
1 

 

1 

 

New Insights of Human Parvovirus B19 in Modulating Erythroid 1 

Progenitor Cells Differentiation 2 

 3 

Shuwen Feng, Dongxin Zeng, Junwen Zheng*, Dongchi Zhao* 4 

Pediatrics Department, Children Digital and Health Data Research Center, Zhongnan Hospital of 5 

Wuhan University 6 

Authors: Shuwen Feng fengshuwen@whu.edu.cn 7 

Dongxin Zeng zengdongxin@163.com 8 

*Correspondence Authors: Junwen Zheng* zhengjunwen@whu.edu.cn 9 

Dongchi Zhao* zhao_wh2004@hotmail.com; 10 

Abstract  11 

Background 12 

Human parvovirus B19, a human pathogen of the erythroparvovirus genus, is responsible for 13 

a variety of diseases. Despite less symptoms caused by B19 infection in healthy individuals, this 14 

pathogen can not be neglected in specific groups who exhibit severe anemia.  15 

Main body of abstract 16 

Transient aplastic crisis and pure red cell aplasia are two kinds of anemic hemogram 17 

respectively in acute phase and chronic B19 infection, especially occur in individuals with a 18 

shortened red cell survival or immunocompromised patients. In addition, B19 infected pregnant 19 

women may suffer risks of hydrops fetalis secondary to severe anemia and fetal loss. B19 20 

possesses high affinity to bone marrow and fetal liver due to its extremely restricted cytotoxicity 21 

to erythroid progenitor cells mediated by viral proteins. The nonstructural protein NS1 is 22 

considered to be the major pathogenic factor, which takes parts in differentiational inhibition and 23 

apoptosis of erythroid progenitor cells through inducing viral DNA damage responses and cell 24 

cycle arrest. The time phase property of NS1 activity during DNA replication and conformity to 25 

transient change of hemogram are suggestive of its role in regulating differentiation of 26 

hematopoietic cells, which is not completely understood.  27 

Conclusion 28 

In this review, we set up a hypothetic bridge between B19 NS1 and Notch signaling pathway 29 

or transcriptional factors GATA which are essential in hematopoiesis, to provide a new insight of 30 

the potential mechanism of B19-induced differentiational inhibition of erythroid progenitor cells. 31 
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List of abbreviations 37 

B19                      Human parvovirus B19 38 

EPCs                     Erythroid progenitor cells 39 

BFU                     Burst-forming unit 40 

CFU                     Colony-forming unit 41 

TAC                     Transient aplastic crisis 42 

PRCA                    Pure red cell aplasia 43 

ITRs                     Inverted terminal repeats 44 

NS1                      Large nonstructural protein 45 

VP                       Structural protein 46 

TAD                      Transactivation domain 47 

NSBEs                    NS1 binding elements 48 

TNF-α                    Tumor necrosis factor alpha 49 

IL-6                      Interleukin-6 50 

DDR                      DNA damage response 51 

CCA                      Cell cycle arrest 52 

RBP-Jκ                    Recombinant binding protein suppressor of hairless 53 

MAML                    Mastermind-like family 54 

NICD                     Notch intracellular domain 55 

RAM                     RBP-Jκ association module 56 

Hes                       Hairy/enhancer-of-split 57 

EBNA2                   Epstein-Barr virus nuclear antigen 2 58 

KSHV                    Kaposi’s sarcoma-associated herpesvirus 59 
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Background 81 

Human parvovirus B19 (B19), a small non-enveloped, single-stranded DNA virus belonging 82 

to the genus erythroparvovirus of the Parvoviridae family[1], known to be the causative agent of 83 

the fifth disease (erythema infectiosum), is also a leading cause of autoimmune disease in human 84 

beings[2, 3]. B19 infection is common worldwide, showing age dependent and regional 85 

epidemiological differences with seasonal and annual cycles. B19 outbreaks feature with a 86 

peaking in winter or spring and a three to six-years cycle[1, 4]. Evidences were found that the 87 

seroprevalence of B19 IgG varies widely from approximately 2% to 21% in children from 1 to 5 88 

years of age, from 30% to 40% in adolescents, from 40% to 60% in adults, and more than 85% in 89 

elderly populations[5]. Despite of the increasing positive incidence of B19 IgG with age groups, 90 

acquisition is often during childhood via respiratory route and continues at low rates throughout 91 

adulthood[6, 7]. Although many individuals with B19 infection are asymptomatic or exhibit mild, 92 

nonspecific, cold-like symptoms, children aged 4-11 years usually present to have ‘slapped cheek’ 93 

facial rash, which is self-limited and generally needs no treatment[8]. However, clinical conditions 94 

associated with the B19 infection could be severe in those who has a shortened red cell survival, 95 

or in immunocompromised patients and pregnant women[5].  96 

Not only B19 infection could cause erythema infectiosum or transient aplastic crisis in acute 97 

infectious period, but the persistent existence of B19 in bone marrow could lead to pure red cell 98 

aplasia in an immunocompromised host[9]. Life would be threatened in patients with shortened 99 

red cell survival due to their lack of timely supplements in B19-induced severe anemia[10]. 100 

Furthermore, pregnant women with B19 infection have higher risk of miscarriage or fetal 101 

complications[11]. The rate of vertical transmission during maternal parvovirus B19 infection is 102 

estimated at 33%, with fetal complications occurring in 3% of infected women[12]. B19V poses a 103 

potential hazard to the fetus as crossing the placental barrier and infecting erythroid progenitor 104 

cells (EPCs) in bone marrow and fetal liver, it blocks fetal erythropoiesis leading to profound 105 

anemia, fetal hydrops and/or fetal death[13]. Once the fetus/newborns develop hydrops, treatments 106 

like intrauterine red blood cell transfusion or intravenous immunoglobin and digitalis may fail to 107 

rescue, with a survival rate of only 60-70% overall[14, 15].  108 

B19 is a potent inhibitor of erythropoiesis, due to its highly restricted cytotoxicity to EPCs at 109 

the burst-forming unit (BFU)- and colony-forming unit (CFU)-erythroid stages[16, 17]. Severe 110 

anemia could appear in immunodeficiency patients or patients with shortened red cell survival 111 

under B19 infected conditions, fetus/newborns of B19 infected mothers as well. B19 is an 112 

important antigen for Eugenics[13]. However, pathogenesis of B19 is not completely clear on 113 

account of its difficulties in vitro culture, effective vaccines or antivirus drugs of B19 are of urgent 114 

shortage. 115 

116 
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    Pathogenesis of anemia in B19 infection 117 

Even though B19 infection is self-limited in healthy individuals, it is often associated with 118 

transient aplastic crisis (TAC) in children with sickle cell disease[18]. In patients with short life 119 

span of red blood cells, such as sickle cell anemia, hereditary spherocytosis, thalassaemia, or 120 

chronic hemolytic disease, severe anemia exacerbated by B19 infection could be fatal due to the 121 

acute hemolysis and temporary arrest of erythropoiesis occurring on the basis of chronic 122 

hemolytic anemia and increased destruction of red blood cells if transfusions are not available or 123 

not administered urgently. Even more seriously, chronic B19 infection could induce pure red cell 124 

aplasia (PRCA), which is exhibited in immunocompromised patients or transplant recipients on 125 

account of impaired ability of viral elimination [19]. And PRCA in the intrauterine B19-infected 126 

fetus may show ultrasonographic signs of general edema, such as subcutaneous edema, pleural 127 

effusion, pericardial effusion, ascites and placental edema. The main mechanism responsible for 128 

the non-immune hydrops fetalis is probably cardiogenic heart failure secondary to severe 129 

anemia[20].  130 

The B19 virus can be transmitted mainly by respiratory tracts, also via blood or pooled-blood 131 

products, from a pregnant mother to her fetus, and possibly even from tattooing[1]. After 132 

overcoming the barrier of airway epithelium, vascular or placenta, B19 arrives into human body 133 

and initially interacts with P antigen (globoside), the primary low-affinity attachment sugar 134 

molecule abundantly expressed on the surface of erythroid progenitor cells, acting as an essential 135 

cellular receptor for B19[21]. However, P antigen is necessary for binding but not sufficient for 136 

parvovirus B19 entry into cells[22, 23]. Unlike mature human red blood cells, primary human 137 

erythroid progenitor cells, the major target cells of B19, not only express high levels of P antigen, 138 

but specifically express α5β1 integrins which permit β1 integrin–mediated entry of parvovirus 139 

B19[24]. Moreover, Ku80 was identified in vitro nonerythroid cells to functions as a coreceptor 140 

for B19 infection together with P antigen and α5β1 integrins, which takes part in B19 binding and 141 

subsequent entry. Although originally known as a nuclear protein, Ku80 was found to have a high 142 

expression on the surface of erythroid progenitor cells expressing glycophorin A as well as on the 143 

surface of immune cells such as CD20+, CD3+, or CD14+ cells in bone marrow, which may 144 

explain the pathologic immunity in autoimmune diseases related to B19 infection[25]. Thus, B19 145 

virion accomplishes its internalization inside EPCs through interaction with P antigen in the aid of 146 

α5β1 integrins and Ku80, and initiates its replication after entering the nucleus. Differential 147 

inhibition processes and apoptotic signals activated by massive replication of B19 eventually lead 148 

to cytolysis of EPCs and release of virions into the blood, which is consist with the transient 149 

high-titer viremia in the acute phase. Destruction of large amount of EPCs significantly influences 150 

the erythropoiesis and life span of red blood cells, which brings about acute hemolysis（Figure 1）. 151 

 152 

Nonstructural protein NS1 is the major pathogenic factor in B19 infection 153 

B19 structure 154 

The B19 virion has a linear ssDNA genome of 5 to 6 kb, and a nonenveloped, icosahedral 155 
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protein shell of ~280Å in diameter, known to be the smallest DNA virus so far[26, 27]. The 5,596 156 

nucleotides(nt) long genome is made up of an internal coding sequence flanked on both sides by 157 

identical inverted terminal repeats (ITRs)[1]. These palindromes can acquire a hairpin 158 

configuration and serve as primers for complementary strand synthesis, while the central region 159 

genome encodes the 5 kinds of proteins of B19 virion[28]. The two structural proteins, VP1 and 160 

VP2, account for 4% and 96% capsid proteins to form the icosahedral protein shell, 161 

respectively[3]. The region of them shows a greater sequence variation in contrast to the large 162 

nonstructural protein(NS1) region that is highly conserved, which implies their function in host 163 

antivirus responses[28]. Expressions of the other two small nonstructural proteins of 11 kDa and 164 

7.5 kDa were also documented[29, 30], the former one was suggested as a potent inducer of 165 

apoptosis via enhancing viral DNA replication and virion release [31, 32], while the function of 166 

7.5 kDa protein is inconclusive. 167 

Roles of nonstructural protein 1 in B19 infection 168 

The large nonstructural protein NS1, located predominantly to the nucleus, is the major 169 

pathogenic factor in B19 infection[33]. NS1 gene (616-2631bp) encodes its protein of 672 amino 170 

acids with a molecular mass of ~78kDa, which is of critical importance in both early virus DNA 171 

replication and transcription in B19 infected human erythroid progenitor cells[1]. NS1 has a 172 

N-terminal DNA-binding/nickase domain, a central domain displaying sequence motifs for 173 

helicase/ATPase, and a putative transactivation domain (TAD) at the C-terminus[34]. Researches 174 

implied that, with the help of the transcription factors Sp1/Sp3, NS1 N-terminal nuclease domain 175 

specifically binds to the origin of replication in the virus DNA, including the NS1 binding 176 

elements(NSBEs) and the overlapping P6 promoter DNA sequence, and the interaction between 177 

NS1 and virus DNA mediates the cleavage of DNA at the ITRs by melting the hairpinned ITRs to 178 

create a new 3’-OH and permit the following DNA synthesis[35-37]. Regulation of gene 179 

transcription of B19 NS1 is not confined to its own viral promoter, p6, it has also been identified 180 

in the transactivation of several host promoters, like tumor necrosis factor alpha (TNF-α), 181 

interleukin-6 (IL-6), and p21, which may explain the pathogenesis of B19-associated 182 

inflammation and apoptosis[38-40].  183 

Studies on mechanism of B19-induced differentiational inhibition and apoptosis have made 184 

progress in recent years[17, 31, 41, 42]. B19 infection could induce a broad range of DNA damage 185 

responses (DDR) in ex vivo-expanded human erythroid progenitor cells, by triggering 186 

phosphorylation of all the upstream kinases of each of three repair pathways: ATM, ATR, and 187 

DNA-PKcs[43], which is of critical importance for virus replication. And the infected cells were 188 

reported to have a cell cycle arrest (CCA) at both late S-phase and G2-phase, a point of the cell 189 

cycle at which cells contain 4N DNA[44-46]. Recent advantages revealed that, NS1 transactivated 190 

cellular gene expression through the TAD2 domain, activating the ATR-CHK1-CDC25C-CDK1 191 

pathway in the B19-induced G2 arrest[17],which is independent of p53 activation and DDR 192 

triggered by increased viral replication[45]. Interaction between NS1 and E2F family of 193 
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transcription factors enhanced the nuclear import of these repressive E2Fs and induced stable G2 194 

arrest[47]. While the putative metal coordination motif in the endonuclease domain of B19 NS1 is 195 

critical for NS1-induced S phase arrest and DNA damage[45]. B19 NS1 has also been reported to 196 

induce CCA at G1-phase in NS1-expressing UT7/Epo-S1 cells[48]. Replication of B19 virus 197 

promotes its NS1 covalently binding with host cellar DNA, causing DDR mediated by helicase or 198 

nickase in NS1 central region. Subsequently occurs the activating of the DNA nick repair pathway 199 

initiated by poly (ADPribose) polymerase and the DNA repair pathways initiated by 200 

ATM/ATR[49]. And the DNA repair processes activated by extensive DDR accompanied with a 201 

significant decrease in the ATP levels of the cell, act as the direct reason leading to apoptosis. 202 

Besides, NS1-induced DDR may play an indirect role in facilitating viral DNA replication by 203 

arresting cell cycle at G2 or S phase, during which host DNA replication factors are available[50]. 204 

Presumably, NS1 could also interfere with the expression of unidentified host transcriptional 205 

factors, resultantly perturbs cell cycle progression and inhibit the differentiation of EPCs. While 206 

S-phase arrest enriches S-phase factors that favor viral DNA replication as a compromised 207 

outcome of B19 genome replication, G2 arrest halts erythropoiesis of EPCs and eventually leads 208 

to apoptosis, in which 11kDa protein may play a more efficient part [1, 31, 46].  209 

In addition, the roles of NS1 in modulation of inflammatory signaling by activation of 210 

STAT3/PIAS3 and NLRP3, in inhibition of Na+/H+ exchanger activity, and in exacerbation of 211 

liver injury were also been documented [51-54], which may partly explain the pathogenesis of 212 

multiple B19-associated diseases (Figure 2). 213 

As the abundant expression of B19 NS1 predominantly located in the nucleus of EPCs[47], 214 

the protein only takes on its activity during the replication of virus DNA while not participates in 215 

the processes of assembling and release, and loses its function as the elimination of B19 virions, 216 

which is in accordance with the transient erythropoietic arrest in aplastic crisis. The time phase 217 

property of NS1 activity and conformity to transient change of hemogram implied that NS1 218 

activity is closely related to differentiation and apoptosis of hematopoietic cells. Despite of the 219 

enormous progress made in understanding the roles of B19 NS1 induced apoptosis, further studies 220 

are needed to explore the regulatory mechanism in NS1 induced inhibition of EPCs differentiation, 221 

which is essential for therapeutic treatments of B19 related anemia. Besides B19, other virus likes 222 

Epstein-Barr virus, could also inhibit erythroid lineage cells differentiation by interfering certain 223 

signaling pathways involving in hematopoietic dysfunction. Among these pathways, B19 224 

replication and transcription play an important role in Notch-Hes-GATA signaling regulation, 225 

which disorders hematopoietic cells differentiation. 226 

Transcriptional factors related to hematopoiesis 227 

The GATA family 228 

GATA binding proteins, known to be the erythroid-specific transcription factor family, have a 229 

revolutionary significance in understanding the development of precursors from hematopoietic 230 
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stem and progenitor cells, the generation of red blood cells from progenitors and the regulation of 231 

hemoglobin synthesis[51]. All members of the GATA family have highly conserved DNA-binding 232 

proteins that recognize the motif WGATAR through two zinc fingers to regulate the transcription 233 

of downstream target genes[52-54]. Millions of copies of the specific sequences of DNA in 234 

genome present in upstream of gene transcriptional origin, like promoters, enhancers and locus 235 

control regions of β-globin and other genes, including itself as an autoregulatory mechanism[51, 236 

55]. The C terminal zinc finger specifically binds to the GATA consensus sites, whereas the N 237 

terminal zinc finger stabilizes the interaction between GATA and specific DNA sequences as well 238 

as regulates the transcriptional activity of GATA factors through recruiting other cofactors of zinc 239 

finger protein, such as FOG1, CPB/p300, Pax5 and Pu.1[56-60].  240 

Among the six members (GATA1-6) of GATA family, GATA1 is the founding member and 241 

ushered in the cloning of the related proteins GATA2-6, and both GATA1, 2 and GATA3 are 242 

expressed in specific hematopoietic cell types of all stages. Involved in distinct and overlapping 243 

aspects of hematopoiesis, the three members play an essential role in the development and 244 

maintenance of diverse blood cell lineages, and are indispensable for regulating the development 245 

and maturation of red blood cell[51, 61]. GATA1 is a prototypical transcriptional factor required 246 

for the erythroid, eosinophilic and megakaryocytic commitment during hematopoiesis, taking part 247 

in the terminal differentiation. GATA2, predominantly expressed in hematopoietic stem and 248 

progenitor cells, is essential for maintenance of the pool of hematopoietic stem cells by regulating 249 

the proliferation and survival of early hematopoietic cells, and is also one of the most critical 250 

transcriptional factors required for direct induction of the hemogenic endothelium with 251 

pan-myeloid potential from human pluripotent stem cells[62, 63]. Both GATA1 and GATA2 are 252 

involved in lineage specific transcriptional regulation, especially the dynamic and strictly 253 

controlled GATA factor switching from GATA2 to GATA1 during erythropoiesis plays a crucial 254 

role in orchestrating erythroid lineage differentiation[64, 65], whereas GATA3 is of vital 255 

importance for multiorgan development and regulates tissue specific differentiation, it plays an 256 

essential role in T lymphoid cell development and immune regulation as well[54, 66, 67]. 257 

Therefore, alteration of GATA factors expression is closely associated with hematologic disorders 258 

and related diseases[55, 68]. No or less GATA1 expression notably influences the differentiation 259 

and maturation of erythroid cells, massive apoptosis of proerythroblasts leads to anemia[55]. 260 

Besides, GATA1-deficient mice develop thrombocytopenia and hyperproliferation of 261 

megakaryocytes due to dysmaturity of megakaryocytes and a failure of platelet production[69]. 262 

GATA2 mutation is associated with immunodeficiency, lymphedema, and myelodysplastic 263 

syndrome[70-72]. Inherited GATA3 variants are related to Ph-like childhood acute lymphoblastic 264 

leukemia and risk of relapse[73]. 265 

Researches have revealed some correlations between GATA family and the Notch signaling 266 

pathway, which is also involved in hematopoietic system[74-78]. It was found that Notch signals 267 

could inhibit the differentiation and maturation of erythroid/megakaryocytic cells by suppressing 268 
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GATA-1 activity through the induction of Hes1expression[74].  269 

The Notch-Hes pathway  270 

Notch proteins are a family of evolutionarily highly conserved single-pass transmembrane 271 

receptors which are involved in the regulation of cell fate acquisition and differentiation in diverse 272 

systems. The notch signaling pathways not only play an essential part in the development of a 273 

wide range of tissues such as hemopoiesis, vasculogenesis, myogenesis, neurogenesis and 274 

osteogenesis, but also take part in the homeostasis maintenance of a broad variety tissues [79, 80]. 275 

The family comprises of four Notch receptors(Notch1-4), five structurally related, single-pass 276 

membrane Notch ligands (Delta-like1, 3, and 4 and Jagged1 and 2), and specific factors including 277 

the DNA-binding protein RBP-Jκ (recombinant binding protein suppressor of hairless; also known 278 

as CSL/CBF1 in mammals, Su(H) in flies, and Lag-1 in worms) and the Mastermind-like family 279 

(MAML) [81, 82].  280 

In the absence of Notch activation, the Notch intracellular domain (NICD) is unavailable and 281 

the downstream effector protein RBP-Jκ associates with several different corepressors containing 282 

Mint/Sharp/SPEN, NCoR/SMRT and KyoT2 to form a transcriptional corepressor complex which 283 

is bound to the chromatin and inhibits gene expression. Activation of the canonical Notch 284 

signaling is achieved by the generation of NICD, which is mediated by the interaction between 285 

receptors and ligands and subsequently a sequence of proteolytic events, as well as its eventual 286 

translocation to the nucleus where the RBP-Jκ association module (RAM) domain of NICD 287 

initially binds the RBP-Jκ. This leads to the displacement of the co-repressor complex and the 288 

recruitment of the transcriptional co-activators like MAML to form a transcriptional activator 289 

complex (NICD-RBP-Jκ-MAML), which triggers the downstream expression gene expression by 290 

recruiting transcriptional factors like p300 histone acetyl-transferase[79-84]. The various target 291 

genes of Notch including Hes(hairy/enhancer-of-split) and the Hes-related (HESR/HEY) family of 292 

basic helix-loop-helix transcription repressors, which are essential regulators of hematopoietic 293 

stem cell development, and subsequently modulate the proliferation and differentiation via 294 

regulating expression of other genes like GATA family[85, 86]. In addition, GATA2 was also 295 

identified as a direct target of Notch1 signaling, which revealed a crucial role of Notch activation 296 

for the onset of definitive hematopoiesis in the embryo[87].  297 

Studies have identified Notch signaling as a key regulator of hematopoietic stem cell 298 

development[83, 84, 88-92]. Among the Notch and Hes family members, Notch1,2 and Hes1,5 are 299 

widely expressed in all lineages of hemopoietic stem/progenitor cells, and participate in regulating 300 

their proliferation and differentiation to generate various hemocytes complying with extremely 301 

strict principle of spatial-temporal sequence mediated by the fine expression of GATA factors[74, 302 

83-87]. Activation of Notch1 signaling could inhibit the differentiation and maturation of EPCs 303 

and exhibit a peripherical hemogram of increased immature red blood cells and distinctly 304 

decreased counts of mature red blood cells[86, 93, 94], which might be a clue of building a bridge 305 

between B19 infection and anemia. 306 

 307 
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The pathway of B19 NS1 in regulation of EPCs differentiation 308 

Even though up to now no research has clarified if the major pathogenic factor B19 NS1 309 

could influence the process of proliferation and differentiation via manipulating Notch signaling in 310 

B19-infected EPCs, evidences of the connection to Notch have been found in other virus infected 311 

cells[95]. Epstein-Barr virus nuclear antigen 2 (EBNA2) exerts its transactivating function through 312 

interaction with CBF1/RBP-Jκ, which is the coactivator of Notch signaling[96]. Notch signaling is 313 

involved in the establishment of EBV latency in B cells possibly due to competitive binding of 314 

EBNA2 to CBF1/RBP-Jκ and the suppression of Notch/RBP-J signaling pathway which promotes 315 

B cell proliferative responses[95, 97]. In addition, RTA, the lytic cycle regulator of Kaposi’s 316 

sarcoma-associated herpesvirus (KSHV), also interacts with RBP-Jκ to activate gene expression 317 

[98]. Furthermore, Notch pathway interactions have also been mentioned for adenovirus SV40 and 318 

human papilloma virus[99, 100].  319 

It has been identified that B19 could inhibit the differentiation of erythroid lineage cells both 320 

in vivo and vitro mediated by its major pathogenic factor NS1[1, 17]. The Notch signaling 321 

pathway also plays an essential part in hemopoiesis through regulating its downstream genes like 322 

Hes1/5 and GATA factors[83, 85]. Our tentative exploration showed that expression of Notch1, 323 

Hes1/5 and GATA2 upregulated while GATA1 downregulated in the B19 NS1 transfected K562 324 

cells, which implies that NS1 could perturb the differentiation of erythroid lineage cells via 325 

manipulating Notch signaling, leading to alteration of expressional patterns of target gene Hes and 326 

GATA factors (unpublished data). The crosslink provides a new insight of the potential mechanism 327 

of B19-induced differentiational inhibition of EPCs. Further studies are needed to explore the 328 

expressional alteration of related target genes and the concrete regulatory pathway of Notch 329 

signaling to have a clearer understanding of the pathogenesis of B19-related anemia (Figure 3). 330 

 331 

Conclusion 332 

In summary, in this review, we provide a new insight of the bridge between B19 infection and 333 

Notch signaling pathway or transcriptional factors GATA: B19 NS1 could perturb the 334 

differentiation and proliferation processes of erythroid lineage cells via manipulating Notch 335 

signaling, leading to alteration of expressional patterns of target gene Hes and GATA factors. The 336 

crosslink provides a new potential mechanism of B19-induced differentiational inhibition of 337 

erythroid progenitor cells, may also give a clue to prophylactic and therapeutic targets for 338 

B19-related severe anemia in high risk groups, and develop effective vaccines or antivirus drugs 339 

of B19 infection. 340 
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 626 

Figure legends 627 

 628 

Figure 1. Mechanism of B19 causing erythropoiesis hemolysis. B19 entry erythropoiesis by 629 

binding α5β1 integrins and coaction with p antigen. Replication of B19 leads to cytolysis of EPCs 630 

and influences the life span of erythropoiesis cells, which brings about acute hemolysis. 631 

 632 

Figure 2. Roles of nonstructural protein 1 in B19 infection. Replication of B19 virus promotes its 633 

NS1 covalently binding with host cellar DNA, induces CCA at G1-phase in NS1-expressing 634 

UT7/Epo-S1 cells and causing DDR mediated by helicase and nickase in NS1 central region, 635 

resultantly perturbs cell cycle progression and inhibit the differentiation of EPCs. 636 

 637 

Figure 3.Putative pathways of nonstructural protein 1 in the regulation of EPCs differentiation. 638 

B19 NS1 upregulates the expression of Notch1, Hes1/5 and GATA2, while downregulates GATA1, 639 

which perturbs the differentiation of erythroid lineage cells via manipulating Notch signaling, 640 

leading to alteration of expressional patterns of Hes and GATA. 641 
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