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Abstract: We derive time evolution equations, namely the Schrödinger-like equations and the 
Klein–Gordon equations for coherent fields and the Kadanoff–Baym (KB) equations for quantum 
fluctuations, in Quantum Electrodynamics (QED) with electric dipoles in 2 + 1 d imensions. Next 
we introduce a kinetic entropy current based on the KB equations in the 1st order of the gradient 
expansion. We show the H-theorem for the Leading-Order self-energy in the coupling expansion (the 
Hartree–Fock approximation). We show a conserved energy in the spatially homogeneous systems 
in the time evolution. We derive aspects of the super-radiance and the equilibration in our single 
Lagrangian. Our analysis can be applied to Quantum Brain Dynamics, that is QED with water electric 
dipoles. The total energy consumption to maintain super-radiant states in microtubules seems to be 
within the energy consumption to maintain the ordered systems in a brain.

Keywords: non-equilibrium quantum field theory; quantum brain dynamics; kadanoff–baym 
equation; entropy; super-radiance
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1. Introduction11

Numerous attempts to understand memory in a brain have been made over one hundred years12

starting in the end of 19th century. Nevertheless, the concrete mechanism of memory still remains an13

open question in conventional neuroscience [1–3]. Conventional neuroscience is based on classical14

mechanics with neurons connected by synapses. However, we still can not answer how limited15

connections between neurons describe mass excitations in a brain in classical neuron doctrine.16

Quantum Field Theory (QFT) of the brain, or Quantum Brain Dynamics (QBD), is one of the17

hypotheses expected to describe the mechanism of memory in the brain [4–6]. Experimentally, several18

properties of memory, namely the diversity, the long-termed but imperfect stability, and nonlocality1,19

are suggested in [7–9]. The QBD can describe these properties by adopting infinitely physically or20

unitarily inequivalent vacua in QFT, distinguished from Quantum Mechanics which can not describe21

unitarily inequivalence. Unitarily inequivalence represents the emergence of the diversity of phases22

and allows the possibility of the spontaneous symmetry breaking (SSB) [10–13]. The vacua or the23

ground states appearing in SSB describe the stability of the states. Furthermore, the QFT can describe24

both microscopic degrees of freedom and macroscopic matter [10]. To describe stored information,25

we can adopt the macroscopic ordered states in QFT with SSB involving long-range correlation via26

Nambu–Goldstone (NG) quanta. In 1967, Ricciardi and Umezawa proposed a quantum field theoretical27

approach to describe memory in a brain [14]. They adopted the SSB with long-range correlations28

mediated by NG quanta in QFT. Stuart et al. developed QBD by assuming a brain as a mixed system29

1 Memory is diffused and non-localized in several domains in a brain. It does not disappear due to the destruction in a
particular local domain. The term ‘nonlocality’ does not indicate nonlocality in entanglement in quantum mechanics.
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of classical neurons and quantum degrees of freedom, namely corticons and exchange bosons [15,16].30

The vacua appearing in SSB, the macroscopic order, are interpreted as the memory storage in QBD.31

The finite number of excitations of NG modes represents the memory retrieval. Around the same time,32

Fröhlich proposed the application of a theory of electric dipoles to the study of biological systems33

[17–22]. He suggested a theory of the emergence of a giant dipole in open systems with breakdown of34

rotational symmetry of dipoles where dipoles are aligned in the same direction (the ordered states with35

coherent wave propagation of dipole oscillation in the Fröhrich condensate). In 1976, Davydov and36

Kislukha studied a theory of solitary wave propagation in protein chains, called Davydov soliton [23].37

It is found that the theory by Fröhlich and that by Davydov represent static and dynamical properties38

in the nonlinear Schödinger equation with an equivalent quantum Hamiltonian, respectively [24].39

In 1980s, Del Giudice et al. applied a theory of water electric dipoles to biological systems [25–28].40

Especially, the derivation of laser-like behavior is a suggestive study. In 1990s, Jibu and Yasue gave a41

concrete picture of corticons and exchange bosons, namely water electric dipole fields and photons42

[4,29–32]. The QBD is nothing but Quantum Electrodynamics (QED) with water electric dipole fields.43

When electric dipoles are aligned in the same directions coherently, the polaritons, NG bosons in44

SSB of rotational symmetry, emerge. The dynamical order in the vacua in SSB is maintained by45

long-range correlation of the massless NG bosons. In QED, the NG bosons are absorbed by photons,46

and then photons acquire mass due to the Higgs mechanism and can stay in coherent domains. The47

massive photons are called evanescent photons. The size of a coherent domain is order of 50 µm.48

Furthermore, two quantum mechanisms of information transfer and integration among coherent49

domains are suggested. The first one is to use the super-radiance and the self-induced transparency50

via microtubules connecting two coherent domains [31]. Super-radiance is the phenomenon indicating51

coherent photon emission with correlation among not only photons but also atoms (or dipoles) [33–37].52

The atoms (or dipoles) cooperatively decay in short time interval due to correlation, coherent photons53

with intensity proportional to the square of the number of atoms (or dipoles) are emitted. The pulse54

wave photons in super-radiance propagate through microtubules without decay. Then the self-induced55

transparency appears, since microtubules are perfectly transparent in the propagation. The second56

one is to use the quantum tunneling effect among coherent domains surrounded by incoherent57

domains [32]. The effect is essentially equivalent to the Josephson effect between two superconducting58

domains separated by a normal domain. Del Giudice et al. studied this effect in biological systems59

[28]. In 1995, Vitiello has shown that a huge memory capacity can be realized by regarding a brain60

as an open dissipative system and doubling the degrees of freedom with mathematical techniques in61

thermo-field-dynamics [38]. In dissipative model of a brain, each memory state evolves in classical62

deterministic trajectory like a chaos [39]. The overlap among distinct memory states is zero at any63

times in the infinite volume limit. However, finite volume effects allow states to overlap one another,64

which might represent association of memories [6]. In 2003, Exclusion Zone (EZ) water has been65

discovered experimentally [40]. The properties of EZ water correspond to those of coherent water [41].66

However, we have never seen the dynamical memory formations based on QBD at the67

physiological temperature in the presence of thermal effects written by quantum fluctuations. Hence,68

there are still criticisms related with the decoherence phenomena2 in memory formations in QBD [42].69

So, we need to derive time evolution equations of coherent fields and quantum fluctuations and show70

numerical simulations of memory formation processes in non-equilibrium situations to check whether71

or not memory in QBD is robust against thermal effects. Futhermore, in 2012 Craddock et al. suggested72

the mechanism of memory coding in microtubules with phosphorylation by Ca2+ calmodulin kinase73

II [43]. It will be an interesting topic to investigate how water electric dipoles and evanescent photons74

are affected by phosphorylated microtubules.75

2 We should use the mass of polaritons in estimating the critical temperature of ordered states, not that of water molecules
themselves.
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The aim of this paper is to derive time evolution equations, namely the Schrödinger-like equations76

for coherent dipole fields, the Klein–Gordon equations for coherent photon fields, the Kadanoff–Baym77

equations for quantum fluctuations [44–46], with 2-Particle-Irreducible effective action technique78

with the Keldysh formalism [47–51]. We derive both the equilibration for quantum fluctuations79

and the super-radiance for background coherent fields from the single Lagrangian in Quantum80

Electrodynamics (QED) with electric dipole fields. We arrive at the Maxwell–Bloch equations for the81

super-radiance by starting with QED with electric dipole fields in 2+ 1 dimensions. When we consider82

electric fields in super-radiance, we only need two spatial dimensions, one axis for the amplitude83

and another axis for the propagation. Hence we have discussed the case in 2 + 1 dimensions in this84

paper. We also derive the Higgs mechanism and the tachyonic instability for coherent fields in the85

Klein–Gordon equation for coherent electric fields. In two energy level approximation for electric86

dipole fields, namely with the ground state and the 1st excited states, the Higgs mechanism appears in87

normal population in which the probability amplitude in the ground state is larger than that in the 1st88

excited states. The penetrating length in the Meissner effect due to the Higgs mechanism is 6.3 µm89

derived by using coefficients in 2 + 1 dimensions and the number density of liquid water molecules in90

3 + 1 dimensions. On the other hand, the tachyonic instability appears in inverted population in which91

the probability amplitudes in 1st excited states are larger than that in the ground state. Then the electric92

field increases exponentially while the system is in inverted population. The increase stops at times93

when normal population is realized. Our analysis also contains the dynamics of quantum fluctuations94

in non-equilibrium cases. We also derive the Kadanoff–Baym equations for quantum fluctuations with95

the Leading-Order self-energy in the coupling expansion. The Kadanoff–Baym equations describe the96

entropy producing dynamics during equilibration as shown in the proof of the H-theorem. Entropy97

production stops when the Bose–Einstein distribution is realized. By combining time evolution98

equations (the Klein–Gordon equations for coherent electric fields and the Schrödinger-like equations99

for coherent electric dipole fields) and the Kadanoff–Baym equations for quantum fluctuations, we can100

describe the dynamical behavior of dipoles with thermal effects written by quantum fluctuations. Our101

analysis will be applied to memory formation processes in QBD.102

This paper is organized as follows. In Sec. 2, we introduce the 2-Particle-Irreducible effective103

action in the closed time path contour to describe non-equilibrium phenomena, and derive time104

evolution equations. In Sec. 3, we introduce a kinetic entropy current in the 1st order of the gradient105

expansion, and show the H-theorem in the Leading-Order approximation of the coupling expansion.106

In Sec. 4, we show the time evolution equations, the conserved total energy and the potential energy107

in spatially homogeneous systems in an isolated system. In Sec. 5, we derive the super-radiance108

by analyzing the time evolution equations for coherent fields. In Sec. 6, we discuss our results. In109

Sec. 7, we provide the concluding remarks. In this paper, the labels i, j = 1 and 2 represent x and y110

directions in space, the labels a, b, c, d = 1, 2 represent two contours in the closed-time-path, the labels111

α = −1, 1 represent the angular momentum of electric dipoles. The speed of light, the Planck constant112

divided by 2π and the Boltzmann constant are set to be 1 in this paper. We adopt the metric tensor113

ηµν = diag(1,−1,−1) with µ, ν = 0, 1, 2.114
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2. The 2-Particle-Irreducible Effective Action and time evolution equations115

We begin with the following Lagrangian density to describe Quantum Electrodynamics (QED)116

with electric dipoles in 2 + 1 dimensions in the background field method [52–55],117

L[Ψ∗(x, θ), Ψ(x, θ), A(x), a(x)] = −1
4

Fµν[A + a]Fµν[A + a]− (∂µaµ)2

2α1

+
∫ 2π

0
dθ

[
Ψ∗i

∂

∂x0 Ψ +
1

2m
Ψ∗∇2

i Ψ

+
1
2I

Ψ∗
∂2

∂θ2 Ψ− 2edeΨ∗uiΨF0i[A + a]

]
, (1)

where A is the background coherent photon fields, a is the quantum fluctuations of photon fields,118

Fµν[A] = ∂µ Aν − ∂ν Aµ is the field strength, the α1 is a gauge fixing parameter, the m is the mass of119

a dipole, the I is the moment of inertia, ui = (cos θ, sin θ) is the direction of dipoles, and 2ede is the120

absolute value of dipole vector. The variable θ represents the degrees of freedom of rotation of dipoles121

in 2 + 1 dimensions. The dipole-photon interaction term −2edeΨ∗uiΨF0i[A + a] has the similar form122

to that in [27]. We shall expand the electric dipole fields Ψ and Ψ∗ by the angular momentum and123

consider only the ground state and the 1st excited states in energy-levels. Then we can write them as,124

Ψ(x, θ) =
1√
2π

(
ψ0(x) + ψ1(x)eiθ + ψ−1(x)e−iθ

)
,

Ψ∗(x, θ) =
1√
2π

(
ψ∗0 (x) + ψ∗1 (x)e−iθ + ψ∗−1(x)eiθ

)
, (2)

in 2 + 1 dimensions. (In 3 + 1 dimensions, we might expand Ψ and Ψ∗ by spherical harmonics.) We125

can rewrite the terms in the above Lagrangian as,126 ∫
dθΨ∗(x, θ)i

∂

∂x0 Ψ(x, θ) = ψ∗0 i
∂

∂x0 ψ0 + ψ∗1 i
∂

∂x0 ψ1 + ψ∗−1i
∂

∂x0 ψ−1, (3)∫
dθ

1
2m

Ψ∗∇2
i Ψ =

1
2m

[
ψ∗0∇2

i ψ0 + ψ∗1∇2
i ψ1 + ψ∗−1∇2

i ψ−1

]
, (4)∫

dθ
1
2I

Ψ∗
∂2

∂θ2 Ψ =
−1
2I
[
ψ∗1 ψ1 + ψ∗−1ψ−1

]
. (5)

We also write the dipole-photon interaction term with electric fields F0i = −Ei by,127 ∫
dθ2edeΨ∗uiΨEi = ede

∫
dθ
[
(E1 − iE2)Ψ∗eiθΨ + (E1 + iE2)Ψ∗e−iθΨ

]
= ede

[
(E1 − iE2)(ψ

∗
0 ψ−1 + ψ∗1 ψ0) + (E1 + iE2)(ψ

∗
0 ψ1 + ψ∗−1ψ0)

]
, (6)

with the direction of dipoles ui = (cos θ, sin θ).128

Next, we show 2-Particle-Irreducible (2PI) effective action [47–49] for electric dipole fields and129

photon fields. Starting with the above Lagrangian density, we write the generating functional with the130

gauge fixing condition for quantum fluctuation,131

gauge fixing :a0 = 0, (7)
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and perform the Legendre transformations. Then we arrive at,132

Γ2PI[A, āiψ̄, ψ̄∗] =
∫
C

dd+1x

[
− 1

4
Fµν[A + ā]Fµν[A + ā] + iψ̄∗0

∂

∂x0
ψ̄0 + ∑

α=−1,1
iψ̄∗α

∂

∂x0
ψ̄α

+
1

2m

(
ψ̄∗0∇2

i ψ̄0 + ∑
α=−1,1

ψ̄∗α∇2
i ψ̄α

)
− 1

2I ∑
α=−1,1

ψ̄∗αψ̄α

+ede ∑
α=−1,1

[(E1 + iαE2)(ψ̄
∗
0 ψ̄α + ψ̄∗−αψ̄0)]

]

+iTr ln ∆−1 + iTr∆−1
0 ∆ +

i
2

Tr ln D−1 +
i
2

TrD−1
0 D +

Γ2[∆, D]

2
, (8)

where the C represents the Keldysh contour [50,51] shown in Fig. 1, the spatial dimension d = 2, the133

bar represents the expectation value 〈·〉 with the density matrix. The 3× 3 matrix i∆−1
0 (x, y) is defined134

as,135

i∆−1
0 (x, y) ≡ δ2

∫
x L

δψ∗(y)δψ(x)

∣∣∣∣∣
a=0

=


i ∂

∂x0 +
∇2

i
2m − 1

2I ede(E1 + iE2) 0

ede(E1 − iE2) i ∂
∂x0 +

∇2
i

2m ede(E1 + iE2)

0 ede(E1 − iE2) i ∂
∂x0 +

∇2
i

2m − 1
2I

 δd+1
C (x− y), (9)

for −1, 0 and 1, and the iD−1
0,ij(x, y) is written by,136

iD−1
0,ij(x, y) ≡ δ2

∫
x L

δai(x)δaj(y)

= −δij∂
2
xδd+1
C (x− y), (10)

where i and j run over spatial components 1, · · ·, d = 2 in 2 + 1 dimensions. The 3× 3 matrix ∆(x, y) is,137

∆(x, y) =

 ∆−1−1(x, y) ∆−10(x, y) ∆−11(x, y)
∆0−1(x, y) ∆00(x, y) ∆01(x, y)
∆1−1(x, y) ∆10(x, y) ∆11(x, y)

 , (11)

where ∆−10(x, y) = 〈TCδψ−1(x)δψ∗0 (y)〉 with time-ordered product TC in the closed-time-path contour.138

The Green’s function of dipole fields ∆−10(x, y) is also written by 2× 2 matrix ∆ab
−10(x, y) with a, b = 1, 2139

in the contour. The Green’s function for photon fields Dij(x, y) represents,140

Dij(x, y) = 〈TCai(x)aj(y)〉. (12)

1

2

t

t0 ∞

O

Figure 1. Closed-time-path contour C. The label 1 represents the path from t0 to ∞, and the label 2
represents the path from ∞ to t0.
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Finally we write time evolution equations for coherent fields and quantum fluctuations. The 2PI141

effective action satisfies the following equations,142

δΓ2PI

δ∆

∣∣∣∣∣
ā=0

= 0, (13)

δΓ2PI

δD

∣∣∣∣∣
ā=0

= 0, (14)

δΓ2PI

δai

∣∣∣∣∣
ā=0

=
δΓ2PI

δAi

∣∣∣∣∣
ā=0

= 0, (15)

δΓ2PI

δψ̄
(∗)
−1,0,1

∣∣∣∣∣
ā=0

= 0, (16)

due to the Legendre transformation of the generating functional. The Eq. (13) is written by,143

i∆−1
0 − i∆−1 − iΣ = 0, (17)

with iΣ ≡ − 1
2

δΓ2
δ∆ . The matrix of self-energy Σ can be written by diagonal elements,144

Σ = diag(Σ−1−1, Σ00, Σ11), (18)

since we can neglect the off-diagonal elements which are higher order of the coupling expansion. The145

Eq. (17) represents the Kadanoff–Baym equations for electric dipole fields in the two-energy-level146

approximation in 2+ 1 dimensions. Similarly, the Kadanoff–Baym equation for photon fields in Eq. (14)147

is written by,148

iD−1
0 − iD−1 − iΠ = 0, (19)

with iΠ ≡ − δΓ2
δD . The Eq. (15) is given by,149

∂νFνi = Ji, (20)

with,150

J1(x) = −ede
∂

∂x0 ∑
α=−1,1

(
∆0α(x, x) + ∆α0(x, x) + ψ̄0(x)ψ̄∗α(x) + ψ̄α(x)ψ̄∗0 (x)

)
, (21)

151

J2(x) = −ede
∂

∂x0 ∑
α=−1,1

(
− iα(∆0α(x, x)− ∆α0(x, x) + ψ̄0(x)ψ̄∗α(x)− ψ̄α(x)ψ̄∗0 (x))

)
. (22)

The Eq. (20) represents the Klein–Gordon equations for spatial dimensions i = 1, and 2. The Eq. (16) is152

written by,153 (
i

∂

∂x0 +
∇2

i
2m

)
ψ̄0 + ∑

α=−1,1
ede(E1 + iαE2)ψ̄α = 0, (23)(

i
∂

∂x0 +
∇2

i
2m
− 1

2I

)
ψ̄α + ede(E1 − iαE2)ψ̄0 = 0, (24)
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and their complex conjugates. They are Schrödinger-like equations for coherent dipole fields. The154

Eqs. (23), (24) and their complex conjugates give the following the probability conservation,155

∂

∂x0

(
ψ̄∗0 ψ̄0 + ∑

α=−1,1
ψ̄∗αψ̄α

)
+

1
2mi
∇i

(
ψ̄∗0∇iψ̄0 − ψ̄0∇iψ̄

∗
0 + ∑

α=−1,1
(ψ̄∗α∇iψ̄α − ψ̄α∇iψ̄

∗
α)

)
= 0. (25)

We shall define J0(x) as,156

J0(x) = −ede
∂

∂x1 ∑
α=−1,1

(
∆0α(x, x) + ∆α0(x, x) + ψ̄0(x)ψ̄∗α(x) + ψ̄α(x)ψ̄∗0 (x)

)
−ede

∂

∂x2

(
− iα(∆0α(x, x)− ∆α0(x, x) + ψ̄0(x)ψ̄∗α(x)− ψ̄α(x)ψ̄∗0 (x))

)
. (26)

Then since we can use ∂0 J0 −∇i Ji = 0 with i = 1, 2,157

∂0 J0 = ∇i Ji = −∂i∂νFνi = ∂µ∂νFνµ − ∂i∂νFνi = ∂0∂νFν0,

or, ∂νFν0 = J0, (27)

where the time dependent term in the time integral might be interpreted as an initial charge, but158

it is set to be zero. This equation represents the Poisson equation for scalar potential A0 given159

by ∇2 A0 = ∇ · ¯ with the vector of dipole moments −¯ on the right-hand-side in Eq. (26). (Since160

the Fourier transformed Ã0(q) is written by Ã0(q) ∝ (qiµ̃i)/q2 with µi = µ̃iδ(r), the electric field161

Ej = −∇j A0(r) is proportional to
∫

q eiq·r qjqi µ̃i
q2 . If we can also apply the analysis in this section to the162

case in 3 + 1 dimensions, we find Ej ∝ ∂j∂i
µ̃i
r . Then we obtain dipole-dipole interaction potential163

−µ̄jEj ∼
[

µ̃j µ̃j
r3 −

3(ri µ̃i)(rj µ̃j)

r5

]
in 3 + 1 dimensions.)164

3. Kinetic entropy current in the Kadanoff–Baym equations and the H-theorem165

In this section, we derive a kinetic entropy current from the Kadanoff–Baym equations with166

1st order approximation of the gradient expansion and show the H-theorem for the Leading-Order167

approximations in the coupling expansion based on [56–58]. The analysis in this section is similar168

to that in open systems (the central region connected to the left and the right region) [71]. Since169

(−1, 1) and (1,−1) components in i∆−1
0 (x, y) in Eq. (9) is zero, the same procedures to rewrite the170

Kadanoff–Baym equations as those in open systems [67–71] can be adopted. We set t0 → −∞.171

First, we shall write the Kadanoff–Baym equations in Eq. (17) for each components. By multiplying172

the matrix ∆ from the right in Eq. (17) and taking the (0, 0) component, we can write it as,173

i
(

∆−1
0,00 − Σ00

)
∆00 + ∑

α=−1,1
ede(E1 + iαE2)∆α0 = iδC(x− y), (28)

where the (0, 0) component of the matrix ∆−1
0 represents i∆−1

0,00(x, y) =

(
i ∂

∂x0 +
∇2

i
2m

)
δC(x − y). By174

taking (α, 0) component, we can write it as,175

i(∆−1
0,αα − Σαα)∆α0 + ede(E1 − iαE2)∆00 = 0. (29)

It is convenient to introduce the Green’s functions ∆g,αα as,176

i∆−1
g,αα = i∆−1

0,αα − iΣαα. (30)
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Then by using Eqs. (29) and (30), we can write ∆α0 as,177

∆α0(x, y) = − ede

i

∫
C

dw∆g,αα(x, w)(E1(w)− iαE2(w))∆00(w, y). (31)

The Eq. (31) means the propagation from y to x with zero angular momentum, change of angular178

momentum at w, and the propagation from w to x with angular momentum α = ±1. By using Eq. (31),179

we can rewrite Eq. (28) as,180

i
∫
C

dw(∆−1
0,00(x, w)− Σ00(x, w))∆00(w, y)

+i ∑
α=−1,1

(ede)
2
∫
C

dw(E1(x) + iαE2(x))∆g,αα(x, w)(E1(w)− iαE2(w))∆00(w, y) = iδC(x− y). (32)

The second term on the left-hand-side in Eq. (32) represents the propagation from y to w with zero181

angular momentum, the change of the angular momentum to α = ±1 at w due to the coherent electric182

fields, the propagation from w to x, and the change of the angular momentum from α = ±1 to zero183

due to the coherent electric fields. In the similar way to φ4 theory in open systems [71], we can derive,184

i
∫
C

dw∆00(x, w)(∆−1
0,00(w, y)− Σ00(w, y))

+i ∑
α=−1,1

(ede)
2
∫
C

dw∆00(x, w)(E1(w) + iαE2(w))∆g,αα(w, y)(E1(y)− iαE2(y)) = iδC(x− y), (33)

where we have used,185

∆0α(x, y) = −1
i

∫
C

dw∆00(x, w)(ede)(E1(w) + iαE2(w))∆g,αα(w, y). (34)

The (α, α) components of the Kadanoff–Baym equations are written by,186

i
∫
C

dw
(

∆−1
0,αα(x, w)− Σαα(x, w)

)
∆αα(w, y)

+i(ede)
2
∫
C

dw(E1(x)− iαE2(x))∆00(x, w)(E1(w) + iαE2(w))∆g,αα(w, y) = iδC(x− y), (35)

and,187

i
∫
C

dw∆αα(x, w)
(

∆−1
0,αα(w, y)− Σαα(w, y)

)
+i(ede)

2
∫
C

dw∆g,αα(x, w)(E1(w)− iαE2(w))∆00(w, x)(E1(x) + iαE2(x)) = iδC(x− y), (36)

where we have used Eqs. (31) and (34).188

Next, we shall perform the Fourier transformation (
∫

d(x− y)eip·(x−y)) with the relative coordinate189

x− y of the (0, 0) and (α, α) components of the Kadanoff–Baym equations. We use the 2× 2 matrix190

notation in the closed time path with a, b, c, d = 1, 2. The Eqs. (32) and (33) are transformed as,191

i

(
∆−1

0,00(p)− Σ00(X, p)σz + ∑
α

Uαα(X, p)σz

)ac

◦ ∆cb
00(X, p) = iσab

z , (37)

192

i∆ac
00(X, p) ◦

(
∆−1

0,00(p)− σzΣ00(X, p) + σz ∑
α

Uαα(X, p)

)cb

= iσab
z , (38)
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E1 − iαE2

(00), p

(αα), p+ α∂ζ

E1 + iαE2
(00), p

(a)

(00), p

(photon), k

(αα), p− k

(b)

(00), p

Figure 2. Diagrams of (a) Uαα(X, p) and (b) self-energy Σ00(X, p).

where X = x+y
2 , σz = diag(1,−1),193

i∆−1
0,00(p) = p0 − p2

2m
, (39)

and the Uαα(X, p) is the Fourier transformation,194

Uαα(X, p) = (ede)
2
∫

d(x− y)eip·(x−y)(E1(x) + iαE2(x))∆g,αα(x, y)(E1(y)− iαE2(y))

= (ede)
2E(X)2∆g,αα(X, p + α∂ζ) +

(
∂2

∂X2

)
, (40)

with the definition of ζ and |E|,195

E1(x) + iαE2(x) = |E(x)|eiαζ(x), (41)

and,196

(Uαα(X, p)σz)
ac = Uad

αα(X, p)σdc
z , (42)

The ◦ is expanded by the derivative of X [59–64] as,197

H(X, p)◦I(X, p) = H(X, p)I(X, p) +
i
2
{H, I}+

(
∂2

∂X2

)
, (43)

with the definition of the Poisson bracket,198

{H, I} ≡ ∂H
∂pµ

∂I
∂Xµ

− ∂H
∂Xµ

∂I
∂pµ

. (44)

We find that the Uαα represents the change of momenta of dipoles as shown in Fig. 2 (a).199

In a similar way to [71], in the 0th and the 1st order in the gradient expansion in Eqs. (37) and200

(38), we can derive the following retarded Green’s function,201

∆00,R(X, p) =
−1

p0 − p2

2m − Σ00,R + ∑α=−1,1 Uαα,R

, (45)

with the retarded parts (the subscript ‘R’) ∆00,R = i(∆11
00 − ∆12

00), Σ00,R = i(Σ11
00 − Σ12

00) and Uαα,R =202

i(U11
αα − U12

αα). By taking the imaginary part of the retarded Green’s function ∆00,R(X, p), we can203

derive the spectral function ρ00 = i(∆21
00 − ∆12

00) = 2iIm∆00,R(X, p) which represents the information of204

dispersion relations. Similarly, the (α, α) components of the Kadanoff–Baym equations are written as,205

i
(

∆−1
0,αα(p)− Σαα(X, p)σz

)
◦ ∆αα(X, p) + iVαα(X, p)σz ◦ ∆g,αα(X, p) = iσz, (46)
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and,206

i∆αα(X, p) ◦
(

∆−1
0,αα(p)− σzΣαα(X, p)

)
+ i∆g,αα(X, p) ◦ σzVαα(X, p) = iσz, (47)

where,207

i∆−1
0,αα(p) = p0 − p2

2m
− 1

2I
, (48)

and,208

Vαα(X, p) = (ede)
2
∫

d(x− y)eip·(x−y)(E1(x)− iαE2(x))∆00(x, y)(E1(y) + iαE2(y))

= (ede)
2E(X)2∆00(X, p− α∂ζ) +

(
∂2

∂X2

)
. (49)

We can also write for ∆cb
g,αα(X, p) as,209

i
(

∆−1
0,αα(p)− Σαα(X, p)σz

)ac
◦ ∆cb

g,αα(X, p) = iσab
z , (50)

∆ac
g,αα(X, p) ◦ i

(
∆−1

0,αα(p)− σzΣαα(X, p)
)cb

= iσab
z . (51)

In the 0th and the 1st order in the gradient expansion in Eqs. (46) and (47), we can derive,210

∆αα,R = ∆g,αα,R + ∆g,αα,RVαα,R∆g,αα,R (52)

with ∆αα,R = i(∆11
αα − ∆12

αα) and Vαα,R = i(V11
αα −V12

αα ). Here we have used the solution in the 0th and211

the 1st order in the gradient expansion in Eqs. (50) and (51) given by,212

∆g,αα,R =
−1

p0 − p2

2m − 1
2I − Σαα,R

, (53)

with Σαα,R = i(Σ11
αα − Σ12

αα). The derivation is the same as [71]. The imaginary part of the213

retarded Green’s function ∆αα,R(X, p) multiplied by 2i represents the spectral function ραα =214

i(∆21
αα − ∆12

αα) = 2iIm∆αα,R(X, p) which represents the information of dispersion relations. In addition,215

the Kadanoff–Baym equations for photons (19) are written by,216

i
(

D−1
0,ij(k)−Πij(X, k)σz

)ac
◦ Dcb

jl (X, k) = iδilσ
ab
z , (54)

iDac
ij (X, k) ◦

(
D−1

0,jl(k)− σzΠjl(X, k)
)cb

= iδilσ
ab
z , (55)

with,217

iD−1
0,ij(k) = k2δij. (56)

Next we shall derive the self-energy in the Leading-Order (LO) of the coupling expansion in218

Eq. (6). The (a, b) = (1, 2) and (2, 1) component of i Γ2
2 are given by,219

i
Γ2,LO

2
= −1

2
(ede)

2
∫

dudw ∑
α=−1,1

(
∆21

αα(w, u)∆12
00(u, w)(1,−αi)j∂

0
u∂0

w

(
D12

jl (u, w) + D21
l j (w, u)

)
(1, αi)t

l

+∆12
αα(w, u)∆21

00(u, w)(1,−αi)j∂
0
u∂0

w

(
D21

jl (u, w) + D12
l j (w, u)

)
(1, αi)t

l

)
, (57)
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with t represents the transposition. It is convenient to rewrite,220

Dab
ij (k) =

(
δij −

kik j

k2

)
Dab

T (k) +
kik j

k2 Dab
L (k), (58)

Πab
ij (k) =

(
δij −

kik j

k2

)
Πab

T (k) +
kik j

k2 Πab
L (k), (59)

where T and L represent the transverse and the longitudinal part, respectively. The LO self-energy221

iΠ21
ji (y, x) = − δΓ2,LO

δD12
ij (x,y)

is,222

iΠ21
jl (y, x) = −i(ede)

2 ∑
α=−1,1

(
∂0

x∂0
y

(
∆21

αα(y, x)∆12
00(x, y)

)
(1,−αi)l(1, αi)t

j

+∂0
x∂0

y

(
∆21

00(y, x)∆12
αα(x, y)

)
(1,−αi)j(1, αi)t

l

)
. (60)

By Fourier-transforming with the relative coordinate x− y and multiplying δij −
kikj
k2 or

kikj
k2 , we arrive223

at,224

Π21
T (X, k) = −(ede)

2
(

k0
)2 ∫

p
∑

α=−1,1

(
∆21

αα(X, k + p)∆12
00(X, p) + ∆21

00(X, k + p)∆12
αα(X, p)

)
+

(
∂2

∂X2

)
, (61)

Π21
L (X, k) = Π21

T (X, k), (62)

with
∫

p =
∫ dd+1 p

(2π)d+1 . The second equation is due to the spatial dimension d = 2. Similarly, we arrive at,225

Π12
T (X, k) = −(ede)

2
(

k0
)2 ∫

p
∑

α=−1,1

(
∆12

αα(X, k + p)∆21
00(X, p) + ∆12

00(X, k + p)∆21
αα(X, p)

)
+

(
∂2

∂X2

)
, (63)

Π12
L (X, k) = Π12

T (X, k). (64)

The Fourier transformation of the LO self-energy iΣ12
00(x, y) = − 1

2
δΓ2,LO

δ∆21
00(y,x)

is,226

Σ12
00(X, p) = −(ede)

2
∫

k
∑

α=−1,1

(
k0
)2

∆12
αα(X, p− k)

[
D12

T (X, k) + D12
L (X, k)

]
+

(
∂2

∂X2

)
. (65)

Similarly,227

Σ21
00(X, p) = −(ede)

2
∫

k
∑

α=−1,1

(
k0
)2

∆21
αα(X, p− k)

[
D21

T (X, k) + D21
L (X, k)

]
+

(
∂2

∂X2

)
. (66)

This self-energy is shown in Fig. 2 (b). Similarly we can derive,228

Σ12
αα(X, p) = −(ede)

2
∫

k

(
k0
)2

∆12
00(X, p− k)

[
D12

T (X, k) + D12
L (X, k)

]
+

(
∂2

∂X2

)
, (67)
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and,229

Σ21
αα(X, p) = −(ede)

2
∫

k

(
k0
)2

∆21
00(X, p− k)

[
D21

T (X, k) + D21
L (X, k)

]
+

(
∂2

∂X2

)
. (68)

Finally we derive a kinetic entropy current in the 1st order approximation in the gradient230

expansion and show the H-theorem in the LO approximation in the coupling expansion. By taking a231

difference of Eq. (32) and Eq. (33), we arrive at,232

i
{

p0 − p2

2m
, ∆ab

00

}
= i

[(
Σ00 −∑

α

Uαα

)
σz ◦ ∆00

]ab

− i

[
∆00 ◦ σz

(
Σ00 −∑

α

Uαα

)]ab

. (69)

We use the Kadanoff–Baym Ansatz ∆12
00 = ρ00

i f00, ∆21
00 = ρ00

i ( f00 + 1), Σ12
00 =

Σ00,ρ
i γ00, Σ21

00 =
Σ00,ρ

i (γ00 +233

1), U12
αα =

Uαα,ρ
i γU,αα, and U21

αα =
Uαα,ρ

i (γU,αα + 1) with ρ00 = i(∆21
00 − ∆12

00) = 2iIm∆00,R, Σ00,ρ =234

i(Σ21
00 − Σ12

00) = 2iImΣ00,R, and Uαα,ρ = i(U21
αα −U12

αα) = 2iImUαα,R where we just rewrite the (1, 2) and235

the (2, 1) components with the spectral parts ρ00, Σ00,ρ, and Uαα,ρ, and distribution functions f00, γ00,236

and γU,αα. The distribution functions f00, γ00, and γU,αα approach the Bose–Einstein distributions237

near equilibrium states. In the 1st order approximation in the gradient expansion in Eq. (69) for238

(a, b) = (1, 2) and (2, 1), we can derive,239

f00 = γ00 + O
(

∂

∂X

)
, and f00 = γU,αα + O

(
∂

∂X

)
. (70)

(Rewrite (a, b) = (1, 2) and (2, 1) components in Eq. (69), then we can show the collision terms240

∆21
00Σ12

00 − ∆12
00Σ21

00 ∝ f00 − γ00 = O
(

∂
∂X

)
and f00 − γU,αα = O

(
∂

∂X

)
.) By use of Eq. (70), we arrive at,241

∂µsµ
matter,00 = −

∫
p

(
Σ21

00(X, p)∆12
00(X, p)− Σ12

00(X, p)∆21
00(X, p)

)
ln

∆12
00(X, p)

∆21
00(X, p)

+∑
α

∫
p

(
U21

αα(X, p)∆12
00(X, p)−U12

αα(X, p)∆21
00(X, p)

)
ln

∆12
00(X, p)

∆21
00(X, p)

, (71)

with the definition of entropy current sµ
matter,00 for (0, 0) component,242

sµ
matter,00 ≡

∫
p

[(
δ

µ
0 +

δ
µ
i pi

m
− ∂Re(Σ00,R −∑α Uαα,R)

∂pµ

)
ρ00

i

+
∂Re∆00,R

∂pµ

Σ00,ρ −∑α Uαα,ρ

i

]
σ[ f00], (72)

σ[ f00] ≡ (1 + f00) ln(1 + f00)− f00 ln f00. (73)

We can derive the Boltzmann entropy
∫

p [(1 + n) ln(1 + n)− n ln n] with the number density n(X, p)243

in the quasi-particle limit ImUαα,R = ImΣ00,R → 0 in the same way as in [58]. Similarly, we can derive244

a kinetic entropy current for (αα) components. From Eqs. (46) and (47), we can derive245

i
{

p0 − p2

2m
− 1

2I
, ∆ab

αα

}
= i [Σαασz ◦ ∆αα − ∆αα ◦ σzΣαα]

ab

−i
[
Vαασz ◦ ∆g,αα − ∆g,αα ◦ σzVαα

]ab . (74)

We use the Kadanoff–Baym Ansatz ∆12
αα = ραα

i fαα, ∆21
αα = ραα

i ( fαα + 1), ∆12
g,αα =

∆g,αα,ρ
i γg,αα, ∆21

g,αα =246

∆g,αα,ρ
i (γg,αα + 1), Σ12

αα =
Σαα,ρ

i γαα, Σ21
αα =

Σαα,ρ
i (γαα + 1), V12

αα =
Vαα,ρ

i γV,αα, and V21
αα =

Vαα,ρ
i (γV,αα + 1)247
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with ραα = i(∆21
αα − ∆12

αα) = 2iIm∆αα,R, Σαα,ρ = i(Σ21
αα − Σ12

αα) = 2iImΣαα,R, and Vαα,ρ = i(V21
αα −V12

αα ) =248

2iImVαα,R. In Eq. (74), we can show,249

fαα ∼ γαα, γg,αα ∼ γV,αα, (75)

for distribution functions fαα, γαα, and γV,αα by writing the (a, b) = (1, 2) and (2, 1) components in the250

Kadanoff–Baym equations (74). We can also show,251

γαα ∼ γg,αα, (76)

from Eqs. (50) and (51). By using the above two equations, we arrive at,252

∂µsµ
matter,αα = −

∫
p

(
Σ21

αα(X, p)∆12
αα(X, p)− Σ12

αα(X, p)∆21
αα(X, p)

)
ln

∆12
αα(X, p)

∆21
αα(X, p)

+
∫

p

(
V21

αα (X, p)∆12
g,αα(X, p)−V12

αα (X, p)∆21
g,αα(X, p)

)
ln

∆12
αα(X, p)

∆21
αα(X, p)

, (77)

with the definitions of entropy current sµ
matter,αα for (αα) components,253

sµ
matter,αα ≡

∫
p

[(
δ

µ
0 +

δ
µ
i pi

m
− ∂ReΣαα,R

∂pµ

)
ραα

i
+

∂Re∆αα,R

∂pµ

Σαα,ρ

i

+
∂ReVαα,R

∂pµ

∆g,αα,ρ

i
− ∂Re∆g,αα,R

∂pµ

Vαα,ρ

i

]
σ[ fαα]. (78)

In this derivation, we have used the same way as that in open systems in [71]. We can also derive the254

following equations for the Kadanoff–Baym equations for photons with the Kadanoff–Baym Ansatz255

D21
T = ρT

i (1 + fT), D12
T = ρT

i fT , D21
L = ρL

i (1 + fL) and D12
L = ρL

i fL with distribution functions fT and256

fL and spectral functions ρT and ρL,257

∂µsµ
photon = −1

2

∫
k

[
Π21

T (X, k)D12
T (X, k)−Π12

T (X, k)D21
T (X, k)

]
ln

D12
T (X, k)

D21
T (X, k)

−1
2

∫
k

[
Π21

L (X, k)D12
L (X, k)−Π12

L (X, k)D21
L (X, k)

]
ln

D12
L (X, k)

D21
L (X, k)

, (79)

with the entropy current for photons,258

sµ
photon ≡

∫
k

[(
kµ − 1

2
∂ReΠT,R

∂kµ

)
DT,ρ

i
+

1
2

∂ReDT,R

∂kµ

ΠT,ρ

i

]
σ[ fT ]

+
∫

k

[(
kµ − 1

2
∂ReΠL,R

∂kµ

)
DL,ρ

i
+

1
2

∂ReDL,R

∂kµ

ΠL,ρ

i

]
σ[ fL]. (80)
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As a result, the total entropy current sµ = sµ
matter,00 + ∑α sµ

matter,αα + sµ
photon satisfies,259

∂µsµ = (ede)
2
∫

p,k

(
k0
)2

∑
α

[
∆21

αα(p− k)∆12
00(p)D21

T (k)− ∆12
αα(p− k)∆21

00(p)D12
T (k)

]
× ln

∆21
αα(p− k)∆12

00(p)D21
T (k)

∆12
αα(p− k)∆21

00(p)D12
T (k)

+(ede)
2
∫

p,k

(
k0
)2

∑
α

[
∆21

αα(p− k)∆12
00(p)D21

L (k)− ∆12
αα(p− k)∆21

00(p)D12
L (k)

]
× ln

∆21
αα(p− k)∆12

00(p)D21
L (k)

∆12
αα(p− k)∆21

00(p)D12
L (k)

+(ede)
2(E(X))2 ∑

α

∫
p

(
∆21

g,αα(p + α∂ζ)∆12
00(p)− ∆12

g,αα(p + α∂ζ)∆21
00

)
× ln

∆21
g,αα(p + α∂ζ)∆12

00(p)

∆12
g,αα(p + α∂ζ)∆21

00(p)
≥ 0, (81)

where we have used the inequality (x− y) ln x
y ≥ 0 for real variables x and y with x > 0 and y > 0. The260

equality is satisfied in f00 = fαα = fT = fL = 1
ep0/T−1

. Here we have used ∆21
αα

∆12
αα
∼ ∆21

g,αα

∆12
g,αα

with γg,αα ∼ fαα261

in 1st order in the gradient expansion. We have shown the H-theorem in the LO approximation in262

the coupling expansion and in the 1st order approximation in the gradient expansion. There is no263

violation in the 2nd law in thermodynamics in the dynamics.264

4. Time evolution equations in spatially homogeneous systems and conserved energy265

In this section, we write time evolution equations in spatially homogeneous systems and show a266

concrete form of the conserved energy density.267

It is convenient to introduce the statistical functions F00 =
∆21

00+∆12
00

2 , Fαα = ∆21
αα+∆12

αα
2 , FT =

D21
T +D12

T
2 ,268

FL =
D21

L +D12
L

2 , which represent the information of how many particles are occupied in (p0, p) (particle269

distributions), and statistical parts,Uαα,F = U21
αα+U12

αα
2 , Vαα,F = V21

αα+V12
αα

2 , ∆g,αα,F =
∆21

g,αα+∆12
g,αα

2 , Σ00,F =270

Σ21
00+Σ12

00
2 , Σαα,F = Σ21

αα+Σ12
αα

2 , ΠT,F =
Π21

T +Π12
T

2 , and ΠL,F =
Π21

L +Π12
L

2 . The variables of these functions are271

(X0, p0, p) with the center-of-mass coordinate X0 = x0+y0

2 and p given by the Fourier transformation272

with the relative coordinate x − y in variables (x, y) in Green’s functions and self-energy in Sec. 2.273

The statistical functions and parts are real at any time when we start with real statistical functions at274

initial time. The spectral functions are given by taking the difference of (2, 1) and (1, 2) components275

multiplied by i, namely ρ00 = i(∆21
00 − ∆12

00). They represent the information of which states can be276

occupied by particles in (p0, p) (dispersion relations). The spectral parts in self-energy are given by277

taking the difference of (2, 1) and (1, 2) components multiplied by i (and written by the subscript ρ),278

namely ∆g,αα,ρ = i(∆21
g,αα − ∆12

g,αα), Σ00,ρ = i(Σ21
00 − Σ12

00), and so on. The spectral functions and parts279

are pure imaginary at any time when we start with pure imaginary spectral functions at initial time.280

We can use the real statistical parts labeled by the subscripts F and the pure imaginary spectral parts281

labeled by the subscript ρ in self-energy in the time evolution. We use the subscript ‘R’, ‘F’ and ‘ρ’ to282

represent the retarded, statistical and spectral parts in self-energy, respectively.283

The Kadanoff–Baym equation for the statistical and spectral functions are given by,284 {
p0 − p2

2m
− ReΣ00,R + ∑

α=−1,1
ReUαα,R, F00

}
+

{
Re∆00,R, Σ00,F −∑

α

Uαα,F

}

=
1
i
(

F00Σ00,ρ − ρ00Σ00,F
)
− 1

i ∑
α

(
F00Uαα,ρ − ρ00Uαα,F

)
, (82)
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285 {
p0 − p2

2m
− ReΣ00,R + ∑

α=−1,1
ReUαα,R, ρ00

}
+

{
Re∆00,R, Σ00,ρ −∑

α

Uαα,ρ

}
= 0, (83)

286 {
p0 − p2

2m
− 1

2I
− ReΣαα,R, Fαα

}
+ {Re∆αα,R, Σαα,F}+

{
ReVαα,R, ∆g,αα,F

}
−
{

Re∆g,αα,R, Vαα,F
}

=
1
i
(

FααΣαα,ρ − ρααΣαα,F
)
− 1

i
(
∆g,αα,FVαα,ρ − ∆g,αα,ρVαα,F

)
, (84)

287 {
p0 − p2

2m
− 1

2I
− ReΣαα,R, ραα

}
+
{

Re∆αα,R, Σαα,ρ
}

+
{

ReVαα,R, ∆g,αα,ρ
}
−
{

Re∆g,αα,R, Vαα,ρ
}
= 0, (85)

288 {
p0 − p2

2m
− 1

2I
− ReΣαα,R, ∆g,αα,F

}
+
{

Re∆g,αα,R, Σαα,F
}

=
1
i
(
∆g,αα,FΣαα,ρ − ∆g,αα,ρΣαα,F

)
, (86){

p0 − p2

2m
− 1

2I
− ReΣαα,R, ∆g,αα,ρ

}
+
{

Re∆g,αα,R, Σαα,ρ
}
= 0, (87)

289 {
p2 − ReΠR,T , FT

}
+ {ReDR,T , ΠF,T} =

1
i
(

FTΠρ,T − ρTΠF,T
)

, (88){
p2 − ReΠR,T , ρT

}
+
{

ReDR,T , Πρ,T
}

= 0, (89)

and longitudinal parts given by changing the label T to L in the above two equations (88) and (89).290

We can write,291

Uαα,F(X, p) = (ede)
2E(X)2∆g,αα,F(p + α∂ζ), Uαα,ρ(X, p) = (ede)2E(X)2∆g,αα,ρ(p + α∂ζ), (90)

Vαα,F(X, p) = (ede)
2E(X)2F00(p− α∂ζ), Vαα,ρ(X, p) = (ede)2E(X)2ρ00(p− α∂ζ). (91)

In case we start with initial condition E2(X0 = 0) = 0, ∂0E2(X0 = 0) = 0 and symmetric Green’s292

functions for α→ −α in spatially homogeneous systems, we can use ∂ζ = 0 in the above equations at293

any times. We can write the self-energy as,294

Σ00,F(p) = −(ede)
2 ∑

α=−1,1

∫
k

(
k0
)2
[

Fαα(p− k)(FT(k) + FL(k)) +
1
4

ραα(p− k)
i

ρT(k) + ρL(k)
i

]
,(92)

Σ00,ρ(p) = −(ede)
2 ∑

α=−1,1

∫
k

(
k0
)2

[Fαα(p− k)(ρT(k) + ρL(k)) + ραα(p− k)(FT(k) + FL(k))] , (93)

295

Σαα,F(p) = −(ede)
2
∫

k

(
k0
)2
[

F00(p− k)(FT(k) + FL(k)) +
1
4

ρ00(p− k)
i

ρT(k) + ρL(k)
i

]
, (94)

Σαα,ρ(p) = −(ede)
2
∫

k

(
k0
)2

[F00(p− k)(ρT(k) + ρL(k)) + ρ00(p− k)(FT(k) + FL(k))] , (95)
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296

ΠT,F(k) = ΠL,F(k) = −(ede)
2
(

k0
)2

∑
α=−1,1

∫
p

[
Fαα(k + p)F00(p)− 1

4
ραα(k + p)

i
ρ00(p)

i

+F00(k + p)Fαα(p)− 1
4

ρ00(k + p)
i

ραα(p)
i

]
, (96)

ΠT,ρ(k) = ΠL,ρ(k) = −(ede)
2
(

k0
)2

∑
α=−1,1

∫
p

[
ραα(k + p)F00(p)− Fαα(k + p)ρ00(p)

+ρ00(k + p)Fαα(p)− F00(k + p)ραα(p)

]
, (97)

where we have omitted the label of the center-of-mass cordinate X in Green’s functions and self-energy.297

We find that the ΠT,F(k) = ΠL,F(k) are symmetric (ΠT,F(−k) = ΠT,F(k)) under k → −k, and that298

ΠT,ρ = ΠL,ρ are anti-symmetric (ΠT,ρ(−k) = −ΠT,ρ(k)) under k→ −k, for any Green’s functions for299

dipole fields. When we prepare initial conditions with symmetric FT,L and anti-symmetric ρT,L for300

photons, we can derive symmetric FT,L and anti-symmetric ρT,L at any times. In addition, since Π(k)’s301

are proportional to (k0)2, there is no mass gap for incoherent photons for the Leading-Order self-energy302

in the coupling expansion. The velocity of gapless modes of incoherent photons will decrease when303

we increase the density of dipoles in this theory.304

Finally, we show the energy density Etot. In the spatially homogeneous system in the 2 + 1305

dimensions, we can derive ∂Etot
∂X0 = 0 with the energy density given by,306

Etot ≡
1
2I ∑

α=−1,1
ψ̄∗αψ̄α +

1
2
(∂0 Ai)

2 +
∫

p
p0

(
F00 + ∑

α=−1,1
Fαα

)
+

1
2

∫
p

(
p0
)2

(FT + FL)

+2(ede)
2E2 ∑

α=−1,1

∫
p

(
F00(p)Re∆g,αα,R(p + α∂ζ) + Re∆00,R(p)∆g,αα,F(p + α∂ζ)

)
−
∫

p
(ReΣ00,RF00 + Re∆00,RΣ00,F)− ∑

α=−1,1

∫
p
(ReΣαα,RFαα + Re∆αα,RΣαα,F)

−1
2

∫
p
(ReΠR,T FT + ReDR,TΠF,T + ReΠR,LFL + ReDR,LΠF,L) , (98)

where we have used the KB equations in this section, the Klein–Gordon equations (20) and the307

Schödinger-like equations (23) (24) in Sec. 2. The 1st term represents the contribution of nonzero308

angular momenta for coherent dipole fields. The 2nd term represents the contribution by electric fields309

Ei = ∂0 Ai. The 3rd and the 4th terms represent the contribution by quantum fluctuations for dipoles310

and photons, respectively. When the temperature is nonzero T 6= 0 at equilibrium states and the311

spectral width in the spectral functions is small enough, statistical functions which are proportional312

to the Bose–Einstein distributions 1
ep0/T−1

give temperature-dependent terms mT2 for dipole fields313

and ∝ T3 for photon fields in 2 + 1 dimensions. The 5th term represents the potential energy in314

processes in Fig. 2 (a). The 6th, 7th and 8th terms represent the potential energy in processes in Fig. 2315

(b). The coefficients in the 6th and 7th terms are not 1
3 but 1. Although the factor 1 might look like316

a contradiction with the preceding research in [73,74] which suggest that the factor 1
3 appears in the317

interaction with 3-point-vertex, the factor 1 appears due to time derivative (∂0)2 in self-energy for318

dipole fields and photon fields.319

5. Dynamics of coherent fields320

In this section, we show that our Lagrangian describes the super-radiance phenomena in time321

evolution equations of coherent fields. We shall assume that all the coherent fields are independent of322
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x1 (dependent on x0 and x2). We also assume the symmetry for α = −1 and α = 1, namely ψ̄
(∗)
1 = ψ̄

(∗)
−1 ,323

∆01 = ∆0−1, and ∆10 = ∆−10. We set initial conditions E2 = 0 and ∂0E2 = 0 at x0 = 0.324

We define Z ≡ 2|ψ̄1|2 − |ψ̄0|2. It is possible to derive the following equations from time evolution325

equations (20), (23) and (24) with their complex conjugates for background coherent fields in Sec. 2.326

∂0Z = i4edeE1 (ψ̄
∗
1 ψ̄0 − ψ̄∗0 ψ̄1) , (99)

∂0 (ψ̄
∗
1 ψ̄0) =

i
2I

ψ̄∗1 ψ0 + iedeE1Z (100)[
(∂0)

2 − (∂2)
2
]

E1 = −2ede(∂0)
2 [ψ̄∗1 ψ̄0 + ψ̄∗0 ψ̄1 + ∆01(x, x) + ∆10(x, x)] . (101)

We have used moderately varying spatial dependence |∇2
i ψ̄−1,0,1/m| � |∂0ψ̄−1,0,1|. We derive aspects327

of the super-radiance and the Higgs mechanism in the above three equations.328

5.1. Super-radiance329

In this section, we show the super-radiance in time evolution equations for coherent fields with330

the rotating wave approximations neglecting non-resonant terms and quantum fluctuations. We have331

used the derivations in [75,76] for background coherent fields.332

We shall consider only k0 = 1
2I in this section, and we expand the electric field E1 and the333

transition rate ψ̄0ψ̄∗1 as,334

E1(x0, x2) =
1
2

ε(x0, x2)e−i(k0x0−k0x2) +
1
2

ε∗(x0, x2)ei(k0x0−k0x2), (102)

ψ̄1ψ̄∗0 =
1
2

R(x0, x2)e−i(k0x0−k0x2), (103)

We consider the following case,335

|∂0ε| � |k0ε|, |∂0R| � |k0R|,
|∂2ε| � |k0ε|. (104)

Neglect non-resonant terms like e±2ik0x0
and quantum fluctuations (Green’s functions ∆01 and ∆10) (the336

rotating wave approximation). Then from Eqs. (99), (100), and (101), we arrive at the Maxwell–Bloch337

equations,338

∂ε

∂x0 +
∂ε

∂x2 = iedek0R, (105)

∂Z
∂x0 = iede(εR∗ − ε∗R), (106)

∂R
∂x0 = −iedeεZ. (107)

We assume that ε, Z and R are independent of the spatial coordinate of the x2 direction. We shall339

change ε → iε in the above equations, and assume real functions R = R∗ and ε = ε∗. Then we can340

write,341

∂ε

∂x0 = edek0R, (108)

∂Z
∂x0 = −2edeεR, (109)

∂R
∂x0 = edeεZ. (110)
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We find the conservation law with the definition B2 ≡ 2R2 + Z2,342

∂

∂x0 B2 =
∂

∂x0

(
2R2 + Z2

)
= 0. (111)

The relation ∂B
∂x0 = 0 represents the probability conservation since we can rewrite B2 =343 (

2|ψ̄1|2 + |ψ̄0|2
)2 by Eq. (103) and Z ≡ 2|ψ̄1|2 − |ψ̄0|2. We also find the following conservation law,344

∂

∂x0

[
1
2

ε2 +
1
2

k0Z
]
= 0, (112)

which represents the energy conservation. By this relation, we might be able to estimate the maximum345

energy density of electric fields,346 (
1
2

ε2
)

max
= −1

2
k0Zmin =

1
2

k0B, (113)

in case there is no external energy supply. We derive the following solutions in Eqs. (108), (109) and347

(110),348

R(x0) =
1√
2

B sin θ(x0), Z(x0) = B cos θ(x0), (114)

θ(x0) = θ0 +
√

2ede

∫ x0

0
dx′0ε(x′0), (115)

with ∂θ
∂x0 =

√
2edeε and the constant B in a similar way to [76]. The θ(x0) swings around the position349

θ = π with the frequency Ω = ede
√

k0B in case we start with initial conditions at around θ0 ∼ π350

(|ψ̄1|2 = 0), since we can rewrite Eq. (108) as351

∂2θ(x0)

∂(x0)2 = (ede)
2k0B sin θ(x0). (116)

The B is the order of the number density of dipoles.352

We introduce the damping term 1
L ε for the release of radiation and the propagation length L in353

Eq. (108). We can write,354

∂ε

∂x0 +
1
L

ε =
edek0
√

2
B sin θ(x0). (117)

In κ = 1
L � time derivative, we can neglect the first term in the above equations, then355

∂θ

∂x0 =
(ede)2k0B

κ
sin θ(x0). (118)

The solution is,356

θ(x0) = 2 tan−1
[

exp
(
(ede)2k0Bx0

κ

)
tan

θ0

2

]
, (119)

and,357

ε =
1√

2edeτR
×
[

cosh
(

x0 − τ0

τR

)]−1

(120)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 October 2019                   doi:10.20944/preprints201910.0175.v1

Peer-reviewed version available at Entropy 2019, 21, 1066; doi:10.3390/e21111066

https://doi.org/10.20944/preprints201910.0175.v1
https://doi.org/10.3390/e21111066


19 of 24

with τR = κ
(ede)2k0B , and τ0 = −τR ln(tan θ0

2 ). The τR ∝ 1/B ∼ 1/N with the number of dipoles N358

represents the relaxation time of electric fields in the super-radiance. When N dipoles decay within time359

scales 1/N, the intensity of electric fields becomes the order N2 (super-radiant decay with correlation360

among dipoles), not N (spontaneous decay without correlation among dipoles).361

5.2. Higgs mechanism and tachyonic instability362

In this section, we rewrite time evolution equations for coherent fields with only real functions.363

We assume the spatially homogeneous case. We do not adopt the rotating wave approximation in this364

section. We show how coherent electric fields E1 are affected by Z = 2|ψ̄1|2 − |ψ̄0|2.365

In Eq. (101), the second derivatives of coherent fields on the right-hand-side is written by,366

ede

2I2 (ψ̄∗1 ψ̄ + ψ̄∗0 ψ̄1) +
2(ede)2Z

I
E1,

where we have used Eq. (100). As a result, we arrive at,367 [
(∂0)

2 − (∂2)
2 − 2(ede)2Z

I

]
E1 =

µ1

4I2 +
2(ede)2E1

I

∫
p
(2F11(X, p)− F00(X, p)− ∆g,11,F(X, p))

+
(ede)2

I2 E1

∫
p

(
Re∆g,11,R(X, p)F00(X, p) + ∆g,11,F(X, p)Re∆00,R(X, p)

)
+
(ede)2

2I2
∂E1

∂X0

∫
p

(
∂F00

∂p0

∆g,11,ρ

i
+

ρ00

i
∂∆g,11,F

∂p0

)
+

(ede)2

4I2 E1
∂

∂X0

∫
p

(
∂F00

∂p0

∆g,11,ρ

i
+

ρ00

i
∂∆g,11,F

∂p0

)
, (121)

with the x1 direction of the dipole moment (density) given by µ1 = 2ede
(
ψ̄∗1 ψ̄0 + ψ̄∗0 ψ̄1

)
, F11(X, p) =368

∆21
11(X,p)+∆12

11(X,p)
2 , F00(X, p) =

∆21
00(X,p)+∆12

00(X,p)
2 , and ∆g,11,F(X, p) =

∆21
g,11(X,p)+∆12

g,11(X,p)
2 . We have369

assumed the self-energy Σ00 = Σ11 = 0 in deriving the time derivatives of ∆10 and ∆01 in Eq. (101).370

Even if we include contributions of self-energy in Eq. (121), they are higher order O
(
(ede)4) in the371

coupling expansion. We have neglected higher order terms in the gradient expansion for quantum372

fluctuations. In Eq. (121), we leave the −(∂2)
2E1 term on the left-hand-side in the above equation373

to compare with the sign of − 2(ede)2Z
I E1 term. We find the Higgs mechanism with the mass squared374

− 2(ede)2Z
I in the case of the normal population Z = 2|ψ̄1|2− |ψ̄0|2 < 0. On the other hand, the tachyonic375

instability appears in the inverted population Z > 0 in the above equation. Then the electric field E1 will376

increase exponentially until Z becomes negative. In Eq. (121), the second term on the right-hand-side is377

proportional to 2F11 − F00 − ∆g,11,F. Near equilibrium states, we might find F00 > 2F11 − ∆g,11,F, where378

statistical functions F11, F00 and ∆g,11,F are proportional to the Bose–Einstein distribution 1
ep0/T−1

plus 1
2379

(with the Kadanoff–Baym Ansatz) with different dispersion relations p0 ∼ p2

2m for F00 and p0 ∼ p2

2m + 1
2I380

for F11 and ∆g,11,F, due to the energy difference 1
2I − 0

2I between the ground state and 1st excited states.381

So the 2F11− F00−∆g,11,F in the 2nd term is negative near the equilibrium states, which might mean no382

tachyonic unstable terms appear from quantum fluctuations near equilibrium states. The contributions383

of quantum fluctuations on the right-hand-side written by statistical functions (2nd, 3rd, 4th and 5th384

terms) vanish at zero temperature T = 0. Quantum fluctuations represent finite temperature effects385

at equilibrium states, although we need not restrict ourselves to only the equilibrium case. We have386

shown general contributions of quantum fluctuations in both equilibrium and non-equilibrium case in387

this paper.388
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Finally we shall consider remaining equations for coherent dipole fields. By using Eqs. (99),389

(100), and the definitions of real functions µ1 = 2ede(ψ̄∗1 ψ̄0 + ψ̄∗0 ψ̄1), P = iede(ψ̄∗1 ψ̄0 − ψ̄∗0 ψ̄1), and390

Z = 2|ψ̄1|2 − |ψ̄0|2, we can also derive,391

∂0Z = 4E1P, (122)

∂0µ1 =
P
I

, (123)

∂0P = −µ1

4I
− 2(ede)

2E1Z. (124)

We can show ∂0(2|ψ̄1|2 + |ψ̄0|2) = 0 by using these three equations. In these equations with initial392

conditions E1 > 0, Z > 0 (inverted population), P = 0, and µ1 = 0, the P and the µ1 decrease at393

around the initial time and Z starts to decrease due to E1P < 0. In initial conditions E1 > 0, Z < 0394

(normal population), P = 0, and µ1 = 0, the P and the µ1 increase at around the initial time and Z395

starts to increase due to E1P > 0. The absolute values of Z decrease at around the initial time. We find396

that there is no term of quantum fluctuations in Eqs. (122), (123) and (124).397

We can solve Eqs. (121), (122), (123), (124) with real functions in this section, and the398

Kadanoff–Baym equations with real statistical functions and pure imaginary spectral functions in399

Sec. 4, simultaneously.400

6. Discussion401

In this paper, we have derived time evolution equations, namely the Klein–Gordon equations402

for coherent photon fields, the Schrödinger-like equations for coherent electric dipole fields, and403

the Kadanoff–Baym equations for quantum fluctuations, starting with the Lagrangian in Quantum404

Electrodynamics with electric dipoles in 2 + 1 dimensions. We have adopted 2-Particle-Irreducible405

Effective Action technique with the Leading-Order self-energy of the coupling expansion. We find that406

electric dipoles change their angular momenta due to coherent electric fields E1 ± iαE2 with α = ±1.407

They also change momenta and angular momenta by scattering with incoherent photons. The proof of408

H-theorem is possible for these processes as shown in Sec. 3. Our analysis provides the dynamics of409

both the order parameters with coherent fields and quantum fluctuations for incoherent particles.410

In Sec. 2, we adopt two-energy level approximation for the angular momenta of dipoles. Then,411

we find that the i∆−1
0 is written by 3× 3 matrix with zero (−1, 1) and (1,−1) components. The form of412

the matrix is similar to 3× 3 matrix in the analysis in open systems, the central region, left and right413

reservoirs as in [68–71]. Hence we can simplify the Kadanoff–Baym equations for dipole fields in an414

isolated system with the same procedures as those in open systems. The difference between QED with415

dipoles and φ4 theory in open systems is that the coherent electric field changes the momenta of dipoles416

when the phase αζ in E1 ± iαE2 with α = ±1 is dependent on space-time. The space dependence of417

coherent electric fields might disappear in the time evolution due to the instability by the lower entropy418

of the system, then electric fields will change angular momenta of dipoles but not change momenta p419

due to ∂ζ = 0. We can also trace the dynamics with ∂ζ = 0. By setting the initial conditions with the420

symmetry α→ −α, namely ψ̄
(∗)
α = ψ̄

(∗)
−α , ∆α0 = ∆−α0, and ∆0α = ∆0−α, with initial conditions E2 = 0421

and ∂0E2 = 0 in spatially homogeneous systems in ∂νFν2 = J2 in Eq. (20), we can show E2 = 0 at any422

times. Then we can use ∂ζ = 0. This condition simplifies numerical simulations in the Kadanoff–Baym423

equations since we need not estimate the momentum shift p→ p± α∂ζ in the finite-size lattice for the424

momentum space. As a result, the simulations for Kadanoff–Baym equations for dipoles and photons425

will be similar to those in QED with charged bosons in [66].426

In Sec. 3, we have introduced a kinetic entropy current and shown the H-theorem in the427

Leading-Order of the coupling expansion with ede. This entropy approaches the Boltzmann entropy in428

the limit of zero spectral width as in [58]. The mode-coupling processes between dipoles and photons429

produce entropy. When there are deviations between (00) and (αα) components of Green’s functions,430
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entropy production occurs. Entropy production stops when the Bose–Einstein distribution is realized431

in the dynamics of Kadanoff–Baym equations.432

We can also derive the energy shifts in dispersion relations due to nonzero electric fields by using433

the retarded Green’s functions in Sec. 3. The 0th order equations for retarded Green’s functions are434

given by,435 (
p0 − p2

2m
+ 2(ede)

2E2
1∆g,11,R

)
∆00,R = −1,(

p0 − p2

2m
− 1

2I

)
∆11,R + (ede)

2E2
1∆00,R∆g,11,R = −1,

with ∆g,11,R = −1

p0− p2
2m− 1

2I

. Multiply p0 − p2

2m − 1
2I , take the imaginary parts in the above equations, and436

remember the imaginary parts of retarded Green’s functions are the spectral functions, then we find,437

W

[
ρ00

ρ11

]
= 0,

W =


(

p0 − p2

2m − 1
2I

) (
p0 − p2

2m

)
− 2(ede)2E2

1 0

−(ede)2E2
1

(
p0 − p2

2m − 1
2I

)2

 .

By setting determinant |W| to be zero, we find the following solutions for dispersion relations,438

p0 =
p2

2m
+

1
4I
± 1

2

√
1

4I2 + 8(ede)2E1
2.

Here we assumed the symmetry for α = ±1 for Green’s functions, and zero self-energy Σ00 = Σ11 = 0.439

We find how electric fields shift two energy levels 0 and 1
2I . The above energy shift is similar to the440

energy shift given in [27] in 3 + 1 dimensions due to nonzero electric fields.441

In Sec. 5.1, we have derived the super-radiance from time evolution equations for coherent fields.442

We find that it is possible to derive the Maxwell–Bloch equations from our Lagrangian with the443

probability conservation law and the energy conservation law. Super-radiant decay with intensity of444

the order ∝ N2 (N: the number of dipoles) appears in a similar way to [75,76]. It is possible to derive445

the maximum energy of electric fields by use of Eq. (113). We know that the moment of inertia of water446

molecule is I = 2mH R2 with mH = 940 MeV with R = 0.96× 10−10 m. Hence the k0 = 1
2I = 1.1× 10−3

447

eV. Since B = N
V = 3.3× 1028 /m3 for liquid water, we find448

1
2

ε2
max =

1
2

k0B = 1.8× 1025 eV/m3.

When we multiply the volume of all microtubules (MTs) in a brain,449

VMT = π × 15nm2 × 1000nm× 2000 MTs/neuron× 1011 neurons/brain = 1.4× 10−7 m3,

we can arrive at,450

1
2

ε2
maxVMT = 0.41 J = 0.1 cal.

If we maintain our brain 100 sec without energy supply, we need at least 0.1 ×451

10−2 cal/s or 86 cal/day to maintain the ordered states of memory. We can compare452

86 cal/day with 4000 cal/day = 2000 kcal/day × 0.2 (energy consumption rate of brain) ×453

0.01(energy rate to maintain the ordered system). The 86 cal/day is within the 4000 cal/day, which454
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is consistent with our experiences. In this derivation, we have used coefficients in 2 + 1 dimensions455

and the number density of water molecules in 3 + 1 dimensions.456

In Sec. 5.2, we have derived time evolution equations for electric field E1. The Higgs mechanism457

appears in this equation in normal population Z < 0. As a result, the dynamical mass generation458

occurs with the maximum mass ΩHiggs = 2ede
√

k0B = 30k0 where the number density of dipoles459

is B = 2|ψ̄1|2 + |ψ̄0|2 = N
V . The period is 2π/ΩHiggs = 1.3 × 10−13 sec. In normal population460

Z < 0, the Meissner effect appears with the penetrating length 1/ΩHiggs = 6.3 µm. On the other461

hand, the tachyonic instability occurs in inverted population Z > 0. The electric field E1 increases462

exponentially with exp(ΩX0) (with Ω ≤ Ωmax) where the time scale is 1/Ωmax = 2.1× 10−14 sec with463

Ωmax = ΩHiggs. Due to energy conservation, since Z decreases as the absolute value of the electric464

field increases, tachyonic instability stops in Z < 0.465

We have prepared for numerical simulations with time evolution equations, namely the466

Schödinger-like equations for coherent electric dipole fields, the Klein–Gordon equations for coherent467

electric fields, and the Kadanoff–Baym equations for quantum fluctuations. Our simulations might468

describe the dynamics towards equilibrium states for quantum fluctuations and the dynamics of469

super-radiant states for coherent fields. Our analysis is also extended to simulations in open systems470

by preparing the left and the right reservoirs like those in [71] or networks [72]471

7. Conclusion472

It is possible to derive equilibration for quantum fluctuations and super-radiance for background473

coherent fields simultaneously in Quantum Electrodynamics with electric dipoles in 2 + 1 dimensions.474

Total energy consumption to maintain super-radiance in microtubules is consistent with energy475

consumption in our experiences. This work will be extended to the 3 + 1 dimensional analysis to476

describe memory formation processes in numerical simulations. We should derive the Schödinger-like477

equations, the Klein–Gordon equations, and the Kadanoff–Baym equations by starting with the single478

Lagrangian in QED with electric dipoles in 3 + 1 dimensions in the future study. These equations in479

3 + 1 dimensions will describe more realistic and practical dynamics in QBD.480
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