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11 Abstract
12 Background
13 Human parvovirus B19, a human pathogen of the erythroparvovirus genus, is responsible for

14  avariety of diseases. Despite less symptoms caused by B19 infection in healthy individuals, this
15  pathogen can not be neglected in specific groups who exhibit severe anemia.

16 Main body of abstract

17 Transient aplastic crisis and pure red cell aplasia are two kinds of anemic hemogram
18  respectively in acute phase and chronic B19 infection, especially occur in individuals with a
19  shortened red cell survival or immunocompromised patients. In addition, B19 infected pregnant
20  women may suffer risks of hydrops fetalis secondary to severe anemia and fetal loss. B19
21  possesses high affinity to bone marrow and fetal liver due to its extremely restricted cytotoxicity
22  to erythroid progenitor cells mediated by viral proteins. The nonstructural protein NS1 is
23 considered to be the major pathogenic factor, which takes parts in differentiational inhibition and
24 apoptosis of erythroid progenitor cells through inducing viral DNA damage responses and cell
25  cycle arrest. The time phase property of NS1 activity during DNA replication and conformity to
26  transient change of hemogram are suggestive of its role in regulating differentiation of
27  hematopoietic cells, which is not completely understood.

28 Conclusion

29 In this review, we set up a hypothetic bridge between B19 NS1 and Notch signaling pathway
30  ortranscriptional factors GATA which are essential in hematopoiesis, to provide a new insight of
31  the potential mechanism of B19-induced differentiational inhibition of erythroid progenitor cells.
32

33 Key Words: human parvovirus B19; nonstructural protein NS1; erythroid progenitor cells;
34 differentiation; GATA; anemia

35 Running title: B19 modulates EPCs differentiation
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81 Background
82 Human parvovirus B19 (B19), a small non-enveloped, single-stranded DNA virus belonging
83  to the genus erythroparvovirus of the Parvoviridae family[1], known to be the causative agent of
84  the fifth disease (erythema infectiosum), is also a leading cause of autoimmune disease in human
85  beings[2, 3]. B19 infection is common worldwide, showing age dependent and regional
86  epidemiological differences with seasonal and annual cycles. B19 outbreaks feature with a
87  peaking in winter or spring and a three to six-years cycle[1, 4]. Evidences were found that the
88  seroprevalence of B19 IgG varies widely from approximately 2% to 21% in children from 1 to 5
89  years of age, from 30% to 40% in adolescents, from 40% to 60% in adults, and more than 85% in
90  elderly populations[5]. Despite of the increasing positive incidence of B19 IgG with age groups,
91  acquisition is often during childhood via respiratory route and continues at low rates throughout
92  adulthood[6, 7]. Although many individuals with B19 infection are asymptomatic or exhibit mild,
93  nonspecific, cold-like symptoms, children aged 4-11 years usually present to have ‘slapped cheek’
94  facial rash, which is self-limited and generally needs no treatment[8]. However, clinical conditions
95  associated with the B19 infection could be severe in those who has a shortened red cell survival,
96  orin immunocompromised patients and pregnant women[5].
97 Not only B19 infection could cause erythema infectiosum or transient aplastic crisis in acute
98 infectious period, but the persistent existence of B19 in bone marrow could lead to pure red cell
99  aplasia in an immunocompromised host[9]. Life would be threatened in patients with shortened
100  red cell survival due to their lack of timely supplements in B19-induced severe anemia[10].
101 Furthermore, pregnant women with B19 infection have higher risk of miscarriage or fetal
102  complications[11]. The rate of vertical transmission during maternal parvovirus B19 infection is
103  estimated at 33%, with fetal complications occurring in 3% of infected women[12]. B19V poses a
104  potential hazard to the fetus as crossing the placental barrier and infecting erythroid progenitor
105  cells (EPCs) in bone marrow and fetal liver, it blocks fetal erythropoiesis leading to profound
106  anemia, fetal hydrops and/or fetal death[13]. Once the fetus/newborns develop hydrops, treatments
107  like intrauterine red blood cell transfusion or intravenous immunoglobin and digitalis may fail to
108  rescue, with a survival rate of only 60-70% overall[14, 15].
109 B19 is a potent inhibitor of erythropoiesis, due to its highly restricted cytotoxicity to EPCs at
110  the burst-forming unit (BFU)- and colony-forming unit (CFU)-erythroid stages[16, 17]. Severe
111 anemia could appear in immunodeficiency patients or patients with shortened red cell survival
112 under B19 infected conditions, fetus/newborns of B19 infected mothers as well. B19 is an
113  important antigen for Eugenics[13]. However, pathogenesis of B19 is not completely clear on
114  account of its difficulties in vitro culture, effective vaccines or antivirus drugs of B19 are of urgent
115  shortage.
116
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117 Pathogenesis of anemia in B19 infection
118 Even though B19 infection is self-limited in healthy individuals, it is often associated with

119  transient aplastic crisis (TAC) in children with sickle cell disease[18]. In patients with short life
120  span of red blood cells, such as sickle cell anemia, hereditary spherocytosis, thalassaemia, or
121 chronic hemolytic disease, severe anemia exacerbated by B19 infection could be fatal due to the
122 acute hemolysis and temporary arrest of erythropoiesis occurring on the basis of chronic
123 hemolytic anemia and increased destruction of red blood cells if transfusions are not available or
124 not administered urgently. Even more seriously, chronic B19 infection could induce pure red cell
125  aplasia (PRCA), which is exhibited in immunocompromised patients or transplant recipients on
126 account of impaired ability of viral elimination [19]. And PRCA in the intrauterine B19-infected
127  fetus may show ultrasonographic signs of general edema, such as subcutaneous edema, pleural
128  effusion, pericardial effusion, ascites and placental edema. The main mechanism responsible for
129  the non-immune hydrops fetalis is probably cardiogenic heart failure secondary to severe
130  anemia[20].

131 The B19 virus can be transmitted mainly by respiratory tracts, also via blood or pooled-blood
132 products, from a pregnant mother to her fetus, and possibly even from tattooing[1]. After
133  overcoming the barrier of airway epithelium, vascular or placenta, B19 arrives into human body
134  and initially interacts with P antigen (globoside), the primary low-affinity attachment sugar
135  molecule abundantly expressed on the surface of erythroid progenitor cells, acting as an essential
136 cellular receptor for B19[21]. However, P antigen is necessary for binding but not sufficient for
137  parvovirus B19 entry into cells[22, 23]. Unlike mature human red blood cells, primary human
138  erythroid progenitor cells, the major target cells of B19, not only express high levels of P antigen,
139  but specifically express a5p1 integrins which permit 1 integrin—mediated entry of parvovirus
140 B19[24]. Moreover, Ku80 was identified in vitro nonerythroid cells to functions as a coreceptor
141 for B19 infection together with P antigen and a5B1 integrins, which takes part in B19 binding and
142  subsequent entry. Although originally known as a nuclear protein, Ku80 was found to have a high
143  expression on the surface of erythroid progenitor cells expressing glycophorin A as well as on the
144 surface of immune cells such as CD20*, CD3*, or CD14* cells in bone marrow, which may
145  explain the pathologic immunity in autoimmune diseases related to B19 infection[25]. Thus, B19
146 virion accomplishes its internalization inside EPCs through interaction with P antigen in the aid of
147  a5P1 integrins and Ku80, and initiates its replication after entering the nucleus. Differential
148 inhibition processes and apoptotic signals activated by massive replication of B19 eventually lead
149  to cytolysis of EPCs and release of virions into the blood, which is consist with the transient
150 high-titer viremia in the acute phase. Destruction of large amount of EPCs significantly influences
151  the erythropoiesis and life span of red blood cells, which brings about acute hemolysis (Figure 1) .

152

153 Nonstructural protein NS1 is the major pathogenic factor in B19 infection

154  B19structure

155 The B19 virion has a linear ssSDNA genome of 5 to 6 kb, and a nonenveloped, icosahedral
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156  protein shell of ~280A in diameter, known to be the smallest DNA virus so far[26, 27]. The 5,596
157  nucleotides(nt) long genome is made up of an internal coding sequence flanked on both sides by
158  identical inverted terminal repeats (ITRs)[1]. These palindromes can acquire a hairpin
159  configuration and serve as primers for complementary strand synthesis, while the central region
160  genome encodes the 5 kinds of proteins of B19 virion[28]. The two structural proteins, VP1 and
161 VP2, account for 4% and 96% capsid proteins to form the icosahedral protein shell,
162  respectively[3]. The region of them shows a greater sequence variation in contrast to the large
163  nonstructural protein(NS1) region that is highly conserved, which implies their function in host
164  antivirus responses[28]. Expressions of the other two small nonstructural proteins of 11 kDa and
165 7.5 kDa were also documented[29, 30], the former one was suggested as a potent inducer of
166  apoptosis via enhancing viral DNA replication and virion release [31, 32], while the function of
167 7.5 kDa protein is inconclusive.

168 Roles of nonstructural protein 1 in B19 infection

169 The large nonstructural protein NS1, located predominantly to the nucleus, is the major
170  pathogenic factor in B19 infection[33]. NS1 gene (616-2631bp) encodes its protein of 672 amino
171  acids with a molecular mass of ~78kDa, which is of critical importance in both early virus DNA
172 replication and transcription in B19 infected human erythroid progenitor cells[1]. NS1 has a
173  N-terminal DNA-binding/nickase domain, a central domain displaying sequence motifs for
174  helicase/ATPase, and a putative transactivation domain (TAD) at the C-terminus[34]. Researches
175  implied that, with the help of the transcription factors Sp1/Sp3, NS1 N-terminal nuclease domain
176  specifically binds to the origin of replication in the virus DNA, including the NS1 binding
177  elements(NSBEs) and the overlapping P6 promoter DNA sequence, and the interaction between
178  NS1 and virus DNA mediates the cleavage of DNA at the ITRs by melting the hairpinned ITRs to
179  create a new 3’-OH and permit the following DNA synthesis[35-37]. Regulation of gene
180  transcription of B19 NS1 is not confined to its own viral promoter, p6, it has also been identified
181  in the transactivation of several host promoters, like tumor necrosis factor alpha (TNF-o),
182  interleukin-6 (IL-6), and p2l1, which may explain the pathogenesis of B19-associated
183  inflammation and apoptosis[38-40].

184 Studies on mechanism of B19-induced differentiational inhibition and apoptosis have made
185  progress in recent years[17, 31, 41, 42]. B19 infection could induce a broad range of DNA damage
186  responses (DDR) in ex vivo-expanded human erythroid progenitor cells, by triggering
187  phosphorylation of all the upstream kinases of each of three repair pathways: ATM, ATR, and
188  DNA-PKcs[43], which is of critical importance for virus replication. And the infected cells were
189  reported to have a cell cycle arrest (CCA) at both late S-phase and G2-phase, a point of the cell
190  cycle at which cells contain 4N DNA[44-46]. Recent advantages revealed that, NS1 transactivated
191  cellular gene expression through the TAD2 domain, activating the ATR-CHK1-CDC25C-CDK1
192  pathway in the B19-induced G2 arrest[17],which is independent of p53 activation and DDR
193  triggered by increased viral replication[45]. Interaction between NS1 and E2F family of
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194  transcription factors enhanced the nuclear import of these repressive E2Fs and induced stable G2
195  arrest[47]. While the putative metal coordination motif in the endonuclease domain of B19 NS1 is
196  critical for NS1-induced S phase arrest and DNA damage[45]. B19 NS1 has also been reported to
197  induce CCA at Gl-phase in NS1-expressing UT7/Epo-S1 cells[48]. Replication of B19 virus
198  promotes its NS1 covalently binding with host cellar DNA, causing DDR mediated by helicase or
199  nickase in NS1 central region. Subsequently occurs the activating of the DNA nick repair pathway
200  initiated by poly (ADPribose) polymerase and the DNA repair pathways initiated by
201  ATMJ/ATR[49]. And the DNA repair processes activated by extensive DDR accompanied with a
202  significant decrease in the ATP levels of the cell, act as the direct reason leading to apoptosis.
203  Besides, NS1-induced DDR may play an indirect role in facilitating viral DNA replication by
204 arresting cell cycle at G2 or S phase, during which host DNA replication factors are available[50].
205  Presumably, NS1 could also interfere with the expression of unidentified host transcriptional
206  factors, resultantly perturbs cell cycle progression and inhibit the differentiation of EPCs. While
207  S-phase arrest enriches S-phase factors that favor viral DNA replication as a compromised
208  outcome of B19 genome replication, G2 arrest halts erythropoiesis of EPCs and eventually leads
209  to apoptosis, in which 11kDa protein may play a more efficient part [1, 31, 46].

210 In addition, the roles of NS1 in modulation of inflammatory signaling by activation of
211  STAT3/PIAS3 and NLRP3, in inhibition of Na+/H+ exchanger activity, and in exacerbation of
212 liver injury were also been documented [51-54], which may partly explain the pathogenesis of

213  multiple B19-associated diseases (Figure 2).

214 As the abundant expression of B19 NS1 predominantly located in the nucleus of EPCs[47],
215  the protein only takes on its activity during the replication of virus DNA while not participates in
216  the processes of assembling and release, and loses its function as the elimination of B19 virions,
217  which is in accordance with the transient erythropoietic arrest in aplastic crisis. The time phase
218  property of NS1 activity and conformity to transient change of hemogram implied that NS1
219  activity is closely related to differentiation and apoptosis of hematopoietic cells. Despite of the
220  enormous progress made in understanding the roles of B19 NS1 induced apoptosis, further studies
221  are needed to explore the regulatory mechanism in NS1 induced inhibition of EPCs differentiation,
222 which is essential for therapeutic treatments of B19 related anemia. Besides B19, other virus likes
223  Epstein-Barr virus, could also inhibit erythroid lineage cells differentiation by interfering certain
224 signaling pathways involving in hematopoietic dysfunction. Among these pathways, B19
225  replication and transcription play an important role in Notch-Hes-GATA signaling regulation,

226 which disorders hematopoietic cells differentiation.

227 Transcriptional factors related to hematopoiesis
228 The GATA family
229 GATA binding proteins, known to be the erythroid-specific transcription factor family, have a

230  revolutionary significance in understanding the development of precursors from hematopoietic

6
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231  stem and progenitor cells, the generation of red blood cells from progenitors and the regulation of
232 hemoglobin synthesis[51]. All members of the GATA family have highly conserved DNA-binding
233 proteins that recognize the motif WGATAR through two zinc fingers to regulate the transcription
234  of downstream target genes[52-54]. Millions of copies of the specific sequences of DNA in
235  genome present in upstream of gene transcriptional origin, like promoters, enhancers and locus
236 control regions of f-globin and other genes, including itself as an autoregulatory mechanism[51,
237  55]. The C terminal zinc finger specifically binds to the GATA consensus sites, whereas the N
238  terminal zinc finger stabilizes the interaction between GATA and specific DNA sequences as well
239  as regulates the transcriptional activity of GATA factors through recruiting other cofactors of zinc
240  finger protein, such as FOG1, CPB/p300, Pax5 and Pu.1[56-60].

241 Among the six members (GATA1-6) of GATA family, GATAL is the founding member and
242  ushered in the cloning of the related proteins GATA2-6, and both GATAL, 2 and GATAS are
243 expressed in specific hematopoietic cell types of all stages. Involved in distinct and overlapping
244 aspects of hematopoiesis, the three members play an essential role in the development and
245  maintenance of diverse blood cell lineages, and are indispensable for regulating the development
246 and maturation of red blood cell[51, 61]. GATAL is a prototypical transcriptional factor required
247  for the erythroid, eosinophilic and megakaryocytic commitment during hematopoiesis, taking part
248 in the terminal differentiation. GATA2, predominantly expressed in hematopoietic stem and
249  progenitor cells, is essential for maintenance of the pool of hematopoietic stem cells by regulating
250  the proliferation and survival of early hematopoietic cells, and is also one of the most critical
251  transcriptional factors required for direct induction of the hemogenic endothelium with
252  pan-myeloid potential from human pluripotent stem cells[62, 63]. Both GATAL and GATAZ2 are
253  involved in lineage specific transcriptional regulation, especially the dynamic and strictly
254 controlled GATA factor switching from GATA2 to GATAL during erythropoiesis plays a crucial
255  role in orchestrating erythroid lineage differentiation[64, 65], whereas GATA3 is of vital
256  importance for multiorgan development and regulates tissue specific differentiation, it plays an
257  essential role in T lymphoid cell development and immune regulation as well[54, 66, 67].
258  Therefore, alteration of GATA factors expression is closely associated with hematologic disorders
259  and related diseases[55, 68]. No or less GATAL expression notably influences the differentiation
260  and maturation of erythroid cells, massive apoptosis of proerythroblasts leads to anemia[55].
261  Besides, GATAl-deficient mice develop thrombocytopenia and hyperproliferation of
262  megakaryocytes due to dysmaturity of megakaryocytes and a failure of platelet production[69].
263  GATA2 mutation is associated with immunodeficiency, lymphedema, and myelodysplastic
264  syndrome[70-72]. Inherited GATA3 variants are related to Ph-like childhood acute lymphoblastic
265  leukemia and risk of relapse[73].

266 Researches have revealed some correlations between GATA family and the Notch signaling
267  pathway, which is also involved in hematopoietic system[74-78]. It was found that Notch signals

268  could inhibit the differentiation and maturation of erythroid/megakaryocytic cells by suppressing
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8
269  GATA-1 activity through the induction of Heslexpression[74].
270 The Notch-Hes pathway
271 Notch proteins are a family of evolutionarily highly conserved single-pass transmembrane

272  receptors which are involved in the regulation of cell fate acquisition and differentiation in diverse
273  systems. The notch signaling pathways not only play an essential part in the development of a
274 wide range of tissues such as hemopoiesis, vasculogenesis, myogenesis, neurogenesis and
275  osteogenesis, but also take part in the homeostasis maintenance of a broad variety tissues [79, 80].
276  The family comprises of four Notch receptors(Notchl-4), five structurally related, single-pass
277  membrane Notch ligands (Delta-likel, 3, and 4 and Jaggedl and 2), and specific factors including
278  the DNA-binding protein RBP-Jk (recombinant binding protein suppressor of hairless; also known
279  as CSL/CBF1 in mammals, Su(H) in flies, and Lag-1 in worms) and the Mastermind-like family
280 (MAML) [81, 82].

281 In the absence of Notch activation, the Notch intracellular domain (NICD) is unavailable and
282  the downstream effector protein RBP-Jk associates with several different corepressors containing
283  Mint/Sharp/SPEN, NCoR/SMRT and KyoT2 to form a transcriptional corepressor complex which
284  is bound to the chromatin and inhibits gene expression. Activation of the canonical Notch
285  signaling is achieved by the generation of NICD, which is mediated by the interaction between
286  receptors and ligands and subsequently a sequence of proteolytic events, as well as its eventual
287  translocation to the nucleus where the RBP-Jk association module (RAM) domain of NICD
288 initially binds the RBP-Jx. This leads to the displacement of the co-repressor complex and the
289  recruitment of the transcriptional co-activators like MAML to form a transcriptional activator
290  complex (NICD-RBP-Jk-MAML), which triggers the downstream expression gene expression by
291  recruiting transcriptional factors like p300 histone acetyl-transferase[79-84]. The various target
292  genes of Notch including Hes(hairy/enhancer-of-split) and the Hes-related (HESR/HEY) family of
293  basic helix-loop-helix transcription repressors, which are essential regulators of hematopoietic
294  stem cell development, and subsequently modulate the proliferation and differentiation via
295  regulating expression of other genes like GATA family[85, 86]. In addition, GATA2 was also
296  identified as a direct target of Notchl signaling, which revealed a crucial role of Notch activation
297  for the onset of definitive hematopoiesis in the embryo[87].

298 Studies have identified Notch signaling as a key regulator of hematopoietic stem cell
299  development[83, 84, 88-92]. Among the Notch and Hes family members, Notchl,2 and Hes1,5 are
300  widely expressed in all lineages of hemopoietic stem/progenitor cells, and participate in regulating
301  their proliferation and differentiation to generate various hemocytes complying with extremely
302  strict principle of spatial-temporal sequence mediated by the fine expression of GATA factors[74,
303  83-87]. Activation of Notchl signaling could inhibit the differentiation and maturation of EPCs
304  and exhibit a peripherical hemogram of increased immature red blood cells and distinctly
305  decreased counts of mature red blood cells[86, 93, 94], which might be a clue of building a bridge
306  between B19 infection and anemia.

307
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308 The pathway of B19 NS1 in regulation of EPCs differentiation

309 Even though up to now no research has clarified if the major pathogenic factor B19 NS1
310  could influence the process of proliferation and differentiation via manipulating Notch signaling in
311  Bl19-infected EPCs, evidences of the connection to Notch have been found in other virus infected
312  cells[95]. Epstein-Barr virus nuclear antigen 2 (EBNAZ2) exerts its transactivating function through
313 interaction with CBF1/RBP-Jk, which is the coactivator of Notch signaling[96]. Notch signaling is
314  involved in the establishment of EBV latency in B cells possibly due to competitive binding of
315  EBNAZ2 to CBF1/RBP-Jx and the suppression of Notch/RBP-J signaling pathway which promotes
316 B cell proliferative responses[95, 97]. In addition, RTA, the lytic cycle regulator of Kaposi’s
317  sarcoma-associated herpesvirus (KSHV), also interacts with RBP-Jk to activate gene expression
318  [98]. Furthermore, Notch pathway interactions have also been mentioned for adenovirus SV40 and
319  human papilloma virus[99, 100].

320 It has been identified that B19 could inhibit the differentiation of erythroid lineage cells both
321 in vivo and vitro mediated by its major pathogenic factor NS1[1, 17]. The Notch signaling
322  pathway also plays an essential part in hemopoiesis through regulating its downstream genes like
323  Hesl/5 and GATA factors[83, 85]. Our tentative exploration showed that expression of Notchil,
324  Hesl/5 and GATA2 upregulated while GATAL downregulated in the B19 NS1 transfected K562
325  cells, which implies that NS1 could perturb the differentiation of erythroid lineage cells via
326  manipulating Notch signaling, leading to alteration of expressional patterns of target gene Hes and
327  GATA factors (unpublished data). The crosslink provides a new insight of the potential mechanism
328  of B19-induced differentiational inhibition of EPCs. Further studies are needed to explore the
329  expressional alteration of related target genes and the concrete regulatory pathway of Notch

330  signaling to have a clearer understanding of the pathogenesis of B19-related anemia (Figure 3).

331
332 Conclusion
333 In summary, in this review, we provide a new insight of the bridge between B19 infection and

334 Notch signaling pathway or transcriptional factors GATA: B19 NS1 could perturb the
335  differentiation and proliferation processes of erythroid lineage cells via manipulating Notch
336  signaling, leading to alteration of expressional patterns of target gene Hes and GATA factors. The
337  crosslink provides a new potential mechanism of B19-induced differentiational inhibition of
338  erythroid progenitor cells, may also give a clue to prophylactic and therapeutic targets for
339  B19-related severe anemia in high risk groups, and develop effective vaccines or antivirus drugs
340  of B19 infection.
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626

627  Figure legends

628

629  Figure 1. Mechanism of B19 causing erythropoiesis hemolysis. B19 entry erythropoiesis by
630  binding a5B1 integrins and coaction with p antigen. Replication of B19 leads to cytolysis of EPCs
631  and influences the life span of erythropoiesis cells, which brings about acute hemolysis.

632

633  Figure 2. Roles of nonstructural protein 1 in B19 infection. Replication of B19 virus promotes its
634  NS1 covalently binding with host cellar DNA, induces CCA at G1l-phase in NS1-expressing
635  UT7/Epo-S1 cells and causing DDR mediated by helicase and nickase in NS1 central region,
636  resultantly perturbs cell cycle progression and inhibit the differentiation of EPCs.

637

638  Figure 3.Putative pathways of nonstructural protein 1 in the regulation of EPCs differentiation.
639 B19 NS1 upregulates the expression of Notchl, Hes1/5 and GATA2, while downregulates GATA1L,
640  which perturbs the differentiation of erythroid lineage cells via manipulating Notch signaling,
641  leading to alteration of expressional patterns of Hes and GATA.
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