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Abstract: We examine data assimilation coupling between meteorology and chemistry in the
15
stratosphere from both weak and strong coupling strategies. The study was performed with
16
the Canadian operational weather prediction Global Environmental Multiscale (GEM) model
17
coupled online with the photochemical stratospheric chemistry developed at the Belgian
18
Institute for Space Aeronomy, described in Part I. Here, the Canadian Meteorological Centre’s
19
operational variational assimilation system was extended to include errors of chemical
20
variables and cross-covariances between meteorological and chemical variables in a 3D-Var
21
configuration, and we added the adjoint of tracer advection in the 4D-Var configuration.
22
Our results show that the assimilation of limb sounding observations from the MIPAS
23
instrument on board Envisat can be used to anchor the AMSU-A radiance bias correction
24
scheme. Also, the added value of limb sounding temperature observations on meteorology
25
and transport is shown to be significant. = Weak coupling data assimilation with ozone-
26
radiation interaction is shown to give comparable on meteorology whether a simplified
27
linearized or comprehensive ozone chemistry scheme is used.  Strong coupling data
28
assimilation, using static error cross-covariances between ozone and temperature in a 3D-
29
Var context, produced inconclusive results with the approximations we used. We
30
have also conducted the assimilation of long-lived species observations using 4D-Var to
31
infer winds. Our results showed the added value of assimilating several long-lived species,
32

and an improvement in the zonal wind in the Tropics within the troposphere and lower
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33 stratosphere. 4D-Var assimilation also induced a correction of zonal wind in the surf zone
34 and a temperature bias in the lower tropical stratosphere.
35 Keywords: coupled chemistry-meteorology data assimilation; weak and strong data

36 assimilation coupling, Canadian Quick Covariance method (CQC), assimilation of MIPAS

37 temperature observations, ozone-temperature cross-covariance, tracer-wind 4D-Var
38 assimilation.

40 1. Introduction

41 Data assimilation is a process by which observations are integrated into a model of the
42  atmosphere thereby changing the model state and its associated forecast. —Tropospheric
43  observations related to dynamical variables such as temperature, wind and humidity are
44 continuously collected and routinely assimilated in weather prediction models. In the
45  stratosphere, there are fewer observations available and these are mostly related to temperature,
46  however, there are several research satellites measuring chemical composition in this region [1].
47  Important missions began in the early 1990’s with the Upper Atmosphere Research Satellite
48  (UARS) [2-4] followed by the Environmental Satellite Envisat [5-7] and NASA’s Earth Observing
49  System (EOS) Aura [8-9]. Instruments on board these satellites typically perform measurements
50  which are tangent to the atmosphere (also called limb soundings) and provide height-resolved
91  retrievals of a number of chemical species as well as temperature. Since chemical
52  transformations, especially those related to stratospheric ozone have an impact on the
53  temperature while winds change the distribution of chemical tracers (i.e. long-lived species), a
54 natural question which then arises is “To what extent does the assimilation of chemical observations,
S5 and in particular those provided by limb measurements, impact the meteorology on time scales relevant to
56 numerical weather prediction?”. This is the main objective of this study. In part I we focused on
57  modelling aspects and introduced the coupled model GEM-BACH. Here we will discuss how
58  these research satellite observations can provide useful information. Also we will present weak
59  and strong data assimilation coupling experiments.

60 Coupled data assimilation is a relatively new area of research and development, where
61  assimilation systems can broadly be classified as either weakly or strongly coupled [10-11]. In
62  weakly coupled data assimilation system, each geophysical component (e.g. chemistry,

63  meterology) has its own independent analysis. The analyses are then used to initialize a coupled
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64  model, which produces a coupled model forecast (i.e. the coupling arises through the model
65  forecast and not throught the analysis). In a strongly coupled data assimilation system, the
66  analysis is carried out on all variables together. Thus, observations of one geophysical
67  component can have a direct impact on the analysis of the other geophysical component. Weak
68  and strong data assimilation coupling strategies were developed for atmosphere-ocean [12-22]

69  and atmosphere-land-surface coupled systems [23-27].

70 Coupled meteorology-chemistry data assimilation has primarily been examined in the
71 context tropospheric aerosol-radiation interaction on short time-scales [28-30], on subseasonal
72 prediction [31] and decadal time scales [32] (also see [33] for a review of chemical data
73 assimilation). It was also used to estimate parameters in the activation of aerosols into cloud
74 droplets [34], and in determining cross-covariance between temperature and constituents (O,
75 NO: and SO2) using the coupled tropospheric model WRF-CHEM and an ensemble based
76  approach [35]. Coupling can also occur through coupled observation operators. For example,
77  infrared channels of operational meteorological satellites are sensitive to ozone and CO: and can
78 benefit from using an ozone assimilation [36] and a CO: assimilation [37],

79 Data assimilation coupling in the stratosphere was also investigated in perspective of weak
80  coupling through ozone-radiation interaction and as strong coupling using the tracer-wind
81  relation. Weak coupling was investigated at numerical weather prediction centers, such as
82  ECMWEF, by considering the ozone-radiation interaction [38] and at the Canadian Meteorological
83  Center (CMC) with the experimental model GEM-BACH [39]. The experiments conducted at
84 ECMWF were performed with a linearized ozone chemistry and using nadir-sounding
85  stratospheric measurements, whereas those at CMC used a relatively low resolution model but
86  with the full stratospheric chemistry and using limb sounding observations. The CMC study

87  showed showed an impact on forecast in the lower stratosphere predictability.

88 Strong data assimilation coupling has been considered in the context of using chemical tracer
89  observations to infer winds. In some of the earlier studies using an extended Kalman filter with
90  asimplified two-dimensional transport model, it was shown that wind recovery is very sensitive
91  to the accuracy of chemical observations, and to the concentration fields having sufficient

92  horizontal gradients and small data voids [40]. It was also shown that constituents in zones of
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93  convergence could only determine the winds nearby. Experiments conducted with a one-
94  dimensional model also showed that wind information can still be obtained in the case of a flat
95  concentration field if there are gradients in the concentration error covariances [41]. Using the
96  barotropic vorticity equation with a 4D-Var assimilation system, Riishejgaard [42] examined the
97  issues of data density and length of the assimilation window, and arrived at similar conclusions.
98  Using column measurements of ozone with a NWP model and 4D-Var method, a small
99  improvement in the winds was obtained using simulated observations, but a deterioration using
100  real observations [43]. The negative impact was suspected to be result from observational bias.
101  In another study using an operational NWP model with a 4D-Var assimilation system, a small
102  impact (about 0.1 ms?) was found on zonal wind with no reduction of error standard deviation
103  [44]. These unsuccessful results conducted in an operational context suggested that additional
104  studies were necessary. Using an ensemble Kalman filter and an intermediate-complexity
105 model, Milewski and Bourqui [45] demonstrated that information about the ozone-wind cross-
106  covariance is essential in constraining dynamical fields when ozone only is assimilated.
107  Moreover they showed that a further reduction in error can be obtained with an Ensemble Kalman
108  smoother [46]. In a series of studies using 4D-Var and ensemble Kalman filter, Allen et al [47-49]
109  showed that poorly-specified observation error could lead to an increase in RMS wind error, also
110  that observational coverage is important wind so that wind extraction could be improved if
111  several chemical tracers were used, and that the balance between wind and temperature could be
112 offset by the wind recovery from tracer measurements. We should note that the wind extraction
113  from tracer observation is part of a more general class of joint state-parameter estimation
114 problems (e.g. [50-51]).
115 The present study took place in the period 2005-2009 with funding, in part, from ESA/ESTEC
116 [52]. This article, henceforth referred to as Part II summarized the data assimilation aspects.
117  First, we present the extension of the CMC variational assimilation system to include chemical
118  variables in Section 2, where we discuss in particular the analysis splitting and preconditioning,
119  the extension of balance operators with chemical variables, and the validity of an incremental
120  formulation of adjoint tracer operators for 4D-Var assimilation of long-lived species. In Section
121 3 we describe the error statistics of chemical variables using the Hollingsworth-Lénnberg method
122 to estimate the error variances, and using the Canadian Quick Covariance (CQC) method to
123  obtain non-separable error correlations. We also discuss the method and issues related to the
124 cross-covariances between temperature and ozone. In Sections 4 and 5 we illustrate the benefits

125  of using limb sounding temperatures from MIPAS to improve the AMSU-A bias correction and
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126  better simulation of temperature and transport in the stratosphere. We then discuss weak
127  coupling data assimilation experiment involving ozone and its impact on meteorological
128  forecasts, which indicates that a simplified linearized ozone chemistry is sufficient to obtain most
129  of the desired results. Then in Sections 7 and 8 we discuss results from strong coupling
130  experiments, first in a 3D-Var context using a balance operator between ozone and temperature,

131 and then in 4D-Var assimilation of several long-lived species, i.e. O3, CHs and N20 to correct the

132  winds.

133 2. Extension of 3D-Var and 4D-Var for chemical-meteorological coupling

134 The assimilation system scheme ued here consists of a model integration step to obtain a 6-
135  hour forecast (called the background state), and an assimilation step in which observations are
136  used to correct the background state and obtain an analysis. This analysis is then used to initialize
137  the next 6-hour forecast, and the cycle is repeated. In this study, the assimilation step employs a
138  variational analysis solver that can be run in one of three modes:

139 e 3D-Var: in this case, all observations collected over the 6-hour assimilation window are
140  assumed to be valid at the central time. Observation departures from the model state (called
141  innovations) are computed with respect to the background state valid at the central time of the
142  window [53].

143 e« 3D-FGAT (First Guess at Analysis Time): this scheme is a variant of 3D-Var in which the
144 innovations are evaluated by comparing each observation with the model output valid at the
145  observation time [54] (actually closest to a 1-hour bin).

146 e 4D-Var: extending 3D-Var to 4D-Var can be achieved by including the forward model
147  integration as part of the observation operator (the observation operator computes the model
148  equivalent of the observation) [55-56].

149 It is generally assumed in variational analysis that observation errors and background errors
150 are uncorrelated, both unbiased, and Gaussian distributed. Producing a minimum variance
151  estimate, called the analysis, leads numerically to a large-scale minimization problem of a
152  quadratic function that can be solved by unconstrained minimization techniques. This requires
153  suitable preconditioning, and an adjoint observation operator (that is equivalent of a matrix
154  transpose of the Jacobian of the non-linear observation operator).

155 4D-Var mode also requires the adjoint of the linearized model, commonly called the adjoint
156  model. The linearization is made about a nonlinear model solution, but in the incremental form

157  of 4D-Var, the linearized model is not required to be at the same resolution nor contain the same
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158  physics. In this study, however, the linearized model on which the adjoint model is based is at
159  the same resolution (following the discussion in Section 6 Part I) but has no ozone-radiation
160  interaction and no chemistry. No physical parameterization is used in the adjoint model except
161  for diffusion and a linearized planetary boundary layer scheme. For 4D-Var long-lived species
162  chemical assimilation experiments the adjoint model is that of passive tracer advection.

163 Background error covariances and observation error covariances are needed to compute the
164  minimum variance estimate. The background error correlation model used in this study for each
165  variable is homogeneous and isotropic (i.e. invariant under rotation) on a sphere, and non-
166  separable, meaning that the vertical and horizontal correlation structures are interconnected.
167  The cross-variable error correlations are obtained by a transformation of variables, involving what
168  are called balance operators obtained from a regression analysis following a Gram-Schmidt
169  orthogonalization procedure [Section 2.3]. For the dynamical model variables, there are balance
170  operators to represent the geostrophic and hydrostatic balance, and also the Ekman balance in the
171  planetary boundary layer. In this study we introduced a balance operator between ozone and
172  temperature that was obtained either from a linearized photochemical model such as LINOZ [57]
173 (see [58] for its implementation with semi-Lagrangian transport), or from correlations in the
174 model output.

175 Applying the above variable transformations and representing the error correlations in
176  spherical harmonics, it is possible to completely diagonalize the error correlation matrix [59].
177  The covariances in physical space and between all variables can then be obtained through a series
178  of transformations on a vector. With this formulation and a reduction due to spectral transform
179  and vertical eigenfunctions, the background error covariance matrix can be, in principle, easily
180  expanded to include other variables in addition to the dynamical variables. This approach was
181  taken to extend our meteorological data assimilation system to a coupled chemistry-dynamics
182  data assimilation solver. The numerical coding effort began in another Canadian study [60] and
183  was completed here with cross dynamics-chemistry balance operators and the 4D-Var chemical
184  extension (passive tracer).

185 The last step of the development concerns the preconditioning, which will be discussed in
186  Section 2.1. In principle, the control vector should contain all the meteorological and chemical
187  variables and which, in our case, consists of 57+4 = 61 three-dimensional fields. In developing
188  the preconditioning, it was realized, however, that only the observed variables had to be added
189  to the control variable. In our case, this amounts to 10 three-dimensional fields (horizontal

190  winds, temperature, water vapor, Os, CHs, NO2, N20, HNOs and CIONO). As far as unobserved
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191  constituents that have a background correlated with observed constituents, their minimum

192  variance estimate can be obtained off-line after the minimization.

193 2.1 Analysis splitting between observed and unobserved variables

194 The state of a chemical-meteorological model prognostic meteorological and comprises all the
195  prognostic chemical model variables, which, in our case, represents more than 61 three-
196  dimensional fields (the chemistry model alone accounts for 57 advected species). In principle, a
197  state estimate should be conducted on all prognostic variables. Yet, only a small fraction of these
198  variables is observed. For example, MIPAS/ESA chemical observations are mostly limited to O,
199 N0, NO, CHs, and HNOs. We will derive in this section a computational simplification that
200  allows splitting the analysis into observed and unobserved variables parts.

201 Let Z be the complete chemical-meteorological state vector be decomposed into observed

202  variables X and unobserved variables U, i.e.

X
203 z :(Uj. (1)

204  The analysis of all state variables using a 3D-Var algorithm consists of minimizing the following

205  cost function,
206 12) =%(Z—zf)TB'l(Z—z‘)%(y—H(Z))TR*(y—H(Z)), @)

207  where y denotes the observation vector (i.e. all observations of all observed variables at a given
208 time), H is the observation operator, R the observation error covariance matrix, and B is the full

209  state background error covariance matrix that can be decomposed into,

BXX BXU]

210 B= 3
[Bux Buy ©)

211 which includes covariances and cross-covariances between observed and unobserved variables.
212 Developing a preconditioning for the cost function in Equation (2) with the full state vector Z

213 we found that the minimization of J(Z) can be split into two parts: A minimization of the cost

214  function involving only the observed variables and observations, which takes the form

215 J(X)=§(><—xf)TB;1x(X—xf)+§<y—H(X))R*1(y—H(X»: Jo+do ()
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216  and aregression between the analysis increments of the unobserved variables with the increments
217  of the observed variables, of the form,

218 U*—U' =B, By (X* - X'). (5)
219  This property is called analysis splitting. Note that the cost function in Equation (4) is composed
220  of two parts, the background cost function J, and the observation cost function. J,. We
221  should also note that analysis splitting is quite general, and holds, in particular, when the
222  observation operator is nonlinear (the derivation in presented in Appendix A).

223 Analysis splitting concept is interesting and practical for a number of reasons. Consider the
224 behavior of unobserved variables U in either a strongly-coupled or weakly-coupled data

225  assimilation system. The analysis increment in a strongly coupled data assimilation system
226  would use U? (Equation (5)) as part of the initial condition Z™ =(X?*,U*)" for a coupled

227  model. In a weakly-coupled data assimilation system, we would use U’ (instead of U?*) to
228  initialize the unobserved space, and furthermore X® would be obtained from an uncoupled
229  analysis. That means that, for example, in weakly-coupled chemistry-meteorology data
230  assimilation, X* = (u*,%°)", so that in the coupled model the initial condition is given by
231 Z" (u gt U

232 Analysis splitting is also practical as it reduces the optimization state space dimension for the
233  3D-Var. It also offers the possibility to examine the impact of the analysis on unobserved
234  variables independently of the core variational optimization. In the absence of adequate
235 information about cross-covariances between observed and unobserved variables, the increments
236  of unobserved variables can be selectively removed from of the analysis in a simple manner.
237

238 2.2 General description of the 3D-Var-CHEM

239 The CMC 3D-Var scheme developed for meteorology [53] and extended to include chemical
240  variables [60] was further extended in this study to include cross-covariances between observed

241  species and between observed and unobserved variables using a balance operator. The general
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242  framework will be explained in Section 2.3 and the associated error statistics in Section 3.3.
243  Cross-covariances involving chemical variables was estimated point-wise, while the
244 meteorological variable error covariances (and cross-covariances) were computed in spectral
245  space as in by Derber and Bouttier [61].

246 The coupled chemical-meteorological model state used in the 3DVar-Chem in Equation (4)
247 consists of X =[x TIn(q),ci,..., eN,ps|T, where yis the streamfunction, y the velocity potential,
248 T the temperature, q the (tropospheric) water vapor mixing ratio, ps the surface pressure and N
249 observed tracers, or chemical constituent mixing ratios ci, ..., ex. The state vector in 3D Var-
250  Chem is such that all 3D fields are grouped together, followed by the 2D field ps. As explained
251  in Section 2.1, the state augmentation is limited only to observed variables/species.

252 A flow chart of the 3D-Var-Chem (omitting some intermediate steps) is given in Figure 51
253  (Supplementary Material). The 3D-Var-CHEM code can be used for: 1- general assimilation, 2-
254  identification of observation outliers (background check), 3- monitoring (determination of O-P
255  only), 4- testing by way of single observation experiments, and 5- stand-alone analysis splitting,
256  i.e. Equation (5).

257 The minimization of the cost function in Equation (4) is performed after a transformation of
258  variables, £=LX where B,, = LL', which simplifies the background penalty term to a simple
259 quadratic of the form, (§-&")(-§&")" - a transformation step called preconditioning. The
260  minimization is then performed on the transformed variable & using an efficient quasi-Newton
261  algorithm adapted for large-scale problems [62]. The preconditioning used in 3DVar-Chem
262  follows what is done for the meteorological variables [53]. The key aspect of this computation
263 resides in the fact that L times a vector X, can be obtained as a sequence of operators, without the
264  need to store any large matrices. This property arises principally from the assumption that the
265  horizontal error correlation are assumed to be homogeneous and isotropic on the sphere. For
266  such correlations, the spectral representation is diagonal in spectral space (see for example [63,
267  64,53,59]). The sequence of operations then becomes as follows: 1 — We multiply the spectral

268  representation of the state with the square root of the spectral coefficient of the correlation model,
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269 2 - Perform a transform from spectral to physical space, 3 — Multiply the resulting fields by the
270  error variances, and 4 — Using balance operators, transform the primary fields into fields of
271  physical significance accounting for cross-correlations between them. This is how we obtain, for
272  example, the velocity potential from the stream function and an unbalanced velocity potential.
273  This last operation is obtained through a balance operator.

274 Before we discuss the balance operators, we should note two things: 1- The CMC 3D-Var
275  system uses a non-separable error correlation model. It means that for each horizontal
276  wavenumber there is a unique vertical correlation matrix, which introduces a dependence
277  between horizontal and vertical scales; 2 - Although it is usual in meteorological applications to
278  perform the minimization on an analysis grid of lower resolution than the model grid (e.g. [53]
279 and in 4D-Var is called an incremental formulation [65]), as we argued in Part I Section 6, the
280  meteorological model and analysis increment, as well as the chemical forecast model and the
281 chemical analysis increment should all be on the same grid, in order to avoid a loss of information.

282 2.3 Balance operators

283 Balance operators have been introduced in meteorological data assimilation to account
284  implicitly for the balance between mass and momentum in the background error covariance either
285  through deterministic relationships (e.g. linear balance equation) [53,66-68] or through statistical
286  regression [69,61]. For coupled meteorology-chemistry the multilinear regression approach [69]
287  can easily be extended to include chemical species. In particular the streamfunction &y,
288  velocity potential dy, temperature ST, and ozone 5O, which are known to be correlated, can
289  be transformed into a set of uncorrelated background error variables (denoted with a superscript

290  u), as follows

Sy = Sy
8" = & —B,BL Sy

291 . - o (6)
ST = 6T - BB, oy —B_ B .d

u -1 -1 u -1 u
504 = 60,- BB, oy —B, B &' - B, Bl oT".

TUTU
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292  The transformation from any set of correlated errors to uncorrelated error variables, as in
293  Equation (6), can also be explained geometrically by adopting a Hilbert space representation of
294  the random variables [70,71] and followed by Gram-Smidt orthogonalization (see Appendix B for
295  this geometrical derivation).

296

297  Backsubstituting, we recover the transformation from uncorrelated variables to correlated

298  variables, in the form

Sy 1 0 0 0)(d&y" Sy
E I u u
299 x| 0 Off o' |_ | %% | %
5T N O I 0|lsT ST
50,) \G o F 1){s0! 50!
300  where
301 E-B,B,, N=B.B, G=B,B, F=B Bl 8)

302  and where, to simplify, we have neglected all cross-covariances involving the uncorrelated
303  velocity potential, y". Equation (8) consists of the balance operators, and what is displayed are
304  the main variables only. The list of variables and their associated balance operator in Equation
305  (7) is actually incomplete. To be complete it should include surface pressure, which follows the
306  same structure as temperature, and humidity, which is assumed to be uncorrelated with any other
307  meteorological variable. In chemistry, we could have also introduced a cross-covariance
308  between long-lived species such as (N20, CHs) or chemically related species such as (O3, NO),
309  but we have not done so here.

310 From Equation (7) we obtain the background error covariances, which can be rewritten by

311  splitting the covariances into variances and correlations as follows,

B, 0 0 0 c, 0 0 0
312 0 Bx“x“ 0 0 T 0 Cx“x“ 0 T T
Bux =M M' = MZ, ZxM 9)
O 0 BTuTu O CTuTu
0 0 0 B 0 0 0 C
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313  where Zxx =diag(Swy, Ty, Zrr, Toioy) is a diagonal matrix of error standard deviations for all

314  uncorrelated variable. Also, note that each correlation matrix C, is actually represented
315  spectrally as C=SAS™ where S and S™ are the spectral transform and A is a diagonal or
316  block-diagonal (nlevxnlev) matrices of spectral coefficients. For computational efficiency, the
317  balance operators in M are simplified as block diagonal matrices (nlevxnlev) for each latitude,
318 and an error variance that depends on height and latitude (using a Legendre polynomial
319  expansion).

320 Finally, the implementation of balance operators in a 3D-Var or 4D-Var using preconditioning
321 requires the inverse of the square root of B,,, and thus we need to know the inverse of M, which

322  turns out to be easy to obtain as

| 0 0 0
-E 1 0 O
323 M = (10)
-N 0 1 O
NF-G 0 -F |
324
325 2.4 4D-Var tracer extension
326 The 3D-Var algorithm can be extended to 4D-Var by including the model integration as part

327  of the observation operator [55,56]. The minimization of the 4D-Var cost function with the
328  adjoint of the original model including the full physics can be difficult and computationally
329 demanding. Instead, an incremental formulation of 4D-Var [65] can be used where the
330  minimization of the 4D-Var cost function is approximated by a series of minimizations involving
331  the adjoint of a tangent linear model with simplified physics and at a lower resolution [65,72,73],
332  called the inner-loop and where its solution is used to update the full model trajectory in an outer-
333  loop. The outer-loop trajectories defines new innovations and a new cost function and the
334  method cycles through several outer loops, each of which requires the minimization in an inner
335 loop. AtCMC, the physics component of the adjoint model includes only the vertical diffusion,
336  surface drag, orography blocking, stratiform condensation and convection. The simplified
337  adjoint model is also run at a resolution of 1.5° x 1.5°, which is the same resolution as that of the
338  GEM-BACH model. For the chemistry component of GEM-BACH, the adjoint is simplified by

339  considering only the adjoint of advection transport. There is no adjoint of chemistry. The
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340 tangent-linear model of semi-Lagrangian advection was discussed in Polavarapu [74] and the
341  properties of the adjoint in Tanguay and Polavarapu [75]. The key element in the
342  implementation of 4D-Var for GEM-BACH is that the minimization is performed within the inner
343  loop which uses the tracers of observed species only (with the simplified physics). The outer-
344 loop uses the full chemistry and physics.

345 4D-Var assimilation of ozone was conducted between 300 hPa and 10 hPa where it behaves as
346  apassive tracer. To illustrate the validity of the incremental tracer approach for ozone, Figure 1
347 shows the observation cost function Jo as a function of iteration. The solid black is the result of
348 the first inner loop (up to iterate 42), while the dashed line refers to the cost function after the first
349  update of the outerloop, during the second inner loop. We observe a nearly continuous decrease
350  in the observation cost function except for a small adjustment between the last iterate of the first
351  inner loop and the beginning of the second inner loop.
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352 Iteration
353 Figure1  Observation component of the cost function for ozone assimilation as a
354 function of iteration. Solid line is associated with the value of Jo of the first inner loop
355 and the dashed line the value of . of the second inner loop.
356 3. Error statistics
357 An accurate estimation of the observation and background error statistics is important in data

358  assimilation as these control (at analysis time) the weight of the observations and the structure
359  functions that spread information in space and to other model variables. The innovations contain
360  the basic information to estimate the observation and background error statistics but this

361  information is actually combined, i.e. not separated in its respective components. Under the
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362  assumption that observation errors are spatially uncorrelated and background errors are spatially
363  correlated it is, however, possible to separate the observation and background error statistics.
364  The Hollingsworth-Lénnberg (HL) method [76,77] does precisely this and is based on computing
365  the distance between pair of observations that fit well with geographically fixed observations.
366  Here, we demonstrate that this method can also be used with a polar orbiting limb sounder such
367  as MIPAS, because the distance between observation profiles is uniform. With this approach,
368  we were able to derive the observation and background error statistics of the observed chemical
369  species. We should add that there are other methods based on innovations that can provide
370 observation and background error statistics, such as Desroziers [78] and Desroziers and Ivanov
371 [79], but these are based on different assumptions (see [80]).

372 Any of the innovation-based methods are limited as they can only estimate error statistics of
373  the observed variables in the observation space, which is insufficient to prescribe the error
374  statistics needed for an assimilation system. Additional information can be obtained by using
375  model output methods, such as the ensemble methods and the lagged-forecast method also
376  known as the NMC method. Ensemble methods require an ensemble of model forecasts, but
377  conducting an ensemble of the GEM-BACH model runs would be computationally demanding,
378  and would require tuning of model error (i.e. inflation) and localization parameters. The lagged-
379  forecast method, widely used in meteorology, is based on having a complete observations
380  coverage. Bouttier [81] has argued that the lagged-forecast method is strongly related to the
381  difference between the forecast error covariance and analysis error covariance, and not specifically
382  on the forecast error covariance. Consequently, the lagged-forecast method cannot be used in a
383  Ilarge region where there are no observations, as the difference between the forecast and analysis
384  error covariances is close to zero.

385 Also, we should note that the lagged-forecast method is generally used to obtain the
386  background error correlations, not the error covariances. The error variances are obtained
387  through other means by using the innovation variance or estimates obtained by the HL method.
388  Inatmospheric chemistry, the observational coverage is generally not uniform and often has large
389  data voids in each analysis. In this study, in particular, our main observational source is a single
390  polar orbiting satellite, i.e. MIPAS. The horizontal coverage of MIPAS in 6 hours (analysis time
391  window) is limited to about a quarter or third of the global domain. In addition, some chemical
392  components have a strong diurnal cycle. The use of the lagged-forecast method in this context
393 s thus questionable. An alternative method that has been used in stratospheric and mesospheric

394  data assimilation consists of obtaining statistical information from 6-hour differences of a single
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395  model output. This method, originally developed by Yves Rochon (personal communication) is

396  known as the Canadian Quick Covariance (CQC) [60].

397 Table 1. Summary of error estimation methods
398
Statistical Statistical assumption and methods
Variable type
parameters Observation error Background error
combination of
innovation-based and
variances innovation-based
meteorological lagged-forecast (NMC)
methods
correlations spatially uncorrelated | lagged-forecast method
Hollingsworth- Hollingsworth-
variances Lonnberg (HL) method | Lonnberg (HL) method
chemical as function of height as function of height
6-hour difference
correlations spatially uncorrelated
(CQC) method
399
400 In this study, we used a combination of these methods depending on the variable type, i.e.

401  meteorological or chemical, as summarized in Table 1. The newer approaches, such as the CQC
402  method and the HL method used with MIPAS, will be described in the following subsections.
403

404 3.1 Estimation of error variances by autocorrelation of innovations along the satellite track

405

406 The observation error obtained from innovations comprises: the instrument error, the forward
407  modeling and retrieval errors, the error due to the interpolation from observation location to
408  model grid point, and the representativeness error due in part to the subgrid scale variability not
409  resolved by the atmospheric model [82]. The model forecast error is generally correlated
410  horizontally over large distances, typically 500-1000 km. As we shall see, we can assume that
411  observation error is either spatially uncorrelated or correlated over much shorter distances,
412  allowing us to estimate the observation error variance and forecast error variance by constructing
413  spatial autocorrelation function of innovations. The intercept of the spatially correlated part of
414 the innovation can be attributed to the model forecast error variance while and the remaining part
415  measures the spatially uncorrelated part attributed to the observation error variance, which is in

416  essence the HL method.
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417 To illustrate the use of the HL method with chemical species we have conducted an
418  assimilation of methane observations from MIPAS over a period of three weeks in August-
419  September 2003, using 10% error for the background error and the retrieval error provided by the
420  instrument team for observation error. We shall refer to these first guess error statistics as the old
421  error statistics. These are not be taken as the true error statistics but are used only to derive a first
422  set of innovation statistics from the assimilation cycle. Since MIPAS observational profiles are
423  spaced uniformly at about 530 km along the satellite track [7], we construct an along-track spatial

424  auto-covariance of the innovations, which is illustrated in Figure 2 at 63hPa.
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426 Figure2  Spatial autocovariance of innovation for MIPAS CHs at 63 hPa. Abscissa
427 are units of horizontal separation between profiles (each unit is around 530 km). The
428 red stars represent the sample autocovariance values, and the dashed curve are linear
429 interpolation between the sample points. Note that at zero separation the sample
430 covariance is at the top of the graph (near 36 x10-5), and no interpolation between the
431 zero distance and lag-1 is done.
432
433 The units of the horizontal axis are profile lag points along the satellite track, with spacing of

434 530 km. We note that at zero separation the innovation variance is 36x10-5 and is distinctively
435  different from the extrapolated intercept of the spatially correlated part, estimated to be around
436  8x10'5. Such a separation of values at zero distance is observed at all levels and for all species.
437  This supports our assumption that the observation error is either spatially uncorrelated or that

438  the spatial correlation length is much shorter than the background error correlation.
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439 The estimates of observation and background error variances for MIPAS CHs, obtained from
440  HL method are displayed in the left panel of Figure 3. We note that the MIPAS CHa observation
441  error variance is significantly larger than the (model) background error except in the region
442  between 2 and 0.5 hPa. This indicates that it is not everywhere that MIPAS CHs observations
443  will have an impact on the analysis, the main impact region is limited to 2 to 0.5 hPa, and perhaps
444 also the lower stratosphere between 100 and 50 hPa.

445 Comparison of three different estimates of observation error variance is shown in Figure 3
446  (right panel). One is the observation error variance provided by the instrument, i.e. the blue
447  curve. We note that the instrument error variance is always smaller than or equal to the
448  estimated observation error obtained with the HL method. This is consistent with the fact that
449  the estimated observation error using innovation statistics includes the representativeness error,
450  which is usually significant. The estimate of observation error variance using the Desroziers
451  method [78] is shown in green and is close to the HL estimate in the mid-to-lower stratosphere
452  from 100 hPa to 3hPa. However, at higher altitudes important differences are noted. Since the
453  Desroziers method [78] relies on the assumption that the Kalman gain is nearly optimal (i.e. close
454 to the truth) [80], explains the discrepancy between HL and Desroziers estimates of observation

455  error variance.

456
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458 Figure3  Estimated error variance for CHs/MIPAS as a function of height. Left
459 panel, shows the estimated background error variance (green with squares) and
460 observation error variance (red with triangles) as a function of height using the HL
461 method. Right panel illustrates three different estimates of observation error
462 variance. Blue with stars is the estimate given by the instrument team (i.e. the
463 instrument error), red with circles is the observation error variance obtained from the
464 HL method (note that this is the same as the red triangle in the left panel), and green
465 with triangles is the observation error variance estimate from the Desroziers method
466 [78].
467
468 One way to summarize the estimated error variances is to look at the scalar form of the Kalman

469  gain, which involves only the ratio of estimated error variances. A scalar Kalman gain close to
470  one indicates that the solution is determined mostly by the observations while a gain of zero
471  implies that the observations have no influence. In the supplementary material (Figure S2) the
472  reader will find the scalar Kalman gain for Os, CHs, N2O, NO2, HNOs and H:0 that were
473  assimilated in the course of this study. We note for instance that for Os the gain is about 0.2 in
474  the lower stratosphere and steadily increases to about 0.6 in the upper stratosphere. A similar
475  situation was found for the long-lived species CHs and N20. However, the NO: gain is close to
476  one in the upper stratosphere, indicating that the model as a small impact at these altitudes. As
477  for HNOs, the gain increases with height and reaches a maximum value of 0.8 at 4hPa, then
478  decreases with altitude. Chemical water vapor (H20) is presented in terms of the log of

479  concentration.
480 3.2 The Canadian Quick Covariance method

481 Let us first recall that the NMC method consists of obtaining a homogeneous isotropic and
482  horizontal/vertical non-separable correlation model on a sphere using a spherical harmonics
483  representation of 48-hour minus 24-hour model forecasts valid at the same time (see Errera and
484  Meénard [59] for a description on the use of spherical harmonics and how to construct error
485  correlations, and Gauthier [69] for aspects related to meteorological applications). The Canadian
486  Quick Covariance (CQC) method [60] is similar to the NMC method except that it uses 6-hour

487  differences of pure model forecasts. The CQC method does not involve an assimilation cycle and
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488  thus does not depend on observation density, and can be obtained for any variables, observed or
489  not. Thislatter feature is particularly interesting for atmospheric chemistry, where many species
490  are unobserved, or the observational coverage is limited. It should be stressed that each
491  difference is computed using forecast valid at two different times. The information that the CQC
492  method represents is actually the tendency, comprising advection and model physics. Writing

493  amodel equation in the form,

494 aa—"t’+v'w= F(y), (11)

495  the CQC method thus derives its spatial error statistics from the 6-hour differences which

496  represent model tendencies,

497 w (X(t+6))— w(x(t) = ji {(-V-Vy +F(p)} dr. (12)
0

498 It has been argued [60] that since the large-scale motion doesn’t change in a 6hr time period, it
499  may explain why the stream function and unbalanced temperature correlation obtained from the
500  CQC method have less signal in wavenumbers 10 and lower in comparison with the correlation
501  using the NMC method. But, it is known that the NMC method has a tendency to give too much
502  spectral error variance at these wavenumbers for meteorological correlations fields [83]. It is
503  thus unclear whether the CQC method has an actual deficiency at large scales. The latitudinal
504  power spectra of the species that were used in the assimilation are shown in Figure S3
505  (Supplementary Material) and indicate generally a maximum in power at the large scales
506  (wavenumber 8-10) as one would expect.

507 To compute the background error correlation with the CQC method we first need to compute
508  the variance of 6-hour differences of pure model forecasts. These zonal-mean variances as a
509  function of height are presented in Figure S4 (Supplementary Material). We then normalize the
510  6-hour differences by the square root of these error variances to obtain an ensemble set of model
511  variables that will be used to represent the error correlations. This ensemble set is then
512  represented spectrally, as in the NMC method, from which by using the spectral representation
513 of a non-separable correlation model we obtain, for each horizontal wave number 7, a vertical

514  correlation matrix nlevx nlev (see [59] or [53] for details). In a non-separable correlation model,
515  we can compute a power spectrum as a function of the horizontal wavenumber 1 and vertical
516  level, shown is illustrated in Figure S3 (Supplementary Material). A horizontal-vertical
517  separable correlation model has a horizontal power spectrum that does not change with height.

518  The results shown in Figure S3 indicate that for most chemical species the correlation is
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519  horizontal-vertical separable except for Os, HNOs and H20 at large scales (for wavenumbers
520  smaller than 20).

521 The resulting correlation length can also be computed. Figure S5 of Supplementary Material,
522 shows the horizontal correlation length for six constituents, that typically varies from 200 km (in
523  the troposphere) to 400 km in the upper stratosphere. These correlation length-scales seem to be
524 too small if we visually compare the correlation length we get from the spatial autocovariance of
525  innovations. Figure 2 shows a decorrelation length scale of 2 or 3 orbits, which corresponds to
526  about 1000 to 1500 km. Despite the fact the HL method has a tendency in practice to overestimate
527  the spatial correlation length scale compared with length-scale obtained with the maximum
528  likelihood method [84], the correlation length scale obtained with the CQC method for chemical
529 constituents seem too small. However, since we have no means to correct for these deficiencies,
530  we continue to use the spectral coefficients as is in the correlation models of the chemical
531  constituents.

532 The background error covariance is then obtained by using the background error variance
533  estimated by the HL method to the correlation estimated using the CQC method. Thus, the
534  background error variance is identical at all latitudes and longitudes and varies as a function of
535  height only. We conducted a series of univariate constituent data assimilation experiments,
536  using the background error covariance above and the observation error obtained from the HL
537  method and computed the mean analysis increment over the period of August 17 to September
538  5,2003. During this time period a strong energetic particle precipitation from the mesosphere
539  affected the polar region down to the middle stratosphere and created large NO: and HNOs

540  mixing ratio increments [85]. Figure 4 presents the mean analysis increment for HNOs.
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544 Figure4  Analysis increment for HNOs. Left panel using the first guess or old
545 statistics. Right panel using the new statistics consisting of CQC correlation and HL
546 error variances. The value of the increment should be scaled by 10 vmr.
47
548 We note that the analysis increment of HNOs with the new statistics is larger and self-

549  organized, indicating vertical descent of HNO:s in the polar vortex [85], while the old statistics
550  give random results with numerous small-scale features. The analysis increments for chemically
551  active species such as Os and NO: also appear to be larger and also physically coherent, while
552  those of passive tracer (CHs, N20) are not changed significantly, remaining spatially random, with
553 both old and new statistics, with the difference that the increments with the new statistics are of

554  somewhat larger scales (see Figures S6 in Supplementary Material).
555 3.3 Cross-covariance estimates

556 The use of cross-covariances between meteorological and chemical variables in a 3D-Var
557 assimilation is a distinctive feature of our study. As discussed in Part I (Section 2.1), ozone and
558  temperature are related by photochemistry above 10 hPa. Empirical relations of the form given
559 by Equation (1) Part I, show that temperature perturbations are negatively correlated with ozone
560  perturbations, and this adjustment takes place on time scale of less than 20 days (see Figure 2,
561 Part I). In the lower stratosphere, between 10 and 30 hPa, the relation between ozone and
562  temperature is due to the infrared cooling, which take place on a time scale of about a month.
563  Below 10 hPa, the photochemical lifetime of ozone is so long that it can be considered as a tracer.
564  Interestingly, these correlations clearly show up with the CQC method.

565 To compute the cross-correlation between two variables, u and v, using the 6-hour model
566  differences method (i.e. the CQC method) a number of simplifications of the cross-correlation
567  representation are required. In principle, collecting statistics of 6-hour differences over a month

568  (assuming here 30 days), the cross-covariance is obtained as

l 4*30

N - T
B = 2%30 Z<|:(ul(i)+6 _ut(i)) - (ut(i)+6 _ut(i)):| [(Vt(i)w _Vt(i)) - (Vt(i)+6 _Vt(i))J > =2.Cu E‘T’ (13)

i=1

569

570  where £,, X, are diagonal matrices of error standard deviations of the 6-hour differences, and

571  the index i is for the four 6-hour time periods in a day However, C,, is a full 6-dimensional

572  matrix and needs to be significantly simplified to be computed from statistics. We generally

573  represented it as a zonal field of point correlations, thus neglecting the horizontal and vertical
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574  correlations. It was found the neglecting the vertical correlation has a small impact on the zonal-
575  mean representation of B.

576 The cross-correlation between ozone and temperature computed for the month of July 2003 is
577  shownin Figure 5. The pattern for August and October 2003 is very similar (result not shown).
578  Asdiscussed previously, the region above the 10hPa is photochemistry-dominated, while below
579  10hPa the ozone behaves like a tracer although its radiative effect is important on a time-scale of
580 20 days to a month. At around 10 hPa the photochemistry time scale is about 10 days and
581  decreases to one day at 3 hPa, and to half a day at2 hPa. At this altitude the photochemical time-
582  scale decreases with latitude in the northern hemisphere summer (as shown in Figure 2, Part ).
583  We observe in Figure 5, that the maximum anti-correlation between temperature and ozone
584  occurs at about 2 hPa, a region in which 6-hour differences are able to capture the photochemical
585  signal of half aday. The maximum anti-correlation is also not centered at the equator, but rather
586  in the northern hemisphere summer due to the asymmetry between hemispheres in the
587  photochemical time-scales (see Figure 2, Part I). We note a weaker but positive correlation
588  between temperature and ozone below 10 hPa. However, this positive correlation is not very
589 different between interactive and non-interactive runs, with the caveat that the interactive run
590  shows a stronger positive correlation in the northern hemisphere summer between 10 and 100
591  hPa. At those altitudes the radiative time-scale is on the order of 20 days to a few months. The
592  6-hour differences method clearly cannot capture a signal on time-scales of weeks and months,
593  and this is why there is little difference between the interactive and non-interactive runs. The
594 difference between interactive and non-interactive runs in the northern hemisphere between 10
595  and 100 hPa is slightly larger if instead of 6 -hour differences we use 24-hour differences to derive
596  the cross-correlation (Figure S8, Supplementary Material).

597
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600 Figure5  Cross-correlation between ozone and temperature derived from 6-hr
601 differences (i.e. CQC method) for July 2003. Left panel refers to a non-interactive
602 ozone-radiation run of GEM-BACH and right panel for an interactive ozone-radiation
603 run.
604
605 Generally, the positive correlation between temperature and ozone below 10 hPa is not of

606 radiative origin but is due to the impact of short-term (e.g. 6 hour) temperature effects on ozone
607  transport. Large positive correlations are observed near the NH and SH tropopause and in the
608  equatorial region around 20-70 hPa.

609 Construction of the balance operator F (see Section 2.3) requires the unbalanced component of
610 temperature. However, the unbalanced temperature is not directly accessible from 6-hour
611  model differences, and would require a sequential reprocessing respecting the Gram-Smith

612 orthogonalization of model differences, which we have not attempted to do here. Instead, we

613  used an approximation. We recall that what needs to be computed is F = BovBiwv but what

614  we have readily available from the statistics is A = Bo,rB7y. We will approximate F by A in the

615 following way.
616 To understand the approximation, we first note that,

BrrA =By = (50, (5T)") = (60, (6T +B,,B,, o) )

Ty ~wy

= (80, (sT*)") +(50, (5y)' ) B, BT, =B, + B, B B,

o,T" O3y yy

617 . (14)

618  where we used Equation (6). The correlation between Os as a tracer and the streamfunction
619  relates to the tracer-wind coupling discussed in Section 2.3 Part I. It has long been an elusive
620  goal to obtain [86-88] (see also discussion in Section 7). It was argued that in regions of Rossby
621  wave breaking activity, that potential vorticity is correlated with ozone as a chemical tracer in the
622  lower stratosphere. Figure S7 (Supplementary Material) shows scatter plots of Os concentration
623  and streamfunction between 10 and 100 hPa for March 2003 for different latitude bands. We
624  note, however, that streamfunction and ozone have no significant correlation except at the highest
625 Ilatitudes in the northern hemisphere. We thus make the simplification that globally the correlation
626  between Os and streamfunction can be neglected. This also implies that the balance operator G
627  (Equation 8) can be neglected. Regarding Equation (5) we thus make the approximation that,

628 Bor = Bop - (15)


https://doi.org/10.20944/preprints201910.0241.v1
https://doi.org/10.3390/atmos10120798

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 October 2019 d0i:10.20944/preprints201910.0241.v1

24 of 63

629  Now, concerning the temperature error covariance, it can be calculated by taking the outer-

630  productof ST usingthe temperature equation from Equation (6) while neglecting &' asin (7),
631  wich yields
632 B =(6TET)) =((6T* +B,, B, y)(6T" +B,, B, 6y)" ) =B, +B BB, . (16)

Ty “wy Ty “yy Ty " yy

633 By using the matrix inversion lemma, we then obtain its inverse as,

634 B =B, -B..B, (B, +B},B..B,) BLB, . (17)

T ™ Ty~ Ty~
635 In this study, however, for practical reasons, we will use the approximation,
636 By =Bl (18)
637  to compute the balance operator. Thus with the approximations in Equation (21) and the
638 limitations imposed by the statistics (as discussed at the beginning of this section) the balance

639  operator F (Equation 8) which is a function of latitude and pressure only, is approximated as

640 F(4,p) =B, .B1. ~ A(4,p) = By B} (19)

O,V — 1T
641  The corresponding ozone error covariance, using the formulation Equation (6) and taking into
642  account the cross-covariance between ozone and temperature, yields

643 Boo, = By TFBnF = B, + AL, p)B..A"(1,p). (20)

o404 ™ 0404
644 To construct the operator A we use the cross-correlation obtained from point-wise statistics
645  derived from the CQC method for ozone-temperature cross-correlation, and point-wise statistics
646  derived from the NMC method for temperature covariance. This contrasts with the balance
647  operators introduced by Derber and Bouttier [61] where the regression statistics are derived in
648  spectral space —an approach used for the balance operator between meteorological variables used
649  here in the CMC 3D-Var meteorology. The point-wise statistics used for A are dependent on
650 Ilatitude and pressure (the hybrid vertical coordinate to be precise). We have investigated the
651  use of a vertical correlation (but not horizontal correlation) in the operator A and observed little
652  difference (results not shown). However, the important aspect is which error variances are

653  considered to obtain the cross-covariance Bo,r and covariance Brr. For temperature error

654  variance, we adopted the procedure used in the meteorological CMC 3D-Var which consist of
655  renormalizing the NMC error variances using the innovation statistics [53]. For ozone, we used
656  the error variance estimates obtained from the HL. method and made it dependent only on height
657  as described above in Section 3.1. Figure 6 (left panel) illustrate the cross-covariance thus
658  obtained, which we will denote by A““ "¢,

659
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Figure 6  Balance operator between ozone and temperature for July 2003. Left
panel, A““™C which uses CQC and NMC methods, and right panel, A""%*, as
derived from the LINOZ scheme.

We also calculated the cross-covariance obtained using the LINOZ model, which is derived in
Appendix B using the stationary solution of the cross-covariance evolution equation between
ozone and temperature, and which we denote by A", displayed in the right panel of Figure
6. The ratio of the unexplained variance to the total variance for the operator A“*“""Y° isshown
in Figure S16 (Supplementary Material). The most important feature of the cross-covariance of
the LINOZ model is that it contains only the effects due to photochemistry (radiative effects are
absent). The cross-covariance is negative as we would expect, but in general nearly matches the

ozone climatology (as explained in Appendix B), with A" ~ —2x102 O, .

4. Harmonization of AMSU-A radiances with MIPAS temperatures

The microwave sounder AMSU-A (Advanced Microwave Sounding Unit) on board several
operational NOAA satellites has been the main source of temperature-sensitive measurements
for NWP in the stratosphere (for the period considered in these experiments). AMSU is a nadir-
looking and horizontally-scanning instrument. The coverage of AMSU-A on board NOAA-15
and NOAA-16 during any 6-hour window is almost entirely global (Figure S9 Supplementary
Material). The horizontal coverage is in fact too dense to consider all profiles with horizontally
uncorrelated observation errors, and so thinning (i.e. discarding profiles) is usually performed in
operational data assimilation (also illustrated in Figure S9). Channels 10-14 are sensitive to
stratospheric temperature but have rather coarse vertical resolution (Figure S10 — Supplementary

Material). Limb sounding instruments such as MIPAS are another important source of

d0i:10.20944/preprints201910.0241.v1
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685  temperature measurements in the stratosphere. A description of MIPAS and HALOE is given in
686  Part], Section 7.1. For the time period we have considered (i.e. 2003) AMSU-A and MIPAS are
687  the two most important source of stratospheric temperature measurements, with the exception of
688  radiosondes that rise up to 30 km in tropical regions (and lower altitudes elsewhere).

689 The main issue with AMSU-A radiances is that the geolocated and calibrated radiances (i.e.
690 level 1B) need to be bias-corrected and this is usually done by using the meteorological model
691  short-term forecast as an “unbiased” estimate. This procedure is well adapted in the troposphere
692  where other unbiased observations have a significant effect on the analysis, thus by comparing
693  model-simulated radiances with observed radiances can be used effectively to separate model
694  bias from observational bias. Such observations are often referred to as “anchor” observations
695  in a bias correction scheme. Observation bias-correction schemes can be either static or online
696 with the analysis, as in the Variation Bias Correction scheme [89]. However, it is found that the
697  application of bias correction in the upper stratosphere is problematic in the absence of “anchor”
698 observations [90]. DiTomaso and Bormann [90] have proposed assimilating AMSU-A channel
699 14 without any bias correction as a way to anchor the meteorological analysis in the mid to upper
700  stratosphere. Here, we propose another approach, which consists of assimilating MIPAS
701  temperature observations to anchor the stratospheric analysis and derive from it a new set of
702  AMSU-A bias corrected radiances. This also has the effect of harmonizing these two sets of
703 observations.

704 MIPAS-retrieved temperatures in the stratosphere are considered to be of good quality and
705  compare well with HALOE temperatures (see Part I, Section 7.2.1). We thus conducted an
706  assimilation of MIPAS temperature observations without AMSU-A (stratospheric) channel 10-14
707 as an “anchor” run. To generate this assimilation run, we used as observation error for MIPAS
708  temperatures the estimates obtained from the HL method as described in Section 3.1, and for the
709  meteorological error statistics a combination of innovation variance consistency with the NMC
710 method as summarized in Table 1. From this anchor run, a new set of bias correction coefficients
711  was obtained, as well as a new set of AMSU-A radiances with a bias correction based on MIPAS
712 temperature.

713 The results are compared for August 12-31, 2003 in Figure 7. Radiance innovations based on
714 AMSU-A stratospheric channels and using the standard bias correction used at CMC are in shown
715  blue, and using only the model in the stratosphere and the new bias correction using an
716  assimilation of MIPAS temperatures are shown inred. This evaluation was also conducted over

717 other time periods; January 14-31, and October 12-18, 2003 with similar results (not shown).
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721 Figure7  Mean (lower curves) and standard deviation (upper curves) of the
722 AMSU-A radiance observations minus the forecast (6 hours) for channels 11 to 14. In
723 blue are the results using the standard CMC bias correction scheme, which uses only
724 the model in the stratosphere, and in red using only MIPAS temperature in the
725 stratosphere.
726
727 We observe a net reduction in radiance bias for channels 11-13 with the new bias correction

728  based on MIPAS temperatures, with a slight reduction in the standard deviation. The mean
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729  analysis increment at 10 hPa is presented in Figure S11 (Supplementary Material) for September
730 2003 and a zonal mean analysis increment in Figure S12. These results indicate a significant
731  reduction in the mean analysis increment everywhere except in the polar regions in the upper
732 levels of the model (1 hPa and higher), which may be due to the model pole problem or the sponge
733  layer. Following the above results, all further assimilation experiments were conducted using

734 the new AMSU-A bias correction based on the assimilation of MIPAS temperatures.

735  5.The added value of the assimilation of limb sounding (MIPAS) temperatures

736 Let us first examine the benefit of assimilating MIPAS temperature in addition to AMSU-A
737  radiances, with the new bias correction (Section 4). An assimilation from August 17 to
738  September 30, 2003 was conducted and the global verification results are presented in Figure 8.
739  Ingreen is the assimilation of AMSU-A only, and in black the assimilation of MIPAS temperature
740  and AMSU-A.

741
742 Verification against MIPAS Verification against HALOE
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744 Figure 8 Global verification (observation-minus-forecast) of temperatures for two
745 assimilation runs. All AMSU-A data are processed with the new bias correction.
746 The left panel illustrates verification against MIPAS temperatures, and the right panel,
747 verification against HALOE temperatures. The green squares on the far right of the
748 panels indicate significance according the the Student t-test of means, and the green
749 dots on the far right of the panels indicate significance according to the Fisher test of
750 variances.
751 We observe an improved bias and reduction in error variance in the mid to upper stratosphere

752  (from 10 hPa to 0.3 hPa) with the combined assimilation of MIPAS and AMSU-A, whether the
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753  verification is performed against MIPAS and HALOE as independent observations. The larger
754  impact in the mid to upper stratosphere may be due to the fact that there are more AMSU-A
755  channels sensitive to the lower stratosphere, or that the limb sounding observations provided by
756  MIPAS have a definite advantage in the mid to upper stratosphere where only one channel of
757  AMSU-A (i.e. channel 14) provides information. To address this question we have performed an
758  assimilation of AMSU-A only versus MIPAS only.

759 Verification against HALOE temperatures (Figure 9) shows very little difference with respect
760  the combined assimilation results (right panel of Figure 8), but more pronounced in the lower
761  stratosphere. Similar results for individual latitude regions were found in both experiments
762  (results not shown). Thus, we see the importance of height resolving observations in the

763  stratosphere.
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766 Figure 9 Global verification (observation-minus-forecast) against HALOE
767 temperatures for two assimilation runs. In black is the assimilation of AMSU-A, and
768 in green is the assimilation of MIPAS temperatures only. Otherwise similar to Figure
769 8.
770 Next, we conducted another set of experiment that directly illustrate the impact of the

771  assimilation of limb-sounding temperature observations on model temperature and on transport
772  of ozone. In this set of experiments, and contrary to the results presented in Figure 8 and 9, we
773  activate ozone-radiation interaction in the model. But as we shall see in the following section
774  (Section 6), the ozone-radiation interaction has very little impact on verification of 6-hour forecast.

775  The impact actually develops over a time period of several days, so that for all practical purposes
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776  we can consider the following results to be essentially independent of the presence of ozone-
777  radiation interaction.

778 To better illustrate the impact of limb sounding observations, we conducted a meteorological
779  assimilation of MIPAS temperatures where stratospheric AMSU-A channels (11-14) are excluded
780  (inred)and compared it with an assimilation of MIPAS temperature where all AMSU-A channels

781  are retained (in black). The new AMSU-A bias correction scheme was applied in both cases.

782
783 Verification against MIPAS temperatures Verification against HALOE temperatures
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785 Figure 10  Global verification (observation-minus-forecast) of temperature for two
786 assimilation runs. In red, is the assimilation of MIPAS temperature and AMSU-A
787 with no stratospheric channels, and in black is the assimilation of MIPAS
788 temperatures with all the AMSU-A channels. The left panel illustrates the
789 verification against MIPAS temperatures, and on the right panel, the verification
790 against HALOE temperatures.
791 Figure 10 displays the global verification results of assimilation runs from August 17 to

792 October 31, 2003. In general, for the mid and upper stratosphere, both in terms of bias and error
793 standard deviation, the assimilation of MIPAS data with no stratospheric channels of AMSU-A
794  performs better than assimilation using all stratospheric channels. This conclusion is valid
795  whether the verification is against MIPAS temperatures (left panel) or against independent
796  temperature measurements from HALOE (right panel). This positive impact is also seen in
797  temperature forecasts but gradually disappears over a forecast period of 10 days (see Figure S13
798  in Supplementary Material).

799 For the same set of experiments, the impact on ozone is illustrated in Figure 11. We observe
800  a systematic reduction in the standard deviation of observation-minus-forecast (6 hours) error

801  whether it is verified against MIPAS ozone (left panel) or HALOE ozone (right panel).


https://doi.org/10.20944/preprints201910.0241.v1
https://doi.org/10.3390/atmos10120798

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 October 2019 d0i:10.20944/preprints201910.0241.v1

31 of 63
802
803 Verification against MIPAS Os Verification against HALOE Os
P fmts) P imbs)
0=t T 0.t i T e A
IR N i ST Pl *
T X NS *
L9 * w 4 * 0 } \K‘
f \
/ ! t }
A ) ) y
/ : vl
0.1 2 4 . Y
/} "\ * ‘l‘ \\ *
NS . P W ’
Al i ’ A M [
e N . L ¥ .
AL i s s e i i i s S - 100,0 Qoo Bk e e s S St
<60 -4 40 <35 <30 28 <20 18 -10 -6 D B 10 B 20 28 30 3% 40 46 50 50 45 40 -3 <30 -2 20 -IE 10 0 5 1) 15 20 28 30 38 40 4 0
804 Q=P OZONE () 0=F GZONE (4
805 Figure 11 Same as Figure 10 but for verification of ozone MIPAS on the left and
806 ozone HALOE on the right.
807 The reduction in the random error is markebly larger in the lower stratosphere where

808  transport and the vertical gradient of ozone are important. A larger reduction in standard
809 deviation is observed over Antarctica (results not shown). A reduction in the error standard
810  deviation is also observed for CHs above 3 hPa. Thus, we see that the presence of AMSU-A
811  temperatures in the assimilation actually degrades the vertical structure, because of the coarse
812  vertical resolution sensitivity of the associated channels, which is apparent in the transport of

813  chemical species in regions of strong vertical concentrations.

814 6. Weak coupling assimilation due to ozone-radiation interaction

815 We know (form Part I, section 2.1) that the ozone-radiative interaction time-scale varies from
816  about a week at 1hPa to about a month at 25 hPa, while the ozone photochemical time-scale is a
817  few hours at 1hPa and is on the order of three months at 25 hPa (see Part I, Section 2.1). It is
818  around 10 hPa that these two interactions have comparable time-scales, i.e. about 2 weeks (see
819  Part I, Figure 2). This implies that the assimilation of ozone will have little impact on
820 temperatures above 10 hPa, but the impact, which is radiative in nature, will be noticeable in the
821  lower stratosphere and will build up slowly over time. The assimilation of temperature on the
822  other hand will influence the photochemistry of ozone above 10hPa and will influence ozone
823  transport in the lower stratosphere.

824 To examine these effects in the context of assimilation we will focus on assimilating only limb
825  sounding observations. As stated in Section 5, the assimilation of limb sounding temperatures

826  while excluding stratospheric AMSU-A channels has a stronger impact on both temperature and
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ozone transport than using the stratospheric AMSU-A channels, which tends to spread out the
temperature information vertically.

An assimilation of MIPAS temperatures without stratospheric AMSU-A channels (i.e. using
only channels 1-8) was performed for the period August 17 to September 5, 2003. The global

verification of observation-minus-forecast (6 hours) temperatures and ozone is presented in

Figure 12.
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Figure 12 Impact of ozone radiation interaction with the assimilation of MIPAS

temperature only and AMSU-A channels 1-8. Left panel shows the global impact
on MIPAS observation-minus-forecast temperatures, and the right panel the ozone
impact against MIPAS observations. No interaction (black), ozone-radiation

interaction (red).

Red curves correspond to assimilation with the GEM-BACH model with ozone-radiation
interaction activated while black curves correspond to an experiment where the radiation is
computed from a monthly ozone climatology, not the transported ozone. We note that in these
temperature-only assimilation experiments, ozone-radiation interaction creates very little change
in the temperature and ozone analyses (or 6 hour forecasts) except for small differences in the
upper-stratospheric mean temperature and the variance of lower stratospheric ozone.

The small mean difference in temperature between the two experiments around 5hPa and
above can be explained by the fact the GEM-BACH model has an ozone deficit of 15% at those
altitudes (as suggested by the right panel of Figure 12, and discussed in Section 7.2.3, Part I).
Thus, with the interactive model, the lower model ozone concentrations leads to cooler
temperatures, which the assimilation of temperature can only partially correct since it is a

systematic error.
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In the lower stratosphere, the O-P variance is increased in the case of ozone-radiation
interaction. We recall that there is no assimilation of ozone in these experiments, and the impact
on ozone can be understood by considering ozone as an unobserved variable as defined in Section
2.1. The impact on unobserved variables can be computed from the cross-variable increment,
Equation (5), and here in particular, the balance operator A between ozone and temperature. The
associated background (or model) error covariance is given by Equation (20) and using the
operator A. We have shown already in Figure 5 that ozone-radiation interaction increases the
correlation between temperature and ozone between 10 and 100 hPa (in the northern latitude
summer). Consequently, the error-cross covariance and its effect on variance of ozone is
increased, and this is what it is observed in the lower panel of Figure 12 .

Although the impact of ozone-interaction is nearly absent in analyses (or 6-hour forecasts), it
gradually accumulates in forecasts. De Grandpré et al. [39] have reported results of assimilation
of temperature and ozone on the temperature predictability using the GEM-BACH with
essentially the same experimental setup discussed here. A gradual increase in the anomaly
correlation for the period of August 11 to September 5, 2003 was shown reaching nearly half a
day in the lower stratosphere as a result of ozone-radiation interaction (either with assimilation
of temperatures only or with assimilation of temperature and ozone). Here we show anomaly
correlation results in which the assimilation of MIPAS temperature was conducted over a longer
time period from August 15 to October 5, 2003 that essentially corroborate the published results.
For a description of the calculation of the anomaly correlation (i.e. correlation between forecast

and analysis valid at the same time) we refer the reader to de Grandpré et al. [39]

Anomaly Correlation
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874 Figure 13  Anomaly correlation at 10 (red), 50 (green) and 100 (purple) hPa in the
875 southern hemisphere (205-90S) for ozone-radiation interactive (dashed lines) and
876 non-interactive ozone (solid lines) experiments.
877 The above improvement comes from a better representation of ozone radiative heating in the

878  lower stratosphere region. This radiative forcing persists throughout the forecast period due to
879  the long photochemical lifetime of ozone which is much longer than the radiative time-scale in
880  this region

881 The precise chemistry model used has in fact little impact on these results. To show this we
882  have conducted a similar ozone-radiation interaction assimilation experiment using a linearized
883 chemistry model LINOZ [57] for daily mean values (with semi-Lagrangian transport [58])

884 %:cl+cz(03—63+c3(T—f)+C4(O;—CT;), 21)

885  where the coefficients ¢,,c,,c,,c, are determined using a chemical box model, the overbar ®)

886  represents climatological values, and T represents the overhead column. The coefficient

887 ¢, =1/70, is related to the photochemical time-scale of ozone (see also Section 2.1, Part I).

888  Figures 14 and 15 show the impact of assimilating temperature and ozone with ozone-radiation
889 interaction activated using the LINOZ ozone model and the BASCOE chemistry model.
890

GEM-BACH GEM-LINOZ

891
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892 Figure 14  Total column ozone (DU) over the South Pole region on October 3, 2003
893 resulting from the assimilation of MIPAS temperature and ozone. Left panel,
894 experiment using the BASCOE chemistry scheme. Right panel, experiment using the
895 LINOZ linearized ozone chemistry scheme.
896
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898 Figure 15 Time series of ozone at 70hPa over the South Pole region resulting from
899 the assimilation of MIPAS temperature and ozone. Black curve, experiment using
900 the BASCOE chemistry scheme. Green curve, experiment using the LINOZ
901 linearized ozone chemistry scheme.
902 We conclude from these figures that the analysis and time evolution of ozone over the South

903  Pole region with GEM-BACH ozone-radiation interaction are similar whether we use the
904  comprehensive (BASCOE) chemistry or the linearized (LINOZ) chemistry. Figure 16 shows the
905  temperature forecast, bias and the error standard deviation at 50hPa over the Northern

906  Hemisphere in comparison with MIPAS temperature analyses.

907
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15-day forecast of temperature at 70hPa verified against analyses over

the South Pole region resulting from the assimilation of MIPAS temperature and

ozone. In black using the BASCOE chemistry and in green using the LINOZ

linearized ozone chemistry.

Green curves correspond to a forecast with the climatological ozone in the radiation

calculation. Red and blue curves correspond to forecast runs were prognostic ozone in the

radiation calculation was used. Although there is a drift in the temperature forecast in all

experiments, we note that the interactive runs using BASCOE and LINOZ chemistry both exhibit

relatively slow growth of temperature random error, while a faster growth of error is seen when

using the ozone climatology. This result is coherent with the anomaly correlation results

presented in Figure 13 (and [39]) which indicate greater forecast skill with ozone-radiation

interaction than using climatological ozone. The result illustrated in Figure 16, also suggest that

an anomaly correlation computed using the LINOZ chemistry should lead to improvement over

the climatological ozone run.

Thus, we conclude that weak coupling due to ozone-radiation interaction does not change

significantly the analysis. However, it has an effect on the forecast skill that is observed with

either using the full chemistry or a simplified (linearized) ozone chemistry schemes.

7. Strongly coupled temperature-ozone assimilation with 3D-Var

The 3D-Var-Chem developed in this study allows for cross-covariances between

meteorological and chemical variables and between chemical variables themselves. To examine
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the effect of adding cross-covariances between temperature and ozone in the context of 3D-Var,
we have conducted experiments using the balance operators A““™™° and A"™* described in
Section 3.3.

We have conducted three assimilation experiments using MIPAS Os; and AMSU-A
temperature (all channels) for a period of 2 weeks from August 17 to September 4, 2003. Figure
17 shows the verification over the globe in the three case: univariate (red), multivariate with the
balance operator A®“"¢ (green), and multivariate with the LINOZ balance operator A"
(blue).

We note that in general there is little change between all three experiments, indicating no
advantage in using multivariate cross-covariances between temperature and ozone in a 3D-Var
assimilation system. The exceptions being for the upper stratosphere temperature where the

LINOZ operator reduces slightly the temperature bias (although not significantly), and for ozone

an increase of variance for both LINOZ and CQC-NMC operators in the lower stratosphere.
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Figure 17 Multivariate temperature-ozone assimilation. Univariate ozone and

temperature assimilation (red), multivariate assimilation performed with the LINOZ
balance A"™* (blue) and CQC-NMC balance A“X™¢ (green). The solid lines
denote average differences (biases) and the dashed lines indicate the standard
deviations (by *o). Left panel, temperature O-P (observation minus 6-hour forecast)
statistics from comparisons to MIPAS observations. Right panel, ozone O-P statistics.
The significance tests (green squares and dots) are between the red and green

experiments.
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953 The above results can be explained by the fact that, as we showed in Section 6, the ozone-
954  radiation interaction increases the error cross-covariance in the region between 10 and 100 hPa,
955  while above 2 hPa the photochemical time-scale of ozone is so short that any adjustment due to
956  the analysis is lost in a 6-hour time period.

957 These results suggest that the modeling assumption of using the temperature instead of the
958 unbalanced temperature, i.e. Equation (7), in the CQC-NMC balance operator, has a detrimental
959  effect. The error correlations below 10 hPa (see Figure 5) are dominated by transport — thus
960  contain the balanced temperature. Although we have not continued this experiment further, it
961  seems necessary to construct balance operators between ozone and unbalanced temperature to

962  truly isolate ozone-radiation from transport in the lower stratosphere.

963 8. Strongly coupled tracer-meteorology assimilation with 4D-Var

964 The information about winds inferred from tracers can either be mechanistic or statistical in
965  nature. The evolution of quantities transported by the atmospheric flow field contains implicit
966  information about the underlying winds. This is the basis for a mechanistic inference. As 4D-
967 Var considers a time series of observations, it extracts wind information from time series of
968  quantities like humidity and passive tracer concentrations [90],[41]. On the other hand, Daley
969 [40] has alluded to the fact that spatial variation of error variance can also provide information
970 about the winds (this is related to statistical inference). To understand how this works, let us
971  consider a steady state example of a two-dimensional non-divergent flow. In steady state the

972  streamfunction is identical to the trajectories or streamlines.

973 We recall that streamlines X are solutions of
974 ‘{j_f: V(x.t) (22)

975  where V is the horizontal velocity vector at coordinate x and time t. X is the Lagrangian solution
976  of the flow, and since a tracer is a Lagrangian-conserved quantity, the concentration of a chemical

977  tracer ¢ depends only on X, i.e. c=c(X). On the other hand, a non-divergent flow can be

978  described entirely by a streamfunction y ,

979 u=¥ ; v (23)
oy oX

980 where V=(u,v), such that V-V =0. However, since streamfunctions also have the property
981 that V-Vy =0, in a steady-state case where 0,y =0, the material derivative of y iszero. In

982  this case, the streamfunction y is constant following the material particles, and thus the
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983  streamline and streamfunction coincide, and could thus use the streamfunction as a proxy for the

984 concentrations. The cross-covariance between the streamfunction and the wind is obtained from

985 (v} = 52, 00) ¢ ()= 55 0), 29

986  and thus is clearly depends on the spatial variation of the streamfunction error variance.
987 Given our steady state assumption with non-divergent winds, the streamfunction and the
988  tracer concentrations are related through the Lagrangian coordinate X. From a statistical point

989  of view, the cross-covariance (uc),(vc) between wind and the concentration plays a

990 fundamental role in our ability to infer information about wind from concentration. If these
991 cross-covariances are zero, statistical inference is not possible. Thus, we can see that statistical
992  inference of winds from tracer in a steady-state non-divergent flow depends on gradients of
993  concentration error variance.
994 The above argument stresses the importance of having correct error statistics to be able to infer
995  correct winds. In preliminary experiments using the old error statistics (Section 3.1) with the
996  assimilation of MIPAS methane data in 4D-Var, the impact on the wind increments was small. It
997  was noticed that the weight given to these observations was small. The observation and
998  background error statistics of Polavarapu [60] were reevaluated using the HL method described
999  in Section 3.1 and this experiment was repeated with the new error statistics in order to examine
1000 the sensitivity to changes in the error statistics. The emphasis here will be on the wind information
1001  obtained in 4D-Var from passive tracer information. Note that wind magnitude, plotted as
1002  contours, is more intense with the HL (i.e. new) statistics than with the old (first-guess) statistics,
1003  although mechanistically there is no difference between the two cases, since the initial
1004  concentration and the wind trajectories are the same in both cases.
1005 The 4D-Var assimilation of MIPAS methane data with the old error statistics resulted in the
1006  wind analysis increment shown in Figure 18 (left panel), while Figure 18 (right panel) shows the
1007  equivalent from an experiment that used the revised background error statistics for chemical
1008  species. The results are shown at 100 hPa, a level where methane induces the most significant
1009  wind corrections. The background error was increased near the North Pole, which reduced the
1010  wind correction in the region. However, in the Southern Hemisphere, the reduction in
1011  observation error caused significant increases in the wind correction. One also has to keep in mind
1012  that the wind analysis increments shown in this figure are limited to regions where observations

1013  are available, and depend on the concentration analysis increments themselves.

1014
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1017 Figure 18 Wind analysis increments in response to MIPAS CHs observations obtained
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1018 with a) the first estimate of background-error statistics for chemical constituents, and b)
1019 the new statistics estimated using the Hollingsworth-Lénnberg method. Results are

1020 shown here at the 100-hPa level

1021 Next, a set of experiments was carried out using the new HL statistics where we produced
1022  wind analysis increments generated by assimilating individually the three species Os, CHs, N2O
1023  and all three together. The results shown at 10 hPa in Figure 19 indicate the additive nature of the
1024  wind increments as the three species lead to different impacts at different locations. Analysis wind
1025  increments obtained at 50 and 100 hPa are displayed in Figures 517-18 (Supplementary Material).
1026  The differences in the increments can be explained “mechanistically” by differences in the
1027  distribution of the constituents at different levels. Figure S19 (Supplementary Material) shows
1028 that the distribution of N20 is more homogenized than that of Os at 100 hPa. Ozone, generated
1029  in the tropical lower stratosphere, is transported in the Southern Hemisphere on a relatively short
1030  time scale. Gradients in the ozone field are more important than the gradient of N2O, and thus
1031  provide more information about the underlying winds. When observations are present, the
1032  presence of these gradients yields the most significant wind increments. Nitrous oxide
1033  observations (N20) are also involved but the weaker wind gradients in this field make it more

1034  difficult to accurately locate the displacement, which contains the wind information.

1035
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1038 Figure 19 Wind analysis increments at 10 hPa obtained by assimilating CH, (top left),
1039 O, (top right), N,O (bottom left) and all three species (bottom right).
3 2
1040 The above results indicate that the assimilation of ozone, methane and nitrous oxide yields

1041  significant wind increments. A validation of the winds was performed by comparing it with wind
1042  measurements from radiosondes. The results are shown in Figure 20 and indicate a reduction in
1043  the zonal wind bias all the way to the mid troposphere. The results shown here are based in
1044  assimilation cycles covering the period August 15t to October 5t 2003, over which the results

1045  were averaged.
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1047 Figure 20 Verification against radiosondes data over the tropical region (20°S — 20°N)
1048 for the period August 15t to October 5t 2003. The results in red correspond to a 4D-Var
1049 assimilation experiment with assimilation of ozone, methane and nitrous oxide. Results
1050 in blue are 4D-Var experiments but without assimilation of the long-lived species.
1051 Tables in green on the left and right side of the panel indicate also the statistical
1052 significance of the results for the bias (on the left) and for the variance (on the right).
1053 The difference between the 4D-Var wind analyses with and without the assimilation of passive

1054  chemical tracers (i.e. no chemistry) is shown in Figure 21. We note that the wind correction in
1055  the tropical troposphere and lower stratosphere is about 0.5 ms to 3 ms™ agrees for the most part
1056  with the radiosonde data (Figure 20), except near 20 hPa where the difference in 4D-Var is about
1057 3 ms! while the radiosondes observations indicate a correction of about 1 ms!. Also, we note
1058  large mid-latitude corrections especially in the Southern Hemisphere just outside the polar vortex,
1059  in the surf-zone, i.e. the region of Rossby-wave breaking. However, there is a suspicious large
1060  wind increment in the Tropics near 2-3 hPa. We have noted in the zonal mean ozone a curious
1061  vertical transport as a result of 3D-Var meteorological analysis exactly at the same location, where
1062  the model developed a very large vertical diffusion coefficient. The origin of this problem was
1063  completely elucidated but seems to be due in part to the vertical discretization (non-staggered)
1064  coordinate of the model and to the treatment of the error variance in the tropical region, wich

1065  assumes that wind and temperature analysis become univariate close to the equator.
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1067 Figure 21 Difference between the wind vector intensity of the analyses obtained from two
1068 assimilation cycles executed with and without the assimilation of ozone, methane and
1069 nitrous oxide. The results are averaged over the period August 15 to October 5, 2003. The
1070 zonal mean average is shown here.
1071 We also observed changes in the temperature that are very small throughout the lower

1072  stratosphere below 10 hPa, where constituents are assimilated. Slight differences appear in the
1073  Tropics but also in the Northern Hemisphere lower stratosphere which indicates some
1074  propagation of the effect into the extra-tropical regions. Figure 22 depicts the O-P temperature
1075  time series at 20 hPa in the Northern Hemisphere and indicates a buildup of systematic
1076  differences between both assimilation systems throughout the period. For the assimilated
1077  species (Os, CH4, N2O) changes induced by the perturbation of the meteorological fields are small

1078  throughout the lower stratosphere.
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1081 and 4D-var (red) assimilation cycles at 20 hPa in the North Hemisphere.
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1082 The impact of the correction on the wind and transport of chemical species is a second-order
1083  effect and more difficult to assess, as the 4D-Var assimilated those constituents to produce a wind
1084 correction. For ozone, for instance, differences appear mainly in the winter hemisphere (Southern
1085 Hemisphere) where dynamical processes are more important. Figure S20 (Supplementary
1086  Material) shows the comparison of ozone from the assimilation against MIPAS Os observations
1087  for the period September 20t to October 5% below 10 hPa in the Southern Hemisphere mid-
1088  latitudes and polar regions. Results from 4D-Var show significant improvement in bias at the
1089  South Pole but the Southern Hemisphere mid-latitude region appears to have a smaller bias near
1090 100 hPa in the 3D-var system. In the case of methane and nitrous oxide, differences between

1091  both analyses appear in the Tropics and are mainly driven by changes in the zonal wind.

1092 9. Summary and conclusions

1093 We investigated the issues and particularities of coupled meteorology-chemistry data
1094  assimilation in the context of the stratosphere where there is an abundance of vertically-resolved
1095  observations and we performed a number of weak and strong coupling data assimilation
1096  experiments.

1097 One of the key issues in these assimilation problems is the difference between the large number
1098  of prognostic model variables compared and the number of observed variables. In a variational
1099  data assimilation formulation, the following question arises “Do we make an approximation with
1100 a J, term containing only observed variables, or should we consider the full state vector ?”,
1101  which in the case of the coupled model considered here (i.e. GEM-BACH) where there is over 61
1102  prognostic variables and in the order of 10 observed variables. We showed through the
1103  preconditioning of the variational minimization problem, that there is a split between observed
1104  and unobserved variables. The minimization of the cost function can be carried out involving
1105  only the observed variables in the J, term, with the “analysis increment” of the unobserved
1106  variables deduced offline using the analysis increment of the observed variables, provided we
1107  have knowledge of the cross-covariance between observed and unobserved variables.

1108 We extended the concept of balance operators in a 3D-Var context to include any variable (here
1109  chemical species variables) in addition to meteorological variables. In fact, any set of correlated

1110  random variables {V,,V,Vy,...,V,} can be transformed into a set of uncorrelated random
1111  variables {u,,U,,U;,...,u,} via a Gram-Schmidt orthogonalization procedure provided we

1112  define a proper inner product for random variables by using the mathematical expectation
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1113  operator. The Hilbert space representation for random variables is a powerful tool that can be
1114  used in other contexts such as in cross-validation and optimization of covariance parameters [70].
1115  The procedure to construct balance operators is not new, but the way we presented here capture
1116  more easily the general nature of the approach which can be translated into any geophysical
1117  context.

1118 In order to obtain error statistics of chemical variables that are observed with a single polar
1119  orbiting satellite requires some adjustment and modification of the standard methods used in the
1120  data-rich meteorological context. For example, we adapted the Hollingsworth-Lonnberg
1121  method assuming that the statistics is homogeneous on a sphere, depends only on height, and
1122  using the distance between consecutive profiles along the satellite track as a measure of distance
1123 to construct the autocovariance function. We showed that we can extract a spatially correlated
1124  and uncorrelated component, from which we assign the observation error variance and the
1125  background error variance. Since the NMC method assumes implicitly a wide coverage of
1126  observations per analyses, we used instead the Canadian Quick Covariance method (CQC) [60],
1127  which consist of using 6-hour differences of the forecasts. The CQC method actually represents
1128  the spatial statistics due to advection with physical forcing terms. These difference fields are
1129  then used to obtain the parameters of a horizontal-vertical non-separable spectral correlations
1130  model. We show that spatial correlation of most species are in fact separable in the stratosphere
1131  except for Os, HNOs and H20 on large scales (wavenumber 20 and smaller). However, the
1132  resulting horizontal correlation length appears to be too small. With the CQC approach, we also
1133  computed the cross-covariance between ozone and temperature, and showed it contains signals
1134  not only from photodissociation and ozone-radiation interaction but also transport, which is
1135 undesirable. The cross-covariance should in fact be computed between ozone and the
1136  unbalanced temperature rather than temperature, but this requires additional development of the
1137  CQC method.

1138 Despite these approximations and limitations, we conducted several assimilation experiments.
1139  First, we showed the added-value of limb sounding temperature measurements in the
1140  stratosphere. By assimilating MIPAS temperatures without the stratospheric AMSU channels,
1141  we created a model state that could effectively be used as an anchor run for a bias correction of
1142  the stratospheric AMSU channels. Secondly, the assimilation of vertically-resolved MIPAS
1143  temperatures is shown to reduce the temperature error variance and bias in the mid and upper
1144  stratosphere more than the bias-corrected AMSU radiances can render, despite the increased

1145  horizontal density and spatial coverage of AMSU.
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1146 We then examined further the weak coupling due to ozone-radiation interaction and showed
1147  that the impact on analysis is nearly negligible but develops over the forecast time. Also, that it
1148  arises with a simplified linearized ozone chemistry model and does not require a full chemical
1149  representation.

1150 We also conducted a strong coupling assimilation experiment between ozone and temperature
1151  using a 3D-Var assimilation scheme with a balance operator between ozone and temperature
1152  using the CQC method. The strong 3D-Var data assimilation coupling experiment has virtually
1153  no impact in the upper stratosphere because of the very fast time-scale of the model adjustment
1154  process (photochemical and radiative), while the impact in the lower stratosphere is a small
1155  degradation in error variances. We suspect that the use of a balance operator using temperature
1156  instead of the unbalanced temperature is partially responsible for this degradation.

1157 Finally, we used a strong constraint 4D-Var to assimilate long-lived chemical species (Os, CHs
1158 and N:0) observations from the limb sounder MIPAS to infer winds in the stratosphere.
1159  Inference on winds can be mechanistic in nature, that means recovering wind information from a
1160  time series of the distribution of the concentration (e.g. a uniform concentration has no
1161  mechanistic capability in inferring winds). The inference can also be statistical in nature, where
1162  gradients in concentration error variance introduce cross-covariances between winds and
1163  chemical tracers [40,41,45]. Our experiments demonstrated the importance of having correct
1164  chemical background and observation error covariances, thus supporting the statistical inference
1165  nature of the problem. The use of multiple tracers was also shown to be complementary, as the
1166  horizontal distribution of concentration gradients and vertical distribution of background error is
1167  different for different chemical tracers. Overall, an improvement in the tropical zonal winds was
1168  found in the lower stratosphere and a large portion of the troposphere, as assessed with
1169  radiosonde observations. A zonal-wind increment of about 2.5ms was also found in the surf-
1170  zonme above 5hPa but it is unclear if this helped the transport of chemical constituents, possibly
1171  due to the fact that chemical tracers that are assimilated in the first place so this increment is a
1172 second-order effect which is not easily detectable. We also observed the buildup of a
1173  temperature bias in the tropical lower stratosphere (at 20 hPa) associated with the tropical wind
1174  correction — a wind correction that is supported by the radiosonde observations.

1175 Overall, the coupled meteorology-chemistry data assimilation experiments have shown some
1176  interesting results, but also how delicatly the error covariances need to respect the wide range of

1177  time-scales involved. Due to the scope of this study, the wide range of expertise needed, and
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1178  accounting for the resources and time limitation such a study requires, it was not possible to
1179  answer all remaining questions, however the authors encourage further development in this area.

1180 Appendix A. Derivation of analysis splitting between observed and unobserved variables

1181 Mathematically the problem is posed as follows (the derivation was first publish in a
1182  conference proceedings [92]). Let us find a change of variable that would simplify the J» term to
1183  a simple inner product term. The way to accomplish this transformation of variable is by

1184  factoring B into square root and invertible matrix S,

1185 B=SS'. (A1)
1186  Defining ¢ such that

1187 z2=S¢ (A2)
1188  the J» term then simplifies to

1189 (2-2")'B (2-2") = (¢-¢") (6 -¢"). (A3)
1190  Introducing a representation of observed and unobserved variables in the B covariance matrix

1191  leads to a decomposition of the form,

BXX BXU
1192 B - (BUX Buu] . (A4)
1193  The inverse of B is then of the form
D E
B!=
1194 (F G) (A.5)
1195  where

D=(B, ~B,B.B,)

Xu uu ux

_ _pt
1196 E=-B.B,G (A.6)
F=-BB,D

uu ux

G=(B,, ~B,B:B,) .

Uux = xx Xu

1197  To obtain the square root S, let it first be represented in the form,

d e
1198 S=(f gj. (A7)

1199  Then from Equation (A.1) we get
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B, =dd" +ee'
B,, =fd" +ge’
B, =df’ +eg’
B, =ff" +gg" .

(A.8)

There is more than one solution that satisfies these four equations. One of the solutions that leads
to a triangular form consists of letting €=0. We can then easily invert S. So letting e=0 in
Equation (A.8) we first get

B,=dd". (A.9)

This is the square-root form of the background error covariance matrix used in 3D-Var, which is
usually denoted as L, thus we have
d=1L. (A.10)
From the second line of Equation (A.8) we get,
B,=fL' =f=B,LT, (A.11)

and the third equation is satisfied trivially. Finally the fourth equation of Equation (A.8) takes

the form,
B.=B,L'L'B,+ 99" = g9'=-B,- B,B,B,=G" (A12)
where we used the fact that B,; =L"L™". Thus g is the square-root of the inverse of G
g=JG* . (A.13)
Now let
Z= X A14
“lal (A.14)

(A.15)
which allows us to write,

(A.16)

d0i:10.20944/preprints201910.0241.v1
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1222 Specifically, we have,
X . L 0 é
1223 Z=| _|=VB§=S¢= > A17
2 (UJ VBE=s¢ (BWLT GJ(CJ (A17)
1224  and this system is easily inverted to give,
1225 Lol A8
gzz\/a([]_Bux B;i )~() ( ‘ )
1226  The cost function Equation (2) (main text) written in terms of these variables yields
%) (%
2J(x,0) = (u] Bl(ﬁj +(y-Hx) R*(y-Hx)
1227 =(6-5")'G-6+ (y-HLEL) R (y-HLE) (A.19)
= (66 G -C)+ (6 -ED (G -6 + (y-HLE,) R (y-HLE,)
= 2J3,(6,)+2J,(&,)

1228  which has the interesting property that the minimization with respect to &, is independent of the

1229  minimization with respect to §,. The minimization with respectto §, is given by minimizing the

1230  cost function

1231 316 =366l (6-6)+ Hy-HLL) R (y-H L), (A.20)
1232  and that with respect to &, with the cost function

1233 2,6) =36 -¢!) (6. -¢h). (A21)
1234  The minimization of Equation (A.21) has the trivial solution

1235 £ -6 =0 . (A.22)
1236  Now, assuming that /G is invertible, the solution (A.22) yields

1237 u'-u' =B, B (x*-x") . (A.23)
1238  The minimization of the cost function J; (§;) (A.20) is actually identical to the form 3D-Var takes

1239  written after preconditioning. Indeed in normal form with the non-transformed variables, (A.20)

1240  takes the form,

1241 J(x)=%(x—xf)TB§(x—xf)+%(y—Hx)TR’l(y—Hx) ) (A.24)
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1242  Appendix B. Geometric interpretation of the derivation of the balance equations

1243 Balance between different variables occur, in fact, in many geophysical problems. Here in the
1244  context of chemistry, it occurs between long-lived species, or between ozone and temperature
1245  (which we will develop in detail below). Using the statistical regression modeling allows to
1246  formulate the balance operators in a general context for any geophysical problem.

1247 To simplify the representation of the background error covariance B,,, the set of correlated
1248  variables is transformed via a Gram-Smidt orthogonalization procedure into a set of uncorrelated
1249  variables whose covariance representation is then block-diagonal. The transformation from
1250  uncorrelated variables back to the original variables is achived through what is called, a balance
1251  operator or in fact, linear regression.

1252 Random variables (and random vectors) can be represented as a Hilbert space provided we
1253  use the mathematical expectation to define the inner product [70] (or see [71] Section 1.2). For

1254  random variables (vectors) that have a non-zero mean, the proper definition of an inner product

1255 s
1256 (xy) = E[(x=E())(Y-E))" | =cov(x,y), (B.1)
1257  where x and y are random vectors. The effect of an inner product in a Hilbert space of random

1258  variables is thus to create a non-random variable. In Equation (B.1), (x,y) is a matrix where
1259  each entry is non-random. The square of the norm is then the variance, x|’ =var(x), and the
1260  correlation matrix @ , between variables x and y is obtained as cos(0) = (x,y)/ (||X|| ||y||) )
1261  Therefore, uncorrelated random variables, cov(x,y)=0 are orthogonal,i.e. (X,y)=0.

1262 Aset {V;,V,,V;,...,V,} of variables of a Hilbert space can always be transformed into a set of

1263  orthogonal variables {ul,uz,u3 ,...,uk} via the Gram-Schmidt orthogonalization procedure as

1264  follows,
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U, =v,
1265 U, =V, — proju1 (VZ) (Bz)
U, = V3 —proj, (v;)—proj,, (V)
1266  where the projection (proj) is defined as
1267 proj, (v) £ M u. (B.3)

{uu)

1268  Applying this procedure to random vectors using Equation (B.1) and specifically to (unbiased)
1269  model background errors of the streamfunction dy, velocity potential Y, temperature ST, and

1270  ozone 5O, which are known to be correlated, we obtain the transformed uncorrelated background

1271  error variables (denoted with a superscript u), Equation (6).
1272  Appendix C - Error covariance from the LINOZ scheme

1273 The coefficients ¢,,C,,C,,c, of the LINOZ scheme for September, determined using a box
1274  model, are illustrated in Figure S14 (Supplementary Material), and the mean state in Figure S15.
1275  Note that in the Equation (21) the concentration is expressed as a mixing ratio (in ppmv) and is
1276  thus typically on the order of 10 .

1277 The overhead column in Dobson units (DU) is calculated as follows. By definition one DU is
1278  equivalent to 0.01 mm of ozone at standard temperature and pressure and is equal to 2.69 10+16

1279 molecules cm2. The overhead number of molecules of ozone is
1280 .[noe (z)dz’ (C.1)

1281  where n is the number density, expressed generally in molecules-m?. The volume mixing ratio is

1282  the ratio of the number density of the gas over the number density of (dry) air, i.e.

1283 0,=— . (C.2)
nA

1284  Using the relationship,

1285 M, = p.N, (C3)

1286  where M, isthe molecular weight of air (equal to 0.028964 kg mol), N, is Avogadro’s number
1287  (equal to 6.02252 10+ molecules mol! ), and p, is the density of air, the overhead number of

1288  o0zone molecules can then be rewritten as
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1289 Tnoa(z’) dz’ = |\N/| TO3(Z')pA(Z') dz'= —%}03(‘” dp’. (C4)
2 A2 A
1290 Taking perturbations of ozone, O, ,and temperature, T ,in (1) gives the following evolution
1291  equation for the perturbations
1292 I?Déta =c,0, +¢,T +ke, jl()s(p’)dp' , (C.5)
b

1293  where k is a constant that accounts for expressing the overhead column in DU. In Equation (C.5)
1294  we have neglected the changes in wind due to temperature perturbation. The last term of
1295  Equation (C.5) contributes primarily in the lower stratosphere.

1296 To establish an error cross-covariance between temperature and ozone let us first neglect the
1297  overhead ozone component in Equation (C.5), and let’s assume for now that the material
1298  derivative of temperature perturbations is small compared to that of ozone, which agrees with
1299  the fact that temperature changes to ozone perturbations that occur on a much longer time-scale

1300  than photochemical perturbations (0zone changes due to temperature perturbations), i.e. let us

1301  assume

1302 = =0 (C.6)

1303 =¢,0,+C,T . (C.7)

1304  Multiplying (C.6) by O, and (C.7) by T , adding the resulting equations and taking the
1305  expectation gives,

D<(33f>
Dt

1306

=, (0,T)+¢,(T7). (C.8)

1307  In Equation (C.7) the error cross-covariance is between any pressure levels. Carrying out the
1308  derivation more explicitly with pressure levels, Equation (C.8) can be rewritten as

D(O,(m)T(p))
Dt

1309 = ¢, (p)(O4(PT(P)) +¢, (P (T(MT(P)) (C9)

1310  wherep and p’are two distinct pressure levels. Multiplying Equation (C.6) by T’ also gives,
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D(T(PT(P)
1311 u =0 . (C.10)
Dt
1312 Similarly a covariance evolution for ozone can be derived as follows. Multiplying Equation

1313  (C.7) at pressure level p with Os(p’), and multiplying Equation (C.7) at pressure level p’ with

1314 0Os(p), adding the equations and taking the expectation gives,

D(0,(p)Os(p))
Dt

1315 = [c,(P)+C,(P)](0s(p) Oy () +¢,(P)(T(P) Os(p)) +C,(P)(O(P)T(P)) (C.11)
1316  In matrix form Equation (C.9) is rewritten as,

D Po3T
Dt

1317

= CzpogT +C,P (C.12)

1318  where C, and C, are diagonal matrices, i.e. of the form,

c,(p) O O
1319 c,=| o - 0 | (C.13)
0 0 c(py)

1320 and

<63( p1)f( p1)> <63( p1)f( Py )>
1321 Py = (C.14)

(0:(PT(P)) - (Os(P)T(P))

(FeaTm)) - (Te)T(py)
1322 P, = . (C.15)

(FeIT(R)) ~ (T(r)T(p))

1323  In matrix form Equation. (B.10) is written as,

1324 BPr _y, (C.16)
Dt
1325  and Eq. (C.11) can be rewritten as,
DP,, T
1326 — 2% = C Py, + CPoy +(CiPop, + CiPoy) (C.17)

Dt

1327  where the superscript T is the matrix transpose.
1328 At this point, it is hypothetical what kind of assumption is needed to derive a balance in these

1329  covariance evolution equations. Based on time-scales, one might argue that the derivative of the
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1330  error cross-covariance evolves slowly, and to a first approximation, we may want to consider the
1331  following balance,
1332 C,Pys +CPyy =0 (C.18)
1333  from which we obtain,
1334 Por == C'C,Py (C.19)
1335  and the balance operator is then of the form
1336 A =P, Pi =—C;'C, (C.20)

1337  which is a diagonal matrix.

1338 In Figure C.1 we plot the ratio C,(p)/c,(p).

c3/c2 ot

80 B0 40 -20 0 20 40 60 80

1339 latitude
1340 Figure C.1 Ratio c,(p)/c,(p) for the month of September.

1341  Limiting the plot below 24 km was necessary because both coefficients ¢, , ¢, change by several
1342  orders of magnitude from top to bottom, with very small values of ¢, in the lower stratosphere,
1343  and are thus prone to numerical error amplification. Surprisingly, the isolines of the ratio follow

1344  the general pattern of zonal mean ozone. Figure C.2 depicts a point by point scatter plot between

1345  theratio ¢,(p)/c,(p) and the zonal mean ozone O,. A very high correlation is thus observed.
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¥ 10" correlation

o 05 1 18

1346 ratio c3/c2 4 10.7
1347 Figure C.2 Point-by-point, (4, p), scatter of ¢,(p)/c,(p) with O, .

1348  With such a balance model, temperature increments may produce realistic 0zone increments, and

1349  may be an avenue worth investigating further.
1350  Extension with the photochemical term ¢,

1351  Let us now add the contribution from the photochemical term c,. The equation for the ozone

1352  perturbation, Equation (C.5) is now written as,

1353 POB) — c,(3)0,(p) +,(P)T(P) +hea () [ O (P " (.20

1354  From Equation (C.20) and (C.6) we obtain

D(0,(p)T(p))
Dt

1355 = ¢, (P){Os(MT(P))+ (P (T(MT(P))+ke,(p) [(Os(pHT(PY)d p" . (C21)

1356  Indiscrete form, the last term of the r.h.s. of Equation (C.21) takes the following form:
1357 Forp=p, and p'=p; kc,(py)(0s(p)T(p)))AD,

1358 Forp=py.and p'=p; ke, (pyo){(Os(py)T(P,)) APy +(0s(py )T (P,)) AP 4

1359

1360  Forp=p, and p’'=p, kc4(pi)§;<(~)3(pk)f(pj)>Apk

1361  and in matrix form,

1362 IP,, (C.22)
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1363  where
Ap, Ap, - Apy
0 Ap, - A
1364 z-= Pz Pl (C.23)
0 O - Apy
1365  In matrix form, similarly, to Equation (C.12) we obtain,
D PO T
1366 DtS =C,Py; +C,P; +kCZP,; =(C,+kC, )P, +C,P, . (C.24)
1367  The balance operator is then of the form
1368 A=-(C,+kC,E)"C, . (C.25)
1369  To compute the Ap, term we use a centered formula
1370 AP =P =P - (C.26)

1371  Data tabulated at discrete heights can be transformed into pressure by integrating the hydrostatic

1372 equation and gas law

1373 d—;’z -9 4 (C.27)

1374  giving, in discrete form,

_ _9Azp1 1. .1
1375 p, = poexp{ = [fo +_F1+...+_Fk1j} (C.28)

1376  where T, is the mean layer temperature. The figure below illustrates the vertical stagerring,

pk+l Zk-¢-1
1377 . T
P Zy
1378 Figure C.3 Vertical staggering of temperature and height .
1379  Defining
1380 D, = P +2pk+1 P, = P +2pk4 , (C.29)

1381  we obtain

1382 ap =Poexpl 922/ L L1 _9dz)_ 9az || .
38 P=7 exp{ - T0+ +_|_k71 exp RT exp +RTH (C.30)
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1383 Supplementary Materials: Figure S1: Flow chart covering the main steps and options of the 3D-Var-Chem.
1384 Figure S2:Scalar gain for Os, CHs, N2O, HNOs, NO2, and In(H20). Figure S3: Background error variance from
1385 6hr-difference method. Figure S4: Background error correlation spectra from 6hr-difference method. Figure
1386 S5: Horizontal correlation length. Figure S6:Mean analysis increment for Os, CHs, N2O, NOz.  Figure S7:
1387 Scatter of O3 and streamfunction values between 10 and 100 hPa for the month of March 2003. Figure S8:
1388  Cross-correlation between ozone and temperature derived from 24-hr difference method for July 2003.
1389 Figure S9: Horizontal coverage of AMSU-A profiles in 6 hours. Figure S10: Sensitivity matrix of brightness
1390 temperature over temperature for channels 10-14 of AMSU-A. Figure S11: Mean analysis increment at 10
1391  hPa for the month of September 2003. Figure S12: Zonal mean analysis increment for September 2003.
1392 Figure S13: Global verification of observation-minus-forecast temperatures for different forecast lead time.
1393  Figure S14: Coefficfient of the LINOZ scheme for September. Figure S15: LINOZ climatology for
1394  September. Figure S16: Ratio of unexplained variance to total variance for the balance operator AS~NM¢
1395 . Figure S17: Same as Figure 19 but at 50 hPa. Figure S18: same as Figure 19 but at 100 hPa. Figure S19:
1396 Analysis of N20 and Os at 100 hPa on August 11,2003, 00 UTC. Figure S20: OmP ozone comparison against
1397  MIPAS for the 3D-Var assimilation clycle and 4D-Var for the period of Septemeber 20 to October 5, 2003 over
1398 the South Pole region and Southern Hemisphere mid-latitudes.
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1421  Abbreviations:
1422 3D-Var Three-dimensional variational analysis

1423 3D-Var-Chem 3D-Var coupled meteorology-chemistry

1424  4D-var Four-dimensional variational analysis

1425 AMSU Advanced Microwave Sounding Unit

1426 BASCOE Belgian Assimilation System for Chemical ObsErvations
1427 CMC Canadian Meteorological Center

1428 CQC Canadian Quick Covariance method

1429 DU Dobson Unit
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1430 ECCC Environment and Climate Change Canada
1431 ECMWF European Center for Medium Range Forecasting
1432 EOS Earth Observing System
1433  FGAT First Guess At appropriate time
1434 GEM Global Environmental Multiscale

1435 GEM-BACH GEM Belgian Atmospheric CHemistry

1436 HALOE HALogen Occultation Experiment

1437 HL Hollingsworth-Lonnberg method

1438 IR Infrared

1439 LINOZ LINearized model for Ozone

1440 MDPI Multidisciplinary Digital Publishing Institute
1441 MIPAS Michelson Interferometer for Passive Atmospheric Sounding
1442 NASA National Aeronautics and Space Administration
1443 NH Northern Hemisphere

1444 NMC National Meteorological Center method

1445 NOAA National Oceanic and Atmospheric Administration
1446 NWP Numerical Weather Prediction

1447 o-P Observation minus Prediction (or forecast)

1448 RMS Root Mean Square

1449 SH Southern Hemisphere

1450 TOMS Total Ozone Mapping Spectrometer

1451 UARS Upper Atmosphere Research Satellite

1452 WRF-CHEM  Weather and Research Forecasting model coupled with Chemistry
1453
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