
1 New Insights of Human Parvovirus B19 in Modulating Erythroid 2 Progenitor Cells Differentiation

3
4 Shuwen Feng, Dongxin Zeng, Junwen Zheng*, Dongchi Zhao*

5 Pediatrics Department, Children Digital and Health Data Research Center, Zhongnan Hospital of
6 Wuhan University

7 Authors: Shuwen Feng fengshuwen@whu.edu.cn

8 Dongxin Zeng zengdongxin@163.com

9 *Correspondence Authors: Junwen Zheng* zhengjunwen@whu.edu.cn

10 Dongchi Zhao* zhao_wh2004@hotmail.com:

11 **Abstract**

12 **Background**

13 Human parvovirus B19, a human pathogen of the erythroparvovirus genus, is responsible for
14 a variety of diseases. Despite less symptoms caused by B19 infection in healthy individuals, this
15 pathogen can not be neglected in specific groups who exhibit severe anemia.

16 **Main body of abstract**

17 Transient aplastic crisis and pure red cell aplasia are two kinds of anemic hemogram
18 respectively in acute phase and chronic B19 infection, especially occur in individuals with a
19 shortened red cell survival or immunocompromised patients. In addition, B19 infected pregnant
20 women may suffer risks of hydrops fetalis secondary to severe anemia and fetal loss. B19
21 possesses high affinity to bone marrow and fetal liver due to its extremely restricted cytotoxicity
22 to erythroid progenitor cells mediated by viral proteins. The nonstructural protein NS1 is
23 considered to be the major pathogenic factor, which takes parts in differentiational inhibition and
24 apoptosis of erythroid progenitor cells through inducing viral DNA damage responses and cell
25 cycle arrest. The time phase property of NS1 activity during DNA replication and conformity to
26 transient change of hemogram are suggestive of its role in regulating differentiation of
27 hematopoietic cells, which is not completely understood.

28 **Conclusion**

29 In this review, we set up a hypothetic bridge between B19 NS1 and Notch signaling pathway
30 or transcriptional factors GATA which are essential in hematopoiesis, to provide a new insight of
31 the potential mechanism of B19-induced differentiational inhibition of erythroid progenitor cells.

32
33 **Key Words:** human parvovirus B19; nonstructural protein NS1; erythroid progenitor cells;
34 differentiation; GATA; anemia

35 **Running title:** B19 modulates EPCs differentiation

37 List of abbreviations

38	B19	Human parvovirus B19
39	EPCs	Erythroid progenitor cells
40	BFU	Burst-forming unit
41	CFU	Colony-forming unit
42	TAC	Transient aplastic crisis
43	PRCA	Pure red cell aplasia
44	ITRs	Inverted terminal repeats
45	NS1	Large nonstructural protein
46	VP	Structural protein
47	TAD	Transactivation domain
48	NSBEs	NS1 binding elements
49	TNF- α	Tumor necrosis factor alpha
50	IL-6	Interleukin-6
51	DDR	DNA damage response
52	CCA	Cell cycle arrest
53	RBP-J κ	Recombinant binding protein suppressor of hairless
54	MAML	Mastermind-like family
55	NICD	Notch intracellular domain
56	RAM	RBP-J κ association module
57	Hes	Hairy/enhancer-of-split
58	EBNA2	Epstein-Barr virus nuclear antigen 2
59	KSHV	Kaposi's sarcoma-associated herpesvirus

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81 **Background**

82 Human parvovirus B19 (B19), a small non-enveloped, single-stranded DNA virus belonging
83 to the genus *erythroparvovirus* of the *Parvoviridae* family[1], known to be the causative agent of
84 the fifth disease (erythema infectiosum), is also a leading cause of autoimmune disease in human
85 beings[2, 3]. B19 infection is common worldwide, showing age dependent and regional
86 epidemiological differences with seasonal and annual cycles. B19 outbreaks feature with a
87 peaking in winter or spring and a three to six-years cycle[1, 4]. Evidences were found that the
88 seroprevalence of B19 IgG varies widely from approximately 2% to 21% in children from 1 to 5
89 years of age, from 30% to 40% in adolescents, from 40% to 60% in adults, and more than 85% in
90 elderly populations[5]. Despite of the increasing positive incidence of B19 IgG with age groups,
91 acquisition is often during childhood via respiratory route and continues at low rates throughout
92 adulthood[6, 7]. Although many individuals with B19 infection are asymptomatic or exhibit mild,
93 nonspecific, cold-like symptoms, children aged 4-11 years usually present to have ‘slapped cheek’
94 facial rash, which is self-limited and generally needs no treatment[8]. However, clinical conditions
95 associated with the B19 infection could be severe in those who has a shortened red cell survival,
96 or in immunocompromised patients and pregnant women[5].

97 Not only B19 infection could cause erythema infectiosum or transient aplastic crisis in acute
98 infectious period, but the persistent existence of B19 in bone marrow could lead to pure red cell
99 aplasia in an immunocompromised host[9]. Life would be threatened in patients with shortened
100 red cell survival due to their lack of timely supplements in B19-induced severe anemia[10].
101 Furthermore, pregnant women with B19 infection have higher risk of miscarriage or fetal
102 complications[11]. The rate of vertical transmission during maternal parvovirus B19 infection is
103 estimated at 33%, with fetal complications occurring in 3% of infected women[12]. B19V poses a
104 potential hazard to the fetus as crossing the placental barrier and infecting erythroid progenitor
105 cells (EPCs) in bone marrow and fetal liver, it blocks fetal erythropoiesis leading to profound
106 anemia, fetal hydrops and/or fetal death[13]. Once the fetus/newborns develop hydrops, treatments
107 like intrauterine red blood cell transfusion or intravenous immunoglobulin and digitalis may fail to
108 rescue, with a survival rate of only 60-70% overall[14, 15].

109 B19 is a potent inhibitor of erythropoiesis, due to its highly restricted cytotoxicity to EPCs at
110 the burst-forming unit (BFU)- and colony-forming unit (CFU)-erythroid stages[16, 17]. Severe
111 anemia could appear in immunodeficiency patients or patients with shortened red cell survival
112 under B19 infected conditions, fetus/newborns of B19 infected mothers as well. B19 is an
113 important antigen for Eugenics[13]. However, pathogenesis of B19 is not completely clear on
114 account of its difficulties in vitro culture, effective vaccines or antivirus drugs of B19 are of urgent
115 shortage.

116

117 Pathogenesis of anemia in B19 infection

118 Even though B19 infection is self-limited in healthy individuals, it is often associated with
119 transient aplastic crisis (TAC) in children with sickle cell disease[18]. In patients with short life
120 span of red blood cells, such as sickle cell anemia, hereditary spherocytosis, thalassaemia, or
121 chronic hemolytic disease, severe anemia exacerbated by B19 infection could be fatal due to the
122 acute hemolysis and temporary arrest of erythropoiesis occurring on the basis of chronic
123 hemolytic anemia and increased destruction of red blood cells if transfusions are not available or
124 not administered urgently. Even more seriously, chronic B19 infection could induce pure red cell
125 aplasia (PRCA), which is exhibited in immunocompromised patients or transplant recipients on
126 account of impaired ability of viral elimination [19]. And PRCA in the intrauterine B19-infected
127 fetus may show ultrasonographic signs of general edema, such as subcutaneous edema, pleural
128 effusion, pericardial effusion, ascites and placental edema. The main mechanism responsible for
129 the non-immune hydrops fetalis is probably cardiogenic heart failure secondary to severe
130 anemia[20].

131 The B19 virus can be transmitted mainly by respiratory tracts, also via blood or pooled-blood
132 products, from a pregnant mother to her fetus, and possibly even from tattooing[1]. After
133 overcoming the barrier of airway epithelium, vascular or placenta, B19 arrives into human body
134 and initially interacts with P antigen (globoside), the primary low-affinity attachment sugar
135 molecule abundantly expressed on the surface of erythroid progenitor cells, acting as an essential
136 cellular receptor for B19[21]. However, P antigen is necessary for binding but not sufficient for
137 parvovirus B19 entry into cells[22, 23]. Unlike mature human red blood cells, primary human
138 erythroid progenitor cells, the major target cells of B19, not only express high levels of P antigen,
139 but specifically express $\alpha 5\beta 1$ integrins which permit $\beta 1$ integrin-mediated entry of parvovirus
140 B19[24]. Moreover, Ku80 was identified in vitro nonerythroid cells to functions as a coreceptor
141 for B19 infection together with P antigen and $\alpha 5\beta 1$ integrins, which takes part in B19 binding and
142 subsequent entry. Although originally known as a nuclear protein, Ku80 was found to have a high
143 expression on the surface of erythroid progenitor cells expressing glycophorin A as well as on the
144 surface of immune cells such as CD20⁺, CD3⁺, or CD14⁺ cells in bone marrow, which may
145 explain the pathologic immunity in autoimmune diseases related to B19 infection[25]. Thus, B19
146 virion accomplishes its internalization inside EPCs through interaction with P antigen in the aid of
147 $\alpha 5\beta 1$ integrins and Ku80, and initiates its replication after entering the nucleus. Differential
148 inhibition processes and apoptotic signals activated by massive replication of B19 eventually lead
149 to cytolysis of EPCs and release of virions into the blood, which is consist with the transient
150 high-titer viremia in the acute phase. Destruction of large amount of EPCs significantly influences
151 the erythropoiesis and life span of red blood cells, which brings about acute hemolysis (Figure 1) .

152
153 Nonstructural protein NS1 is the major pathogenic factor in B19 infection
154 B19 structure

155 The B19 virion has a linear ssDNA genome of 5 to 6 kb, and a nonenveloped, icosahedral

156 protein shell of ~280Å in diameter, known to be the smallest DNA virus so far[26, 27]. The 5,596
157 nucleotides(nt) long genome is made up of an internal coding sequence flanked on both sides by
158 identical inverted terminal repeats (ITRs)[1]. These palindromes can acquire a hairpin
159 configuration and serve as primers for complementary strand synthesis, while the central region
160 genome encodes the 5 kinds of proteins of B19 virion[28]. The two structural proteins, VP1 and
161 VP2, account for 4% and 96% capsid proteins to form the icosahedral protein shell,
162 respectively[3]. The region of them shows a greater sequence variation in contrast to the large
163 nonstructural protein(NS1) region that is highly conserved, which implies their function in host
164 antivirus responses[28]. Expressions of the other two small nonstructural proteins of 11 kDa and
165 7.5 kDa were also documented[29, 30], the former one was suggested as a potent inducer of
166 apoptosis via enhancing viral DNA replication and virion release [31, 32], while the function of
167 7.5 kDa protein is inconclusive.

168 **Roles of nonstructural protein 1 in B19 infection**

169 The large nonstructural protein NS1, located predominantly to the nucleus, is the major
170 pathogenic factor in B19 infection[33]. NS1 gene (616-2631bp) encodes its protein of 672 amino
171 acids with a molecular mass of ~78kDa, which is of critical importance in both early virus DNA
172 replication and transcription in B19 infected human erythroid progenitor cells[1]. NS1 has a
173 N-terminal DNA-binding/nickase domain, a central domain displaying sequence motifs for
174 helicase/ATPase, and a putative transactivation domain (TAD) at the C-terminus[34]. Researches
175 implied that, with the help of the transcription factors Sp1/Sp3, NS1 N-terminal nuclease domain
176 specifically binds to the origin of replication in the virus DNA, including the NS1 binding
177 elements(NSBEs) and the overlapping P6 promoter DNA sequence, and the interaction between
178 NS1 and virus DNA mediates the cleavage of DNA at the ITRs by melting the hairpinned ITRs to
179 create a new 3'-OH and permit the following DNA synthesis[35-37]. Regulation of gene
180 transcription of B19 NS1 is not confined to its own viral promoter, p6, it has also been identified
181 in the transactivation of several host promoters, like tumor necrosis factor alpha (TNF- α),
182 interleukin-6 (IL-6), and p21, which may explain the pathogenesis of B19-associated
183 inflammation and apoptosis[38-40].

184 Studies on mechanism of B19-induced differentiational inhibition and apoptosis have made
185 progress in recent years[17, 31, 41, 42]. B19 infection could induce a broad range of DNA damage
186 responses (DDR) in ex vivo-expanded human erythroid progenitor cells, by triggering
187 phosphorylation of all the upstream kinases of each of three repair pathways: ATM, ATR, and
188 DNA-PKcs[43], which is of critical importance for virus replication. And the infected cells were
189 reported to have a cell cycle arrest (CCA) at both late S-phase and G2-phase, a point of the cell
190 cycle at which cells contain 4N DNA[44-46]. Recent advantages revealed that, NS1 transactivated
191 cellular gene expression through the TAD2 domain, activating the ATR-CHK1-CDC25C-CDK1
192 pathway in the B19-induced G2 arrest[17],which is independent of p53 activation and DDR
193 triggered by increased viral replication[45]. Interaction between NS1 and E2F family of

194 transcription factors enhanced the nuclear import of these repressive E2Fs and induced stable G2
195 arrest[47]. While the putative metal coordination motif in the endonuclease domain of B19 NS1 is
196 critical for NS1-induced S phase arrest and DNA damage[45]. B19 NS1 has also been reported to
197 induce CCA at G1-phase in NS1-expressing UT7/Epo-S1 cells[48]. Replication of B19 virus
198 promotes its NS1 covalently binding with host cellular DNA, causing DDR mediated by helicase or
199 nickase in NS1 central region. Subsequently occurs the activating of the DNA nick repair pathway
200 initiated by poly (ADPribose) polymerase and the DNA repair pathways initiated by
201 ATM/ATR[49]. And the DNA repair processes activated by extensive DDR accompanied with a
202 significant decrease in the ATP levels of the cell, act as the direct reason leading to apoptosis.
203 Besides, NS1-induced DDR may play an indirect role in facilitating viral DNA replication by
204 arresting cell cycle at G2 or S phase, during which host DNA replication factors are available[50].
205 Presumably, NS1 could also interfere with the expression of unidentified host transcriptional
206 factors, resultantly perturbs cell cycle progression and inhibit the differentiation of EPCs. While
207 S-phase arrest enriches S-phase factors that favor viral DNA replication as a compromised
208 outcome of B19 genome replication, G2 arrest halts erythropoiesis of EPCs and eventually leads
209 to apoptosis, in which 11kDa protein may play a more efficient part [1, 31, 46].

210 In addition, the roles of NS1 in modulation of inflammatory signaling by activation of
211 STAT3/PIAS3 and NLRP3, in inhibition of Na⁺/H⁺ exchanger activity, and in exacerbation of
212 liver injury were also been documented [51-54], which may partly explain the pathogenesis of
213 multiple B19-associated diseases (Figure 2).

214 As the abundant expression of B19 NS1 predominantly located in the nucleus of EPCs[47],
215 the protein only takes on its activity during the replication of virus DNA while not participates in
216 the processes of assembling and release, and loses its function as the elimination of B19 virions,
217 which is in accordance with the transient erythropoietic arrest in aplastic crisis. The time phase
218 property of NS1 activity and conformity to transient change of hemogram implied that NS1
219 activity is closely related to differentiation and apoptosis of hematopoietic cells. Despite of the
220 enormous progress made in understanding the roles of B19 NS1 induced apoptosis, further studies
221 are needed to explore the regulatory mechanism in NS1 induced inhibition of EPCs differentiation,
222 which is essential for therapeutic treatments of B19 related anemia. Besides B19, other virus like
223 Epstein-Barr virus, could also inhibit erythroid lineage cells differentiation by interfering certain
224 signaling pathways involving in hematopoietic dysfunction. Among these pathways, B19
225 replication and transcription play an important role in Notch-Hes-GATA signaling regulation,
226 which disorders hematopoietic cells differentiation.

227 **Transcriptional factors related to hematopoiesis**

228 **The GATA family**

229 GATA binding proteins, known to be the erythroid-specific transcription factor family, have a
230 revolutionary significance in understanding the development of precursors from hematopoietic

231 stem and progenitor cells, the generation of red blood cells from progenitors and the regulation of
232 hemoglobin synthesis[51]. All members of the GATA family have highly conserved DNA-binding
233 proteins that recognize the motif WGATAR through two zinc fingers to regulate the transcription
234 of downstream target genes[52-54]. Millions of copies of the specific sequences of DNA in
235 genome present in upstream of gene transcriptional origin, like promoters, enhancers and locus
236 control regions of β -globin and other genes, including itself as an autoregulatory mechanism[51,
237 55]. The C terminal zinc finger specifically binds to the GATA consensus sites, whereas the N
238 terminal zinc finger stabilizes the interaction between GATA and specific DNA sequences as well
239 as regulates the transcriptional activity of GATA factors through recruiting other cofactors of zinc
240 finger protein, such as FOG1, CPB/p300, Pax5 and Pu.1[56-60].

241 Among the six members (GATA1-6) of GATA family, GATA1 is the founding member and
242 ushered in the cloning of the related proteins GATA2-6, and both GATA1, 2 and GATA3 are
243 expressed in specific hematopoietic cell types of all stages. Involved in distinct and overlapping
244 aspects of hematopoiesis, the three members play an essential role in the development and
245 maintenance of diverse blood cell lineages, and are indispensable for regulating the development
246 and maturation of red blood cell[51, 61]. GATA1 is a prototypical transcriptional factor required
247 for the erythroid, eosinophilic and megakaryocytic commitment during hematopoiesis, taking part
248 in the terminal differentiation. GATA2, predominantly expressed in hematopoietic stem and
249 progenitor cells, is essential for maintenance of the pool of hematopoietic stem cells by regulating
250 the proliferation and survival of early hematopoietic cells, and is also one of the most critical
251 transcriptional factors required for direct induction of the hemogenic endothelium with
252 pan-myeloid potential from human pluripotent stem cells[62, 63]. Both GATA1 and GATA2 are
253 involved in lineage specific transcriptional regulation, especially the dynamic and strictly
254 controlled GATA factor switching from GATA2 to GATA1 during erythropoiesis plays a crucial
255 role in orchestrating erythroid lineage differentiation[64, 65], whereas GATA3 is of vital
256 importance for multiorgan development and regulates tissue specific differentiation, it plays an
257 essential role in T lymphoid cell development and immune regulation as well[54, 66, 67].
258 Therefore, alteration of GATA factors expression is closely associated with hematologic disorders
259 and related diseases[55, 68]. No or less GATA1 expression notably influences the differentiation
260 and maturation of erythroid cells, massive apoptosis of proerythroblasts leads to anemia[55].
261 Besides, GATA1-deficient mice develop thrombocytopenia and hyperproliferation of
262 megakaryocytes due to dysmaturity of megakaryocytes and a failure of platelet production[69].
263 GATA2 mutation is associated with immunodeficiency, lymphedema, and myelodysplastic
264 syndrome[70-72]. Inherited GATA3 variants are related to Ph-like childhood acute lymphoblastic
265 leukemia and risk of relapse[73].

266 Researches have revealed some correlations between GATA family and the Notch signaling
267 pathway, which is also involved in hematopoietic system[74-78]. It was found that Notch signals
268 could inhibit the differentiation and maturation of erythroid/megakaryocytic cells by suppressing

269 GATA-1 activity through the induction of Hes1 expression[74].

270 **The Notch-Hes pathway**

271 Notch proteins are a family of evolutionarily highly conserved single-pass transmembrane
272 receptors which are involved in the regulation of cell fate acquisition and differentiation in diverse
273 systems. The notch signaling pathways not only play an essential part in the development of a
274 wide range of tissues such as hemopoiesis, vasculogenesis, myogenesis, neurogenesis and
275 osteogenesis, but also take part in the homeostasis maintenance of a broad variety tissues [79, 80].
276 The family comprises of four Notch receptors(Notch1-4), five structurally related, single-pass
277 membrane Notch ligands (Delta-like1, 3, and 4 and Jagged1 and 2), and specific factors including
278 the DNA-binding protein RBP-J κ (recombinant binding protein suppressor of hairless; also known
279 as CSL/CBF1 in mammals, Su(H) in flies, and Lag-1 in worms) and the Mastermind-like family
280 (MAML) [81, 82].

281 In the absence of Notch activation, the Notch intracellular domain (NICD) is unavailable and
282 the downstream effector protein RBP-J κ associates with several different corepressors containing
283 Mint/Sharp/SPEN, NCoR/SMRT and KyoT2 to form a transcriptional corepressor complex which
284 is bound to the chromatin and inhibits gene expression. Activation of the canonical Notch
285 signaling is achieved by the generation of NICD, which is mediated by the interaction between
286 receptors and ligands and subsequently a sequence of proteolytic events, as well as its eventual
287 translocation to the nucleus where the RBP-J κ association module (RAM) domain of NICD
288 initially binds the RBP-J κ . This leads to the displacement of the co-repressor complex and the
289 recruitment of the transcriptional co-activators like MAML to form a transcriptional activator
290 complex (NICD-RBP-J κ -MAML), which triggers the downstream expression gene expression by
291 recruiting transcriptional factors like p300 histone acetyl-transferase[79-84]. The various target
292 genes of Notch including Hes(hairy/enhancer-of-split) and the Hes-related (HESR/HEY) family of
293 basic helix-loop-helix transcription repressors, which are essential regulators of hematopoietic
294 stem cell development, and subsequently modulate the proliferation and differentiation via
295 regulating expression of other genes like GATA family[85, 86]. In addition, GATA2 was also
296 identified as a direct target of Notch1 signaling, which revealed a crucial role of Notch activation
297 for the onset of definitive hematopoiesis in the embryo[87].

298 Studies have identified Notch signaling as a key regulator of hematopoietic stem cell
299 development[83, 84, 88-92]. Among the Notch and Hes family members, Notch1,2 and Hes1,5 are
300 widely expressed in all lineages of hemopoietic stem/progenitor cells, and participate in regulating
301 their proliferation and differentiation to generate various hemocytes complying with extremely
302 strict principle of spatial-temporal sequence mediated by the fine expression of GATA factors[74,
303 83-87]. Activation of Notch1 signaling could inhibit the differentiation and maturation of EPCs
304 and exhibit a peripheral hemogram of increased immature red blood cells and distinctly
305 decreased counts of mature red blood cells[86, 93, 94], which might be a clue of building a bridge
306 between B19 infection and anemia.

308 The pathway of B19 NS1 in regulation of EPCs differentiation

309 Even though up to now no research has clarified if the major pathogenic factor B19 NS1
310 could influence the process of proliferation and differentiation via manipulating Notch signaling in
311 B19-infected EPCs, evidences of the connection to Notch have been found in other virus infected
312 cells[95]. Epstein-Barr virus nuclear antigen 2 (EBNA2) exerts its transactivating function through
313 interaction with CBF1/RBP-J κ , which is the coactivator of Notch signaling[96]. Notch signaling is
314 involved in the establishment of EBV latency in B cells possibly due to competitive binding of
315 EBNA2 to CBF1/RBP-J κ and the suppression of Notch/RBP-J signaling pathway which promotes
316 B cell proliferative responses[95, 97]. In addition, RTA, the lytic cycle regulator of Kaposi's
317 sarcoma-associated herpesvirus (KSHV), also interacts with RBP-J κ to activate gene expression
318 [98]. Furthermore, Notch pathway interactions have also been mentioned for adenovirus SV40 and
319 human papilloma virus[99, 100].

320 It has been identified that B19 could inhibit the differentiation of erythroid lineage cells both
321 in vivo and vitro mediated by its major pathogenic factor NS1[1, 17]. The Notch signaling
322 pathway also plays an essential part in hemopoiesis through regulating its downstream genes like
323 Hes1/5 and GATA factors[83, 85]. Our tentative exploration showed that expression of Notch1,
324 Hes1/5 and GATA2 upregulated while GATA1 downregulated in the B19 NS1 transfected K562
325 cells, which implies that NS1 could perturb the differentiation of erythroid lineage cells via
326 manipulating Notch signaling, leading to alteration of expressional patterns of target gene Hes and
327 GATA factors (unpublished data). The crosslink provides a new insight of the potential mechanism
328 of B19-induced differentiational inhibition of EPCs. Further studies are needed to explore the
329 expressional alteration of related target genes and the concrete regulatory pathway of Notch
330 signaling to have a clearer understanding of the pathogenesis of B19-related anemia (Figure 3).

331
332 Conclusion

333 In summary, in this review, we provide a new insight of the bridge between B19 infection and
334 Notch signaling pathway or transcriptional factors GATA: B19 NS1 could perturb the
335 differentiation and proliferation processes of erythroid lineage cells via manipulating Notch
336 signaling, leading to alteration of expressional patterns of target gene Hes and GATA factors. The
337 crosslink provides a new potential mechanism of B19-induced differentiational inhibition of
338 erythroid progenitor cells, may also give a clue to prophylactic and therapeutic targets for
339 B19-related severe anemia in high risk groups, and develop effective vaccines or antivirus drugs
340 of B19 infection.

341
342 Ethics approval and consent to participate

343 Not applicable.

344
345 Consent for publication

346 Not applicable.

347 **Availability of data and material**

348 Not applicable.

349

350 **Competing interests**

351 No potential competing interests.

352

353 **Funding**

354 This work was supported by a grant from the Chinese National Natural Science Fund
355 81170005 and 81670007.

356

357 **Authors contributions:**

358 Dr. Shuwen Feng collecting references, drawing the figures and writing this paper, and Dr.
359 Dongxin Zeng and Junwen Zheng participated the writing and discussion, and Dr. Dongchi Zhao
360 writing and organizing this paper.

361

362 **Acknowledgements**

363 Thanks for professor the economic support by Natural Science Foundation of China.

364

365

366 **References**

367 1. Qiu J, Soderlund-Venermo M, Young NS. Human Parvoviruses. *Clin Microbiol Rev.* 2017;30(1):43-113.

368 2. Lehmann HW, von Landenberg P, Modrow S. Parvovirus B19 infection and autoimmune disease. *Autoimmun Rev.* 2003;2(4):218-23.

369 3. Heegaard ED, Brown KE. Human parvovirus B19. *Clin Microbiol Rev.* 2002;15(3):485-505.

370 4. Nicolay N, Cotter S. Clinical and epidemiological aspects of parvovirus B19 infections in Ireland, January 1996-June 2008. *Euro Surveill.* 2009;14(25).

371 5. Marano G, Vaglio S, Pupella S, Facco G, Calizzani G, Candura F, et al. Human Parvovirus B19 and blood product safety: a tale of twenty years of improvements. *Blood Transfus.* 2015;13(2):184-96.

372 6. Mossong J, Hens N, Friederichs V, Davidkin I, Broman M, Litwinska B, et al. Parvovirus B19 infection in five European countries: seroepidemiology, force of infection and maternal risk of infection. *Epidemiol Infect.* 2008;136(8):1059-68.

373 7. Manaresi E, Gallinella G, Venturoli S, Zerbini M, Musiani M. Detection of parvovirus B19 IgG: choice of antigens and serological tests. *J Clin Virol.* 2004;29(1):51-3.

374 8. Survey JT, Reamy BV, Hodge J. Clinical presentations of parvovirus B19 infection. *Am Fam Physician.* 2007;75(3):373-6.

375 9. Kurtzman GJ, Ozawa K, Cohen B, Hanson G, Oseas R, Young NS. Chronic bone marrow failure due to persistent B19 parvovirus infection. *N Engl J Med.* 1987;317(5):287-94.

376 10. Oakley J, Zahr R, Aban I, Kulkarni V, Patel RP, Hurwitz J, et al. Acute Kidney Injury during Parvovirus B19-Induced Transient Aplastic Crisis in Sickle Cell Disease. *Am J Hematol.* 2018.

377 11. Dijkmans AC, de Jong EP, Dijkmans BA, Lopriore E, Vossen A, Walther FJ, et al. Parvovirus B19 in pregnancy: prenatal diagnosis and management of fetal complications. *Curr Opin Obstet Gynecol.* 2012;24(2):95-101.

378 12. Staroselsky A, Klieger-Grossmann C, Garcia-Bournissen F, Koren G. Exposure to fifth disease in pregnancy. *Can Fam Physician.* 2009;55(12):1195-8.

379 13. Bonvicini F, Bua G, Gallinella G. Parvovirus B19 infection in pregnancy-awareness and opportunities. *Curr Opin Virol.* 2017;27:8-14.

380 14. Kyeong KS, Won HS, Lee MY, Shim JY, Lee PR, Kim A. Clinical features of 10 fetuses with prenatally diagnosed parvovirus b19 infection and fetal hydrops. *Fetal Pediatr Pathol.* 2015;34(1):49-56.

381 15. Mace G, Sauvan M, Castaigne V, Moutard ML, Cortey A, Maisonneuve E, et al. Clinical presentation and outcome of 20 fetuses with parvovirus B19 infection complicated by severe anemia and/or fetal hydrops. *Prenat Diagn.* 2014;34(11):1023-30.

382 16. de Jong EP, de Haan TR, Kroes AC, Beersma MF, Oepkes D, Walther FJ. Parvovirus B19 infection in pregnancy. *J Clin Virol.* 2006;36(1):1-7.

383 17. Xu P, Zhou Z, Xiong M, Zou W, Deng X, Ganaie SS, et al. Parvovirus B19 NS1 protein induces cell cycle arrest at G2-phase by activating the ATR-CDC25C-CDK1 pathway. *PLoS Pathog.* 2017;13(3):e1006266.

384 18. dos Santos Brito Silva Furtado M, Viana MB, Hickson Rios JS, Gontijo RL, Silva CM, do Val Rezende P, et al. Prevalence and incidence of erythrovirus B19 infection in children with sickle cell disease: The impact of viral infection in acute clinical events. *J Med Virol.* 2016;88(4):588-95.

385 19. Means RT, Jr. Pure red cell aplasia. *Blood.* 2016;128(21):2504-9.

409 20. Chisaka H, Morita E, Yaegashi N, Sugamura K. Parvovirus B19 and the pathogenesis of anaemia.
410 Rev Med Virol. 2003;13(6):347-59. Epub 2003/11/20.

411 21. Brown KE, Anderson SM, Young NS. Erythrocyte P antigen: cellular receptor for B19 parvovirus.
412 Science. 1993;262(5130):114-7.

413 22. Weigel-Kelley KA, Yoder MC, Srivastava A. Recombinant human parvovirus B19 vectors:
414 erythrocyte P antigen is necessary but not sufficient for successful transduction of human
415 hematopoietic cells. J Virol. 2001;75(9):4110-6.

416 23. Brown KE, Hibbs JR, Gallinella G, Anderson SM, Lehman ED, McCarthy P, et al. Resistance to
417 parvovirus B19 infection due to lack of virus receptor (erythrocyte P antigen). N Engl J Med.
418 1994;330(17):1192-6. Epub 1994/04/28.

419 24. Weigel-Kelley KA, Yoder MC, Srivastava A. Alpha5beta1 integrin as a cellular coreceptor for
420 human parvovirus B19: requirement of functional activation of beta1 integrin for viral entry. Blood.
421 2003;102(12):3927-33.

422 25. Munakata Y, Saito-Ito T, Kumura-Ishii K, Huang J, Kodera T, Ishii T, et al. Ku80 autoantigen as a
423 cellular coreceptor for human parvovirus B19 infection. Blood. 2005;106(10):3449-56.

424 26. Kaufmann B, Simpson AA, Rossmann MG. The structure of human parvovirus B19. Proc Natl
425 Acad Sci U S A. 2004;101(32):11628-33.

426 27. Zhi N, Mills IP, Lu J, Wong S, Filippone C, Brown KE. Molecular and functional analyses of a
427 human parvovirus B19 infectious clone demonstrates essential roles for NS1, VP1, and the
428 11-kilodalton protein in virus replication and infectivity. J Virol. 2006;80(12):5941-50.

429 28. Peterlana D, Puccetti A, Corrocher R, Lunardi C. Serologic and molecular detection of human
430 Parvovirus B19 infection. Clin Chim Acta. 2006;372(1-2):14-23.

431 29. Luo W, Astell CR. A novel protein encoded by small RNAs of parvovirus B19. Virology.
432 1993;195(2):448-55.

433 30. St Amand J, Beard C, Humphries K, Astell CR. Analysis of splice junctions and in vitro and in
434 vivo translation potential of the small, abundant B19 parvovirus RNAs. Virology. 1991;183(1):133-42.

435 31. Chen AY, Zhang EY, Guan W, Cheng F, Kleiboecker S, Yankee TM, et al. The small 11 kDa
436 nonstructural protein of human parvovirus B19 plays a key role in inducing apoptosis during B19 virus
437 infection of primary erythroid progenitor cells. Blood. 2010;115(5):1070-80.

438 32. Ganaie SS, Chen AY, Huang C, Xu P, Kleiboecker S, Du A, et al. RNA Binding Protein RBM38
439 Regulates Expression of the 11-Kilodalton Protein of Parvovirus B19, Which Facilitates Viral DNA
440 Replication. J Virol. 2018;92(8).

441 33. Ozawa K, Ayub J, Kajigaya S, Shimada T, Young N. The gene encoding the nonstructural protein
442 of B19 (human) parvovirus may be lethal in transfected cells. J Virol. 1988;62(8):2884-9.

443 34. Ganaie SS, Qiu J. Recent Advances in Replication and Infection of Human Parvovirus B19. Front
444 Cell Infect Microbiol. 2018;8:166.

445 35. Raab U, Beckenlehner K, Lowin T, Niller HH, Doyle S, Modrow S. NS1 protein of parvovirus
446 B19 interacts directly with DNA sequences of the p6 promoter and with the cellular transcription
447 factors Sp1/Sp3. Virology. 2002;293(1):86-93.

448 36. Tewary SK, Zhao H, Deng X, Qiu J, Tang L. The human parvovirus B19 non-structural protein 1
449 N-terminal domain specifically binds to the origin of replication in the viral DNA. Virology.
450 2014;449:297-303.

451 37. Sanchez JL, Romero Z, Quinones A, Torgeson KR, Horton NC. DNA Binding and Cleavage by
452 the Human Parvovirus B19 NS1 Nuclease Domain. Biochemistry. 2016;55(47):6577-93.

453 38. Fu Y, Ishii KK, Munakata Y, Saitoh T, Kaku M, Sasaki T. Regulation of tumor necrosis factor
454 alpha promoter by human parvovirus B19 NS1 through activation of AP-1 and AP-2. *J Virol.*
455 2002;76(11):5395-403.

456 39. Moffatt S, Tanaka N, Tada K, Nose M, Nakamura M, Muraoka O, et al. A cytotoxic nonstructural
457 protein, NS1, of human parvovirus B19 induces activation of interleukin-6 gene expression. *J Virol.*
458 1996;70(12):8485-91. *Epublishing 1996/12/01.*

459 40. Nakashima A, Morita E, Saito S, Sugamura K. Human Parvovirus B19 nonstructural protein
460 transactivates the p21/WAF1 through Sp1. *Virology.* 2004;329(2):493-504.

461 41. Moffatt S, Yaegashi N, Tada K, Tanaka N, Sugamura K. Human parvovirus B19 nonstructural
462 (NS1) protein induces apoptosis in erythroid lineage cells. *J Virol.* 1998;72(4):3018-28.

463 42. Hsu TC, Wu WJ, Chen MC, Tsay GJ. Human parvovirus B19 non-structural protein (NS1)
464 induces apoptosis through mitochondria cell death pathway in COS-7 cells. *Scand J Infect Dis.*
465 2004;36(8):570-7.

466 43. Luo Y, Lou S, Deng X, Liu Z, Li Y, Kleiboecker S, et al. Parvovirus B19 infection of human
467 primary erythroid progenitor cells triggers ATR-Chk1 signaling, which promotes B19 virus replication.
468 *J Virol.* 2011;85(16):8046-55.

469 44. Morita E, Tada K, Chisaka H, Asao H, Sato H, Yaegashi N, et al. Human parvovirus B19 induces
470 cell cycle arrest at G(2) phase with accumulation of mitotic cyclins. *J Virol.* 2001;75(16):7555-63.

471 45. Kivovich V, Gilbert L, Vuento M, Naides SJ. The putative metal coordination motif in the
472 endonuclease domain of human Parvovirus B19 NS1 is critical for NS1 induced S phase arrest and
473 DNA damage. *International journal of biological sciences.* 2012;8(1):79-92. *Epublishing 2012/01/03.*

474 46. Luo Y, Kleiboecker S, Deng X, Qiu J. Human parvovirus B19 infection causes cell cycle arrest of
475 human erythroid progenitors at late S phase that favors viral DNA replication. *J Virol.*
476 2013;87(23):12766-75. *Epublishing 2013/09/21.*

477 47. Wan Z, Zhi N, Wong S, Keyvanfar K, Liu D, Raghavachari N, et al. Human parvovirus B19
478 causes cell cycle arrest of human erythroid progenitors via deregulation of the E2F family of
479 transcription factors. *J Clin Invest.* 2010;120(10):3530-44.

480 48. Morita E, Nakashima A, Asao H, Sato H, Sugamura K. Human parvovirus B19 nonstructural
481 protein (NS1) induces cell cycle arrest at G(1) phase. *J Virol.* 2003;77(5):2915-21. *Epublishing 2003/02/14.*

482 49. Poole BD, Kivovich V, Gilbert L, Naides SJ. Parvovirus B19 nonstructural protein-induced
483 damage of cellular DNA and resultant apoptosis. *Int J Med Sci.* 2011;8(2):88-96.

484 50. Zou W, Wang Z, Xiong M, Chen AY, Xu P, Ganaie SS, et al. Human Parvovirus B19 Utilizes
485 Cellular DNA Replication Machinery for Viral DNA Replication. *J Virol.* 2018;92(5).

486 51. Katsumura KR, Bresnick EH, Group GFM. The GATA factor revolution in hematology. *Blood.*
487 2017;129(15):2092-102.

488 52. Ko LJ, Engel JD. DNA-binding specificities of the GATA transcription factor family. *Mol Cell*
489 *Biol.* 1993;13(7):4011-22.

490 53. Trainor CD, Omichinski JG, Vandergon TL, Gronenborn AM, Clore GM, Felsenfeld G. A
491 palindromic regulatory site within vertebrate GATA-1 promoters requires both zinc fingers of the
492 GATA-1 DNA-binding domain for high-affinity interaction. *Mol Cell Biol.* 1996;16(5):2238-47.

493 54. Gao J, Chen YH, Peterson LC. GATA family transcriptional factors: emerging suspects in
494 hematologic disorders. *Exp Hematol Oncol.* 2015;4:28.

495 55. Crispino JD, Horwitz MS. GATA factor mutations in hematologic disease. *Blood.*
496 2017;129(15):2103-10.

497 56. Tsang AP, Visvader JE, Turner CA, Fujiwara Y, Yu C, Weiss MJ, et al. FOG, a multitype zinc
498 finger protein, acts as a cofactor for transcription factor GATA-1 in erythroid and megakaryocytic
499 differentiation. *Cell*. 1997;90(1):109-19.

500 57. Takahashi T, Suwabe N, Dai P, Yamamoto M, Ishii S, Nakano T. Inhibitory interaction of c-Myb
501 and GATA-1 via transcriptional co-activator CBP. *Oncogene*. 2000;19(1):134-40.

502 58. Heavey B, Charalambous C, Cobaleda C, Busslinger M. Myeloid lineage switch of Pax5 mutant
503 but not wild-type B cell progenitors by C/EBPalpha and GATA factors. *EMBO J*. 2003;22(15):3887-97.

504 59. Nerlov C, Querfurth E, Kulessa H, Graf T. GATA-1 interacts with the myeloid PU.1 transcription
505 factor and represses PU.1-dependent transcription. *Blood*. 2000;95(8):2543-51.

506 60. Cantor AB, Orkin SH. Transcriptional regulation of erythropoiesis: an affair involving multiple
507 partners. *Oncogene*. 2002;21(21):3368-76.

508 61. Chlon TM, Crispino JD. Combinatorial regulation of tissue specification by GATA and FOG
509 factors. *Development*. 2012;139(21):3905-16.

510 62. Elcheva I, Brok-Volchanskaya V, Kumar A, Liu P, Lee JH, Tong L, et al. Direct induction of
511 haematoendothelial programs in human pluripotent stem cells by transcriptional regulators. *Nat
512 Commun*. 2014;5:4372.

513 63. Rodrigues NP, Boyd AS, Fugazza C, May GE, Guo Y, Tipping AJ, et al. GATA-2 regulates
514 granulocyte-macrophage progenitor cell function. *Blood*. 2008;112(13):4862-73.

515 64. Suzuki M, Kobayashi-Osaki M, Tsutsumi S, Pan X, Ohmori S, Takai J, et al. GATA factor
516 switching from GATA2 to GATA1 contributes to erythroid differentiation. *Genes Cells*.
517 2013;18(11):921-33.

518 65. Moriguchi T, Yamamoto M. A regulatory network governing Gata1 and Gata2 gene transcription
519 orchestrates erythroid lineage differentiation. *Int J Hematol*. 2014;100(5):417-24.

520 66. Garcia-Ojeda ME, Klein Wolterink RG, Lemaitre F, Richard-Le Goff O, Hasan M, Hendriks RW,
521 et al. GATA-3 promotes T-cell specification by repressing B-cell potential in pro-T cells in mice. *Blood*.
522 2013;121(10):1749-59.

523 67. Scripture-Adams DD, Damle SS, Li L, Elihu KJ, Qin S, Arias AM, et al. GATA-3 dose-dependent
524 checkpoints in early T cell commitment. *J Immunol*. 2014;193(7):3470-91.

525 68. Shimizu R, Yamamoto M. GATA-related hematologic disorders. *Exp Hematol*.
526 2016;44(8):696-705.

527 69. Vyas P, Ault K, Jackson CW, Orkin SH, Shivdasani RA. Consequences of GATA-1 deficiency in
528 megakaryocytes and platelets. *Blood*. 1999;93(9):2867-75.

529 70. Schluens H, Jung M, Han H, Theorell J, Bigley V, Chiang SC, et al. Adaptive NK cells can persist
530 in patients with GATA2 mutation depleted of stem and progenitor cells. *Blood*. 2017;129(14):1927-39.

531 71. Spinner MA, Sanchez LA, Hsu AP, Shaw PA, Zerbe CS, Calvo KR, et al. GATA2 deficiency: a
532 protean disorder of hematopoiesis, lymphatics, and immunity. *Blood*. 2014;123(6):809-21.

533 72. Hsu AP, McReynolds LJ, Holland SM. GATA2 deficiency. *Curr Opin Allergy Clin Immunol*.
534 2015;15(1):104-9.

535 73. Perez-Andreu V, Roberts KG, Harvey RC, Yang W, Cheng C, Pei D, et al. Inherited GATA3
536 variants are associated with Ph-like childhood acute lymphoblastic leukemia and risk of relapse. *Nat
537 Genet*. 2013;45(12):1494-8.

538 74. Ishiko E, Matsumura I, Ezoe S, Gale K, Ishiko J, Satoh Y, et al. Notch signals inhibit the
539 development of erythroid/megakaryocytic cells by suppressing GATA-1 activity through the induction
540 of HES1. *J Biol Chem*. 2005;280(6):4929-39.

541 75. de Pooter RF, Schmitt TM, de la Pompa JL, Fujiwara Y, Orkin SH, Zuniga-Pflucker JC. Notch
542 signaling requires GATA-2 to inhibit myelopoiesis from embryonic stem cells and primary hemopoietic
543 progenitors. *J Immunol.* 2006;176(9):5267-75. Epub 2006/04/20.

544 76. Ross J, Mavoungou L, Bresnick EH, Milot E. GATA-1 utilizes Ikaros and polycomb repressive
545 complex 2 to suppress Hes1 and to promote erythropoiesis. *Mol Cell Biol.* 2012;32(18):3624-38.

546 77. Malinge S, Thiollier C, Chlon TM, Dore LC, Diebold L, Bluteau O, et al. Ikaros inhibits
547 megakaryopoiesis through functional interaction with GATA-1 and NOTCH signaling. *Blood.*
548 2013;121(13):2440-51.

549 78. Terriente-Felix A, Li J, Collins S, Mulligan A, Reekie I, Bernard F, et al. Notch cooperates with
550 Lozenge/Runx to lock haemocytes into a differentiation programme. *Development.*
551 2013;140(4):926-37.

552 79. Siebel C, Lendahl U. Notch Signaling in Development, Tissue Homeostasis, and Disease. *Physiol
553 Rev.* 2017;97(4):1235-94.

554 80. Andersson ER, Sandberg R, Lendahl U. Notch signaling: simplicity in design, versatility in
555 function. *Development.* 2011;138(17):3593-612.

556 81. Kopan R, Ilagan MX. The canonical Notch signaling pathway: unfolding the activation
557 mechanism. *Cell.* 2009;137(2):216-33. Epub 2009/04/22.

558 82. Wang H, Zang C, Liu XS, Aster JC. The role of Notch receptors in transcriptional regulation. *J
559 Cell Physiol.* 2015;230(5):982-8.

560 83. Bigas A, Guiu J, Gama-Norton L. Notch and Wnt signaling in the emergence of hematopoietic
561 stem cells. *Blood Cells Mol Dis.* 2013;51(4):264-70.

562 84. Lampreia FP, Carmelo JG, Anjos-Afonso F. Notch Signaling in the Regulation of Hematopoietic
563 Stem Cell. *Curr Stem Cell Rep.* 2017;3(3):202-9.

564 85. Guiu J, Shimizu R, D'Altri T, Fraser ST, Hatakeyama J, Bresnick EH, et al. Hes repressors are
565 essential regulators of hematopoietic stem cell development downstream of Notch signaling. *J Exp
566 Med.* 2013;210(1):71-84.

567 86. Kumano K, Chiba S, Shimizu K, Yamagata T, Hosoya N, Saito T, et al. Notch1 inhibits
568 differentiation of hematopoietic cells by sustaining GATA-2 expression. *Blood.* 2001;98(12):3283-9.

569 87. Robert-Moreno A, Espinosa L, de la Pompa JL, Bigas A. RBPj κ -dependent Notch function
570 regulates Gata2 and is essential for the formation of intra-embryonic hematopoietic cells. *Development.*
571 2005;132(5):1117-26.

572 88. Gu Y, Masiero M, Banham AH. Notch signaling: its roles and therapeutic potential in
573 hematological malignancies. *Oncotarget.* 2016;7(20):29804-23.

574 89. Robert-Moreno A, Guiu J, Ruiz-Herguido C, Lopez ME, Ingles-Esteve J, Riera L, et al. Impaired
575 embryonic haematopoiesis yet normal arterial development in the absence of the Notch ligand Jagged1.
576 *Embo j.* 2008;27(13):1886-95. Epub 2008/06/06.

577 90. Zeuner A, Francescangeli F, Signore M, Venneri MA, Pedini F, Felli N, et al. The Notch2-Jagged1
578 interaction mediates stem cell factor signaling in erythropoiesis. *Cell Death Differ.* 2011;18(2):371-80.
579 Epub 2010/09/11.

580 91. Kim AD, Melick CH, Clements WK, Stachura DL, Distel M, Panakova D, et al. Discrete Notch
581 signaling requirements in the specification of hematopoietic stem cells. *EMBO J.*
582 2014;33(20):2363-73.

583 92. Duarte S, Woll PS, Buza-Vidas N, Chin DWL, Boukarabila H, Luis TC, et al. Canonical Notch
584 signaling is dispensable for adult steady-state and stress myelo-erythropoiesis. *Blood.*

585 2018;131(15):1712-9.

586 93. Cheng X, Huber TL, Chen VC, Gadue P, Keller GM. Numb mediates the interaction between Wnt
587 and Notch to modulate primitive erythropoietic specification from the hemangioblast. *Development*.
588 2008;135(20):3447-58. Epub 2008/09/19.

589 94. Kim YW, Koo BK, Jeong HW, Yoon MJ, Song R, Shin J, et al. Defective Notch activation in
590 microenvironment leads to myeloproliferative disease. *Blood*. 2008;112(12):4628-38.

591 95. Hayward SD. Viral interactions with the Notch pathway. *Semin Cancer Biol*. 2004;14(5):387-96.

592 96. Zimber-Strobl U, Strobl LJ, Meitinger C, Hinrichs R, Sakai T, Furukawa T, et al. Epstein-Barr
593 virus nuclear antigen 2 exerts its transactivating function through interaction with recombination signal
594 binding protein RBP-J kappa, the homologue of *Drosophila* Suppressor of Hairless. *EMBO J*.
595 1994;13(20):4973-82.

596 97. Kuroda K, Han H, Tani S, Tanigaki K, Tun T, Furukawa T, et al. Regulation of marginal zone B
597 cell development by MINT, a suppressor of Notch/RBP-J signaling pathway. *Immunity*.
598 2003;18(2):301-12.

599 98. Liang Y, Chang J, Lynch SJ, Lukac DM, Ganem D. The lytic switch protein of KSHV activates
600 gene expression via functional interaction with RBP-Jkappa (CSL), the target of the Notch signaling
601 pathway. *Genes Dev*. 2002;16(15):1977-89.

602 99. Bocchetta M, Miele L, Pass HI, Carbone M. Notch-1 induction, a novel activity of SV40 required
603 for growth of SV40-transformed human mesothelial cells. *Oncogene*. 2003;22(1):81-9.

604 100. Nair P, Somasundaram K, Krishna S. Activated Notch1 inhibits p53-induced apoptosis and
605 sustains transformation by human papillomavirus type 16 E6 and E7 oncogenes through a
606 PI3K-PKB/Akt-dependent pathway. *J Virol*. 2003;77(12):7106-12.

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627 Figure legends

628

629 Figure 1. Mechanism of B19 causing erythropoiesis hemolysis. B19 entry erythropoiesis by
630 binding $\alpha 5\beta 1$ integrins and coaction with p antigen. Replication of B19 leads to cytolysis of EPCs
631 and influences the life span of erythropoiesis cells, which brings about acute hemolysis.

632

633 Figure 2. Roles of nonstructural protein 1 in B19 infection. Replication of B19 virus promotes its
634 NS1 covalently binding with host cellular DNA, induces CCA at G1-phase in NS1-expressing
635 UT7/Epo-S1 cells and causing DDR mediated by helicase and nickase in NS1 central region,
636 resultantly perturbs cell cycle progression and inhibit the differentiation of EPCs.

637

638 Figure 3. Putative pathways of nonstructural protein 1 in the regulation of EPCs differentiation.
639 B19 NS1 upregulates the expression of Notch1, Hes1/5 and GATA2, while downregulates GATA1,
640 which perturbs the differentiation of erythroid lineage cells via manipulating Notch signaling,
641 leading to alteration of expressional patterns of Hes and GATA.

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664 Figure 1.

665 Figure 1

666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689

690 Figure 2.

691

Figure2. Roles of nonstructural protein NS1 in B19 infection

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716 Figure 3

717

718

719