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Abstract: We analyze damage propagation modeling of turbo-engines in a data-driven approach. We
investigate subspace tracking assuming a low dimensional manifold structure and a static behavior
during the healthy state of the machines. Our damage propagation model is based on the deviation
of the data from the static behavior and uses the notion of health index as a measure of the condition.
Hence, we incorporate condition-based maintenance and estimate the remaining useful life based
on the current and previous health indexes. This paper proposes an algorithm that adapts well to
the dynamics of the data and underlying system, and reduces the computational complexity by
utilizing the low dimensional manifold structure of the data. A significant performance improvement
is demonstrated over existing methods by using the proposed algorithm on CMAPSS Turbo-engine
datasets.
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0. Introduction

Machine prognostics and predictive analytics are widely investigated in control theory, industry
applications and signal processing [1–4]. Condition based maintenance uses prognostics methods in
a variety of applications such as manufacturing, automotive, heavy industry, consumer electronics
and biomedical equipments. The correct estimate of future condition is helpful and add to the timely
maintenance/replacement of the faulty component(s). In such manner predictive analytics helps
save time, effort and cost and assure the smooth running of the required processes. In literature,
various methods have been studied using physical modeling of the degradation. However, physical
modeling in most modern applications are inadequate and at times extremely complex and stochastic.
Therefore, more recently data-driven methods are investigated that use instantaneous sensors’ as well
as operational data collected from the machines [5]. To this end, we propose a novel data-driven
algorithm that analyze time-series data for the degradation modeling and remaining useful life (RUL)
estimation.

Various data-driven methods have been investigated in literature for damage propagation
modeling and predictive analysis specifically in machine learning, signal processing, time-series
analysis and deep learning [6,7]. Conventionality, the sensors’ data from machines through their
life cycle (till failure) is used to train the damage propagation model and estimate remaining useful
life of new instances. In such scenario, the RUL is represented by a linear decaying function, i.e.,
RULt = T − t, where T is time at failure. However it’s more practical to assume a piece-wise linear
function since, in the beginning when machine is operating in perfectly healthy condition, the health
of machine cannot be taken as degrading. For that purpose, the RUL is approximated as [8]:

RULt = T f or 0 ≤ t ≤ td

= T − t f or td < t ≤ T,
(1)
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where td is the point where the linear degradation starts. The piece-wise RUL is then use as target in
supervised learning during the training phase of the algorithm. Several algorithms such as support
vector regression (SVR), Convolutional neural networks (CNN) and more advanced deep learning
involving Long Short-Term Memory (LSTM) and CNN have been used for degradation modeling and
RUL estimation [8]. However, here we investigate a semi-supervised approach where no assumption
is made with regards to RUL and the degradation modeling is learned from the input data entirely
as in [2,4,9,10]. To this end, we assume that the time till the machine runs in healthy state is known
that can be incorporated in a novelty detection model [9]. In this manner, the deviation in statistical
distribution of the data is used as a measure of the degradation.

For damage propagation and performance degradation modeling, various methods are
investigated in literature that mainly involve auto-encoders for input sequence reconstruction [9].
These methods rely on the reconstruction error as a measure of the damage (and hence) health of the
machine at any given time. For instance, in [9], the authors use LSTM based encoder-decoder model
that regenerates the input sequence, after training on the healthy samples, and use the error between
estimated and true input sequence as measure of the degradation and health index. Furthermore,
they employ linear regression along-with the encoder-decoder model for more robust modeling.
However, we propose a subspace tracking approach to measure the variation in the distribution of
input sequence by incorporating instantaneous manifold tracking [11,12]. In the proposed approach,
instead of regenerating the whole input sequence, we estimate a low dimensional representation
of the input and the subspace that it lies in, hence reducing the computational cost and overfitting.
Furthermore, since the input and underlying submanifold subspace have different dimension, we
incorporate approximate Mahalanobis distance for updating the model parameter during training
and later as a measure of degradation [12–15]. We emphasize that our proposes algorithm suits well
to the dynamics of the input data, reduces the computational complexity and achieves significantly
higher accuracy than the state-of-the-art. We demonstrate the performance of the proposed algorithm
by applying it to the well known CMAPSS datasets [5,16].

In summary, we investigate online subspace tracking for the damage propagation assuming
low dimensional manifolds. We further incorporate linear regression by using the low dimensional
projection of the input data as new input and estimate the health index. We then estimate the RUL
of a test case by comparing the health index curve to all available degradation models. We use an
ensemble learning approach as in [9] to finally estimate the RUL. The organization of the paper is as
follows: in Section 1, we formally describe problem setting and define various parameters in detail. In
Section 2, we demonstrate the subspace tracking algorithm for damage propagation modeling and
health index curves generation. In Section 3, we apply the proposed damage propagation modeling
to real life datasets and demonstrate the performance evaluation in terms of root mean square error
(RMSE) and the scores defined in [5]. We finally conclude the paper in Section 4.

1. Problem Description

All vectors used in this paper are column vectors denoted by boldface lowercase letters. Matrices
are denoted by boldface uppercase letters. For a vector x (or a matrix U), xT (UT) is the ordinary
transpose. T is the total number of time-steps and an arbitrary time-step is denoted by t where
0 ≤ t < T − 1. The time index of a sequence vector is denoted by t in the subscript, as in xt.

We investigate the estimation of current health index (HI) σt and the prediction of remaining
useful life RULt by analyzing the input data xt ∈ IRD where D is the number of input features. The
health index is modeled as a function of the input data as:

σt = f (xt), (2)

where 0 ≤ σ ≤ 1, with 1 and 0 corresponding to perfect health and failure respectively. Furthermore,
we assume that the D−dimensional input data lies on a static or time varying submanifold, Sk,t with
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reduced intrinsic dimension d such as d� D, where, for the multiscale modeling of a non-stationary
submanifold, k is the index such as k ∈ {1, 2, ..., K} [13,14].

Figure 1. Health index curve and RUL estimation using similarity

1.1. Health index and Remaining Useful Life Estimation

Given HI curves for the all training instance, we use curve matching for the estimation of RUL
[2,4,10]. That is, as shown in Fig. 1, the HI trajectory for a test instance u∗ is slided over training HI
curve sets U for all times τ1 ≤ τ ≤ τ2 in order to minimize the euclidean distance. The similarity
between test HI curve u∗ and training HI curve u is defined by [2,4,10]:

s(u∗, u, τ) = exp(−d2(u∗, u, τ)/β), (3)
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where τ ∈ {τ1, ..., τ2} is the time-lag, β > 0 is a small constant that controls the similarity and
d2(u∗, u, τ) is the squared euclidean distance defined by,

d2(u∗, u, τ) =
1

Lu∗

Lu∗

∑
i=1

(σu∗
i − σu

i+τ)
2. (4)

For each training instance u and time-lag τ, the RUL of test instance u∗ is estimated as: RULu∗(u, τ) =

Lu − Lu∗ − τ. The final estimate of RUL is a linear combination of RULu∗(u, τ) all u, τ using the
similarity measure s(u∗, u, τ) as coefficients, i.e.,

ˆRULu∗ =
∑ s(u∗, u, τ)∑ RULu∗(u, τ)

∑ s(u∗, u, τ)
. (5)

The error eu∗ = ˆRULu∗ − RULu∗ between estimated and true RUL on test sets is used as a measure
of performance. We specifically use two performance metrics, i.e., the RMSE defined as,

RMSE =

√√√√ N

∑
u∗=1

( ˆRULu∗ − RULu∗)2, (6)

and score S defined as,

S =
N

∑
u∗=1

(exp(
γ

eu∗
)− 1), (7)

where γ = 1/13 when eu∗ < 0 and γ = 1/10 when eu∗ ≥ 0. This way a late detection of the failure
(smaller estimated RUL) is penalized more as compared to early detection [5].

2. Multi-scale Subspace Tracking for Predictive Analytics

In the most basic form, we propose to use a single subspace tracking algorithm for the damage
propagation modeling. In this sense, the input data xt ∈ IRD in healthy state is assumed to be lying on
a static submanifold with intrinsic dimension d. We project the input data on the subspace St of the
submanifold and then determine the approximate Mahalanobis distance d(x, S) as in [14]. The square
root of distance is used as error to update the parameters of estimated subspace {U, c, Λ}. Here matrix
U is the eigen-vector matrix of the covariance matrix representing the orientation of the subspace,
vector c is the mean of input space and Λ = diag{λ1, ..., λd} represents the spread.

The subspace tracking is run on the healthy data in epochs till the error is minimized and
converged while using the instantaneous error to update the parameters in a stochastic gradient
descent manner. Once the subspace parameters are finalized, the trained model is used on the
remaining cycles of data till failure and the approximate Mahalanobis distance is recorded for each
time instant as [12,13]:

dt(x, S) , δ(x− c)TU1Λ−1
1 UT

1 (x− c)+‖UT
2 (x− c)‖2, (8)

where δ > 0 is a small constant that depends on the distribution of data beyond the submanifold. We
then use this distance to generate health index σt as:

σt = 1−
√

d̂t(x, S), (9)

where 0 ≤ d̂t(x, S) ≤ 1 is the scaled version of d(x, S). We get an exponentially decaying curve of the
health index values that reaches 0 at failure as shown in Fig. 1.

To this end, we use subspace tracking of the d−dimensional submanifold and use the tracking
error as measure of degradation for all training instances. However, after using a certain amount of
data for generating HI curves, we next utilize linear regression for the remaining instances and cycles
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to estimate the health index. In other words, we use the known HI values (estimated through subspace
tracking) as target and learn the linear regression model by least squares method, then estimate the HI
values for the remaining data. Here, instead of using the original D−dimensional input, we use the
d−dimensional projections of the data on the submanifold subspace as the new input. In this manner,
we further reduce the computational cost of the overall algorithm.

For non-stationary setting, i.e., when the input data does not follow a static distribution in the
healthy state, we assume the data lies on a time varying submanifold and use a multi-model learning
of the underlying subspace. We use the notion of multi-scale tracking and MOUSSE algorithm as in
[12–14]. In multi-scale subspace tracking, the input space is partitioned into K regions where there is a
different subspace representing each individual submanifold. The input data xt at time t is projected
on each subspace and the one with minimum distance is used and updated for the next cycle. Also, for
the health index calculation, the minimum distance is used as a measure of degradation.

Figure 2. The proposed learning model for health index generation

2.1. Algorithm Description

Here, we briefly describe the algorithm shown in Fig. 2 step by step. Initially, we use data from
the healthy state and train the subspace tracking algorithm till convergence, i.e., when the health index,
σt = 1. Then during the second stage (inference), we use the estimated parameters of the underlying
subspace to estimate health index for the remaining cycles till the failure point. In this manner, we get
an exponentially decaying curve. Furthermore, we use the trained model to estimate σt for the test
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Figure 3. Health index curves of FD001 training dataset

instances that are truncated before the failure. Finally, we use similarity measures for curve matching
for the estimation of RUL as described in subsection 1.1.

3. Results and Performance Analysis

To validate the proposed algorithm, we use the widely investigated CMAPSS turboengine datasets
as benchmark [5,16]. In principal, the CMAPSS datasets consist of four independent datasets for various
number of engines and time instances, where each one is a pair of training (for a complete cycle till
failure) and test (where the data is truncated at a point before the failure point). The target is to estimate
the remaining useful life of the test instances based on the behavior of the training data. The four
datasets (in pair) are named as FD001, FD002, FD003 and FD004 in literature and each input consists
of 24 features that include 3 operational setting features and 21 sensor values. In all of the experiments,
we assume the first 20 cycles of each engine as healthy and employ subspace tracking. We use grid
search cross-validation to choose the hyper-parameters as α = 0.87, τ1 = 1, τ2 = 40, and β = 0.0235.
The intrinsic dimension of submanifold is set as d = 3. We use three variations of the algorithm,
i.e., Single subspace tracking (SST) for all HI curves generation, Single subspace tracking with linear
regression (SST-LR) and multiple subspace tracking where the input data in non-stationary during the
healthy state.
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Figure 4. Subspace tracking (SST) without linear regression

Figure 5. SST with linear regression (SST-LR)

As second stage of the algorithm (inference), we plot the health index curves for all training and
test instances. Fig. 3 shows health index curves for randomly selected five engines where σt reaches
zero at the end-of-life. Similar to [7], we match the HI curve for a certain test instance with all training
instance curves and use (5) to estimate RUL. In Fig. 4 and Fig. 5, the estimated RUL for each test
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Table 1. Turbofan Engine: Performance comparison w.r.t scores

Algorithm FD001 FD002 FD003 FD004
SVR 1380 5.90× 105 1603 3.71× 105

CNN 1290 1.36× 104 1602 7892
DeepLSTM 338 4452 852 5554
LSTM− ED 1260 −− −− −−

SST 978 4230 822 4401
SST-LR 597 3351 634 3381

Table 2. Turbofan Engine: Performance comparison w.r.t RMSE values

Algorithm FD001 FD002 FD003 FD004
SVR 20.96 42.00 21.05 45.35
CNN 18.45 30.29 19.82 29.16

DeepLSTM 16.14 24.49 16.18 28.17
LSTM− ED 23.36 −− −− −−

SST 16.22 30.21 17.02 28.21
SST-LR 15.02 29.12 16.95 26.03

instance of dataset FD001 are plotted in the ascending order, using HI curves generated by SST and
SST-LR respectively. The results show a good match between the true and estimated RUL, specifically
with SST-LR.

We apply the proposed algorithms on the remaining three datasets while using the multiple
subspace tracking as described in subsection 2. Specifically, by clustering the operational setting data,
we observe that there are six different scenarios in case of datasets FD002 and FD004. This makes
these datasets ideal candidate for multiple subspace tracking as in each operational case, the data
lies on a one of the six submanifolds. Similarly, while using linear regression for HI values, we train
a different model for each case. We compare the performance of proposed algorithms with that of
support vector regression (SVR), Convolutional neural networks (CNN), LSTM based deep learning
(Deep LSTM) [6,8] and LSTM based encoder-decoder model (LSTM-ED) [9] as shown in Table I and
Table II. The use of multi-model analysis makes the algorithm more robust and achieves significant
performance improvement over SVR and CNN, and competes well against Deep LSTM while using a
reduced computational complexity.

4. Conclusion

We investigate online manifold learning and subspace tracking for the damage propagation
modeling. We propose a novel algorithm that generates health index values for each input based on the
distribution of the data. We then use the HI curves for the estimation of RUL. We specifically investigate
a damage propagation model of Turbo-engine, however, the proposed algorithm can be extensively
applied to other applications for predictive analysis. The proposed algorithm is computationally
efficient and adapts to the dynamics of the data both in static and non-stationary scenarios. We
implement the proposed algorithm for the RUL estimation of CMAPSS Turbo-engines and achieves a
significant performance improvement over the state-of-the-art in terms of RMSE and timely detection
of the damage. Conflicts of Interest: The authors declare no conflict of interest.
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