1. Introduction

A Lagrangian trajectory $\mathbf{x}(t)$ can be separated into deterministic [low frequency mode representing the background trajectory $\mathbf{x}_b(t)$] and stochastic [non-low frequency mode representing eddy trajectory, $\mathbf{x}_{edd}(t)$],

$$\mathbf{x}(t) = \mathbf{x}_b(t) + \mathbf{x}_{edd}(t) \quad (1)$$

using the empirical mode decomposition (EMD) with the steepest ascending mode ratio, called the deterministic-stochastic EMD [1] and wavelet decomposition [2]. Here, $\mathbf{x}(t)$ is the position vector at time t. The Lagrangian velocity is calculated by

$$\mathbf{u} = \frac{d\mathbf{x}(t)}{dt}, \quad \mathbf{u}_b = \frac{d\mathbf{x}_b(t)}{dt}, \quad \mathbf{u}_{edd} = \frac{d\mathbf{x}_{edd}(t)}{dt}. \quad (2)$$

Such Lagrangian-type decomposition changes the traditional approach of using N drifters [$\mathbf{x}^{(n)}(t), n = 1, \ldots, N$] to get background velocity (i.e., mean flow) and eddies from Lagrangian trajectory data, i.e., the background velocity is the Eulerian mean from the N drifters,

$$\mathbf{U}(x, y, t) = \left[\mathbf{u}^{(n)}(t) \right], \quad (3)$$

and subtraction of \mathbf{U} from the observed Lagrangian drifters leads to the “residue” velocities,

$$\mathbf{u}^{(n)}(x, y, t) = \frac{d\mathbf{x}^{(n)}(t)}{dt} - \mathbf{U}(x, y, t). \quad (4)$$
is taken as the eddy velocity. Here, the bracket represents an ensemble average in the defined geographic region. The velocities are calculated from Lagrangian trajectories using binned velocities with cubic splines [3], routine ocean data assimilation systems [4] and data analysis methods such as optimal interpolation [5], and optimal spectral decomposition (OSD) [6, 7]. A formula was derived to link the Eulerian velocity at grid points to the Lagrangian trajectory [8]. Obviously, \(u^{(n)}(x, y, t) \) is not the same as \(\sigma^{(n)}(t) \).

The trajectories of 54 SOund Fixing And Ranging (RAFOS) floats deployed near California coast by C.A. Collins of the Naval Postgraduate School from 1992 to 2004 at depth between 150 and 600 m (http://www.oc.nps.edu/npsRAFOS/DATAS/) (Figure 1) show combination of deterministic (low frequency) and stochastic (high frequency) components. The first SOFAR floats sent out pings that were picked up by fixed stations; RAFOS floats revered that, and listened to pings sent out from the fixed stations. The traditional approach needs large number \(N \) of drifters to get statistically meaningful \(\mathbf{U}(x, y, t) \). What should we do if there is no sufficient number of drifters co-deployed? For example, there were usually less than three RAFOS floats were available at same time-periods by the Naval Postgraduate School (NPS) (see website: http://www.oc.nps.edu/npsRAFOS/DATAS/).

An alternative approach is to use the deterministic-stochastic EMD (1) to separate background velocity and eddies from a single Lagrangian drift. After the separation, the background velocity scale as well as eddy characteristic parameters such as the eddy radial scale, eddy velocity scale, eddy Rossby number, and eddy-background kinetic energy ratio can be identified. The rest of the paper is organized as follows. Section 2 describes the procedure of the deterministic-stochastic EMD. Section 3 and 4 present the identified background velocity and eddy characteristic parameters for each RAFOS.
float and their statistics for 54 RAFOS floats. Section 5 describes the temporal variability of the background and eddy characteristic parameters. Section 6 presents the results.

2. Deterministic-stochastic EMD

The EMD decomposes a Lagrangian trajectory into intrinsic mode functions (IMFs) regardless of their linearity, stationarity, and stochasticity [9-11]. It was also used to separate the oceanic wave motion from turbulence [12]. The key point to perform this decomposition is the sifting process with four steps, which decompose a Lagrangian drift trajectory \(\mathbf{x}(t) \) into

\[
x(t) = \sum_{p=1}^{p} x_{p}(t) + r(t)
\]

where \(x_{p}(t) \) is the \(p \)th IMF and \(r(t) \) is the trend (not oscillated). The first IMF has highest frequency, and frequency reduces as the subscript \(p \) increases. The trajectory data of RAFOS float #N073 from http://www.oc.nps.edu/npsRAFOS/DATAS/NPS035/DATAS.html is used as an illustration and represented as a thick curve in Figure 1. The data are time series of horizontal position vector, \(\mathbf{x}(t) = [x(t), y(t)] \), with \(x \) in the zonal direction, and \(y \) in the latitudinal direction [13, 14].

The RAOS subsurface data downloaded from http://www.oc.nps.edu/npsRAFOS/DATAS/ contains 61 RAFOS floats. Among them 7 floats (N001, N009, N012, N042, N046, N049, N068) have too many missing data inside the time series. They are not included in the computation. The date rate varies from general 3/day to around 22/day (N030 18 May – 10 June 1994). For each float, the time series \([x(t), y(t)] \) are decomposed into IMFs and trend using the EMD method [9]. Seven IMFs and a trend are identified in the \((x, y) \) directions (Figure 2). It clearly shows that the high frequency motion dominates the low IFM modes. Frequency reduces as the IFM mode from the lowest (IMF-1) to the highest (IMF-7). The trend (no oscillation) is of course the part of the deterministic motion, but not all.

The IMFs are separated into two additive components, deterministic and stochastic, using the steepest ascent low/non-low frequency ratio [1]. For RAFOS N073, combination of IMF-1 to IMF-4 is the high-frequency component (eddy) and combination of IMF-5 to IMF-7 and the trend is the low-frequency component (i.e., mean flow). After the separation of Lagrangian drifter's trajectory into deterministic and stochastic components with the total number of position points of \(J \),

\[
x(t_j) = x_{det}(t_j) + x_{sto}(t_j), \quad y(t_j) = y_{det}(t_j) + y_{sto}(t_j), \quad j = 1, 2, ..., J
\]

the deterministic and stochastic velocities can be calculated from position vector (only showing \(x \)-direction) with the first-order difference for the two end points,

\[
u_{sto}(t_1) = \frac{x_{sto}(t_2) - x_{sto}(t_1)}{t_2 - t_1}, \quad u_{sto}(t_J) = \frac{x_{sto}(t_J) - x_{sto}(t_{J-1})}{t_J - t_{J-1}}
\]

and the central difference for the internal points,

\[
u_{sto}(t_j) = \frac{x_{sto}(t_{j+1}) - x_{sto}(t_{j-1})}{t_{j+1} - t_{j-1}}, \quad j = 2, 3, ..., J-1
\]
Figure 2. The IMFs and trend of (a) $x(t)$ and (b) $y(t)$ of the RAFOS float N073 from 21 November 1999 to 12 February 2001. Combination of IMF-1 to IMF-4 is the high-frequency component (eddy) and combination of IMF-5 to IMF-7 and the trend is the low-frequency component (i.e., mean flow).

Figure 3 shows the observed (red), deterministic (blue), and stochastic (green) trajectories of RAFOS N073. The deterministic trajectory represents the background velocity. The stochastic trajectory indicates the eddy. The eddy is transported along the deterministic trajectory. The eddy in Figure 3 does not represent its real position and is separated from the deterministic trajectory arbitrarily just for illustration of eddy-like motion.
Figure 3. Observed (red), deterministic (blue), and stochastic (green) trajectories of RAFOS N073. The deterministic trajectory represents the mean flow. The stochastic trajectory indicates the eddy. The center of the eddy is transported by the mean flow (i.e., along the deterministic trajectory), and is put away from the deterministic trajectory arbitrarily just for illustration of eddy-like motion.

3. Eddy characteristics identified from an individual RAFOS float

After the deterministic and stochastic trajectories and velocities are obtained from an individual RAFOS float, the eddy characteristics can be easily identified during the float’s drifting period. The eddy radial scale is defined by the root mean square of the stochastic trajectory

$$L_{edd} = \sqrt{\frac{1}{J} \sum_{j=1}^{J} \left\{ x_{sto}^2(t_j) + y_{sto}^2(t_j) \right\}}$$

(9)

The eddy velocity scale (V_{edd}) is defined by

$$V_{edd} = \sqrt{\frac{1}{J} \sum_{j=1}^{J} \left\{ \left(\frac{dx_{sto}(t_j)}{dt} \right)^2 + \left(\frac{dy_{sto}(t_j)}{dt} \right)^2 \right\}}$$

(10)

The eddy kinetic energy per unit mass (E), eddy angular velocity scale (Ω_{edd}), and eddy Rossby number (R_{edd}) are defined by

$$E_{edd} = \frac{V_{edd}^2}{2}, \quad \Omega_{edd} = \frac{V_{edd}}{L_{edd}}, \quad R_{edd} = \frac{V_{edd}}{fL_{edd}} = \frac{\Omega_{edd}}{f},$$

(11)

where f is the Coriolis parameter, which is evaluated at 40°N here. The background velocity (treated as current velocity) scale (V_b) is defined by

$$V_b = \sqrt{\frac{1}{J} \sum_{j=1}^{J} \left\{ \left(\frac{dx_{det}(t_j)}{dt} \right)^2 + \left(\frac{dy_{det}(t_j)}{dt} \right)^2 \right\}}$$

(12)
The background kinetic energy per unit mass \(E_b \) and the eddy/background kinetic energy ratio \(r \) are defined by

\[
E_b = \frac{V_b^2}{2}, \quad r = \frac{E_{\text{eddy}}}{E_b} = \frac{V_{\text{eddy}}^2}{V_b^2}
\]

Due to eddy's circular motion (green trajectory in Figure 3), the time series of \([x_{st}(t), v_{st}(t)]\) or \([y_{st}(t), u_{st}(t)]\) determine the types of eddy (cylcynic or anticyclonic),

\[
x_{st}(t) > 0 \rightarrow \begin{cases} v_{st}(t) > 0 & \text{cyclonic} \\ v_{st}(t) < 0 & \text{anticyclonic} \end{cases}
\]

\[
x_{st}(t) < 0 \rightarrow \begin{cases} v_{st}(t) > 0 & \text{anticyclonic} \\ v_{st}(t) < 0 & \text{cyclonic} \end{cases}
\]

Table 1 shows the eddy-current kinetic energy ratio \(r \) as well as the number of cyclonic/anticyclonic spirals. For the RAFOS float N073 float, we have

\[
27 \text{ anticyclonic spirals, } r = 5.45
\]

Altogether, we identified 36 cyclonic (denoted by 'C') eddies and 203 anticyclonic (denoted by AC) eddies from 54 RAFOS floats.

4. Statistics of eddy characteristic parameters

Histograms of the background velocity scale \(V_b \) and eddy characteristic parameters such as radial scale \(L_{\text{eddy}} \), velocity scale \(V_{\text{eddy}} \), Rossby number \(R_{\text{eddy}} \), and eddy-background kinetic energy ratio \(r \) are constructed from 54 RAFOS floats. All the histograms are non-symmetric, high dispersive, and positively skewed (Figure 4). The overall eddy kinetic energy is more than the background kinetic energy with the \(E_{\text{eddy}}/E_b \) ratio having the mean of 1.78, the standard deviation of 2.00, the skewness of 2.79, and the kurtosis 12.00 (Table 2). The eddy radial scale \(L_{\text{eddy}} \) has a mean of 18.37 km, minimum of 1.12 km, maximum of 102.21 km, standard deviation of 21.33 km, skewness of 2.31, and kurtosis of 8.50. The eddy velocity scale has a mean of 11.98 cm/s, minimum of 2.72 cm/s, maximum of 44.17 cm/s, standard deviation of 8.65 cm/s, skewness of 1.74, and kurtosis of 5.82.
Table 1. Identified 36 cyclonic (denoted by ‘C’) spirals and 203 anticyclonic (denoted by AC) spirals and eddy to current kinetic energy ratio from 54 RAFOs floats.

<table>
<thead>
<tr>
<th>Float</th>
<th>Buoy Days</th>
<th>dbar</th>
<th># spirals</th>
<th>r</th>
<th>Float</th>
<th>Buoy Days</th>
<th>dbar</th>
<th># spirals</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>N002</td>
<td>8/12-9/11/92</td>
<td>350</td>
<td>C: 1</td>
<td>2.57</td>
<td>N050</td>
<td>8/29/96-1/9/98</td>
<td>275</td>
<td>AC: 1</td>
<td>1.08</td>
</tr>
<tr>
<td>N003</td>
<td>8/12-9/11/92</td>
<td>350</td>
<td>AC: 1</td>
<td>1.27</td>
<td>N051</td>
<td>2/25/97-7/8/98</td>
<td>275</td>
<td>AC: 3</td>
<td>1.91</td>
</tr>
<tr>
<td>N004</td>
<td>7/07-9/05/93</td>
<td>350</td>
<td>AC: 3</td>
<td>1.01</td>
<td>N053</td>
<td>9/11/97-8/22/98</td>
<td>275</td>
<td>C: 5</td>
<td>2.03</td>
</tr>
<tr>
<td>N005</td>
<td>9/03-93-1/01/94</td>
<td>350</td>
<td>AC: 2</td>
<td>1.70</td>
<td>N055</td>
<td>9/11/97-8/22/98</td>
<td>275</td>
<td>AC: 1</td>
<td>0.52</td>
</tr>
<tr>
<td>N007</td>
<td>7/07-9/05/93</td>
<td>350</td>
<td>AC: 5</td>
<td>0.13</td>
<td>N063</td>
<td>5/17/98-7/12/99</td>
<td>275</td>
<td>AC: 4</td>
<td>0.66</td>
</tr>
<tr>
<td>N008</td>
<td>9/13-12/30/93</td>
<td>350</td>
<td>AC: 2</td>
<td>1.09</td>
<td>N064</td>
<td>4/29/98-6/24/99</td>
<td>275</td>
<td>C: 2</td>
<td>3.94</td>
</tr>
<tr>
<td>N010</td>
<td>9/3-93-1/10/04</td>
<td>350</td>
<td>C: 1</td>
<td>0.76</td>
<td>N065</td>
<td>4/29/98-6/25/99</td>
<td>275</td>
<td>C: 6</td>
<td>1.67</td>
</tr>
<tr>
<td>N011</td>
<td>11/20/93-3/2/94</td>
<td>350</td>
<td>AC: 3</td>
<td>2.03</td>
<td>N066</td>
<td>10/27/98-12/23/99</td>
<td>275</td>
<td>AC: 8</td>
<td>0.66</td>
</tr>
<tr>
<td>N014</td>
<td>1/11-4/23/94</td>
<td>350</td>
<td>C: 1</td>
<td>1.39</td>
<td>N069</td>
<td>5.5/99-5/18/00</td>
<td>275</td>
<td>AC: 1</td>
<td>0.63</td>
</tr>
<tr>
<td>N019</td>
<td>4/25-11/11/94</td>
<td>275</td>
<td>AC: 5</td>
<td>1.64</td>
<td>N071</td>
<td>5.5/99-5/18/00</td>
<td>275</td>
<td>AC: 5</td>
<td>0.95</td>
</tr>
<tr>
<td>N021</td>
<td>5/19-4/10/94</td>
<td>275</td>
<td>AC: 1</td>
<td>1.96</td>
<td>N072</td>
<td>11/21/99-2/12/01</td>
<td>275</td>
<td>AC: 7</td>
<td>1.30</td>
</tr>
<tr>
<td>N022</td>
<td>5/19-6/10/94</td>
<td>275</td>
<td>AC: 3</td>
<td>4.20</td>
<td>N073</td>
<td>11/21/99-2/12/01</td>
<td>275</td>
<td>AC: 27</td>
<td>5.45</td>
</tr>
<tr>
<td>N024</td>
<td>5/17-9/9/94</td>
<td>275</td>
<td>AC: 5</td>
<td>11.18</td>
<td>N075</td>
<td>11/21/99-2/12/01</td>
<td>275</td>
<td>C: 1</td>
<td>0.20</td>
</tr>
<tr>
<td>N026</td>
<td>8/22-12/30/94</td>
<td>290</td>
<td>AC: 3</td>
<td>0.71</td>
<td>N080</td>
<td>7/26/00-9/23/01</td>
<td>275</td>
<td>AC: 10</td>
<td>0.52</td>
</tr>
<tr>
<td>N028</td>
<td>8/12-12/19/94</td>
<td>350</td>
<td>AC: 5</td>
<td>2.38</td>
<td>N081</td>
<td>7/26/00-5/22/02</td>
<td>275</td>
<td>AC: 2</td>
<td>0.72</td>
</tr>
<tr>
<td>N029</td>
<td>10/25-95-6/28/96</td>
<td>300</td>
<td>AC: 1</td>
<td>1.65</td>
<td>N082</td>
<td>7/26/00-9/24/01</td>
<td>275</td>
<td>C: 6</td>
<td>0.59</td>
</tr>
<tr>
<td>N030</td>
<td>5/18-6/10/94</td>
<td>275</td>
<td>AC: 1</td>
<td>5.59</td>
<td>N083</td>
<td>9/11/00-12/29/01</td>
<td>275</td>
<td>AC: 9</td>
<td>3.18</td>
</tr>
<tr>
<td>N031</td>
<td>8/22-12/30/94</td>
<td>290</td>
<td>AC: 4</td>
<td>8.13</td>
<td>N084</td>
<td>9/11/00-7/9/02</td>
<td>275</td>
<td>C: 1</td>
<td>0.23</td>
</tr>
<tr>
<td>N032</td>
<td>8/7/95-10/6/96</td>
<td>300</td>
<td>C: 4</td>
<td>1.61</td>
<td>N085</td>
<td>9/11/00-7/9/02</td>
<td>275</td>
<td>AC: 5</td>
<td>0.40</td>
</tr>
<tr>
<td>N033</td>
<td>8/12/94-5/10/95</td>
<td>350</td>
<td>AC: 5</td>
<td>0.48</td>
<td>N087</td>
<td>5/20/01-1/16/02</td>
<td>275</td>
<td>C: 1</td>
<td>0.56</td>
</tr>
<tr>
<td>N035</td>
<td>8/7/95-11/5/96</td>
<td>300</td>
<td>C: 1</td>
<td>0.31</td>
<td>N088</td>
<td>5/20/01-1/28/03</td>
<td>275</td>
<td>AC: 5</td>
<td>1.19</td>
</tr>
<tr>
<td>N039</td>
<td>7/29-96-12/10/97</td>
<td>275</td>
<td>AC: 3</td>
<td>0.36</td>
<td>N089</td>
<td>5/20/01-1/28/03</td>
<td>275</td>
<td>AC: 4</td>
<td>1.19</td>
</tr>
<tr>
<td>N041</td>
<td>7/29-96-11/17/97</td>
<td>275</td>
<td>C: 1</td>
<td>2.70</td>
<td>N090</td>
<td>12/6/01-3/9/04</td>
<td>275</td>
<td>AC: 6</td>
<td>1.65</td>
</tr>
<tr>
<td>N043</td>
<td>2/25-12/13/97</td>
<td>275</td>
<td>AC: 3</td>
<td>1.26</td>
<td>N091</td>
<td>12/5/01-3/9/04</td>
<td>275</td>
<td>AC: 8</td>
<td>0.18</td>
</tr>
<tr>
<td>N048</td>
<td>7/29-96-19/97</td>
<td>275</td>
<td>C: 1</td>
<td>1.08</td>
<td>N092</td>
<td>12/5/01-3/9/04</td>
<td>275</td>
<td>C: 6</td>
<td>0.43</td>
</tr>
</tbody>
</table>

Table 2. Statistics of the eddy parameters identified from 54 RAFOs floats (1992-2004).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mean</th>
<th>Min</th>
<th>Max</th>
<th>Standard Deviation</th>
<th>Skewness</th>
<th>Kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_{edd} (km)</td>
<td>18.37</td>
<td>1.12</td>
<td>102.21</td>
<td>21.33</td>
<td>2.31</td>
<td>8.50</td>
</tr>
<tr>
<td>V_{edd} (cm/s)</td>
<td>11.98</td>
<td>2.72</td>
<td>44.17</td>
<td>8.65</td>
<td>1.74</td>
<td>5.82</td>
</tr>
<tr>
<td>V_{x} (cm/s)</td>
<td>10.04</td>
<td>4.19</td>
<td>31.59</td>
<td>5.39</td>
<td>2.38</td>
<td>8.96</td>
</tr>
<tr>
<td>R_{edd}</td>
<td>0.35</td>
<td>0.01</td>
<td>3.99</td>
<td>0.86</td>
<td>3.34</td>
<td>12.90</td>
</tr>
<tr>
<td>r</td>
<td>1.78</td>
<td>0.13</td>
<td>11.19</td>
<td>2.00</td>
<td>2.79</td>
<td>12.00</td>
</tr>
</tbody>
</table>
Figure 4. Histograms of current and eddy characteristic parameters identified from 54 RAFOS floats: (a) eddy radial scale (km), (b) eddy velocity scale (cm/s), and (c) eddy Rossby number, (d) current velocity scale (cm/s), and (e) eddy and current kinetic energy ratio.

5. Temporal variability of eddy characteristic parameters

All the identified eddy and background parameters (L_{eddy}, V_{eddy}, R_{eddy}, V_{b}, r) have evident temporal variabilities (Figure 5). Large dispersion is found in L_{eddy} before August 1998 from 1.12 km (7 July – 5 September 1993, N007) to 102.21 km (25 February 1997 – 8 July 1998, N051). Small dispersion in L_{eddy} is found after August 1998 with a maximum of 36.53 km (21 November 1999 – 12 February 2001, N073) (Figure 5a) and a minimum of 1.81 km (5 May 1999 – 18 May 2000, N069). There was a strong El Nino and Southern Oscillation (ENSO) event in the North Pacific in 1997-1998. The effect of ENSO needs to be further investigated.
Large dispersion is found in V_{eddy} before 1995 from 6.91 cm/s (7 July – 5 September 1993, N007) to 44.17 cm/s (19 May – 10 June 1994, N021). Small dispersion is found after December 1994 with a maximum of 19.56 cm/s (21 November 1999 – 12 February 2001, N073) and a minimum of 2.72 cm/s (11 September 2000 – 9 July 2002, N084) (Figure 5b). The eddy Rossby number (R_{eddy}) is mostly less than 0.5 (Figure 5c). Large dispersion is found before 1995 with large values of 3.99 (N021), 3.70 (N022), 2.76 (N024), during 17 May – 10 June 1994 and 18 May-10 June 1994 and small value of 0.03 during 7 August – 30 December 1994 (N031). Small dispersion is found after 1995 with a maximum of 0.33 during 5 May 1999 – 18 May 2000 (N069) (Figure 5c). The background velocity scale (V_b) has larger dispersion before 1995. It has a maximum of 31.59 cm/s during 19 May – 10 June 1994 (N021) and a minimum of 5.33 cm/s during 12 August – 11 September 1992 (N002). It has smaller dispersion
6. Conclusions

The deterministic-stochastic EMD is used to decompose a Lagrangian trajectory. Time differentiation of the deterministic and stochastic trajectories leads to the Lagrangian background and eddy velocities. Five parameters can be identified from a single Lagrangian drifter data to represent background velocity and eddy characteristics such as the eddy radial scale (L_{edd}), eddy velocity scale (V_{edd}), eddy Rossby number (R_{edd}), background velocity scale (V_b), and eddy-background kinetic energy ratio (r).

The NPS RAfos dataset consisting of 54 floats is used as an example to demonstrate the capability of the deterministic-stochastic EMD. The obtained 54 sets of parameters (L_{edd}, V_{edd}, R_{edd}, V_b, r) show an eddy-rich area near the California coast with the mean eddy-background kinetic energy ratio of 1.78. These eddies are mostly anticyclonic with total 203 anticyclonic and 36 cyclonic spirals. Both submesoscale and mesoscale eddies exist with the mean eddy Rossby number of 0.72 for the submesoscale eddies and 0.06 for the mesoscale eddies. The overall eddy velocity scales are comparable between the submesoscale eddies (mean: 11.35 cm/s) and the mesoscale eddies (mean: 12.49 cm/s). The background-eddy kinetic energy transfer is similar between the two. The identified eddy characteristic parameters have evident temporal variabilities. Large dispersion is found in L_{edd} before August 1998 and small dispersion in L_{edd} is found after August 1998. However, large dispersion of (V_{edd}, R_{edd}, V_b, r) is found before 1995 and small dispersion is found after 1995. Further studies are needed on physical mechanisms to cause such a temporal variability, especially the ENSO effect.

Author Contributions: conceptualization, P.C.; methodology, P.C.; software, C.F.; validation, C.F.; formal analysis, P.C.; investigation, C.F.; resources, P.C.; data curation, C.F.; writing—original draft preparation, P.C.; writing—review and editing, P.C.; visualization, C.F.; supervision, P.C.; project administration, P.C.

Funding: This research received no external funding.

Acknowledgments: The authors would like to thank Professor (emeritus) Curt Collins at the Naval Postgraduate School for collecting RAfos data and unselfishly providing data at the website.

Conflicts of Interest: The authors declare no conflict of interest.

References

