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Abstract: Firstly, a new set of Quasi-Cubic Trigonometric Bernstein basis with two tension shape parameters is
constructed, and we prove that it is an optimal normalized totally basis in the framework of Quasi Extended
Chebyshev space. And the Quasi-Cubic Trigonometric Bézier curve is generated by the basis function and the
cutting algorithm of the curve are given, the shape features (cusp, inflection point, loop and convexity) of the
Quasi-Cubic Trigonometric Bézier curve are analyzed by using envelope theory and topological mapping; Next we
construct the non-uniform Quasi-Cubic Trigonometric B-spline basis by assuming the linear combination of the
optimal normalized totally positive basis have partition of unity and C2 continuity, and its expression is obtained.
And the non-uniform B-spline basis is proved to have totally positive and high-order continuity. Finally, the
non-uniform Quasi Cubic Trigonometric B-spline curve and surface are defined, the shape features of the
non-uniform Quasi-Cubic Trigonometric B-spline curve are discussed, and the curve and surface are proved to be
¢ continuous.
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shape preserving; shape features

1. Introduction

The construction of basis functions has always been an important topic in computer-aided geometric design
(CAGD)and computer graphics(CG). A class of practical basis functions often have an important impact on the
development of the geometric industry. Traditional Bernstein and B-spline basis, especially cubic basis functions,
are widely used in geometric industrial designs, but the resulting curve positions are relatively fixed to the control
polygon. Although the NURBS method has a weighting factor that can adjust the shape of the curve, the effect of
the weighting factor on the curve is often unclear to the researchers[1-3].

In order to solve such problems, a large number of new basis functions are constructed. The simplest method
is to add shape parameters to the classical Bernstein and B-spline basis[4-8]. But in order to be able to effectively
modify the shape of the curve, a lot of work is around the tension parameters[9-14]. Based on the C*splines, the
C? N FC*spline curve with tension parameters is constructed[15]. On this basis, a group of C? nG?spline curve
with three shape parameters is constructed[16]. In [17], Han constructed a class of spline curves with two
exponential shape parameters which possesses C? ~ FC®*® continuity. Given the shape preserving property of the
curve, Costantini [18] constructed a set of variable degree polynomial basis in the space {1,t,(1-t)",t"}, which is
a Quasi Extended Chebyshev(QEC) space[19,20]. From that, the space {Lt,t?---t"? (1—t)",t%} is also proved
to be a QEC space[21]. Lately, in the framework of Canonical Complete Chebyshev space, it is proved that the
variable degree splines basis possesses totally positivity property[22]. In [23], Zhu constructed a kind of quasi
Bernstein basis with two shape parameters, which is proved an optimal normalized totally positive basis, and the
related B-spline curve possessing C? ~FC** continuous. In [24], Wang constructed a group of DTB-like basis
with two denominator shape parameters, and the associated B-spline basis possesses C>™* continuity when the
shape parameters are globally parameter. In [36], the changeable spline basis is given.

In this paper, the theoretical knowledge of QEC- space is applied to prove that
T, p = span{l,sin 2 t, (L-sin t)3(L- arsin t), (L cost)3 (1~ Scost)} space with shape parameters constitutes QEC space,

and the expression of the optimal normalized totally positive basis(B basis), the definition and corner cutting
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algorithm of Quasi-Cubic Trigonometric Bézier curve(QCT-Bézier), and the shape analysis diagram of
QCT-Bézier curve are given. The presented noon-uniform Quasi cubic trigonometric B-spline (QCT-B spline)
curves have C? continuity at every knots, which can be C(Z”‘l)(n=0,1,2,3,~--) continuous for a uniform vector
and a shape parameter. The shape parameters of QCT-Bézier curves and QCT-B spline curve and surface can be
adjusted foreseeably.

The other work arrangements of this paper are as follows: A class of B basis is given in Section 3. Section 4
presents the definition, corner cutting algorithm and shape features of QCT-Bézier curve. In the section 5, a group
of QCT-B spline basis is proposed and its properties are analyzed. Section 6 gives the definition and local
adjustable properties of QCT-B spline curve. Section 7 gives the definition and high order continuity of QCT-B
spline surfaces. Finally, Section 8 gives the conclusion.

2. Preliminaries

In order to better understand this paper, this paper gives some theoretical knowledge about QEC space and
Extended Completed Chebyshev(ECC). For more detailed information, please refer to [19, 25-31].

Use | to represent an arbitrarily given [a,b], which has the following definition:

Definition 1 ECC space: If there are 4 positive weight functions w; eC”’j(I)(j =01273), it has the
following form

Uy (1) = W, 1),

u,(t) = w (1) [ wi (,)dt,

u, (1) = w, (0) [ w (1) ['w, (t, )t di,,

U (8) = Wo(0) [ W (1) ['w, (1) [* w (8, )it dt iy,

we call (ug,uy,U,,u3) a 4-dimension ECC-space.

4-dimension function space (ug,uq,u,,u3) is an ECC space on | if and only if for arbitrary k(0<k <3),
arbitrary linear combination of the subspace (ug,---,u,) has at most k zeros (counting multiplicities).

Definition 2 QEC space: 4-dimension function space (ug,U;,U,,U3) is an QEC space on | if and only if
for arbitrary linear combination of the subspace (ug,Uy,U,,U3) has at most 3 zeros (counting multiplicities).

Definition 3 Totally positive basis: Basis functions (ug,u;,U,,u3) is said to be totally positive on closed
bounded interval [a,b] if, for arbitrary sequence of points a<ty<t; <t, <t3<b, the collocation matrix
(uj(ti))o<i, j<3 s totally positive ; that is, all its minors are nonnegative.

For a function space with a totally positive basis, the B basis is unique. Other totally positive basis can be
deduced by multiplying a totally positive matrix in the basis of B basis.
3. Construction of B basis

For any te[0,n/2],e,[-11], we will construct Quasi-Cubic Trigonometric Bernstein basis (QCT
Bernstein basis) in space T, 3 =span{Lsin2t,(1—asin t)L-sin t)3,(1—ﬂcost)(1—cost)3}, therefore, the related
mother-function is given as follows:

@(t) ={sin’t,(L— asint)(L—sint)3, (L— Bcost)(L—cost)>},t [0,/ 2]. @)

It can be known from the theorem 3.1 of [24] that it is only necessary to prove that the related differential space
DT,z =span{25intcost,—cost(3+a—4asint)(l—sint)z,sint(3+,8—4,Bcost)(1—cost)2} is a 3-dimensional
QEC space on a closed bounded interval t [0, 7/2].

Theorem 1 For arbitrary «, 8 e[-11],t€[0,x/2], DT,  isa 3-dimensional QEC space.

Proof For arbitrary & € R(i=0.1,2) , we have

&o[2sintcost] + &{—cost(3+a —4asint)(1-sin t)2}+ &E{sint(3+ g —4pcost)(1- cost)z}: 0. (2)

For t=0, from (2), we can get & =0; For t==n/2, we can get & =0; Finally, we can get & =0.
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Therefore, DT, 5 isa 3-dimension space.

Next, we will prove that DT, 5 is a 3-dimensional ECC space on [0,m/2]. For te[a,b]=(0,n/2), let

3+ a+sin’t(8asint —3-9a)
u(t) = 7 cost>0,
sin

3+ f+cos’t(83cost —3-93)

v(t sint>0,
© cos’t
—6+ (-2 +8sin’t 3+a+sin’t(8asint—3-9
u'(t) = il — )coszt— d (_a ) <0,
sin’t sint
-6 —2+8cos’t 3 cos’t(85cost —3-9
V() =— M )sin2t+ A ®p A >0,

cos’t cost

Therefore, according to Wronskian, we have
W (u,v)(t) =u(t)v'(t) —u'(t)v(t) > 0,vt [0,/ 2]
For te[a,b], we define 3 weight functions as follows
W (t) = 2sintcost,

wy (t) = Au(t) + Bv(t),
W (u,v)(t)

"0 = + B

Where A,B,C are 3 any positive real numbers. And w (t)(i =0,1,2) are positive, bounded, and C* on [a,b].
We consider the following ECC space defined by w;(t)(i=012),

Uy (t) =W, (t),
u,(t) = w (1) [ w (8t
U, (1) = Wy (0) [ Wi (t) [ W, (,)dt i,

We can verify that ug(t),u(t),u,(t) are the linear combination of 2sintcost,—cost(3+ a —4asint)(1-sin t)z,
sint(3+ﬂ—4ﬁcost)(1—cost)2. According to[24-29,32], we can obtain that DT, zis a 3-dimensional ECC
space on [a,b]. In addition, [a,b] are any subinterval of (0,7/2), therefore, DT, g is a 3-dimensional ECC
space on (0,7/2).

Next, we further prove DT, 4 is a 3-dimensional ECC space on [0,m/2] as well. According to [24-29,32],
we only prove that arbitrary nonzero element of DT, 5 has at most 2 zeroes on [0,w/2] . Consider the following
nonzero function

F(t) = Cy[2sintcost] + Cy[—cost(3+ a —4asint)(L—sin t)z] +C,[sint(3+ g —4pcost)(1— cost)z]

Where te[0,m/2]. From the precious proof, we have obtained that DT, sis a 3-dimensional ECC space on
(0,m/2) . Therefore, F(t) has 2 zeros at moston (0,7/2).

We first assume that F(t) vanishes at 0, we can get C; =0. On this occasion, if C, =0, we can find that
F(t) has two singular zero at 0 and 7/2, respectively. If Cy =0, we can find that F(t) only has a singular
zero at 0; If CoC, >0, we have

F(t) = C,[2sintcost] + C,[sint(3+ B — 4 Bcost)(L—cost)’]
=sint[2C, cost +C,(3+ S —4pcost)(L— cost)z]
On this occasion, we can easily get that F(t) vanishes at 0, but it does not vanish at 7z/2. For te(0,7/2), we
have
(3+ﬂ—4ﬂcost)(1—cost)2 >0.
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Therefore, we can get that F(t) is constant positive or negative on (0,7/2). And we can get that F(t) only
have a zeroes. If CyC, <0, let
g(t) =2Cycost +C,(3+ S —4Scost)(1- cost)2 .
Thus, we have
g'(t) =sint{-2C, +125in2(t/2)((1+ p)sint — Bsin 2t)},
we let h(t)=sin2(t/2)((1+,8)sint—ﬂsin 2t), we can easily prove that h(t)>0. Therefore, we can get that
g(t) is monotonically decreasing or monotonically increasing function on (0,7/2). g(t) has at most 1 zeroes
on (0,7/2).Thus, g(t) hasatmost2 zeroeson [0,7/2].
From the previous discussion we know that DT, 5 is a 3-dimension QEC space. By theorem [24] of 3.1,
we get that blossom exits T, B Thus, by theorem [24] of 2.13, we can easily deduce that T, p Possesses a B
basison [0,7/2].
Theorem 2: For «, B e[-11],t €[0,n/2], the related B basis of T, 5 is
To(t) = @-sint)*L - asint),
Ty(t) =1-sin®t — 1 —sint)*(L—asint),
T, (t) =1-cos’t—(1— cost)s(l—ﬂcost), ©
Ta(t)=(1- cost)g(l—ﬂcost).
We also call B basis as QCT-Bernstein basis with two parameters « and f.
Proof: Forany «a,f e[-11], from the (1), we have
®(0) = (0,1,0), d(n/2) = (1,0,),
@'(0) = (0,~(a +3),0), ®'(n/2)=(0,0,3+3),
®"(0)=(2,6a +6,0), @"(n/2)=(-2,0,68+6).
From the properties of blossom[16-21], we have
Iy = ®(0) = (0,1,0),I15 = d(z/2) = (1,0,1),
{1, } = 0s¢,®(0) N Osc,®(7/2) = (0,0,0),
{1, } = 0sc,®(0) N Osc,®(7/2) = (1,0,0).

From te[0,7/2], from @)=Y AMIL, , we have
T,(t) + T,(t) =sint,

T,(t) = (L—-sint)*(L—asint),
T,(t) = (L—cost)*(1 - Bcost).

From @(t) together with Zf‘:o'l'i (t) =1, we can easily deduce the expressions of (3). Next, we verify that
T(t),i=0L---3 isaBbasisof T, 5.
Firstly, we prove that T,(t),i=0.1---3 are linear combination. For any & eR(i=0.123), we consider the

following linear combination:
3
i=0
And then we differentiate both side of (4), we have
3
24T =0, ©)
i=0

When t=0, feom (4) and (5) , we have

{50 =0,
(@+3)(&—-&)=0.
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Thus, we can obtain that & =& =0. When t=7/2, we have & =& =0. Thus, we can easily prove
Ti(t),i=0123are linearly independent. We also easily verify T;(t)>0,i=0123 on [0,#/2] and T;(t)>0
on (0,7/2) . In addition, we can easily prove that T;(t) >0,i =0,1,2,3 possesses the following end-point property:

To(0)=1,and Ty(t) vanishes3timesat =/2;

T3(7/2)=1,and T(t) vanishes 3 times at 0.

Thus, from [24], we can know that QCT-Bernstein basis T;(t) >0,i =0,1,2,3is a B basis of Top -

Fig. 1gives some plots of QCT-Bernstein basis.
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Fig.1 The image of QCT-Bernstein basis with different shape parameters
4. QCT-Bézier curves
4.1 The definition and properties of curve

Definition 4 Given control points R(i=01,...,n) e R2/R3, n>3.Then
3
Qe p) =2 T (ta, p)P,te[0,n/2],a, f e[-1]] (6)
i=0

is called a QCT-Bézier curves with 2 shape parameters « and f.

Since QCT-Bernstein basis has the properties of totally positive, nonnegatively and partition of unity, the
related QCT-Bézier curves devoted in (6) possesses variation diminishing, affine invariance and convex hull,
which means that QCT-Bézier curves are suitable for geometric design. In addition, for any «, 8 €[-11], we have
the following end-point property:

Q. B) =Ry,

Q(n/2a,B) =P,

Q0. B) = (a+3)(A—Fy).
Q(n/2a,f)=(B+3)(P3—Py),

Q'(Ga,p) = (6a+6)(Ry—R)+2(P, —R),
Q'(n/ 2, B) = (65 +6)(P3 — Py) + 2(P - Py).

From the properties discussed above, we know that the QCT-Bézier curves keep all the properties of
traditional Bézier curves. Since QCT-Bézier curves have 2 parameters « and /3, it has the property of flexible
shape adjustability.

4.2 Shape adjustment of QCT-Bézier curves
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Next, we rewrite (6) as the following form:
T(t;a, ) = P.cos’t + P,sin’t + T, (t; @) (P, — P) + T, (t; B)(P, — B,). ©)
Obviously, for any settled te(0,n/2), Ty(t;cx) decreases with the increase of o, which indicates that the
QCT-Bezier curve has the same direction of the edge vector By — P as « increases. When o decreases, the
situation is just the opposite. For edge vector P, —P,, B has the same effect. When « or f increases,
QCT-Bézier curves will approach P, and Pj, respectively. When « =/ increases or decreases, QCT-Bézier
curve has the opposite or same direction of the edge vector P, — R, which indicates that parameters « and S

have the tension effect. Fig.2 shows the QCT-Bézier curves with different shape parameters.

---------- a=0.5,9=-1
— ——a=1,7=-1

— — —a=-1,4=1

Fig.2 The adjustment of the QCT-Bézier curves

4.3 The corner cutting algorithm
Below, we develop a corner cutting algorithm to effectively calculate QCT-Bézier curves. To this end, the
QCT-Bézier curves are written in the matrix form of (8). Fig.3 shows the whole process of calculating QCT-Bézier

curves.

1-sint sint 0
. L2 2
t;a,f)=\l-sin“t 1-cos“t
Qe ) ﬁ )X[ 0 cost 1—cost]

(-sint)A-asint) (a+2)sint—asin’t . . i .
1+sint 1+sint 0 (8)

cost sint R

x 0 _ _ 0 X
sint + cost sint + cost P,
0 0 (8 +2)cost - fcos’t  (1-cost)(L— Soost) =
1+ cost 1+ cost
a=0,4=0,t=x/4

(- siui(]— asint)
1+sint

Pl

1+sint

A———>H
cost 1-sin?
sin’+cos?
sin?
P A sinf

sinf+cost ' pi

B L <
2 (@ +2)cost—acos™ o
14cost \ \
(1—cost)(1— Pcost)
R Sy LA 3y 1O SH-I

1+cost

Fig.3 The corner cutting algorithm
4.4 The shape analysis of QCT-Bézier curves
In this section, we will use envelope theory and topological mapping to describe the shape features of the
proposed QCT-Bézier curve given in (6). The relevant cusps, inflection points, loops, convexity as well as
envelope and topological mapping theories can be referred to [33-35].

4.4.1 The shape analysis of spatial QCT-Bézier curve
Theorem 3 When «,fe[-11],t €[0,#/2], if R(i=012,3) are not coplanar, QCT-Bézier curve is spatial
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curve, it does not have cusps, loops and inflection points, and it has the same rotation direction as R(i=012,3) .
Proof: Leta; =P, —P_;,i =12,3, we rewrite Q(t) (6) as
Q(t) =Ry +[1-To(t;2)]ay +[T2(t; B) + T3(t; B)lap + T5(t; B)as. ©)
Thus, we have
Q) =—To(t;x)ay +[T2(t; B) + T3(t; Alag + T3(t; Bas.
When O<t<z/2 , according (3), we have T,(t;5)+Ts(t; ) =2sintcost=0 . According to
P (i=0.223) are not coplanar, we can know that the vector &;(i =1,2,3) are not linear combination, thus,
Q(t) # 0, and it has not cusps.
Next, we assume that Q(t) possesses loops, when 0<t; <t, <z/2,wehave Q(t)—Q(t,)=0. Thus,
[To(to; ) —To(t; )]y +[To(t; B) + Ta(ty; B) —To(ta: B) —Ta(tz; A)lag +[Ta(ty; B) —Ta(tz; A)lag = 0. (10)
According precious discussion ,we have known that a;(i =1,2,3) are linear independent, thus, from (10), we
have Ty(t;; ) =To(ty; )i To(t; B) =To(ty; B)iTa(t; f) =Ta(tp; B) . Then, we let Ty(t;e)=0 , we have
—cost(3+a —4asint)(1—sin t)2 =0, we can obtain t=x/2(x) and t=arcsin((«+3)/4x) . According to
O<arcsin((e+3)/4a)<x/2, we have a<-3ora>1. Thus, when ae[-31], T,(t;e) is monotonically
decreasingon [0,7/2], Ty(t;cx) hasnotloops. Thus, when o e[-11], Q(t) has not loops.
Then, let G(t) =det(Q'(t),Q"(t),Q"(t)) , we have

G() =Gl SPTH DRI

STO 3T XTW ST
PO YPTO YRTWH YPRTI

-

I
o

[To®) Tot) Tg@) Tg)]
11 1 1T T 7o T
[P R P BTy Ta) T(t) T
[ Ta(t) T3(t) T30 T3 |

[To) T3 T4 TM) ]
10 0 0]m®m TO T T
Po & ap ag|To(t) Ta(t) T5(t) TZ(t)
| Ta(t) T3 T3(t) T30 |

= (a,2,,a,)D(t)
Where, (a;,a,,83) is mixed product of vector edge a&,a,,a3, by directly computing, we have D(t) >0 . For
any O<t<z/2,from (a,a,,83) #0, wehave G(t) =0, and it has same positive and negative property as
(a1.a9,83) . Thus, Q(t) has not inflection points, and it has the same rotation direction as the control points.
4.4.2 The shape analysis of the planar QCT-Bézier curve
If R(i=0123) are coplanar, Q(t) is planar curve, at this time, we have (a,a,,a3)=0. Firstly, we
consider a, || a3, we have @, =Ua; +Vag. Substituting it into (9), we have
Q() = Py +[1-To (1) +u(To (1) + To(e))]a + [Ta(t) + V(T (0) + Ts(0)) g (11)
1) Cusps
The necessary condition that the planar QCT-Bézier curve Q(t) has cups is Q'(t)=0(0<t<z/2). From
(11), we have
[T5(®) +u(T;(0) + T;)]a, + [T(6) + v(B; (1) + B ())]a, =0 (12)
Because @; and ag are linear independent, from (12) and (3) , we have
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e (L-sint)*(-3- a + 4asint)
2sint
(1-cost)*(3+ B —4Bcost)
2cost

O<t<z/2 (13)

We analyze the shape of C, from (13), we have
limu=—o,limv=0
t—0 t—0

lim u=0, Iin}zv =—©

toz/2 tor

This shows that C has two asymptotes u=0and v =0, respectively. For any «, 8 €[-11], we have 3—“ <0,
v

2
j—g >0 .This indicates that the C is a monotonically decreasing and strictly convex curve. For any
u
(Ug,Vg) eC , we have Q'(t)=0and Q"(t) = 0. In fact, similar to the discussion of (12) and (13), we have
[=To(®) +u(T2(t) + T3(0)]ag +[T3(1) +v(T2(t) + T3(1))]ag =0 (14)
U [cos(t/2) —sin(t/2)]'[6 — 2a +8a cOs 2t + (9 —5ex)sint]
2cost _ O<t<rl2 (15)
o 4((56 —9)cost +2(—-3+ B+ 4cos2t))sin’(t/ 2)
2cos2t

For any «,f €[-11], we can easily verify that (13) and (15) cannot be established at the same time. It indicates
Q'(t)=0 and Q"(t) #0. Thus, we have
Q1) =Q"(®)(t —to) +o(t —to).

When the parameter t passes t;, the direction of Q'(t) will changes. We can easily conclude that Q(t,) isa
cusp. Therefore, the planar QCT-Bézier curve defined by (11) possess cusps are equivalent to (u,v)eC .
2) Inflection points

From the previous discussion , we have Q'(t)xQ"(t) = f (t,u,v)a, xa;. where
T TO O TO 1O T

f(t;u,v) = _To"(t) T T TR [T T

. (16)

Q(t,)(0<t, <x/2) is an inflection point if and only if f(t;u,v) change sign at t;. In the uv—plane, the
possible region of inflection points must be covered by the family of straight lines f(t;u,v)=0. According to
[33], the curve C is just the envelope of the family of straight lines. From the previous analysis, it can be known
that the curve C is a strictly convex continuous curve. Thus, the area swept by the tangent line of the curve C is
SuDUC, that is, the area where the inflection point may occur. In Fig. 4, 'S ' represents the area where the
QCT-Bézier curve has one single inflection point; < Ng, Ny, N, ' represents the area where the QCT-Bézier curve
without inflection points and loops; and ' D ' represents the area where the QCT-Bézier curve with two inflection

points; and ' L' represents the area where the QCT- Bézier curve has loops.
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Fig. 4 The shape diagram of QCT-Bézier curve(left: « = #=0; right: « = § =-1)
Obviously, the curve C has at least a tangent line f(ty;u,v)=0 passing through an any point

(Ug,vg) e SLUDULC . When (up,V,) € C, according to the Taylor expansion, we have
1 ", .
f (t;uo’vo) = E ftt(twuo'vo)(t _to)z + 0((t _t0)2)1

where f"(t;ug,Vg) =0 . Thus, we can easily conclude that f(t,uy,vy) does not changes sign at ty, the planar
QCT-Bézier curve has not inflection points. When (up,vp) e SwD, we assume that f(t,ug,Vg) is one of
tangent line of C , which passes (ug,Vy) , according to Taylor expansion, we have

1 1
f(tug, V) = E fl(ti U, Vo)t — 1) +o(t —t;) .

We can easily get f{(ty,up,vp) =0 (if f{(ty,uq,vg) =0, from the definition of envelope, we can know that
(Ug,Vg) €C). Thus, f(t;ug,vp) will change sign at tg, the planar QCT-Bézier curve Q(t) has a inflection point
at ty. In addition, when (ug,vp) €S, the curve Conly has a tangent line which passes (ug,Vg) ., the related
curve Q(t) only has one inflection point; When (ug,vg) € D, the curve C has two tangent line which passes
(Ug,Vp) . the related curve Q(t) has two inflection points.
3) Loops
The planar QCT-Beézier curve Q(t) has loops if and only if there exists 0<t; <t, <z /2 such that
Q(t)) =Q(t,) . This is equivalent to the parameter u,v,t;,t, satisfying the following equations:
ue T,(t; ) Ty (t:a) ’
T(4: 8) + To(t,: B) - T, (4; B) —Ts(t; B)
e T(t:A) ~T,(t: ) ,
T,(t; B) + T3 (t,: B) — T, (t; B) - T (t; B)

(t,t)eQ an

Where Q={(t;,t,) € R? |0<t<ty<z/2} . Easy to verify (17) defines a topological mapping
F:QcR? > F(Q)cR?, thus, the image L=F(Q)is a simply connected region in uv—plane. The three
boundary lines of L correspond to the three boundary lines t;=t,, t;=0and t,=1 of Q, i.e. the curve
C (not belonging to L), L; and L, (both belonging to L )(see Fig.4). The planar QCT-Bézier curve
corresponding to the pointin L only has one loop, where the parametric equation of L; and L,are as follows:

e (L—asint)@-sint)® -1

A2
L sin“t 0<t<z/2, (18)
_ (1— Bcost)(1—cost)’

sin’t

V=
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(L-asint)@-sint)®
= > ,
L= cos't 0<t<z/2, (19)
Ve (1- Bcost)(l—cost)® -1

cos?t

From the mathematical analysis, it can be deduced that the curve Ly and L, are both monotonically
decreasing and strictly convex continuous functions. Ljand L, intersect at point (-1,-1), L; with the u axis
as the asymptotic line, and L, withthe v axis as the asymptotic line. The curve of C does not intersect either
L or L.

4) Convexity

Let N =R2\(CuSuDuL), where the upper left part enclosed by the curve Ly, L, (excluding the
boundary of Ly,L,) is Ny, the lower right part is N,, and Ng=N\(N;UN,), see Fig.4. From the previous
discussion, when (u,v) € N, the planar QCT-Bézier curve Q(t) has not cusps, inflection points and loops. Next,

we consider the following vector M(t) and N(t):

{M () =Q(0)x[QM) ~Q(O)]. 0)
N(t) =[Q(t) -Q(0)]x Q'(t).
According to (11) and (20), by direct computing, we have
{M(t):g(t;u,v)(alxas), 1)
N(t) = J(t;u,v)(ag x a3).

Where,
S(tu,v) = (a +3){T3(t) + V[T (t) + T3 ()1},
£(tu) =[1-ToOI() + TaOT () + U (OT3(1) - T3 (O T3]
+W{[L-To (O[T (1) + T3 O]+ To (O[T (1) + T3 (D13
When vy =-Ta(tg) /[To(ty) + Ta(tg)], £(t;u,v) changes the direction at t;. We can easily get —1<Vv, <0.
Thus , when (u,v) € N, (see Fig.4), the curve Q(t) is locally convex[33]. In fact, N;happens to be part of
N of the region covered by the tangent line to L, . According to literature [33], the envelope of the family of lines
¢(t;u,v) =0 are exactly curve Ly, and the region swept by the tangent line of L; in N is N,(see Fig.4).
Therefore, when (u,v)e N, , Q(t) is locally convex. When (u,v) e Ng=N\(N; UN,) , Q(t) is globally
convex.
Finally, when g | a3, the curve Q(t) has not cusps and loops; When &, has the same direction of ay (Does
not include the 4-point collinear singular case), the curve Q(t) only has a inflection point.
Theorem 4 When g || a3, the planar QCT-Bézier curve Q(t) has not cusps and loops; If and only if a; has
the same direction of ag, Q(t) only has one inflection point; When &, }| a3, let a, =ua +vag, then the shape
feature of Q(t) depends on the following distribution of points (u,Vv) in the uv— plane (see Table 1), ie

Table 1 Distribution of shape features of the planar QCT-Bézier curve

The shape features of the planar QCT-Bézier curve

() Convexity Cusps Loops Inflection points
C 1 No No
L No 1 No
S No No 1
D No No 2
Ng Global convex No No No
N; UN, Locally convex No No No

5) Adjusting effect of shape parameters
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Through the above analysis of the shape of the QCT-Bézier curve, the following conclusions can be drawn:

@ As shown in Fig.5, the change of the shape parameter « and # does not affect the single inflection point
region S and the global convex region Ny, so when Q(t) is global convex, it cannot be eliminated by adjusting
parameters; and when it is global convex, the shape parameters (1< «,  <1) are modified anyway, the curve is
still global convex.

@ As the shape parameters « and S increase, the curve C is stretched toward the point (0,0), Ly is
stretched toward the point (-1,0), L, is stretched toward the point (0,-1), double inflection points region
D shrinks, loops region L expands correspondingly, and locally convex regions N;and N,expand, as shown
in Fig.5.

® When (u,v) e{(u,v)|-1<u,v<0\{(-L-1)}, i.e. when the first and last two edges of the polygon are
intersected (except the first and last points coincide), the curve Q(t) may has cusps and loops or inflection points.
The curve Q(t) cannot be made into a locally convex curve simply by modifying the shape parameter, as shown
in Fig. 6.

@ When  (u,v) e{(u,v)|u<-1-1<v}U{(u,v)|-1<u,v<-1} ,i.e. when the control polygon is locally
convex, the cusps, inflection points and loops of the curve Q(t) can be eliminated by modifying the shape
parameter, and the curve can be adjusted to a locally convex curve, as shown in Fig.7.

5. Non-uniform QCT-B spline basis
5.1 The construction of QCT-B spline basis

Given knots Uy <U; <--- < Un.4, We denote a knot vector with U = (Ug,Uy,--+,Un,4) - Let h; =Uj1 —Uj,

t ()] =n(u—uj)/2hj, j=01---,n+3, for any real numbers ¢, [-11],i=01---,n. The related QCT-B

spline basis is constructed as follows:
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Ny

a=-1,4=-1

***** a=0.5,4=-1 ——-—qa=-1,4=0.5

Fig.6 The curve must have a Figure 7 Eliminate double inflection
cusp and loop or a double inflection point points, cusp or loop to adjust the curve to local convex
Bio(ti) =diTa(ti; 5). uefu;,Uisg),

3
Bi1(tis1) = Zj=0Ci+1,jTJ' Gy @is1, Bist)r U €lUjpg,Uiyo),

22)
Bi(u) = 3 (
(1) Bi2(ti2) = ijobnz,jTj (12,22 Fir2), UE[Uji2,Ui3),

B; 3(tisa) = &i43To (tisa: 2iva), ue[uj,3,Uipa),

0, uefu;,Uig),

whereT;(ti; ¢4, 4), j =01,2,3 is the QCT-Bernstein basis given in equation (3).
In order to determine the coefficient a;,b; ;,¢; j,d; , two constraints are given to the constructed QCT-B spline
basis: (1) B; (u) has Czcontinuity on all knots; (2) B (u) has unity in the interval [u,,u, 4] . After that, you can

directly find the coefficient as:

A =3, +D(B, +3)h, +3(

H; = (a +3)h +(f +3)h
_Ah by _Aah +uhy

e T @

i+1
L (BIAN
I Aiatt Ny o+ A AN+ Ay
+ S)A’lﬂhiz

+ At ah

w38 +Dhy,

i+l

o (o
L Aaph + A2

i+ i+l

i+2
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by, = (o +3)ph, a, + (Bs+3)oih d,,
Hiy Hia
bi,l =da, Cio= di—l
b|2 :Lam Ci1:Ldi4
(B +3)hy, " (g +3)hy,
b,=a, C,=¢d,
5= (2, +3)¢.4h a.,+ (B +3ph., d,,
Hi Hi

Definition 5 For any «;, £ €[-11], given kont vector U and coefficient &l j,¢; ;,d;i, we call (9) is
QCT-B spline basis with 2 shape parameters.

For equidistant knots, the QCT-B spline basis is called a uniform QCT-B spline basis, and the corresponding
knot vector is called an equidistant knot vector. For non-uniform knots, the QCT-B spline basis is called a
non-uniform QCT-B spline basis, and the corresponding knot vector is called a non-equidistant knot vector. Fig.8
shows the image of the uniform QCT-B-spline basis under different shape parameters.

a=(1,1,1),5=(1,1,1) a=(1,1,1),4=(0,0,0)

1

1
081 10.8 1
06 10.6
04r 10.4 1
0.2 10.2 1
0 0
0 1 2 3 4 5 6 0 1 2 3 4 5 6
1 .0:(0'0‘0.)“3:(1'1.'1) 1 Ia-:(U.O‘UI)‘_Ii’:(O.U‘.O)
081 10.8 1
06 10.6
04r 10.4 1
0.2 10.2 1
0 0
0 1 2 3 4 5 6 0 1 2 3 4 5 6

Fig.8 Uniform B-spline basis

Direct calculations yield the following lemma, which will be very useful for subsequent discussions.
Lemma 1 Forany ieZ, the following equation is true:

®a +b,+c,=1 (2b,+c,=1 (db,+c,=1

(4b;+c,+d, =1, (5)d, =c,.,

(G)bi+2,0 =Ciya (7)bi+2,3 =83
T T
(8)(2_hlj(ﬂ. +3)d; = (m](am + 3)(Ci+1,1 - Ci+1,0)1
T b
(%(E](ﬂm + 3)(Ci+1.3 - ci+1.2) = [EJ(“M + 3)(b|+2‘1 - bi+2.0)’
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(10)[2&]%2 +3)(0,,5 —b,,0) = ( J(% +3)a,.,,

2h,,

(11)&] 6(8, +1)d, —[ T j[(eai+1+6)cm (601, +8)C,y; + 26,1,

2I‘]i+1

(12)( on J [2¢,1, = €12 (68, +8) + (65, +6)C,., ]

2
[Zh J [(6a,, +6)b,,, — (6, +8)b,,, +20,,,],

i+l

(13)( 2: J [Zbi+2.1 - b|+2.2 (Gﬂnz + 8) + b|+2‘3(6ﬁ|+2 + 6)] = [ h J (6al+3 + 6)a|+3'

i+3

Remark 1 Foru;,j =u; + jh,h >0, j=1234, when ;4 = £ , by simplifying the basis function (22) from

two parameters to one parameter, the corresponding coefficient &, j,¢; j,d; can be simplified to as follows:

/1' 6(a|+1 + l)(ai+1 + 3) ﬂ| 2(a|+1 + 3)
¢ /1’ + :u| — ﬂ'l— + Hlfl
"o, +3 g +3

a = (o +3) 4,
- Asti gy + Ay + Aoty
d_ — (aH-l + 3) i+1
I ﬂ’Hllui + ﬂ’/llﬂ + ﬂ,”l,lm
b, = (e +3)¢, a,+ (o +3)p, d,,
Hig Hig
bi,l =da., bi,z -t T bi,s =q,
a,+3

i+1

Co=0, €= aﬂl_: d, C,=¢d,

_ (g +3)bs

- a,+ (2, +3)9 d,,

H;i Hi

When «= /=0, we have

di=—, G0 =
4
bi+1,0 = gl b|+1,1 =
5.2 Properties of the non-uniform QCT-B spline basis
Theorem 5 Forany u e[u,,u,,1,>" B /(u)=1

Proof For u e[u;,u;,4),i=34,---,n, we have BJ- W=0,j=i-3i—-2i-1i.

) bi+l,3 =

B y(u) =aA (L), B (u)= Zb.,A,(t..a..ﬁ)
B, (u) = ZC.,AJ(I o, ), B (u)=dA(t.5)

By using Lemmal, we have
Z:O:Bi(u) = aiA)(ti;ai)+iobl,jAj(ti;ai7ﬂi)+ioci,jAj(ti;ai’ﬂi)+diA3(ti;ﬂi) :%Aj(ti;ﬂi) =1

Theorem 6 If ¢, 5 €[-11], forany u; <u<uj, 4, we have B;(u)>0.
Proof For o, 5 €[-11], we have a,b;;,c; ;. dj >0. According to the nonnegative of A (t;c,/5),
j=012_3, we can easily get B;(u)>0.
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Theorem 7 Forany o, 4 €[-11], {By(u),B;(u), -, By(u)}are linear independent on [ug, U]

Proof Forany & eR(i=0.1---,n),u e[us,u,,4], we consider
B(u) =2 &Bi(u)=0.
i=0
For «, 5 €[-11], we have

B(ui) =aé ,+ bi,0§i—2 +GCio6ia = 0,

B’(Ui) = %[(ai + 3)ai (§i—2 - éifS) +(ﬂ|71-;;ﬂ (§i—1 - éz)} =0,
B'(u) - &j B, +a (&~ )+ 2B N g g’.z)} -0

Thus, we have

e (ézm - gifz) + (ai + bi,o + Ci,O)gi—z + Ci,0(§i—1 _é:i—z) =0,

o+ YA, - )+ B oo

(B +DdiY

(s +Da(& &)+ he —(&.-&2)=0.

According to a; +bjg +Cjg =1, the related coefficient determinant is

a, 1 Co

M= +a o Pt I8R5 o 0,9+ @ (A, +IN >0

0 (Ba+Ddi
W,

(a +Da,

Therefore, we canget & 3=¢&_,=&41=0,i=34,...,n+1.
Theorem 8 For any u €[u;,Ui 4] ¢, 5 €[-11,i=34,...,n, the systems (B;_3(u), B;_»(u), B;_;1(u),B;(u)) is
a totally positive basis of the space Tai B
Proof For u e[u;,uj;1],i=3/4,...,n, we have
(Bi_3(u), Bi_2(u), B 1 (u), B; (u)) = (To(ti; ), Ty (ti; ). T2 (45 5), Ta (5 ) H;

where,
a bio co 0
Lo ns ar of
0 bz ¢z d

and ¢, 5 €[-11.4;(u) =x(u—u;)/2h; . Given that the system (To(t; ) Ti(t; ) To(ti: 5). Ta(ti; 5)) is a B
basis of the space To 8 - According to Theorem 4.2 in [31], we can conclude that H; is a nonsingular stochastic
and totally positive matrix.

For o, f €[-11], we have aj, ’j,ci,j,di >0. Moreover, it is easily obtain that H;is a nonsingular

stochastic matrix from Lemma 1. Straightforward computation provides

bo ¢ _ .h
1,0 i,0 — (ﬂ|—1 + 3)§0|71h| diide S O'
b, ¢, (e, +3)h
Bo Cio _h(A il + A A0 + A y) (a,,+3)d,, + (B +3)(pi71(0ihi.d. d,>0
b. C. (B, +3)ush,he, R e i20is
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bi,O Cio| _ (o +3)(a,; +3)dd,hh h (A, + Ao AN + A b ) d
b = 8,48, + hh 8,404

s Cis M Hia My

2
+ (e, +3) (B + 3,00 a,d,+ (B, +3) (B, + 3o phh, d_,d >0,
HiaH; Hi

bhl Cis _ (A apihyy + A AN + A b ) a.d. >0
b, ¢ (a +3)(B, + ) 4hP 0, e
b, ¢ ) h ) h : )

() il — hl (ﬂ'lflll'll h|+1 + /F{’lflﬂirll + ﬁ'lﬂlflhlfl) ai+1di—1 + (aHl + 3)¢|¢|+1h| ai+1ai+2 > 0’
bis Cis (o4 +3)phih, Hi
b, c : . h

1,2 .2 — (aHl + 3)¢|+1h| ai+1a|+2 > 0’
b Cis (B +3)h,

Thus, we can easily proof that H; is a totally positive matrix. The corresponding conclusions can be proved.
Theorem 9 For any non-uniform knot vector U , when ¢;,f <[-11], B;j(u) has C2 continuity at each
knot.

Proof We only consider the situation at knot u;,4.Forany ¢o;,f €[-11], we have

B, (ui11) = div B; (uitrl) = G100
T

2h

i+l

Bi’(u;ﬂ) = (%](ﬂu + S)di’ Bi’(uitrl) = ( J(aiu + 3)(Ci+l,1 - Ci+1,o)r

2 2
Bi(u,) = (%j 6(8 +1d,, B(u,) = (2: J [(6a;, + 6)Cm,o - (6a;, +8)c,y, + 2ci+1,z]~
i i+1

Thus, by simple computing the theorem is proved at knot u;; . Other knots can be verified in the same way.
Theorem 10 For any uniform knot vector U ,and ¢; ;=4 [-11], Bj(u) has Cznfl(n =123,
continuity at each knot.

Proof First, we use verify that the (2n—1) -order derivative of (3) has the following form:

T = (-)" %[(130: +15)cost — 3" (3c +1) cos3t — 4" (4 + 3)sin 2t + 2¢ - 16" sin 4t]

T = —(—4)"sin 2t — (-1)" %[(130( +15)cost — 3" (3a +1) cos3t — 4" (4o + 3)sin 2t + 2 - 16" sin 4t]
(23)

T = (—4)"sin 2t - (—1)”’1%[(13,8 +15)sint +3*"*(34 +1)sin 3t — 4" (48 + 3)sin 2t — 24 -16" " sin 4t]

T = (—1)"*1%[(135 +15)sint + 3" (3B +1)sin 3t — 4" (43 + 3)sin 2t — 23-16™*sin 4t]

From the the theory of mathematical induction, we have

(D When n=1, we can conclude that
A= —%[(130: +15)cost —3(3cx +1) cos3t — 4(4a + 3)sin 2t + 2 Sin 4t]
A =-sin2t+ %[(130: +15)cost —3(3x +1)cos3t — 4(4a + 3)sin 2t + 2 sin 4t]

A =sin 2t —%[(13/3 +15)sint +3(34 +Dsin 3t — 4(4 3 + 3)sin 2t — 2 3sin 4t]

A= %[(13/3 +15)sint +3(34 +Dsin 3t — 4(4 3 + 3)sin 2t — 2 3sin 4t]

Thus, The form (23) is meet when n=1.

We assume that the form (23) is also meet when n=k . Therefore, the (2n-—1) -order derivative of (3) are
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AZD — (~1) %[(13(1 +15)cost — 3 (3 +1)cos3t — 4* (der + 3)sin 2t + 2¢r - 16" sin 4]

AP = —(~4)“sin 2t — (-1)* %[(130: +15)cost — 3% (3a +1) cos3t — 4* (e + 3)sin 2t + 2 - 16" sin 4t]
(24)
AP = (—4)*sin 2t - (—1)“%[(13,6’ +15)sint + 3% (34 +1)sin 3t — 4* (48 + 3)sin 2t — 23 -16"sin 4t]

AP = (—l)k’li[(ls,b’ +15)sint +3**(34 +1)sin 3t — 4* (4,8 + 3)sin 2t — 25 16" sin 4t]

Thus, we have

[ ] = (-0 21030 +15)cost - 37 (3 +1) cos3k - 4 (4 + )sin 24+ 216 sin 4] = AT
[Afzk “I —(=4)**sin 2t — (- 1)“1 [(13a +15)cost — 37 (3¢ +1) cos3t — 4 (4 + 3)sin 2t + 2 - 16 sin 4t] = ACDD
[Ajzk “I 4)*in 2t — (1)< a1 [(13ﬂ +15)sint + 3°*(348 + 1)sin 3t — 4" (44 + 3)sin 2t — 23 -16"" " sin 4] = AZ*HD
[AJSZk “I (i) R 1 (13,8 +15)sint +3**V?(34 + 1)sin 3t — 4" (44 + 3)sin 2t — 23 16" sin 4t] = AC*H

We can easily find that the form (23) is meet when n=k+1 as well. In summary, the (2n-1) -order derivative
of (3) meet the form of (23). Then, we given the proof that B;(u) is C*"*(n=12,---) continuous at each knot.
We only consider the continuity at the knot u;,;. From here and Remark 1, for uniform knot and the

condition of o, = £ e[-11], we can get d; =Cj,g1—Cj,10-According to the expression of (22), we have

i+1

B (u-)) = d, AP (n/2; B) = (—1)"’1%[(13,61 +15) - 3" (34 +1)]d,,

Bi(ZH) (Uy) =Ciapo (0 . B)+ Ci+1,1A1(2H) 0ray B) + i a(0; Gy )+ Cias (0; . B)

— (1 2172 +8) -3 ety + D] Guso ~ )

Based on the above conditions, we have B®"™(u;,) =B® ™ (u’,). It can therefore be proved that B, (u)
has C*"*(n=12,--) continuity at the knot u;,;. The basis function B;(u) can be similarly discussed with
respect to other knot continuity.

6 The Non-uniform QCT-spline curves
6.1 The definition and properties of curves
Definition 6 For any non-uniform knot vector U, P(i=01,...,n)e R?/R*n>3, and

a;, B €[-11],n>3,u €[uz,u, 4], we call
QW)=Y B @R 25)

as a non-uniform QCT-B spline curve with two shape parameters.
Obviously, for uely;,uj1],i=34,...,n, the QCT-B spline curve segment curve can be expressed as

following form

Q(u)_]ZBB (U)P, = (aP_, + b, P, +CoP )Tyt ) + 26)

(bR, + ¢, P )T (45 ) + (bR, + R )T, (6 8) + (0P, + 6P + diR)T (5 5).

Available from Theorem 5 and 6, for u e[u;,uj4],i=3/4,...,n, the non-uniform QCT-B spline curve Q,(u)
possesses affine invariance and it is located within the convex formed by the control points P_,,P,,P,P.
Furthermore, it can be see from Theorem 8 that the non-uniform QCT-B spline curve has variation diminishing.
Therefore, the non-uniform QCT-B spline curve retains all the basic properties of the traditional B-spline and has
flexible shape adjustability for geometric design. The following theorem can be obtained from Theorem 9 and 10.

Theorem 11 For any non-uniform knot vector U, when ¢;,5 €[-11], the non-uniform QCT-B spline
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curve is C2 continuity at each knot.
Proof We only consider the continuity of the non-uniform QCT-B spline curve at the knot u;,,. Then from
equation (26), in the interval [u;,u; 4] and [uj,q,U; -], the non-uniform QCT-B spline curve segments can be

expressed as

Q)= _ZB ()P = @R s +boR; +¢oR)To (ki) + (0,R, + iR )Tt ) +

j=i-3

(biz +C|2 |1)T (t|’ﬂ)+( i3 | 2 |3 |1+d P)T (t|’ﬁ|)’u e[ui’uiﬂ]' (27)

Q|+l(u) - Z B, (U)P - (a|+1 i-2 + b|+10 i1 + C|+10 |)T (t|+1’ |+1) + (b|+11 i-1 + C|+1 1P)T (t|+1’ |+1) +

j2
(BsPs + 0 PIT6si A) + (BaaPs 4 €+ G PITC AU €Wl o

Thus, we have

Q(uis) =bsR, +¢,R, +dR,

QualUin) =R, +b Ry + ¢k,

QUy) =—(0,R, +c,R.)(B +3)+(bsR, +¢R, +dR)(S +3),

Qla(Ui) =—(@4R, +B.40P + €y oR)B+ @) + (B,1,P + €y s R) B+ i)

Qs =2(b,R, +¢R) + (BB, +¢,R)[-2— (6 +6)]+ (bR, +c;R, +diR)(64 +6),

Qli(Ui) = (B4R +byoRs + €y oR) 60ty +6) + (by, Py + 6y, R)[-2 - (B, +6)1+2(b,, R, +C.y R).
According to the Theorem 9 and the coefficients a;,b j,

i+1(ui+1)’Qi (u'y) = Qi+1(ui+1)in (u'y) = Qi+1(ui+1) :
Theorem 12 For any uniform knot vector, for o, ,3 e[-1]and «,, =/ ,B() has C**(n=123,:")

Ci,j.di of expression (22), we have Q(u;,)=

continuity at each knot.
Proof We only consider the continuity of the uniform QCT-B spline curve at the knot u;,;. From the

Theorem 8 and Theorem 9, we have

Q)= ZB (U)P

j=i-3

Qu(uiy) = ZB (U)P

j=i-2

We also have B_,(u;,)=B,,(u’,) =0, sowe can easily obtain Q,(u;,) = Q;,1(Ui}1) -

[ | U}
- -0 O
wonowon
-0 =0

10

Fig.9 The QCT-B spline curve

6.2 Local adjustable properties

The non-uniform QCT-B spline curve presented in the paper possesses two shape parameters ¢;, 5 . Thus,
we can easily adjust the proposed curve shape by changing the parameters «;, when the control points are

fixed. From (26), we can get thate, ,, o, 4, ¢

i+

BB BB, affect the curve segment Q(u),u elu,,u,,,].

Thus, o affect four curve segment [u,,,u,,], and g affect four curve segment [u,,,u,,]. Furthermore, the
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shape of the proposed curve can be predicted from the shape parameters «;,f5 . As «;and f; increase, the
coefficients of control points R_; and PR decrease while the coefficients of B_, and R_; increase.
Therefore, as ¢;and g increase at the same time, Q (u)(uelu,u,]) tend to the P_P,. If ¢;and g
increase, Q.(u)(u €[u;,u,,])will tend to control point R_, and R_q, respectively.

Fig.9 shows the uniform QCT-B spline curve Q(u) . The left figure shows the situation when all parameters
a;(i=34,---,n) and S (i=34,---,n) are equal. The solid black line of the figure shows the case where all
parameters are «; = 5 =0, the green dotted line shows the case where one of the parameters is adjusted to
a; =1, and the blue dotted line shows the case where one of the parameters is adjusted to £ =1.

6.3 Shape analysis of QCT-B spline curves

In this section, we will use the envelope theory and topological mapping theory to describe the shape features
of the non-uniform QCT-B spline curve segments given in (26).

6.3.1 Shape analysis of spatial QCT-B spline curves

Theorem 13  When ¢, e[-11],ue[y;,ui4],i=34,---,n , if the four control points
P;(j=i-3,i-2,i-1i) are notcoplanar, the QCT-Bezier curve segments are spatial curve, it does not have cusps,
loops and inflection points, and it has the same rotation direction as the control points.

Proof Let b; =P; —P;_1(j =i—2,i—1i), the QCT-Bézier curve segments given in (26) can be rewrite as

QU) =P +[1-B, Wb, +[B,(u) + B Wb, + B ). (29)
Thus, we have Q/(u)=-B/ ,(u)b,+[B,(u)+B/)b,+B/{(u)b . Since the four control points
Pi(j=1-3i-2/i-1i) are not coplanar, the knot vector b;(j=i-2,i-1i) are linear independent, and
Q'(u)=0(y; <u<uy,,) . Therefore, we can easily get B{_s(u)=0and Bj(u)=0. From Bj(u)=0, we have
aT,(t.)=00<t <x/2) e T,(t,o)=0. Obviously, this can lead to contradictions. Thus, we can get
Qi (u) =0, and we also can easily get the curve segments Q;(u) have not cusps and inflection points.

Next, we consider the inflection points. Let H (t) = det(Q/(u),Q'(u),Q(u)) , we have
H (1) —det{ YBI(WP  YBIUP, ZI:B}”(U)PJ}

;Bj(u) _;B;(u) ZSB?"”) _;Bf'(u)
Zi_:Bj(u)Pj I B} (u)P, Zi_:Bj”(u)Pj I Bi(u)P,

(BL(U) BlL(U) BL(U) B
(101 1 1]BLM) BLW BLU) BLW
P, P, P, P|B.(W) BLM) BLW BLW)
B BU B B |

I B s(u) Bis(u) B'y(u) B, )]
1 0 0 0]B,Uu) B,U) B ,u) B(u)
| P b, b, bi_ B,(u) Bl(u) B(u) B"(u)
| B(u) Bi(u) Bu) Bu) |

= (b, by, b)M; ().

Where, (b_,,b,,b) is mixed product of vector edge b ,,b,.b , by directly computing, we have M,(t) >0 . For
any uelu,u,,], since (b_,,b,,b)=0, wecan getH(t)=0, and it has same positive and negative property as
(b_,,b,,b). Thus, Q(u)has not inflection points, and it has the same rotation direction as the control points.
6.3.2 Shape analysis of the planar QCT-B spline curve

If the four control points (PJ- IS R2, j=i-3,i—2,i—1,i)are coplanar, Q;(u) is planar curve, at this time, we

have the following theorem about its shape features.
Theorem 14 When by | bj_,, the planar QCT-B spline curve @;(u) has not cusps and loops; If and only if


https://doi.org/10.20944/preprints201910.0213.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 18 October 2019 d0i:10.20944/preprints201910.0213.v1

b; has the same direction of b_,, Q;(u) only has one inflection point; When by ||b_,, let b_; =Ub_, +Vby,

where (U,V) = (bj_y xbj,bi_o xbj_1)/(b_o xby) , then the shape feature of Q(u) depends on the following
distribution of points (U,V) in the UV —plane (see Table 2), ie

Table 2 Distribution of shape features of planar QCT-B spline curves

The shape features of planar QCT-B spline curve segment

u.v)
Convexity Cusps Loops Inflection points

C 1 No No
L No 1 No
S No No 1
D No No 2
Ng Global convex No No No

N; UN, Locally convex No No No

AY
N,

Fig.10 The complete shape analysis diagram of the QCT-B spline curve
Where, the description of each distribution area is as follows: S={U,V)|UV <0}u{U.0)|-1<U <0}
J(@O\V)|-1<V <0}; D is an open region surrounded by coordinate the axis U,V and curve C. L is an
region surrounded the curve Ly, L, and C, where LycL,LybcL, but CzL; N; is an open region
surrounded the curve Ly and i ; N, is an open region surrounded the curve L, and
N, =R*\(SUDUCULUN, UN,)

I, ;
, which include the boundaries {(U,0)|UU +1)>0}u
{OV)|V(V +1) = 0}ul, Ul,. The parametric equations for the relevant curves are as follows:

diTs(t; 5)

U=
c- (& +byg —bi)To (i @) + (biz —bip) T3 (i B) + 2(by, —byp)sin tcost 0<t <7/2 (30)
_ aTo(tis o)
(8 +big —bi)To(ti; i) + (big —bi2) T3 (5 ) + 2(bip —loyg) sintcost
U= diTs(ti; 5)
L (& +b|O)T0(ti;0‘i)+bilT1(ti;ai)+biZTZ(ti;ﬁi)+bi3T3(ti;ﬂi)_bi0_ai0<ti <nl2 31)
V= 8 — 3iTo(ti; )
(& +bip)To(Gi; ) +biT (tis @) + BinTo (65 B) + bigTa (b Bi) — o — &
U= di —diT3(ti: 5;)
L,: biz - [(a; +b|0)T0(ti;ai)+b|1T1(ti;ai)+bi2T2(ti;ﬂi)+bi3T3(ti;:Bi)]0<ti <2l2 32)
V= aiTo (ti; )
biz —[(a; +bio)To(tis ) + b Ta (tis o) + 02T (43 5) + bigTa (i 4]
|1:V=M,—1<u <U” (33)

U +1
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|2:V:—1+%,u*<u <0 (34)

di

Where U =V '=— 1
biz —bjg — &

Proof We first consider the situation b; || b_,, we can easily get b_; =Ub,_, +Vb;, then we combine (29),

we have

Q (u) = R_3 +{L- B_3(u) +U[Bi_y (u) + B; (W)I}; 2 +{B; (u) +V[B;_y(u) + B (W)I}t. (35)
Below we discuss the cusps, inflection points, loops and convexity.
1) Cusps

The necessary condition that the planar QCT-B spline curve Q;(u) has cusps is Q(u)=0

(U; <u <uj,q) - From (35), we have

{U[Bi_1(u) + B{ (u)] - Bi_g(u)}0i_, +{B; (u) +V[Bi_ (u) + Bi (u)]}o; =0 (36)
Since bj_,and b; are linear independent, according to (36) , we can get the curve C:
__ B
C: Bt J/r Bi(L) U <uU<u, (37)
B| (u)

B/, (u)+Bi(u)
We analyze the shape of the curve C given in (30) and (37), we have

limU=-1 limV =0,

u—u; Vo,
limU =0, lim V=-1.
u—u; VUi,

This shows C has two asymptotes U =0 and V =0 . By direct calculation, we have

2
d—U<O,d—u>0.
dv.  dv?

This indicates that C is a monotonically decreasing and strictly convex curve, and the curve is tangent to the axis
U at (-10), and it is tangent to the axis V axisat (0,-1).

Forany (Ug,Vp)eC, wehave Qi(u)=0 and Q/(t)=0. In fact, similar to the discussion of (36) and (37),
we have

{UIBY4(U) + B(U)] - BY_3(u)}or_ +{BY(u) + V[B{_1(u) + B(u)}; =0 (38)

In fact, similar to the discussion of 4.4.2, no parameters u €[u;,u;,1] can be satisfied (36) and (38) at the

same time, which indicates Qj(u)=0and Q(u) = 0. Thus, we have
Q! (u) = Q{(u)(u — Up) +0(u — ).
We can know that Qi(u) change the sign at ug, thus, Q;(ug) is a cusp. Therefore, the planar QCT-B spline
curve defined by (26) possess cusps are equivalent to (u,v) e C .
2) Inflection points
Qi(up) is a inflection point of the QCT-B spline curve means that Q(u)xQ(u)=

g(u;U,V)(b_3 xby) change its sign when the curve passes the point ug . Where,
Qla(W) Qi) Q) QW +V‘Q{_3(U) Qf-2(u)
Qla(w) Q) QL) QM) QL) Q2(u)

Since bj_gxbj =0, we only consider the sign of g(u;U,V) . On the UV —planar, the possible region that makes

CICHSADESY : (39)

the curve Q;(u) have inflection points must be covered by the line family g(u;U,V). From the previous
discussion, it can be seen that the envelope of the line family g(u;U,V) is curve C, and the curve C is
globally convex, so the region swept by the tangent of the curve is S\ D UC, which also is the possible region
of the inflection points, where S={U,V)|UV <0}u{U,0)|-1<U <0}u{(O,V)|-1<V <0}, Diis the open
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region enclosed by the curve C and the coordinate axis U,V (see Fig.10). At any point (Ug,Vp)eSuDuUC
has at least one straight line on the UV —plane that is tangent to the curve C.When (U,,Vy) € C, according to
Taylor expansion, we have g(u;U,V)=0.5g{,(ug:Uq,Vp)(u —u0)2 +o(u —uo)z, where g{,(Ug;Uq.Vp) =0. We
can get that g(u;U,V) will not change the sign when the curve pass the parameter ugy. Thus, Q;(u) has not
inflection points; When (Ug,V,) e SUD, let g(uy;U,V) is one of a tangent line of the curve C . Thus,we
have g(u;Uq,Vp) = g, (Ug;Ug,Vo)(u —ug) +0(u—ug) (where g,(ug;Uq,Vp) =0, otherwise (Ug,Vy)eC ), we
can get that g(u;Uq,Vp) change sign at ug ; Further, when (Ug,Vy) €S, only one tangent of curve C can be
made through it, and Q;(u) has only one inflection point; When (Ug,V,) € D, there are two tangent of curve
C can be made, and Q;(u) has two inflection point.
3) Loops
The non-uniform QCT-B spline curve has loops means that Q;(u;) =Q,(U,) When u; <u; <u, <U;,; . This
is equivalentto U,V,u;,u, satisfying the following equations:
_ B,;(u;) — B, (u})
Biy(u;) + B;(uz) — B, (u) - B,(u;)
_ Bi(u;) — B (u;)
By (u;) + B, (uz) - B, (u;) - By(u;)

(U, u) e A (40)

Where A={(u;,Uy) e R?|u; <uj <U, <u;,;}. The equations given in (40) define a topological mapping
G:AcR? —>G(A) R?. Thus, the image L=F(Q)is a simply connected region in UV —plane. The three
boundary lines of L correspond to the three boundary lines u; =uy , u; =u;and uy=u;,; of A, i.e. the
curve C (not belonging toL), L; and L,(both belonging to L). The curve Q;(u) corresponding to point
(U,V)in L only has one loop. From the mathematical analysis, it can be inferred that both the curves L; and
L, are continuous functions of monotonically decreasing and strictly convex, and whenu — U; , the U axis is
tangent of the curve L, at the point (-10), and when u—u;,, the V axis is tangent of the curve L, atthe
point (0,-1). Ly and L, intersect at point (U*,V*) , the tangent line 1, of Ljat point (U*,V*) Crosses
point (0,-1), and the tangent line Il of L,at point (U*,V*) crosses point (=10) (see Fig.10), where the
equation of |, and 1, given in (33)and (34), respectively.
4) Convexity
The following is the case for (U,V)e N = R?\ (CuSuDuUL). Obviously, the curve Q;(u) has not cusps,
inflection points and loops. Next, we consider R(u) =Q'(y;) x[Q(u) —Q(y;)] and S(u) =[Q(u) —Q(u;)]xQ'(u),
from (35), we have
{R(U):\P(U;va)(bi:SXbi):
S(u) =@ (u;U,V)(bi_z xby).

where,
Y(WU,V) = (o +3UIb, —b,)B +a(B, —b,)]+ B s[a -V (c, —c,)I} (41)
@(u;U,V) =[B,,(u;) - B, ;(u)]B(u) + B ;(u)B, (u)
+U{[B;,(u) + B;(u) — B, (u;)]B/(u) - [B, (u) + B/(u)]B; ()} (42)

+V{[B, () — By (WI[B, (u) + B/(u)]+ B, ()[B,, (u) + B, (u) - B, (u)]}
According to (41), ¥(u;U,V)=0 determines a family of straight lines passing (-10) on the UV -plane.

(biy =bi0)B; (W) +2; (Bi_y () = byy) , by direct computing,we have M<
Bi_s(u) u

K(u) <0, therefore, the region swept by the line family W¥(u;U,V)=0 in N happens to be the part enclosed

Its slope is K(u)=

by the curve L; and the straight line segment I;, which we record as N; (excluding the boundary lines L;
and Iy, as shown in Fig. 10). If (Uy,Vp) e Ny, we have ¥'(u;U,V) =0 (otherwise U =—1V =0). Thus, from
the expansion W(u;Ugq,Vp) =¥'(Ug:Uq,Vo)(U —ug) +0(u —ug) , we can know that ¥(u;Uq,Vy) will change sign
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at point ug . Actually, the region N, is exactly the portion of the tangent of the curve L, sweptin N.
Solve the following equations about UV :

{(D(U;U,V):O,

@'(u;U,V) =0.
We can easily check that the solution is exactly is the equation of the parameters curve L;. The region where the
tangent of L; issweptin N is N,. Then N, is surrounded by the curve L, and the straight line segment
I, (where L,zN,l,zN, see Fig. 10). If (U,V,)eN, , we have @'(uy;UyVy)=0 (otherwise
Ug Vo) ely ). Thus, from @(u;Ug,Vy) =@ (ug;Up,Vp)(U—Ug) +o(u—Ug) , we can easily check that
®(u;Uq,Vy) will change the sign at the point ug .

Let Nog=N\(N;UN,), when (UV)eNy, Qu)xQ'(u), R(u) and S(u) all doesn’t change sign.
Thus, the curve Q;(u) is global convex; When (U,V)eN;, Qi(u)xQ(u) and S(u)doesn’t change sign, but
R(u) change sign one time, at this time, the curve Q;(u) is locally convex; When (U,V)eN,, Q(u)xQ(u)
and R(u) doesn’t change sign, but S(u) change sign one time, at this time, the curve Q(u) is locally
convex[34].

Finally, when b;_, J|bj, the curve Q;(u) has not cusps and loops; If and only if when b;_, has the same
direction of b;, Q;(u) only has one inflection point.

5) Adjustment effect of shape parameters

According to the equation (30)~(34) and region division diagram of the non-uniform QCT B spline curve, the
following conclusions can be drawn:

( The change of shape parameters «; and g does not affect the single inflection point region S and
global convex region N, so when there is only one inflection point on Q;(u), shape parameters cannot be
adjusted to eliminate it.

@ The change of shape parameters «; and g does not affect the region Ngy/Z, in this time, Q(u) is
global convex, where Z is the triangular region enclosed by (—],O),(O,—l),(U*,V*) (including the boundary line
land I, , excluding the straight line connecting two points (-10) and (0,-1)).

® With the increase of shape parameters o;, 3 e (-11], (U"V") tends to (-1/14,~1/14) , and with the
decrease of shape parameters, (U*,V*) tends to (-1/2,—-1/2) . The region of double inflection points D and

loops L gradually shrinks, and the global convex region Z gradually expands, see[11].

Y Y

(b)a=3=-0.8

(c)a=370
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(d)o=A=1 N (a)a;=/4=-0.98

Fig.11 The effect of parameters ¢; and g on L,D,C,Z
@ Forany a;, 3 (=111, the curve all exists locally convex region N; U N,, but when o,  — —1at the
same time, N; N, -0, see Fig.12.

g v

r r Y
-1 u LU L

0 4 Ll
__________ V‘
(b)a‘=:’i‘=—0,999 (a)ﬂ‘=ﬁ‘=1 -\\
“
\.
.
\‘
-1 I

g v

r r Y
»U

Fig.12 The influence of ¢; and £ on N;UN,

® By increasing the value of the shape parameter ¢, 3, the cusp , loop and double inflection point on the
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curve can be eliminated, and the curve can be adjusted to global convexity, see Fig.13.

r2i=.‘ji=-3=-0.8

.......... r‘gi=;']i=-0.33

—-—-—r!i=."]i=-0,5
- 7:zi=.“Ji=0 .......... t[iz_rjiz.ga;:,
0 3 - -r!i=."]i=0

Fig. 13 The unwanted shape features is avoided
by adjusting shape parameters(Left: the original image, Right: enlarge image)
7 Non-uniform QCT-B spline surface
Definition 7 Given control points B;(i=0.1...,m,j=01...,n)e R® and two knot vector U = (ug, g, ..,

Unsa)V = (V... Vnpa) s Torany o, B €[-11,mn =3, u e[ug,up ],V €[V, vq,3], we call

BUY) = 3 Bi(u)B; (V)P (43)

i=0 j=0
as a non-uniform QCT-B spline surface with four shape parameters. Where, B;(u) and Bj;(v)are non-uniform B
spline basis with shape parameters a3, £ and ajy, Bj . respectively.

The surface slice defined in [u;,u,,]1x[v;,v;,] is

B,(UY)= 3 YBWE VP, (44)

S3te3

In fact, in addition to variation diminishing, the properties of QCT-B spline curves can be extended to QCT-B
spline surface. Due to space limitation, we will not discuss it in detail here, but the higher-order continuity of
uniform QCT-B spline surface is given below.

Theorem 15 Given two uniform knot vector U and V , when shape parameters satisfy o, f,,a,,5;, €
[-11] and o, =@, , = f;,, the uniform QCT-B spline surface are C*"*(n=1,2,3,---) continuity at each
knot.

Proof Without loss of generality, we consider the continuity at the knot (Uis1,Vj+1), we first consider the
continuity of the u direction, and the continuity of the v direction can be discussed similarly. For

UeU, U )V eV, V)i =34,...m, j =34,...,n, we have
B(W=aAtia), B.0) = 20,A (i ),
B =T euA i ), B =dA(LA)
B, () =3, A (tya,), B () = b, A i, ),
B, =3¢, Al ), B0 =dALA)

Therefore,

52nilBij(ui7+1'Vj+1): i i 52”71Bs(ui7+1)
ot S5I-3t51-3 ot

:| Bt (Vj+1) Pst !

52nilBij(ui++1lvj+1): i i 52”71Bs(ui++1)
ot S5I-3t51-3 ot

:| Bt (Vj+1) Pst 1
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From the Theorem 8 and ., = f,,«;,,, = B;,, We have

52nilBij (uijrl’vjﬂ) _ 5znilBij (ui++1’vj+1)
aJZn—l - &Ianl :

Theorem is proved.
8. Conclusion

When the traditional literature improves the Bézier method and the B-spline method, it only focuses on
whether the curve flexibility can be increased. Therefore, the constructed curves and surfaces retain only some
basic properties of the Bézier method and the B-spline method, such as convex hull and affine invariance,
symmetry, etc., such as totally positive property, variation diminishing property and shape preservation are
overlooked. In view of the problems of traditional improved methods, this paper constructs a set of optimal
norm-positive basis from the property of shape preservation, and designs curve and surfaces with high-order
continuity. A lot of discussion and analysis show that the curve and surface constructed in this paper not only
retains the good properties of the traditional Bézier method and the B-spline method, but also has shape
preservation , shape adjustability and high-order continuity, which is suitable for curve and surface design. In
addition, the shape of the curve, such as sharp points, inflection points, loops, convexity, etc., is analyzed in detail,
which will further facilitate the design of better geometric shapes. Although the proposed method has many
advantages, there are still many problems that have not been solved, such as the reverse problem of parameters,
how to extend the curve to the triangular domain, etc., which will be the future work.
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