

1 Article

2

3 **Effects of Synergistic Inhibition on α -Glucosidase by**
4 **Phytoalexins in Soybeans**

5

6 **Hyeong-U Son¹, Eun-Kyeong Yoon¹, Chi-Yeol Yoo¹, Chul-Hong Park², Myung-Ae Bae³,**
7 **Tae-Ho Kim⁴, Chang Hyung Lee⁵, Ki-Won Lee⁵, Hogyun Seo⁶, Kyung-Jin Kim⁶, Sang-**
8 **Han Lee^{1,*}**

9

10 ¹Department of Food Science & Biotechnology, Graduate School, Kyungpook National
11 University, Daegu 41566, Korea

12 ²Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA
13 70808, USA

14 ³Korea Research Institute of Chemical Technology, Daejeon 34114, Korea

15 ⁴Biomedical Research Institute, Kyungpook National University Hospital, Daegu 41940,
16 Korea

17 ⁵Major in Biomodulation, Department of Agricultural Biotechnology and Research Institute
18 for Agriculture and Life Sciences, Seoul National University, Seoul 151-742, Korea

19 ⁶School of Life Sciences, KNU Creative BioResearch Group, Institute of Microorganisms,
20 Kyungpook National University, Daegu 41566, Korea

21

22

23

24 **Abstract:** To determine the mode of action of the effects of phytoalexins in soybeans, we
25 analyzed enzyme inhibition kinetics using Michaelis–Menten plots and the Lineweaver–
26 Burk plots. The results showed that glyceollin showed competitive inhibition, genistein
27 showed noncompetitive, daidzein was uncompetitive, and luteolin showed a mixed mode of
28 action. The *Ki* values were determined using a Dixon plot as: glyceollin, 18.99; genistein,
29 15.42; luteolin, 16.81; and daidzein, 9.99 μ M, respectively. Furthermore, potential

30 synergistic effects between glyceollin and the three designated polyphenols were
31 investigated. A combination of glyceollin and luteolin (the ratio of 3:7 of glyceollin and
32 luteolin) had synergistic effects on α -glucosidase inhibition according to combination index
33 (CI)-isobologram equation. Collectively, these results showed that a combination of
34 glyceollin and luteolin has the potential to inhibit α -glucosidase activity via a synergistic
35 mode of action.

36

37 **Keywords:** α -glucosidase; glyceollin; genistein; luteolin; daidzein; phytoalexins; enzyme
38 kinetics; combination index

39

40 1. Introduction

41 Soybeans are most human-friendly food produces in the world endowing beneficial
42 purposes as ‘meat in the field’ because of its plentiful nutritional value. Presently, most
43 countries produce soybeans to use as food ingredients, feed additive, or biomaterials etc.
44 Annual consumption of soybeans is marked as tremendous tons a year and most important
45 counties for production are China, USA, and Brazil etc. Research has shown that soybeans
46 contain various compounds with beneficial functions. A high dietary intake of soybeans can
47 reduce the risk of breast cancer and coronary heart disease, and has anti-diabetic effects by
48 enhancing glucose uptake [1-3]. The soybeans especially contain effective compounds:
49 phytoalexins such as genistein, luteolin, and daidzein. Originally, phytoalexins are known
50 for substances when environmental triggers induce. It is noticed that several phytoalexins are
51 actively produced when soybeans are exposed to various stresses such as microbes, UV, and
52 other physical attack. There are biological activities of soybean-derived polyphenol
53 compounds: anti-oxidant, antitumor, anti-inflammatory, anti-obesity and moreover anti-

54 atopic effects [4-6].

55 Glyceollins, which are synthesized from daidzein in soybeans infected with fungi, have
56 potent antioxidant functions via inhibition of reactive oxygen species (ROS) production.
57 Glyceollins also display anti-inflammatory effects by suppressing the nuclear factor kappa B
58 (NF- κ B) signaling pathway. The compounds not only have antitumor potential by inhibiting
59 angiogenesis, but also have antimelanogenic activity in alleviating melanin biosynthesis [7-
60 10]. Daidzein is converted into glyceollins in soybeans during fermentation after fungal
61 infection, such as by *Aspergillus sojae*. In the anti-diabetic *in vitro* assay, α -glucosidase is
62 well established to determine absorption of monosaccharide from small intestine. In addition,
63 it is important to define enzymatic inhibitory mechanism for understanding drug metabolism.
64 Previously, various mechanistic studies on isoflavonoid compounds in soybeans were
65 performed [7-10]. However, there are little data on the enzymatic approaches of glyceollins
66 derived from phytoalexins, or on how glyceollins and other anti-diabetic agents are
67 associated with the inhibition to α -glucosidase.

68 Originally, α -glucosidase (EC 3.2.1.20; alternatively named maltase, glucoinvertase, or
69 glucosidosucrase) is one of pivotal enzymes whose specificity is directed mainly toward the
70 exohydrolysis of 1,4- α -glucosidic linkages, and that hydrolyze oligosaccharides rapidly,
71 relative to polysaccharides. Since α -glucosidase induces postprandial hyperglycemia in type
72 2 diabetes by breaking di-, tri-, and oligosaccharides into monosaccharides, their inhibitors
73 delay carbohydrate digestion and absorption, thereby attenuating post-prandial
74 hyperglycemia [11]. On the other hand, the α -glucosidase inhibitory activity has been
75 established using *p*-nitrophenyl α -D-glucopyranoside (p-NPG) as substrate and the inhibition
76 makes easier to detect its activity as an anti-diabetic potential. There are mounting evidences
77 for the anti-diabetic effects of various polyphenol compounds by plants [12-14]. Of them,
78 soybeans are most human-friendly food resources in the world endowing beneficial purposes.

79 In the present study, we first compared the α -glucosidase inhibitory activities of four
80 polyphenol compounds (glyceollin, genistein, luteolin, and daidzein) derived from **soybeans**,
81 and then studied the mode of action of the inhibitory effects by deducing the K_i values of the
82 four polyphenol compounds. We also investigated the synergistic effects between glyceollin
83 and the other three polyphenol compounds. A deeper understanding of the enzyme kinetics
84 and mode of action of glyceollin could help to develop nutraceuticals that prevent diabetes
85 without side effects. Our results indicated that a combination of glyceollin and luteolin has
86 synergistic effects on α -glucosidase inhibition.

87

88 **2. Materials and Methods**

89 *2.1. Reagents*

90 α -Glucosidase (from baker's yeast), *p*-nitrophenyl α -D-glucopyranoside (pNPG),
91 acarbose, genistein, daidzein, and luteolin were purchased from Sigma-Aldrich (St, Louis,
92 MO, USA). Glyceollins, which have three isomers, were semi-purified from elicited
93 soybeans, as described previously [12]. All samples were prepared at various concentrations
94 by dissolution in dimethyl sulfoxide (DMSO), except for water-soluble acarbose. The
95 structures of the compounds are shown in Fig. 1.

96

97 *2.2. α -Glucosidase inhibitory assay*

98 The α -glucosidase activity was measured as described previously with slight
99 modifications [13]. In brief, polyphenols or acarbose (A8980, Sigma) were placed in a 96-
100 well plate, and then 100 μ L of α -glucosidase per well was added. The substrate, pNPG (*p*-
101 nitrophenyl α -D-glucopyranoside, N1377, Sigma) was then added into each well as a final
102 concentration of 0.1 M with total 200 μ L volume. The absorbance at 405 nm was measured
103 immediately using a spectrophotometer (Victor3 multi-label counter, Wallac, Turku, Finland)

104 at 37°C and then every 2 min for 40 min. The absorbance values were plotted against time,
105 and the rate (velocity) of product generation (α -glucosidase activity) was calculated from the
106 straight-line part of the graph.

107

108 *2.3. Enzyme kinetics for α -glucosidase*

109 The enzyme reaction was performed according to the above reaction conditions with
110 samples at various concentrations. pNPG was placed with polyphenol samples in 96-well
111 plates and α -glucosidase was added to initiate the enzyme reaction. The absorbance
112 variations for each concentration of pNPG were then obtained spectrophotometrically. The
113 inhibition modes of the polyphenols were determined using Michaelis–Menten and
114 Lineweaver–Burk plots using GraphPad Prism 6.0 and the SigmaPlot 10.0 software
115 programs [14–15], respectively. The inhibitor constant K_i is an indication of an inhibitor's
116 potency. The constant is the concentration required to produce half maximum inhibition, and
117 could be determined by a Dixon plot [16] using Graphpad Prism 6.0 and SigmaPlot 10.0
118 software programs [14–15]. To describe how the agents inhibit α -glucosidase, the
119 Lineweaver–Burk equations, in double reciprocal form, were expressed as follows:

120
$$\frac{1}{v} = \frac{K_m}{V_{max}} (1 + \frac{1}{K_i}) \times \frac{1}{[S]} + \frac{1}{V_{max}}$$
 (Competitive inhibition)

121
$$\frac{1}{v} = \frac{K_m}{V_{max}} \times \frac{1}{[S]} + \frac{1}{V_{max}} (1 + \frac{[I]}{K_i})$$
 (Uncompetitive inhibition)

122
$$\frac{1}{v} = \frac{K_m}{V_{max}} \times (1 + \frac{[I]}{K_i}) \times \frac{1}{[S]} + \frac{1}{V_{max}} (1 + \frac{[I]}{K_i})$$
 (Noncompetitive inhibition)

123
$$\frac{1}{v} = \frac{K_s}{V_{max}} (1 + \frac{[I]}{K_i}) \times \frac{1}{[S]} + \frac{1}{V_{max}} (1 + \frac{[I]}{\alpha K_i})$$
 (Mixed inhibition)

124

125 Where v is the enzyme reaction rate in the absence and presence of samples; V_{max} and $[S]$
126 are the maximum reaction velocity and the substrate concentration, respectively; and K_m and
127 K_s are the Michaelis–Menten constant and the dissociation constant for the affinity of the

128 substrate, respectively. The α symbol is the ratio of the uncompetitive inhibition constant to
129 the competitive inhibition constant, and has a value of 1 for noncompetitive inhibition. The
130 αKi value is the inhibitor constant when inhibitor (I) occupies the enzyme-substrate (ES)
131 complex [16].

132

133 *2.4. Docking studies*

134 To investigate the inhibition modes of the individual polyphenols with α -glucosidase,
135 docking calculation was performed by Autodock Vina, an improved program for molecular
136 docking and virtual screening, compared to the average accuracy of the binding mode
137 predictions of AutoDock 4.0 [17]. Three-dimensional coordinates of α -glucosidase used as
138 the input structure were prepared by a structure modeling using the SWISS-MODEL server
139 [18]. The protein modeling used the structure of isomaltase from *S. cerevisiae* (PDB code
140 3AJ7) as a template, approaching 73% amino acid identity with the commercial α -
141 glucosidase, MAL12. For the docking calculation, the *pdbqt* files were generated using
142 AutoDock Tools version 1.5.4 and determination of the grid box size was also carried out
143 using the program (<http://mgltools.scripps.edu/>). Default parameters except the
144 exhaustiveness option were used as described in the AutoDock Vina manual. The best
145 theoretical binding modes of inhibitors are displayed with their ΔG_{bind} scores.

146

147 *2.5. Synergistic effects on α -glucosidase inhibition*

148 Synergistic effects on α -glucosidase inhibition were measured using the same methods as
149 above. A designed concentration of pNPG together with a combination treatment of two
150 polyphenols was added into wells of a 96-well plate, and the enzyme reaction was started by
151 the addition of α -glucosidase. We calculated the IC_{50} values of each polyphenol and their

152 combinations, and used the statistical differences of these values to assess any synergistic
153 effects.

154

155 *2.6. Determination of combination index*

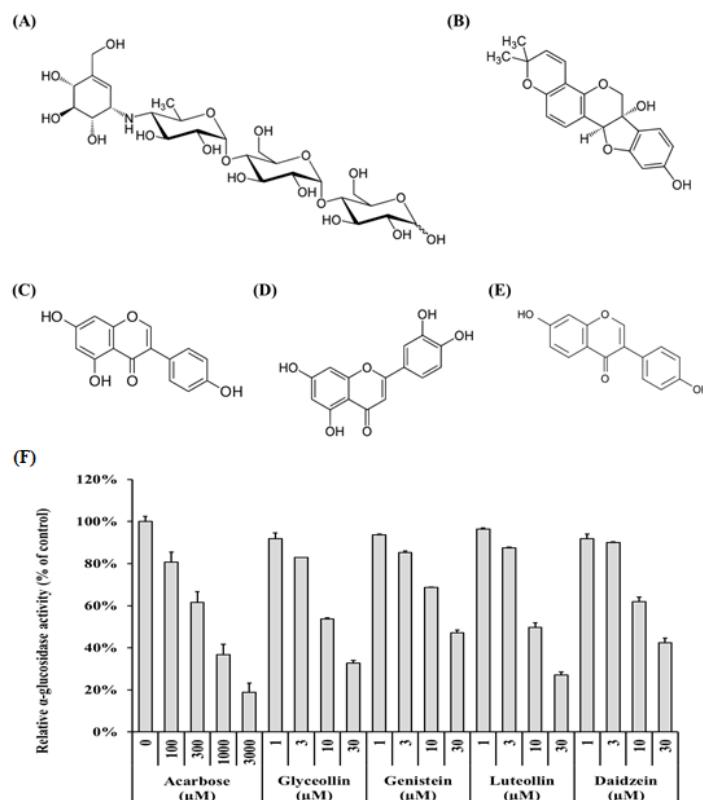
156 Combination index values were calculated by the method of Chou [19]. The equation
157 offers the theoretical basis for the combination index (CI)-isobologram equation that permits
158 quantitative determination of compound interactions, where $CI < 1$, $= 1$, and > 1 show
159 synergism, additive effect, and antagonism, respectively. Based on the algorithm, computer
160 software has been established to admit automated simulation of synergism and antagonism at
161 all levels.

162

163 *2.7. Statistical analysis*

164 The results are presented as means \pm standard deviation (SD). Statistical differences
165 between mean values \pm SD were determined by the Tukey's one-way ANOVA test using
166 IBM SPSS Statistics (Armonk, NY, USA). The differences were considered significant at p
167 < 0.05 .

168


169 **3. Results**

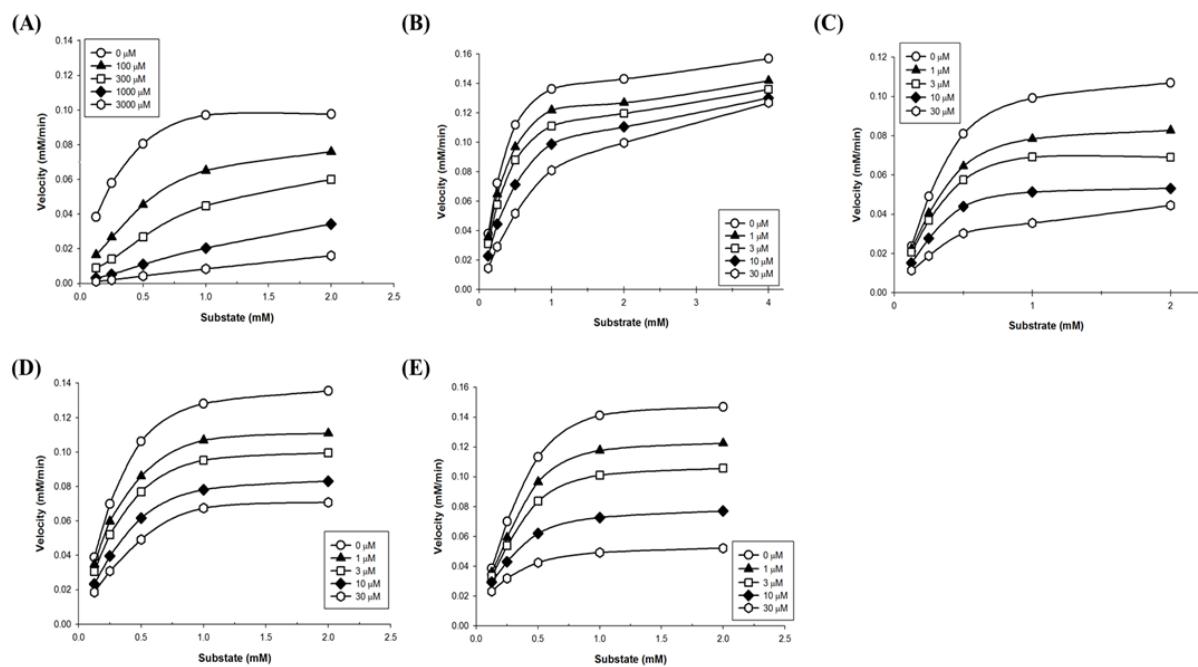
170 *3.1. Phytoalexins derived from soybeans have potential in inhibiting α -glucosidase
171 compared to acarbose*

172 The α -glucosidase inhibitory activities of polyphenol compounds derived from soybeans
173 (Fig. 1B~E) were measured to compare which compound is major potential and effective
174 against α -glucosidase activity. Acarbose (Fig. 1A), which has been used for a positive
175 control of α -glucosidase assay and also known as effective agent for anti-diabetes [20], was
176 used for a standard agent in this study. Including acarbose, all compounds reduced α -

177 glucosidase activity in a concentration-dependent manner (Fig. 1F, grey columns). To
 178 compare the inhibitory activity on α -glucosidase among acarbose (a well-known α -
 179 glucosidase inhibitor) and four polyphenol compounds elicited from soybeans, the half
 180 maximal inhibitory concentrations (IC_{50} s) were determined. The IC_{50} values of acarbose,
 181 glyceollin, genistein, luteolin, and daidzein were 530.50 ± 100.13 , 13.22 ± 2.31 , $23.66 \pm$
 182 3.54 , 11.94 ± 1.63 , 20.16 ± 6.17 μ M, respectively. These results showed that the four
 183 soybean-derived polyphenol compounds had more than 20 times higher α -glucosidase
 184 inhibitory activity than acarbose.

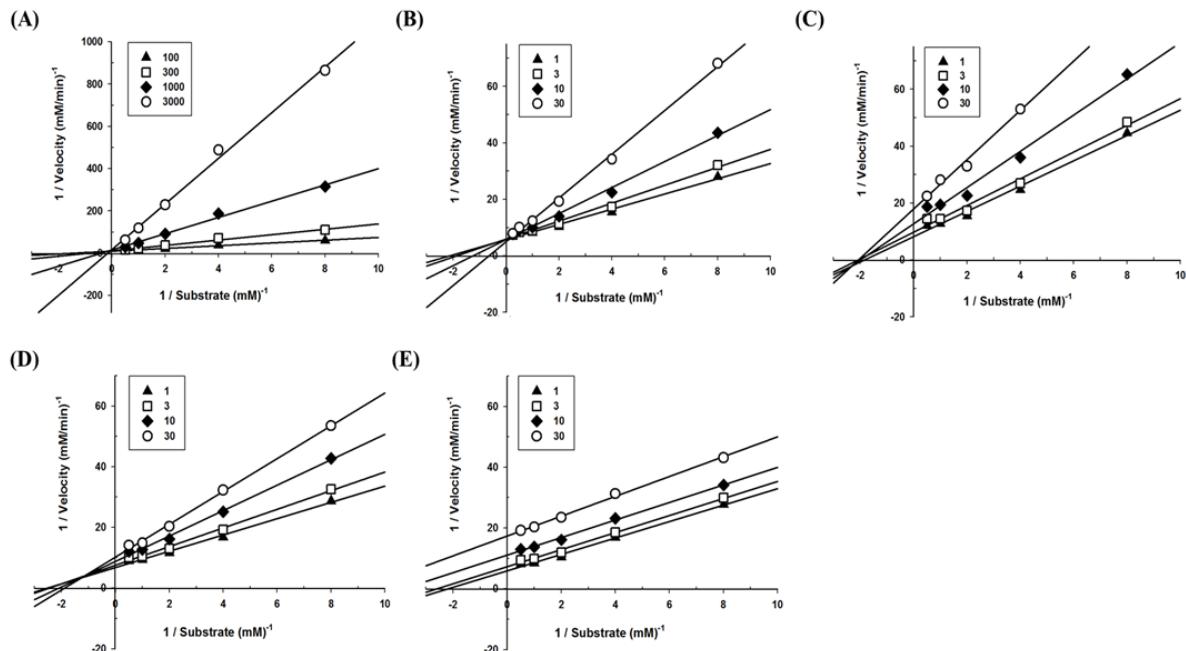
185

186


187 **Fig. 1.** Structures of soybean-derived polyphenol compounds used in this experiment and
 188 their α -glucosidase inhibitory activity. (A) Acarbose, a positive control, (B) glyceollin (C)
 189 genistein, (D) luteolin, and (E) daidzein. α -Glucosidase inhibitory activities (F) were
 190 calculated according to relative percentage of the control group (100%; grey columns).

191

192


193 *3.2. Determination of inhibition modes and K_i values on polyphenols derived from soybeans*
 194 *on α -glucosidase*

195 To define the mode of inhibition of the polyphenols, enzyme kinetics was performed
 196 with designated concentrations of pNPG. The saturated velocity for α -glucosidase was
 197 calculated from the nonlinear regression curve as five different concentration of substrate
 198 (Fig. 2). To determine the inhibition modes, Lineweaver-Burk plots were constructed and
 199 were selected as the most suitable mode after the determination of all types of inhibition
 200 modes using the SigmaPlot 10.0 software. The results revealed that acarbose and glyceollin
 201 used competitive inhibition, while genistein showed non-competitive inhibition. Luteolin
 202 showed mixed inhibition and daidzein used an uncompetitive mode of inhibition (Fig. 3).
 203

204

205 **Fig. 2.** Non-linear regression analysis of α -glucosidase. The inhibitors applied at the
 206 indicated concentrations, (A) acarbose, (B) glyceollin, (C) genistein, (D) luteolin, and (E)
 207 daidzein. A mixture of 100 μ L of each concentration of *p*-nitrophenyl α -D-glucopyranoside
 208 (pNPG) was added to 96-well plates that contained polyphenols, and treated with α -
 209 glucosidase to initiate the enzyme reaction. The Lineweaver-Burk plots show four kinds of
 210 classical inhibition modes of action on enzyme kinetics. Each plot was carried out in three
 211 independent experiments.
 212

Fig. 3. Modes of action of polyphenols derived from soybeans in α -glucosidase inhibition. To calculate the mode of action, Lineweaver–Burk plots were constructed. (A) Acarbose, (B) glyceollin, (C) genistein, (D) luteolin, and (E) daidzein.

213
214
215
216
217
218

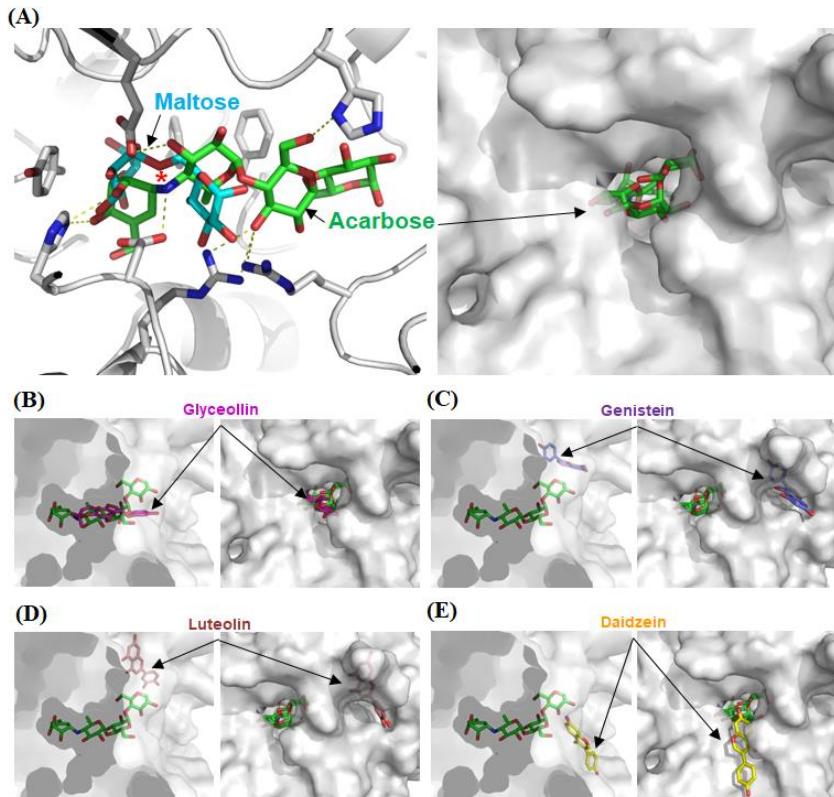
Meanwhile, the inhibitor constant K_i is an indication of an inhibitor's potency. The constant is the concentration required to produce half maximum inhibition, and could be determined by a Dixon plot [16]. The initial slope v was determined for each concentration of the polyphenols. The reciprocal velocity ($1/v$) versus the substrate concentration (for each 0.25, 0.5, 1, and 2 mM pNPG) was plotted. A single regression line for each concentration of substrate was obtained, and the K_i was calculated from the intersection of the four lines. The K_i values were determined by GraphPad Prism 6.0 software as 45.88 ± 3.75 , 18.99 ± 4.45 , 15.42 ± 2.48 , and 16.81 ± 9.60 μM , for acarbose, glyceollin, genistein, and luteolin, respectively (Table 1). It is not possible to calculate the K_i in the case of uncompetitive inhibition where the four lines do not intersect. Therefore, for daidzein, the αK_i value was calculated, which is the inhibitor constant when the inhibitor occupies the enzyme-substrate complex. The αK_i value of daidzein was calculated as 9.99 ± 1.24 μM .

231

232 **Table 1.** K_i values of polyphenols derived from soybeans on α -glucosidase inhibition. K_i
 233 values of acarbose, glyceollin, genistein, luteolin, and daidzein were calculated using
 234 GraphPad Prism 6.0 software. For daidzein only an αK_i value is provided instead of the K_i
 235 value

Inhibitor	Mode of inhibition	K_m (μM)	K_i (μM)
Acarbose	Competitive	0.21±0.02	45.88±3.75
Glyceollin	Competitive	0.24±0.03	18.99±4.45
Genistein	Noncompetitive	0.36±0.06	15.42±2.48
Luteolin	Mixed	0.30±0.06	16.81±9.60
Daidzein	Uncompetitive	0.40±0.05	9.99±1.24

236


237

238

239 *3.3. Structural basis for the modes of inhibition*

240 To understand the modes of inhibition in molecular level, we next performed docking
 241 studies using the model structure of α -glucosidase. Docking models of acarbose, glyceollin,
 242 genistein, luteolin, and daidzein were generated, and the best models of each inhibitor were
 243 chosen (Fig. 4A-E). First, we compared the docking model of acarbose with homologous
 244 structure in complexed with maltose. The superimposition result displayed that acarbose was
 245 docked into pocket in which substrate maltose experimentally binds, and a nitrogen atom
 246 was located near the glycosidic bond of the substrates to block the hydrolysis (Fig. 4A). The
 247 result well explains why the acarbose competitively binds to α -glucosidase and inhibits the
 248 enzyme. Then, we used the acarbose model as an indicator of substrate-binding site,
 249 superposing with other docking models.

250

251

252 **Fig. 4.** Molecular docking studies on the inhibitory modes. Docking models for the
 253 inhibitory modes of the α -glucosidase inhibitors. The model of MAL12, a structure of α -
 254 glucosidase, was shown as cartoon or surface diagram in a color scheme as white. Maltose,
 255 acarbose, glyceollin, daidzein, luteolin, and genistein were shown as stick diagram. (A) The
 256 inhibitory mode of acarbose. The maltose molecule was prepared by superposing the model
 257 of MAL12 with the structure of isomaltase (PDB code 3AXH), and shown with a cyan color.
 258 Residues involved in substrate-binding were displayed as stick model. Yellow dashed line
 259 indicates hydrogen bond interactions. A glucosidic bond to be hydrolyzed was indicated by a
 260 star symbol. (B)-(E) The inhibitory modes of polyphenols. Glyceollin, genistein, daidzein,
 261 and luteolin are shown as color schemes with magenta, purple, yellow, and brown,
 262 respectively.

263

264

265 The α -glucosidase accommodated the docking model of glyceollin, a pterocarpan which
 266 structurally different compared to other isoflavones and flavone, with its substrate binding
 267 pocket (Fig. 4B). The theoretical affinity of the binding (ΔG_{bind}) was -10.3 kcal/mol. This
 268 structural model indicates the competitive inhibition mode of glyceollin. The other
 269 polyphenols showed alike structures each other. However, in spite of the similar
 270 conformations, they were docked into the enzyme differently. Interestingly, the model of

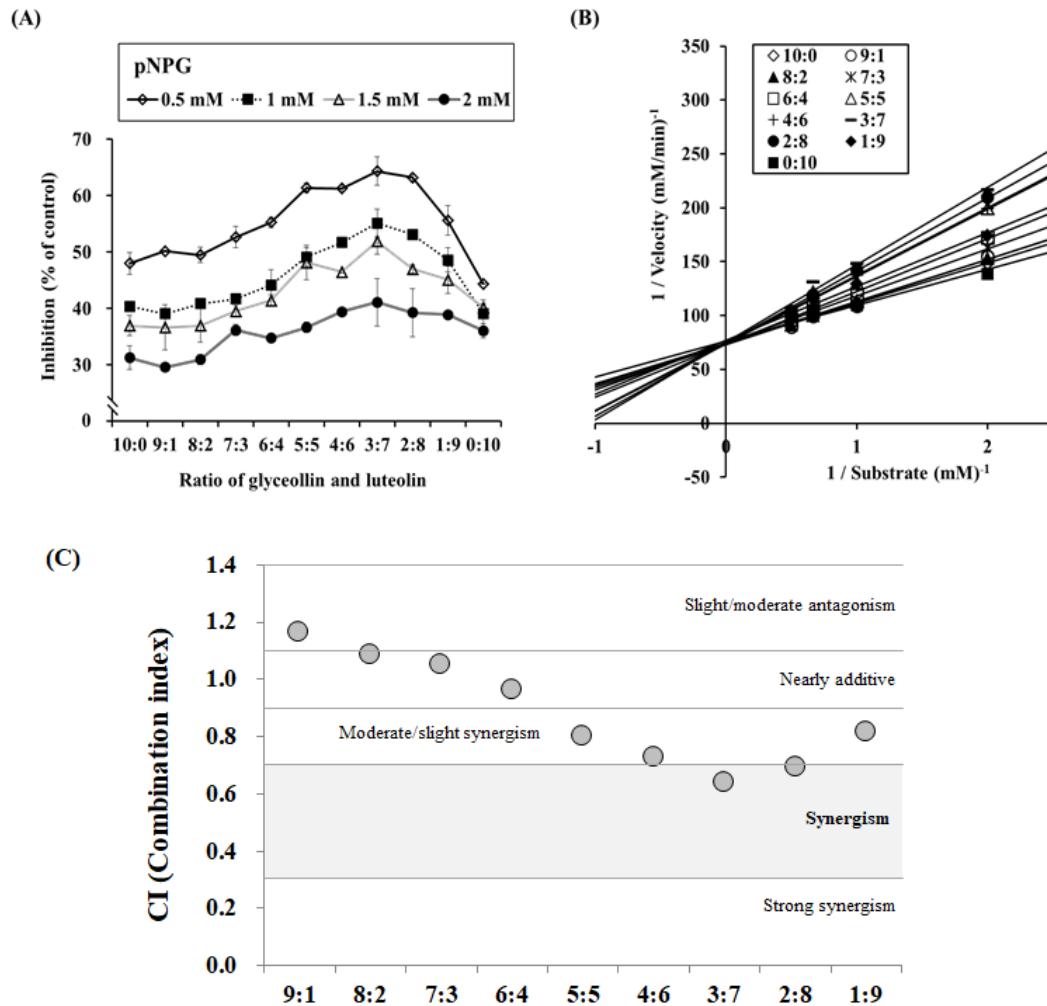
271 daidzein showed that it covers the entrance of the pocket with ΔG_{bind} of -7.6 kcal/mol (Fig.
272 4C). Although uncompetitive inhibitor binds only to enzyme-substrate complex, the
273 relatively low affinity of the binding compared to that of glyceollin might intimates a need of
274 *p*-nitrophenyl α -D-glucopyranoside. Thus, the model showed the cavity of the binding of the
275 uncompetitive inhibitor and might explain the rare uncompetitive inhibition mode as
276 described above. Luteolin and genistein were proposed as mixed and non-competitive
277 inhibitors before. Mixed inhibitor binds both apo enzyme and enzyme-substrate complex,
278 and it binds a different site from the substrate-binding pocket, altering the active-site
279 configuration and turnover. Non-competitive inhibition is a special case of mixed inhibition
280 under unchanged K_m . Surprisingly, the docking models showed a different cavity that
281 harbors luteolin and genistein with ΔG_{binds} of -8.4 and -8.7 kcal/mol, respectively, intimating
282 that mixed or non-competitive inhibition might occur altering the catalytic cleft with their
283 attachment (Fig. 4D, E).

284

285 3.4. Combined effects with glyceollin plus luteolin on α -glucosidase inhibition

286 Next, we studied the α -glucosidase inhibitory effect between pairs of these polyphenols
287 by mixing glyceollin with luteolin, genistein, or daidzein. As shown in Table 2, we obtained
288 IC₅₀ values of each polyphenol singly and for the combination treatments on α -glucosidase
289 inhibition at each concentration of pNPG. Interestingly, luteolin showed combined effects on
290 α -glucosidase inhibition when combined with glyceollin, while genistein or daidzein did not
291 (Table 2, bold characters).

292 In Fig. 5A, we further investigated the effects of the combination by mixing glyceollin and
293 luteolin at ratios of 0:10 to 10:0, and then testing their inhibition of α -glucosidase. The
294 results showed that a ratio of glyceollin to luteolin of 3:7 caused the highest inhibition of α -
295 glucosidase. We then plotted the kinetic mode of action in Fig. 5B. Surprisingly, the data


296 showed that the mode of action was competitive inhibition. These results indicate that a
297 combination of competitive and mixed inhibition modes might be more potent inhibitory to
298 α -glucosidase activity, whereas a combination of competitive and uncompetitive or
299 noncompetitive modes are not.

300

301 **Table 2.** Synergistic effects of glyceollin and three existing polyphenols derived from
302 soybeans on α -glucosidase inhibition. IC₅₀ values were obtained using GraphPad Prism 6.0
303 software. **p* < 0.05, #*p* < 0.05, denote significant difference from glyceollin alone and
304 luteolin alone, respectively

Inhibitor	Mode of inhibition	K _m (μM)	K _i (μM)
Acarbose	Competitive	0.21±0.02	45.88±3.75
Glyceollin	Competitive	0.24±0.03	18.99±4.45
Genistein	Noncompetitive	0.36±0.06	15.42±2.48
Luteolin	Mixed	0.30±0.06	16.81±9.60
Daidzein	Uncompetitive	0.40±0.05	9.99±1.24

305

306

Fig. 5. Synergistic effect of glyceollin plus luteolin on α -glucosidase inhibition. Glyceollin or luteolin were prepared with at 2 μ M concentrations and mixed as 0:10 to 10:0 ratios. Therefore, a 5:5 ratio indicates mixture of 1 μ M glyceollin plus 1 μ M luteolin. (A) Pattern of α -glucosidase inhibition according to four concentrations of substrate (0.5, 1, 1.5, and 2 mM). (B) Lineweaver–Burk plot of the effects of glyceollin plus luteolin mixture at various ratios of the two compounds. (C) Combination index plot of various ratios of glyceollin and luteolin. Combination index (CI)-isobologram equation that permits quantitative determination of compound interactions represents that $CI < 1$, $= 1$, and > 1 show synergism, additive effect, and antagonism, respectively.

316

317

318 3.5. Confirmation of synergism by combination index equation with glyceollin plus luteolin

319 It is important for determining the mode of action between compound(s) with synergism, 320 additive effect, and antagonism, respectively, in that plant classically has lots of active and/or 321 inactive components such as polyphenol compounds and alkaloids. To scrutinize whether the

322 inhibition mode of action between glyceollin and luteolin is associated with synergism, we
323 applied to CI values for actual experiments points by Chou method [19]. As a result, for
324 glyceollin or luteolin, 4 data points (1, 3, 10, and 30 μ M) entered in the equation, and got
325 13.6215 and 12.2697 of Dm value, respectively. As shown in Fig. 5C, the ratios of glyceollin
326 to luteolin between 9:1 to 7:3 got >1.0 of CI value. Nevertheless, the ratios of glyceollin to
327 luteolin between 6:4 to 1:9 triggered <1.0 of CI value. Interestingly 3:7 ratio remarkably
328 produced lowest CI value, suggesting the ratio ranked most synergistic effect on α -
329 glucosidase inhibition.

330

331

332 **4. Discussion**

333 In a study of α -glucosidase related to postprandial hyperglycemia in type 2 diabetes,
334 glyceollin showed a similar effect to three known polyphenols (genistein, luteolin, and
335 daidzein (Table 1). Moreover, for the first time, we revealed that glyceollin is a competitive
336 inhibitor of α -glucosidase (Fig. 3B). Competitive and mixed inhibitors produce their effects
337 by combining with free enzyme to prevent substrate binding, thus producing an enzyme-
338 inhibitor (EI) complex. By contrast, non-competitive or uncompetitive inhibitor cannot
339 directly interrupt the binding of the enzyme to its substrate. We hypothesized that a
340 synergistic effect would occur between competitive and noncompetitive (or uncompetitive)
341 inhibitors, because the binding sites of the inhibitors are different. However, the
342 combinations of competitive and noncompetitive (or uncompetitive) inhibitors decreased
343 rather increased the inhibition activity (Table 2). Interestingly, glyceollin (a competitive
344 inhibitor) and luteolin (a mixed inhibitor) displayed a significant synergistic effect, with
345 decreased IC₅₀ values at all concentrations of the substrate (Table 2).

346 The biological mechanism is not limited to reaction of a single compound, therefore,

347 complicated synergistic mechanisms must be involved in most of biological events [21]. Liu
348 *et al.* demonstrated that a combination of inhibitors improves their inhibitory activity against
349 α -glucosidase [22]. They selected two typical xanthone derivatives (1,3,7-
350 trihydroxyxanthone and 1,3-dihydroxybenzoxanthone), and observed their synergistic effect.
351 In their study, 2 μ M of 1,3,7-trihydroxyxanthone exhibited approximately 15 % inhibition,
352 while 2 μ M of 1,3-dihydroxybenzoxanthone did approximately 10 % inhibition. Interestingly,
353 the synergistic effect of combining the two inhibitors at a 3:7 ratio produced 40 % maximal
354 inhibition [22]. Another study on α -glucosidase demonstrated that genistein synergistically
355 inhibited with some metal ions such as copper and zinc ions [21]. Therefore, we next
356 hypothesized that a mixture of two polyphenols would have a synergistic inhibitory effect
357 against α -glucosidase. Indeed, glyceollin showed a synergistic effect with luteolin on α -
358 glucosidase inhibition (Table 2). When acarbose, which is a competitive inhibitor like
359 glyceollin, was used in combination with luteolin or glyceollin, no synergistic effects were
360 detected. Combined treatment with genistein and daidzein also produced no synergistic
361 effects.

362 It is shown that dose and effect are interchangeable via defined parameters derived from
363 the unified theory for the Michaelis-Menten equation, Hill equation, Henderson-Hasselbalch
364 equation, and Scatchard equation. The equation provided the theoretical basis for the
365 combination index (CI)-isobogram equation that allows quantitative determination of
366 compound interactions, where $CI < 1$, $= 1$, and > 1 denote synergism, additive effect, and
367 antagonism [19], respectively. In this study, by approving a unique and effective systemic
368 method, we disclosed that the combination of glyceollin (a competitive inhibitor) and
369 luteolin (a mixed inhibitor) displayed a significant synergistic effect, with decreased
370 maximal CI value (0.64244) with the ratio of 3:7 of glyceollin and luteolin, theoretically (Fig.
371 5C). This theoretical approach can gain increased applications in food sciences, from how to

372 effectively evaluate an extract by food and/or its ingredient(s), entity to how to beneficially
373 use multiple compounds, or modalities in combination therapies.

374 To verify whether the combination of glyceollin and luteolin affect the mode of action
375 of α -glucosidase inhibition, it was necessary to analyze the affinity of each of the polyphenol
376 compounds. When soybeans are infected with various elicitors, varieties of polyphenol
377 compounds are naturally produced. Those polyphenol compounds called as phytoalexins;
378 although the identification of the polyphenolics is still needed. This study is initially to
379 investigate the synergistic potency of the two polyphenols by comparison of their K_i values;
380 however, we do not know how the enzyme's structure is changed after binding of inhibitors.
381 Therefore, it would be useful to perform molecular docking simulation studies and protein
382 structure analysis, including X-ray crystallography and nuclear magnetic resonance (NMR),
383 to determine the synergistic inhibition mode of soybean-derived polyphenols, if we can
384 measure, which will shed light on their inhibitory mechanisms.

385

386 **5. Conclusions**

387 By analyzing enzyme inhibition kinetics using Michaelis–Menten plots and the
388 Lineweaver–Burk plots, we found that glyceollin showed competitive inhibition, genistein
389 showed noncompetitive, daidzein was uncompetitive, and luteolin showed a mixed mode of
390 action. These results indicated that glyceollin, genistein, luteolin, and daidzein could be
391 promising α -glucosidase inhibitors for anti-diabetic approaches in soybeans. A combination
392 of glyceollin and luteolin had synergistic effects on α -glucosidase inhibition, showing that a
393 combination of glyceollin and luteolin has the potential to inhibit α -glucosidase activity via a
394 synergistic mode of action. The inhibition of α -glucosidase by polyphenol compounds in
395 soybeans is not so high when the soybeans are not elicited by *Aspergillus*. However, the
396 selective glyceollin produced by the fermentation by the fungus or other fungi is thought to

397 enhance the antidiabetic effect rapidly. Collectively, we believe that fermentation of
398 soybeans induce various phytoalexins (e.g., glyceollins in soybeans); therefore, the intake of
399 fermented soybeans, such as soy sauce, soy paste, Koji, and Natto might be useful to
400 synergistically prevent and/or control type 2 diabetes mellitus.

401

402 **Conflict of interests**

403 The authors declare no competing financial interest.

404

405 **Ethical approval**

406 This article does not include any studies with human participants or animals performed
407 by any of the authors.

408

409 **Author Contributions:** H.U.S., E.-K.Y., C.-Y.Y., C.-H.P. and H.S. performed the research.
410 H.U.S., E.-K.Y., M.-A.B., T.-H.K., C.H.L., K.-W.L., K.J.K. and S.-H.L. designed the
411 research study, and analysed the data. H.U.S., K.J.K. and S.-H.L. wrote the paper.

412

413 **Funding:** This research received no external funding.

414

415 **Acknowledgments:** We thank Seung-Hyun Lee (Matsutani Korea Co., Ltd., Seoul, Korea),
416 Seok Hyun Lee (Il-Yang Pharmaceucal Co., Ltd, Seoul, Korea) and Dr. Md Badrul Alam
417 (Food and Bio-Industry Research Institute, Kyungpook National University) for their helpful
418 assistance.

419

420 **References**

421 1. Nagata, C.; Mizoue, T.; Tanaka, K.; Tsuji, I.; Tamakoshi, A.; Matsuo, K.; Wakai, K.;
422 Inoue, M.; Tsugane, S.; Sasazuki, S. Soy intake and breast cancer risk: an evaluation
423 based on a systematic review of epidemiologic evidence among the Japanese
424 population. *Japanese Journal of Clinical Oncology* **2014**, *44*, 282-295.

425 2. Roblet, C.; Doyen, A.; Amiot, J.; Pilon, G.; Marette, A.; Bazinet, L. Enhancement of
426 glucose uptake in muscular cell by soybean charged peptides isolated by
427 electrodialysis with ultrafiltration membranes (EDUF): activation of the AMPK
428 pathway. *Food Chemistry* **2014**, *147*, 124-130.

429 3. Yu, D.; Zhang, X.; Xiang, Y.B.; Yang, G.; Li, H.; Fazio, S.; Linton, M.; Cai, Q.; Zheng,
430 W.; Gao, Y.T.; Shu, X.O. Association of soy food intake with risk and biomarkers of
431 coronary heart disease in Chinese men. *International Journal of Cardiology*, **2014**,
432 *172*, e285-e287.

433 4. Choi, M.S.; Jung, U.J.; Yeo, J.; Kim, M.J.; Lee, M.K. Genistein and daidzein prevent
434 diabetes onset by elevating insulin level and altering hepatic gluconeogenic and
435 lipogenic enzyme activities in non-obese diabetic (NOD) mice. *Diabetes and*
436 *Metabolic Research Review* **2008**, *24*, 74-81.

437 5. Scuro, L.S.; Simioni, P.U.; Grabiel, D.L.; Saviani, E.E.; Modolo, L.V.; Tamashiro, W.M.;
438 Salgado, I. Suppression of nitric oxide production in mouse macrophages by soybean
439 flavonoids accumulated in response to nitroprusside and fungal elicitation. *BMC*
440 *Biochemistry* **2004**, *5*, 5.

441 6. Palacios-Gonzalez, B.; Flores-Galicia, I.; Noriega, L.G.; Alemán-Escondrillas, G.;
442 Zariñan, T.; Ulloa-Aguirre, A.; Torres, N.; Tovar, A.R. Genistein stimulates fatty
443 acid oxidation in a leptin receptor-independent manner through the JAK2-mediated
444 phosphorylation and activation of AMPK in skeletal muscle. *Biochimica et*
445 *Biophysica Acta* **2014**, *1841*, 132-140.

446 7. Yoon, E.K.; Kim, H.K.; Cui, S.; Kim, Y.H.; Lee, S.-H. Soybean glyceollins mitigate
447 inducible nitric oxide synthase and cyclooxygenase-2 expression levels via
448 suppression of the NF-κB signaling pathway in RAW 264.7 cells. *International*
449 *Journal of Molecular Medicine*, **2012**, 29, 711-717.

450 8. Lee, S.-H.; Lee, J.; Jung, M.H.; Lee, Y.M. Glyceollins, a novel class of soy phytoalexins,
451 inhibit angiogenesis by blocking the VEGF and bFGF signaling pathways. *Molecular*
452 *Nutrition and Food Research* **2013**, 57, 225-234.

453 9. Kim, H.J.; Suh, H.J.; Kim, J.H.; Park, S.; Joo, Y.C.; Kim, J.S. Antioxidant activity of
454 glyceollins derived from soybean elicited with *Aspergillus sojae*. *Journal of*
455 *Agricultural and Food Chemistry* **2010**, 58, 11633-11638.

456 10. Lee, Y.S.; Kim, H.K.; Lee, K.J.; Jeon, H.W.; Cui, S.; Lee, Y.M.; Moon, B.J.; Kim, Y.H.;
457 Lee, Y.S. Inhibitory effect of glyceollin isolated from soybean against melanogenesis
458 in B16 melanoma cells. *BMB Reports* **2010**, 43, 461-467.

459 11. Dabhi, A.S.; Bhatt, N.R.; Shah, M.J. Voglibose: an alpha glucosidase inhibitor. *Journal*
460 *of Clinical and Diagnostic Research*, **2013**, 7, 3023-3027.

461 12. Yoon, E.K.; Jeong, Y.T.; Li, X.; Cui, S.; Park, D.C.; Kim, Y.H.; Kim, Y.D.; Chang,
462 H.W.; Lee, S.-H.; Hwang, S.L. Glyceollin improves endoplasmic reticulum stress-
463 induced insulin resistance through CaMKK-AMPK pathway in L6 myotubes.
464 *Journal of Nutritional Biochemistry* **2013**, 24, 1053-1061.

465 13. Lee, D.S.; Lee, S.-H. Genistein, a soy isoflavone, is a potent alpha-glucosidase inhibitor.
466 *FEBS Letters* **2001**, 501, 84-86.

467 14. Kazeem, M.I.; Adamson, J.O.; Ogunwande, I.A. Modes of inhibition of alpha-amylase
468 and alpha-glucosidase by aqueous extract of *Morinda lucida* Benth leaf. *Biomedical*
469 *Research International* **2013**, 2013, 527570.

470 15. Adisakwattana, S.; Chantarasinlapin, P.; Thammarat, H.; Yibchok-Anun, S. A series of
471 cinnamic acid derivatives and their inhibitory activity on intestinal alpha-glucosidase.
472 *Journal of Enzyme Inhibition and Medicinal Chemistry* **2010**, *24*, 1194-1200.

473 16. Thompson, W.J.; Appleman, M.M. Multiple cyclic nucleotide phosphodiesterase
474 activities from rat brain. *Biochemistry* **1971**, *10*, 311-316.

475 17. Trott, O.; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking
476 with a new scoring function, efficient optimization, and multithreading. *Journal of*
477 *Computational Chemistry* **2010**, *31*, 455-461.

478 18. Biasini, M.; Bienert, S.; Waterhouse, A.; Arnold, K.; Studer, G.; Schmidt, T.; Kiefer, F.;
479 Gallo-Cassarino, T.; Bertoni, M.; Bordoli, L.; Schwede, T. SWISS-MODEL:
480 modelling protein tertiary and quaternary structure using evolutionary information.
481 *Nucleic Acids Research* **2014**, *42*, W252-258.

482 19. Chou, T.-C. Theoretical basis, experiemntal design, and computerized simulation of
483 synergism and antagonism in drug combination studies. *Pharmaceutical Reviews*
484 **2006**, *58*, 621-681.

485 20. Chiasson, J.L.; Josse, R.G.; Gomis, R.; Hanefeld, M.; Karasik, A.; Laakso, M.
486 Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised
487 trial. *Lancet* **2002**, *359*, 2072-2077.

488 21. Wang, Y., Ma, L., Li, Z., Du, Z., Liu, Z., Qin, J., Wang, X., Huang, Z., Gu, L., & Chen,
489 A. S. Synergetic inhibition of metal ions and genistein on α -glucosidase. *FEBS*
490 *Letters* **2004**, *576*, 46-50.

491 22. Liu, Y.; Ma, L.; Chen, W.H.; Park, H.; Ke, Z.; Wang, B. Binding mechanism and
492 synergetic effects of xanthone derivatives as noncompetitive alpha-glucosidase
493 inhibitors: a theoretical and experimental study. *Journal of Physical Chemistry B*
494 **2013**, *117*, 13464-13471.