of the form, 1318 

2 1

2

2

( ) 0 0

0 0

0 0 ( )N

c p

c p

 
 


 
  

C , (C.13) 1319 

and 1320 

3

3 1 1 3 1

O

3 1 3

O ( ) ( ) O ( ) ( )

O ( ) ( ) O ( ) ( )

N

T

N N N

p T p p T p

p T p p T p

 
 
 
 
  

P (C.14) 1321 

1 1 1

1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

N

TT

N N N

T p T p T p T p

T p T p T p T p

 
 

  
 
  

P   . (C.15) 1322 

In matrix form Equation. (B.10) is written as, 1323 

0TTD

Dt


P
, (C.16) 1324 

and Eq. (C.11) can be rewritten as, 1325 

 3 3

3 3 3 3 3 3

O O

2 O O 3 O 2 O O 3 O

T

T T

D

Dt
   

P
C P C P C P C P (C.17) 1326 

where the superscript T is the matrix transpose. 1327 

At this point, it is hypothetical what kind of assumption is needed to derive a balance in these 1328 

covariance evolution equations.  Based on time-scales, one might argue that the derivative of the 1329 
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we may want to consider the 1330 error cross-covariance evolves slowly, and to a first approximation, 

following balance, 1331 

32 O 3 0T TT C P C P (C.18) 1332 

from which we obtain, 1333 

3

1

O 2 3T TT

 P C C P , (C.19) 1334 

and the balance operator is then of the form 1335 

3

1 1

O 2 3T TT

   A P P C C (C.20) 1336 

which is a diagonal matrix. 1337 

In Figure C.1 we plot the ratio 3 2( ) / ( )c p c p . 1338 

1339 

Figure C.1  Ratio 3 2( ) / ( )c p c p for the month of September. 1340 

Limiting the plot below 24 km was necessary because both coefficients 2 3,c c change by several1341 

orders of magnitude from top to bottom, with very small values of 2c in the lower stratosphere, 1342 

and are thus prone to numerical error amplification.  Surprisingly, the isolines of the ratio follow 1343 

the general pattern of zonal mean ozone.  Figure C.2 depicts a point by point scatter plot between 1344 

the ratio 3 2( ) / ( )c p c p  and the zonal mean ozone 3O .  A very high correlation is thus observed. 1345 
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1346 

Figure C.2  Point-by-point, ( , )p , scatter of 3 2( ) / ( )c p c p with 
3O . 1347 

With such a balance model, temperature increments may produce realistic ozone increments, and 1348 

may be an avenue worth investigating further. 1349 

Extension with the photochemical term 4c1350 

Let us now add the contribution from the photochemical term 4c . The equation for the ozone 1351 

perturbation, Equation (C.5) is now written as, 1352 

0

3

2 3 3 4 3

O ( )
( )O ( ) ( ) ( ) ( ) O ( )

D
p

D p
c p p c p T p kc p p dp

t
     . (C.20) 1353 

From Equation (C.20) and (C.6) we obtain 1354 

0
3

2 3 3 4 3

O ( ) ( )
( ) O ( ) ( ) ( ) ( ) ( ) ( ) O ( ) ( )

p

D p T p
c p p T p c p T p T p k c p p T p d p

Dt


        . (C.21) 1355 

In discrete form, the last term of the r.h.s. of Equation (C.21) takes the following form: 1356 

4 3For and ( ) O ( ) ( )N j N N j Np p p p k c p p T p p  1357 

 1 4 1 3 3 1 1For and ( ) O ( ) ( ) O ( ) ( )N j N N j N N j Np p p p k c p p T p p p T p p   
    1358 

… 1359 

4 3For and ( ) O ( ) ( )
N

i j i k j k

k i

p p p p k c p p T p p


  1360 

and in matrix form, 1361 

3O TΣP (C.22) 1362 
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where 1363 

1 2

20

0 0

N

N

N

p p p

p p

p

   
 

 
 
 
 

 

Σ  . (C.23) 1364 

In matrix form, similarly, to Equation (C.12) we obtain, 1365 

 3

3 3 3

O

2 O 3 4 O 2 4 O 3

T

T TT T T TT

D
k k

Dt
     

P
C P C P C ΣP C C Σ P C P . (C.24) 1366 

The balance operator is then of the form 1367 

 2 4 3k  
-1

A C C Σ C . (C.25) 1368 

To compute the kp term we use a centered formula 1369 

1 1
2 2

k k k
p p p

 
    . (C.26) 1370 

Data tabulated at discrete heights can be transformed into pressure by integrating the hydrostatic 1371 

equation and gas law 1372 

dp g
dz

p RT
  (C.27) 1373 

giving, in discrete form, 1374 

0
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1 1 1
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(C.28) 1375 

where kT is the mean layer temperature.  The figure below illustrates the vertical stagerring,1376 
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Figure C.3  Vertical staggering of temperature and height . 1378 

Defining 1379 

1 1
2 2

1 1

2 2

k k k k

k k
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 
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we obtain 1381 
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Supplementary Materials: Figure S1: Flow chart covering the main steps and options of the 3D-Var-Chem. 1383 
Figure S2:Scalar gain for O3, CH4, N2O, HNO3, NO2, and ln(H20).  Figure S3: Background error variance from 1384 
6hr-difference method.  Figure S4: Background error correlation spectra from 6hr-difference method. Figure 1385 
S5: Horizontal correlation length.  Figure S6:Mean analysis increment for O3, CH4, N2O, NO2.  Figure S7: 1386 
Scatter of O3 and streamfunction values between 10 and 100 hPa for the month of March 2003. Figure S8: 1387 
Cross-correlation between ozone and temperature derived from 24-hr difference method for July 2003. 1388 
Figure S9: Horizontal coverage of AMSU-A profiles in 6 hours.  Figure S10: Sensitivity matrix of brightness 1389 
temperature over temperature for channels 10-14 of AMSU-A.  Figure S11: Mean analysis increment at 10 1390 
hPa for the month of September 2003.  Figure S12: Zonal mean analysis increment for September 2003. 1391 
Figure S13: Global verification of observation-minus-forecast temperatures for different forecast lead time. 1392 
Figure S14: Coefficfient of the LINOZ scheme for September.  Figure S15: LINOZ climatology for 1393 
September.  Figure S16: Ratio of unexplained variance to total variance for the balance operator CQC NMC

A1394 
.  Figure S17: Same as Figure 19 but at 50 hPa.  Figure S18: same as Figure 19 but at 100 hPa.  Figure S19: 1395 
Analysis of N2O and O3 at 100 hPa on August 11, 2003, 00 UTC.  Figure S20: OmP ozone comparison against 1396 
MIPAS for the 3D-Var assimilation clycle and 4D-Var for the period of Septemeber 20 to October 5, 2003 over 1397 
the South Pole region and Southern Hemisphere mid-latitudes. 1398 
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RMS  Root Mean Square 1448 
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