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1 Abstract: We derive time evolution equations, namely the Schrodinger-like equations and the
> Klein—-Gordon equations for coherent fields and the Kadanoff-Baym (KB) equations for quantum
s fluctuations, in Quantum Electrodynamics (QED) with electric dipoles in 2 + 1 d imensions. Next
s we introduce a kinetic entropy current based on the KB equations in the 1st order of the gradient
s expansion. We show the H-theorem for the Leading-Order self-energy in the coupling expansion (the
s  Hartree-Fock approximation). We show a conserved energy in the spatially homogeneous systems
»  in the time evolution. We derive aspects of the super-radiance and the equilibration in our single
s Lagrangian. Our analysis can be applied to Quantum Brain Dynamics, that is QED with water electric
» dipoles. The total energy consumption to maintain super-radiant states in microtubules seems to be
10 within the energy consumption to maintain the ordered systems in a brain.

Keywords: non-equilibrium quantum field theory; quantum brain dynamics; kadanoff-baym
equation; entropy; super-radiance

1 1. Introduction

"

12 Numerous attempts to understand memory in a brain have been made over one hundred years
1z starting in the end of 19th century. Nevertheless, the concrete mechanism of memory still remains an
12 open question in conventional neuroscience [1-3]. Conventional neuroscience is based on classical
s mechanics with neurons connected by synapses. However, we still can not answer how limited
16 connections between neurons describe mass excitations in a brain in classical neuron doctrine.

17 Quantum Field Theory (QFT) of the brain, or Quantum Brain Dynamics (QBD), is one of the
1= hypotheses expected to describe the mechanism of memory in the brain [4-6]. Experimentally, several
1 properties of memory, namely the diversity, the long-termed but imperfect stability, and nonlocality’,
20 are suggested in [7-9]. The QBD can describe these properties by adopting infinitely physically or
= unitarily inequivalent vacua in QFT, distinguished from Quantum Mechanics which can not describe
22 unitarily inequivalence. Unitarily inequivalence represents the emergence of the diversity of phases
= and allows the possibility of the spontaneous symmetry breaking (SSB) [10-13]. The vacua or the
2« ground states appearing in SSB describe the stability of the states. Furthermore, the QFT can describe
2 both microscopic degrees of freedom and macroscopic matter [10]. To describe stored information,
2 we can adopt the macroscopic ordered states in QFT with SSB involving long-range correlation via
2z Nambu-Goldstone (NG) quanta. In 1967, Ricciardi and Umezawa proposed a quantum field theoretical
2s approach to describe memory in a brain [14]. They adopted the SSB with long-range correlations
20 mediated by NG quanta in QFT. Stuart et al. developed QBD by assuming a brain as a mixed system

1 Memory is diffused and non-localized in several domains in a brain. It does not disappear due to the destruction in a

particular local domain. The term ‘nonlocality” does not indicate nonlocality in entanglement in quantum mechanics.
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s of classical neurons and quantum degrees of freedom, namely corticons and exchange bosons [15,16].
a1 The vacua appearing in SSB, the macroscopic order, are interpreted as the memory storage in QBD.
52 The finite number of excitations of NG modes represents the memory retrieval. Around the same time,
ss  Frohlich proposed the application of a theory of electric dipoles to the study of biological systems
sa  [17-22]. He suggested a theory of the emergence of a giant dipole in open systems with breakdown of
ss  rotational symmetry of dipoles where dipoles are aligned in the same direction (the ordered states with
ss coherent wave propagation of dipole oscillation in the Frohrich condensate). In 1976, Davydov and
sz Kislukha studied a theory of solitary wave propagation in protein chains, called Davydov soliton [23].
ss It is found that the theory by Frohlich and that by Davydov represent static and dynamical properties
3o in the nonlinear Schodinger equation with an equivalent quantum Hamiltonian, respectively [24].
s In 1980s, Del Giudice et al. applied a theory of water electric dipoles to biological systems [25-28].
a1 Especially, the derivation of laser-like behavior is a suggestive study. In 1990s, Jibu and Yasue gave a
a2 concrete picture of corticons and exchange bosons, namely water electric dipole fields and photons
a3 [4,29-32]. The QBD is nothing but Quantum Electrodynamics (QED) with water electric dipole fields.
as  When electric dipoles are aligned in the same directions coherently, the polaritons, NG bosons in
s SSB of rotational symmetry, emerge. The dynamical order in the vacua in SSB is maintained by
s long-range correlation of the massless NG bosons. In QED, the NG bosons are absorbed by photons,
«z and then photons acquire mass due to the Higgs mechanism and can stay in coherent domains. The
ss massive photons are called evanescent photons. The size of a coherent domain is order of 50 pm.
s Furthermore, two quantum mechanisms of information transfer and integration among coherent
so domains are suggested. The first one is to use the super-radiance and the self-induced transparency
s1  via microtubules connecting two coherent domains [31]. Super-radiance is the phenomenon indicating
s2 coherent photon emission with correlation among not only photons but also atoms (or dipoles) [33-37].
ss  The atoms (or dipoles) cooperatively decay in short time interval due to correlation, coherent photons
s« with intensity proportional to the square of the number of atoms (or dipoles) are emitted. The pulse
ss wave photons in super-radiance propagate through microtubules without decay. Then the self-induced
s transparency appears, since microtubules are perfectly transparent in the propagation. The second
s7 one is to use the quantum tunneling effect among coherent domains surrounded by incoherent
ss domains [32]. The effect is essentially equivalent to the Josephson effect between two superconducting
ss domains separated by a normal domain. Del Giudice et al. studied this effect in biological systems
s [28]. In 1995, Vitiello has shown that a huge memory capacity can be realized by regarding a brain
e1 as an open dissipative system and doubling the degrees of freedom with mathematical techniques in
ez thermo-field-dynamics [38]. In dissipative model of a brain, each memory state evolves in classical
es deterministic trajectory like a chaos [39]. The overlap among distinct memory states is zero at any
s« times in the infinite volume limit. However, finite volume effects allow states to overlap one another,
es which might represent association of memories [6]. In 2003, Exclusion Zone (EZ) water has been
es discovered experimentally [40]. The properties of EZ water correspond to those of coherent water [41].
o7 However, we have never seen the dynamical memory formations based on QBD at the
ss physiological temperature in the presence of thermal effects written by quantum fluctuations. Hence,
oo there are still criticisms related with the decoherence phenomena? in memory formations in QBD [42].
70 S0, we need to derive time evolution equations of coherent fields and quantum fluctuations and show
7 numerical simulations of memory formation processes in non-equilibrium situations to check whether
72 or not memory in QBD is robust against thermal effects. Futhermore, in 2012 Craddock et al. suggested
73 the mechanism of memory coding in microtubules with phosphorylation by Ca?* calmodulin kinase
7o 11 [43]. It will be an interesting topic to investigate how water electric dipoles and evanescent photons
7 are affected by phosphorylated microtubules.

2 We should use the mass of polaritons in estimating the critical temperature of ordered states, not that of water molecules

themselves.
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76 The aim of this paper is to derive time evolution equations, namely the Schrodinger-like equations
7z for coherent dipole fields, the Klein-Gordon equations for coherent photon fields, the Kadanoff-Baym
7s equations for quantum fluctuations [44-46], with 2-Particle-Irreducible effective action technique
7 with the Keldysh formalism [47-51]. We derive both the equilibration for quantum fluctuations
s and the super-radiance for background coherent fields from the single Lagrangian in Quantum
a1 Electrodynamics (QED) with electric dipole fields. We arrive at the Maxwell-Bloch equations for the
ez super-radiance by starting with QED with electric dipole fields in 2 4 1 dimensions. When we consider
s electric fields in super-radiance, we only need two spatial dimensions, one axis for the amplitude
s« and another axis for the propagation. Hence we have discussed the case in 2 4- 1 dimensions in this
es paper. We also derive the Higgs mechanism and the tachyonic instability for coherent fields in the
ss Klein—Gordon equation for coherent electric fields. In two energy level approximation for electric
ez dipole fields, namely with the ground state and the 1st excited states, the Higgs mechanism appears in
ss normal population in which the probability amplitude in the ground state is larger than that in the 1st
e excited states. The penetrating length in the Meissner effect due to the Higgs mechanism is 6.3 pm
%o derived by using coefficients in 2 + 1 dimensions and the number density of liquid water molecules in
o1 34 1 dimensions. On the other hand, the tachyonic instability appears in inverted population in which
o2 the probability amplitudes in 1st excited states are larger than that in the ground state. Then the electric
o3 field increases exponentially while the system is in inverted population. The increase stops at times
sa when normal population is realized. Our analysis also contains the dynamics of quantum fluctuations
s in non-equilibrium cases. We also derive the Kadanoff-Baym equations for quantum fluctuations with
os the Leading-Order self-energy in the coupling expansion. The Kadanoff-Baym equations describe the
oz entropy producing dynamics during equilibration as shown in the proof of the H-theorem. Entropy
ss production stops when the Bose-Einstein distribution is realized. By combining time evolution
90 equations (the Klein-Gordon equations for coherent electric fields and the Schrodinger-like equations
100 for coherent electric dipole fields) and the Kadanoff-Baym equations for quantum fluctuations, we can
11 describe the dynamical behavior of dipoles with thermal effects written by quantum fluctuations. Our
102 analysis will be applied to memory formation processes in QBD.

103 This paper is organized as follows. In Sec. 2, we introduce the 2-Particle-Irreducible effective
10a action in the closed time path contour to describe non-equilibrium phenomena, and derive time
15 evolution equations. In Sec. 3, we introduce a kinetic entropy current in the 1st order of the gradient
106 expansion, and show the H-theorem in the Leading-Order approximation of the coupling expansion.
17 In Sec. 4, we show the time evolution equations, the conserved total energy and the potential energy
s in spatially homogeneous systems in an isolated system. In Sec. 5, we derive the super-radiance
100 by analyzing the time evolution equations for coherent fields. In Sec. 6, we discuss our results. In
1o Sec. 7, we provide the concluding remarks. In this paper, the labels 7, j = 1 and 2 represent x and y
a1 directions in space, the labels 4, b, c,d = 1,2 represent two contours in the closed-time-path, the labels
12 & = —1,1 represent the angular momentum of electric dipoles. The speed of light, the Planck constant
us  divided by 27 and the Boltzmann constant are set to be 1 in this paper. We adopt the metric tensor
us yM =diag(1l,—1,—1) with u,v =0,1,2.
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us 2. The 2-Particle-Irreducible Effective Action and time evolution equations
116 We begin with the following Lagrangian density to describe Quantum Electrodynamics (QED)
ur with electric dipoles in 2 + 1 dimensions in the background field method [52-55],
. 1 . (9¥ay)?
L[Y*(x,0),¥(x,0),A(x),a(x)] = —ZFV [A+a]Fu[A+a] - g
1
27 9 1
Yi—Y+ ¥ VY
+/0 46 520 T om Vi
+l‘i’*a—2‘f — 2ed, Y*u'YFY[A + (1)
21 002 ‘ '

us  Where A is the background coherent photon fields, a is the quantum fluctuations of photon fields,
e FMV[A] = oF AV — 9V AV is the field strength, the a4 is a gauge fixing parameter, the m is the mass of
120 a dipole, the I is the moment of inertia, ut = (cos6,sinB) is the direction of dipoles, and 2ed, is the
121 absolute value of dipole vector. The variable 6 represents the degrees of freedom of rotation of dipoles
122 in 2+ 1 dimensions. The dipole-photon interaction term —2ed,¥*u"¥F%[A + a] has the similar form
123 to that in [27]. We shall expand the electric dipole fields ¥ and ¥* by the angular momentum and
124 consider only the ground state and the 1st excited states in energy-levels. Then we can write them as,

1 i i
¥ = = (o) + (e +yoa (e ),
Vo) = —= (W + 9@ +yt(e), @

125 in 2 4 1 dimensions. (In 3 + 1 dimensions, we might expand ¥ and ¥* by spherical harmonics.) We
126 can rewrite the terms in the above Lagrangian as,

. 0 .0 «; 0 .9
/dG‘P*(x,G)zﬁ‘{’(x,G) = Yoiz g0+ Pris g1+ ¢laiz 5P, ®)
1 17, . i}
/dG%T ViY = m {%vl‘z% +iVig + 95 Vig |, 4)
/del‘{f*az‘}f = _—1[ T+t ] (5)
21 ° 0962 DY i1+ Y9
127 We also write the dipole-photon interaction term with electric fields F% = —E; by,
/ dO2ed Y u'YE; = ed, / 40 |(Ex — i) ¥ e + (Eq +iE>) ¥ e ¥ |

= ed, [(Ey —iE2)(Yg—1 + ¥1¢po) + (E1 +iEx) (Y51 + ¥ 190)],  (6)

126 with the direction of dipoles u’ = (cos6,sin ).

120 Next, we show 2-Particle-Irreducible (2PI) effective action [47—-49] for electric dipole fields and
130 photon fields. Starting with the above Lagrangian density, we write the generating functional with the
11 gauge fixing condition for quantum fluctuation,

gauge fixing :a° =0, @)
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122 and perform the Legendre transformations. Then we arrive at,
Lopi[A, ', §] /ddH [ FW[A‘F”]FW[AJFC’]JF”POa 1/’0"‘ Z ”/’aa Pa

+f <¢0V2¢o+ > %V2¢a> 5 L Pat

a=-—1,1 a=-—1,1

tede ) [(Ex+inE)(P5a + 1:[7*«71[70)]]
a=-1,1

+TrIn A" +iTrAy'A+ STrln D! + STeD5 D + %’D], ®)

133 where the C represents the Keldysh contour [50,51] shown in Fig. 1, the spatial dimension d = 2, the

13s  bar represents the expectation value (-) with the density matrix. The 3 x 3 matrix iA; L(x,y) is defined

135 as,

52f£

inxy) = ——E
0 HOIOIE
v2 .
i0p + 5k — ede(El + zEz) 0
= ede(Ey — lEZ) axo + 2m ede(Ey +1Ep) JLCiJrl (x—y), )
0 edo(Eq — iEp) ZW"'ﬂ_%
1 for —1,0and 1, and the D, ilj(x' ) is written by,
L
D> l(x,y) = —xX—
! 0,1](x y) §a’(x)5a](y)
= —60re H(x —y), (10)

137 where i and j run over spatial components 1, - -,d = 2in 2 + 1 dimensions. The 3 x 3 matrix A(x,y) is,

Ai1(xy) A(xvy) A_n(xy)
Alxy) = Mo-1(xy)  Doo(xy)  Do(xy) |, (11)
AMa(xy)  Dolvy)  Au(xy)

s where A_jg(x,y) = (Tedp_1(x)dy;(y)) with time-ordered product T¢ in the closed-time-path contour.
10 The Green's function of dipole fields A_1o(x, y) is also written by 2 x 2 matrix A", (x,y) witha, b = 1,2
1o  in the contour. The Green’s function for photon fields D;;(x, y) represents,

Dij(x,y) = (Teai(x)a;(y))- (12)

L

Y
J

0 1

to

Figure 1. Closed-time-path contour C. The label 1 represents the path from ¢ to oo, and the label 2
represents the path from oo to #y.
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Finally we write time evolution equations for coherent fields and quantum fluctuations. The 2PI

effective action satisfies the following equations,

0Iopr
oA

0T2pr
oD

0Iopr
oat

0L2pr
1,01 la

-0,
-0
= 0/
-0
0Iopr
- . 0,
0A!
-0 =0
= 0,

=0

(13)

(14)

(15)

(16)

due to the Legendre transformation of the generating functional. The Eq. (13) is written by,

iAy! —iATt —iE =0,

(17)

with iX = — % %. The matrix of self-energy X can be written by diagonal elements,

X = diag(z—l—l/ Z‘00/ Z‘11)/

(18)

since we can neglect the off-diagonal elements which are higher order of the coupling expansion. The
Eq. (17) represents the Kadanoff-Baym equations for electric dipole fields in the two-energy-level
approximation in 2 4 1 dimensions. Similarly, the Kadanoff-Baym equation for photon fields in Eq. (14)

is written by,

with [T = —%. The Eq. (1

with,

Rk = —edes

iDy! —iD™! —ill =0,

5) is given by,

aVFI/Z' = ]ir

]

a=-—1,1

a=-—1,1

(19)

(20)

=5 L (8ol x) + beo(x) + FoF (D) + B0 (), @D

o L (= in(Bou(xx) = Aol ) + oPi(x) - Bu(0F (). @)

The Eq. (20) represents the Klein—-Gordon equations for spatial dimensions i = 1, and 2. The Eq. (16) is

written by,

(ia

V2\ -
@ + 2};) 7,[«70 + Z Edg(E1 -+ lﬁcEz)l’ba

(

o V¢ 1

o ]

90 " 2m 21

a=-1,1

) lp,x + ede(El — ilXE;)_)ll_)o

0, (23)

0, (24)


https://doi.org/10.20944/preprints201910.0175.v1
https://doi.org/10.3390/e21111066

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 October 2019 d0i:10.20944/preprints201910.0175.v1

7 of 24

1s¢ and their complex conjugates. They are Schrodinger-like equations for coherent dipole fields. The
15 Eqgs. (23), (24) and their complex conjugates give the following the probability conservation,

0 [ - o 1 v - - - - - o
axo(%‘ww Y ¢;wa>+zmvi (wsviwowoviwm )3 <wzviwa%vi¢:>> =0. (25)

a=-1,1 a=-1,1

15 We shall define Jy(x) as,

hix) = —edesy L (B0l + a0 + (i () + (5 (9)
ety (= (Do) — Bao ) + ol 0) ~ B D)) (9)

157 Then since we can use dyJp — V;J; = 0withi =1,2,

doJo = ViJi = —9'9"F,; = 9"3"Fyy — 9'9"F,; = 3°0" Fyg,
or, BVPV() = ]0, (27)

1se  Where the time dependent term in the time integral might be interpreted as an initial charge, but
150 it is set to be zero. This equation represents the Poisson equation for scalar potential A? given
10 by V2AY = V .~ with the vector of dipole moments —~ on the right-hand-side in Eq. (26). (Since
11 the Fourier transformed A%(q) is written by A°(q) o (g'fi;)/q? with y; = {;6(r), the electric field

w2 E; = —V;A%r) is proportional to eiq'rm. If we can also apply the analysis in this section to the
j j prop q p pply y

163 case in 3 + 1 dimensions, we find E; o ajai%. Then we obtain dipole-dipole interaction potential
10 —fiEj ~ [% — W} in 3 4+ 1 dimensions.)

s 3. Kinetic entropy current in the Kadanoff-Baym equations and the H-theorem

166 In this section, we derive a kinetic entropy current from the Kadanoff-Baym equations with
16z 1st order approximation of the gradient expansion and show the H-theorem for the Leading-Order
16 approximations in the coupling expansion based on [56-58]. The analysis in this section is similar
10 to that in open systems (the central region connected to the left and the right region) [71]. Since
o (—1,1) and (1, —1) components in iA; L(x,y) in Eq. (9) is zero, the same procedures to rewrite the
i1 Kadanoff-Baym equations as those in open systems [67-71] can be adopted. We set tj — —co.

172 First, we shall write the Kadanoff-Baym equations in Eq. (17) for each components. By multiplying
173 the matrix A from the right in Eq. (17) and taking the (0,0) component, we can write it as,

i (A(;go - 200) Ago + 21 1ede(E1 +inEy) Ao = idc(x — y), (28)
a=-1,

2
17« where the (0,0) component of the matrix A; ' represents ihy, oY) = (i;co + Z;,) dc(x —y). By

i7s  taking («,0) component, we can write it as,

i(Ag L — ) Ao + ede(Ey — iaE)Agy = 0. (29)

0,00

176 It is convenient to introduce the Green’s functions AgM as,

iNgy =iATl i, (30)

g.an 0,00
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Then by using Egs. (29) and (30), we can write Ay as,

Mol ) = =5 [ diogan ) (B (1) = inEa(a0)) Boofiw, ). @

The Eq. (31) means the propagation from y to x with zero angular momentum, change of angular
momentum at w, and the propagation from w to x with angular momentum « = £1. By using Eq. (31),
we can rewrite Eq. (28) as,

z’/cdw(AO’,éo(x,W) — Zoo(x, w))Ago (w, )

+i ) (ede)z/cdw(El(x) +inEp (%)) Agaa(x, w)(Er(w) — inEx(w))Ago(w,y) = ide(x —y).  (32)
a=-1,1

The second term on the left-hand-side in Eq. (32) represents the propagation from y to w with zero
angular momentum, the change of the angular momentum to « = +1 at w due to the coherent electric
fields, the propagation from w to x, and the change of the angular momentum from a« = £1 to zero
due to the coherent electric fields. In the similar way to ¢* theory in open systems [71], we can derive,

i/cdeoo(x, w)(Aaléo(w,y) — Zoo(w,y))

+i —21 1(wle)Z/deAoo(x, w) (Eq(w) + iaEy(w)) Ag.aa(w, y) (E1(y) — inEr(y)) = ide(x —y), (33)

where we have used,
MNow(x,y) = *%/deAoo(x/ w)(ede)(E1(w) + inEx(w))Ag,an(w, ). (34)
The («, &) components of the Kadanoff-Baym equations are written by,
i/cdw (Aa;a(x,w) — (X, w)) Aua(w,y)
+i(ed,)? /c dw(E1(x) — iaEz(x))Ago(x, w)(E1(w) + inEx(w))Agan(w,y) = ide(x —y), (35)
and,
i/cdew(x, w) (Aoiulm(w,y) — Zw(w,y))
+i(ed,)? /C dwAguu(x,w)(E1(w) — iaEp(w))Aoo(w, x) (E1(x) +ixEz(x)) = ide(x —y), (36)
where we have used Egs. (31) and (34).
Next, we shall perform the Fourier transformation ([ d(x —y)e’?" (*=¥)) with the relative coordinate

x —y of the (0,0) and («, ) components of the Kadanoff-Baym equations. We use the 2 x 2 matrix
notation in the closed time path with a,b,c,d = 1,2. The Egs. (32) and (33) are transformed as,

i (Aojgo(p) —Zoo(X, p)oz + Y Una(X, p)az> o A$(X, p) = io®, (37)

cb
iA% (X, p) o (A&go(p) —0.Z00(X, p) + 02 Y Una(X, p)) — io (38)
«

d0i:10.20944/preprints201910.0175.v1
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(photon), k
B, —iaE, Ey +iaks
. (00),
(a
(00)7]) (O[Oz),pf k
(a) (b)
Figure 2. Diagrams of (a) Uy (X, p) and (b) self-energy X0 (X, p).-
where X = ; , 0, = diag(1,-1),
1 o P
iBogo(p) =p" — o’ (39)
and the Uy, (X, p) is the Fourier transformation,
Una(X,p) = (ede)? /d(x — y)e Y (Ey (%) + iaEa (%)) Agaa (%, y) (E1 (y) — inEa(y))
82
= (ede)®E(X)*Agua(X, p +d]) + <8X2> , (40)
with the definition of { and |E|,
Ei1(x) + inEp(x) = |E(x)[e), 41)
and,
(Una(X, p)oz)" = Ui (X, p)ode, (42)
The o is expanded by the derivative of X [59-64] as,
82
HUX, p)ol(X,p) = HOO I + 5 (1) + (55 ). )

with the definition of the Poisson bracket,
{H, I}——————. (44)

We find that the Uy, represents the change of momenta of dipoles as shown in Fig. 2 (a).
In a similar way to [71], in the Oth and the 1st order in the gradient expansion in Egs. (37) and
(38), we can derive the following retarded Green'’s function,
-1

Awr(X,p) = (45)
R _ZOOR + Y =11 Ume

with the retarded parts (the subscript ‘R") Agor = i(AL — AR), Zoor = i(Z) — Z§2) and Uyer =
i(Ull — ul2). By taking the imaginary part of the retarded Green’s function Agr (X, p), we can
derive the spectral function pg = i(AZ — A%) = 2ilmAgor (X, p) which represents the information of
dispersion relations. Similarly, the (&, #) components of the Kadanoff-Baym equations are written as,

(AO ;a(lﬂ) - Zatx(X/ p)Uz) o Aavc(X/ P) + inm(X/ P)Uz o Ag,tm(X/ P) =0y, (46)

d0i:10.20944/preprints201910.0175.v1
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and,
iBaa (X, p) © (B30 (p) = 0:Zaa(X, p) ) + iBgaa(X, p) 0 0= Vaa(X, p) = i, 47)
where,
2
e 14 1
ZAO,ulm(P) =p’ - m 2T’ (48)
and,
Vaia(X,p) = (ede)? / d(x — y)e? Y (B (x) — iEa(x))Boo(x, y) (Ex (y) + iaEa(y))
aZ
= (ed,)?E(X)*Ago(X, p — adl) + (8X2> . (49)
We can also write for Ag,l,’w (X, p) as,
ac
(800 (p) ~Zua (X, p)oz ) 0 A (X,p) = i, (50)
ac : -1 cb - _ab
A% (X, p)oi (AOM(p) — 0 (X, p)) = o™, (1)
In the Oth and the 1st order in the gradient expansion in Egs. (46) and (47), we can derive,
Aoux,R = Ag,rxtx,R + Ag,tm,R Varx,RAg,rm,R (52)

with Ay g = i(ALL — Al2) and Vy, r = i(VL — V[2). Here we have used the solution in the Oth and
the 1st order in the gradient expansion in Egs. (50) and (51) given by,

Ag,oax,R = > p (53)

with Ly, = i(Zi) — Z12). The derivation is the same as [71]. The imaginary part of the
retarded Green’s function A, r(X,p) multiplied by 2i represents the spectral function ppe =
i(A2) — AL2) = 2iImA,, g (X, p) which represents the information of dispersion relations. In addition,
the Kadanoff-Baym equations for photons (19) are written by,

i(D‘l(k)—H"(X k)a)”CoDd’(X k) = idgot (54)
0,ij 17\ 4> z jl ’ - ilVz »
DX K)o (D-L(K) — oI T, (K" = 6ot 55
1 1]( ,)O (],]'l() 0z ]l( /) 104107, ( )
with,
iDy i (k) = k6. (56)

Next we shall derive the self-energy in the Leading-Order (LO) of the coupling expansion in
Eq. (6). The (a,b) = (1,2) and (2,1) component of i% are given by,

r
20 —%(ede)z/dudw )

5 <Aﬂ(w,u)A(1J%(u, w) (1, —ai);090, (D}lz(u, w) + D%jl(w,u)> (1, i)}
a=-1,1

+A2 (w, u) NG (u,w) (1, —ai)jagag, (D]le(u,w) + Dlljz(w,u)) (1, oci)f), (57)

d0i:10.20944/preprints201910.0175.v1
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220 with f represents the transposition. It is convenient to rewrite,
kik; kik;
D?jb(k) - <5ij 17 > D% (k) + 1’(27 D% (k), (58)
ab ki k ab klkf ab
7 (k) = (96— k2 17 (k) + 5z 1 (k) (59)
22 where T and L represent the transverse and the longitudinal part, respectively. The LO self-energy
. or .
222 lI—,[]21 (y, X) Dlzz(];coy) 1S,
M3 (y,x) = —ied)? ¥ <a°a° (A3 )8 (0, )) (1, ~ai)y (1, 1)
a=-1,1
+8030 (Aoo(y, )Aiﬁ(x,y)) (1, —ai);(1, txi)f). (60)
223 By Fourier-transforming with the relative coordinate x — y and multiplying J;; — % or kll(];/ , We arrive
224 af,
IR = (e () [ X (8R00k+ A p) + AR k+ p)AR(Xp)
a=-1, 1
92
— 1
- (ax2> ‘ (61)
(X k) = TIF(X,k), (62)

i1,
225 with f / Zﬂ 7. The second equation is due to the spatial dimension d = 2. Similarly, we arrive at,

IROR) = (e () [ X (SR0ck+ AR p) + AR k+ p)AR(X,p)
a=-1, 1
9?2
* (ax2> ' )
OE(X k) = T (X, k). (64)
220 The Fourier transformation of the LO self-energy i%{3(x,y) = —%(szzrfigfx) is,
00\~
12 2 0)2 A12 12 12 a
ERXp) = —(ed)? [ ¥ () a2(Xp—K [PRER+DEXO] + (555 ). ©9)
a=-—1,1
227 Similarly,
92
221(X, p) = —(ed,) / Z () " AZL(X, p— k) [DR(x, k) + DF (X, )] + (axZ) . (66)
-11

228 This self-energy is shown in Fig. 2 (b). Similarly we can derive,

TR(p) = —(ed)? [ (k) aB(X,p - k) [DROCH + DRXK)] + (;’;) : ©7)
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229 and,
21 2 0)? A2t 21 21 o
E2(X,p) = —(ede)? [ (k)" 83X, p =) [DF (X0 + DF (0] + (557 ) (68)
230 Finally we derive a kinetic entropy current in the 1st order approximation in the gradient

21 expansion and show the H-theorem in the LO approximation in the coupling expansion. By taking a
22 difference of Eq. (32) and Eq. (33), we arrive at,

2
, P
l{po_ Zm'Agg} =

233 We use the Kadanoff-Baym Ansatz A(l)% = £o 2 foo, A%(l) = £o 2 (foo+1), 2(1)(2) = OOP Z%(l) = OOP (v00 +
se 1), U2 = 200, 0 and U2 = ump(’ru an + 1) Wlth poo = (A% — A(l)%) = 2ilmAgo,r, Zoop =
2 i(E3) — Th3) = 2iImEg0 g, and Ugae = i(Uz} — UL2) = 2iImUy, g where we just rewrite the (1,2) and
2ss  the (2,1) components with the spectral parts poo, 200,0, and Uya,p, and distribution functions foo, oo,
23z and 74, The distribution functions foo, y00, and 17 4x approach the Bose-Einstein distributions
23e  near equilibrium states. In the 1st order approximation in the gradient expansion in Eq. (69) for
a0 (a,b) = (1,2) and (2,1), we can derive,

ab ab

(69)

(Zoo -y Uatx) 0z 0 Ago
14

—i|Ago ooy <Zoo - ZUMX>
14

] d
f00—700+0<ax>, and foo—vuMJrO(aX) (70)

20 (Rewrite (a,b) = (1,2) and (2,1) components in Eq. (69), then we can show the collision terms
2n AZIELZ — AIBYZL o f0 — y00 = O (%) and foo — Yuux = O ( ) .) By use of Eq. (70), we arrive at,

a H _ (ZZI(X Alz X 212 X A21 X 1 Aé%(x p)
#Smatter,00 — ) 00 (X, P)AGo (X, p) — Zo(X, p)Ajo( /P)) nA%})(X 0)
Alz(X, )
+E [ (U200 AR p) — URCC AR p) ) I SRS, o)
00( P)
222 with the definition of entropy current smatter oo for (0,0) component,
o _ / o + st'p! ~ ORe(Zoo,R — X Uaar) | P00
matter,00 — . m apy i
OReAg r 2000 — Lo U
+ £e9 R 'Z“ = | ol fool, (72)
Pu l
olfoo]l = (1+ foo) In(1+ foo) — foo In foo- (73)

2aa We can derive the Boltzmann entropy fp [(1+n)In(1+ n) — nlnn| with the number density n(X, p)
2as  in the quasi-particle limit ImU,, g = ImX¥pp g — 0 in the same way as in [58]. Similarly, we can derive
2ss  a kinetic entropy current for (aa) components. From Egs. (46) and (47), we can derive

2 1

. b
—i [Vaa0z 0 Agan — Dgaa © 0z Vau] ™ . (74)

s We use the Kadanoff-Baym Ansatz A}y = 52 fun, AZy = 55 (fun +1), Ay = S e 'yg,m, Ao =
Agan Zma P Vazx tm
247 7&1' = ('Yg,mx + 1), Z,}(i = p')’txm Zﬂc = i,p ('me + 1), V/xlo% = p'YV ans and V,f,% = p (’)’V s T 1)
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with pae = i(AZL — A12) = 2iImAga R, Taap = (T2 — X03) = 2imEyq r, and Vi, = i(VE = VI2) =
2ilmV,, r. In Eq. (74), we can show,

foux ~ Yawr Vgua ™~ VYV,anr (75)

for distribution functions fua, Yaa, and yy 4, by writing the (a,b) = (1,2) and (2, 1) components in the
Kadanoff-Baym equations (74). We can also show,

Yaa ™~ Vguors (76)
from Egs. (50) and (51). By using the above two equations, we arrive at,
Az (X, p)
Ashatnan =~ [ (TP P) ~ ZROCPNGLC ) In T S
A12 (X )
21 12 12 21 P
+ [ (VA PG00 )~ VR paZ (X)) InGst b )
with the definitions of entropy current sﬁwtter/a“ for (xa) components,
o _ / P ol'p! _ OReZyuR | OPua L OReA R Zau,p
matter,xe p 0 m apy i apy i
oReV, 4 r Ag an,p aReAg an,R Vaa 0
R — - . 7
+ apy ; apy ; U[fmx] (78)

In this derivation, we have used the same way as that in open systems in [71]. We can also derive the
following equations for the Kadanoff-Baym equations for photons with the Kadanoff-Baym Ansatz
D7 = EL(1+ fr), D = &L fr, D3 = EL(1+ £;) and D}? = £t f; with distribution functions fr and
fr and spectral functions pr and p;,

1 DY (X, k)
p _ 21 12 12 21 T\
shhoon =~ . |7 (X, DP(X,K) ~TIP(X, k)DF (X, )| In DX 1)
1 21 12 1712 21 D*(X, k)
5 [HL (X,k)DI2(X, k) — I12(X, k) D? (X,k)] In D) (79)
with the entropy current for photons,
1 0Rell Dt 10ReDr g IIT
1 _ L T,R e 1 T,R 11T
roon = | l (k 2 ok, ) i T2 ok, ] olfrl
1 aReHLR DLp 18ReDLR HLp
H_ Z , / - , "
+ <k 2 ok, ) L (80)

d0i:10.20944/preprints201910.0175.v1
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20 As aresult, the total entropy current s = anatter 00+ La sh matterxa T sh satisfies,

photon

D5t = (ede)z/p (kO)ZZ[A21(p KA (p)DF (k) — AR (p — K)AZ (p) DE (k)|

k o«

AZL p—

(
A12(
@ ], ()
L(p — b)AG(
2(p — k) AZ(
+Hed (B0 L [ (83ha(p +a90)M5(p) — Affalp -+ a00)05))

o
A (p +a00) A
ARulp+ 3083 (p

X In
X In

)
)
[Aiw—km(%%(pm%l(m A2 (p — k)3 (p) DI (k)]
AZl )
A12 )

; >0, (81)

200 where we have used the inequality (x — y) In ; > 0 for real variables x and y with x > 0and y > 0. The
2] A21 .
201 equality is satisfied in foo = fax = fr = fL = % Here we have used 288 ~ ~5% with Ygun ~ faa
el /T Ay At !
262 in 1st order in the gradient expansion. We have shown the H-theorem in the LO approximation in
203 the coupling expansion and in the 1st order approximation in the gradient expansion. There is no

2es violation in the 2nd law in thermodynamics in the dynamics.

2es 4. Time evolution equations in spatially homogeneous systems and conserved energy

266 In this section, we write time evolution equations in spatially homogeneous systems and show a
267 concrete form of the conserved energy density.

268 It is convenient to introduce the statistical functions Fyy = M Fpu = % Fr = w,
200 Fp = w, which represent the information of how many particles are occupied in (p°, p) (particle
20 distributions), and statistical parts, Uy, r = M, an,F = M D¢ nap = w Yoor =
271 M ZanF = Zﬂ‘+z“‘* e = a5 ;HlTZ and Il r = w The variables of these functions are
a2 (X0, p°, p) with the center-of-mass coordinate X" = Oer and p given by the Fourier transformation

27z with the relative coordinate x — y in variables (x,y) in Green’s functions and self-energy in Sec. 2.
2za  The statistical functions and parts are real at any time when we start with real statistical functions at
2rs  initial time. The spectral functions are given by taking the difference of (2,1) and (1,2) components
e multiplied by i, namely pgy = (A3} — Al3). They represent the information of which states can be
2z occupied by particles in (p°, p) (dispersion relations). The spectral parts in self-energy are given by
ars  taking the difference of (2,1) and (1,2) components multiplied by i (and written by the subscript p),
2o namely Aguap = i(AFhe — Mga)s oo = i(Zf5 — 2g5), and so on. The spectral functions and parts
20 are pure imaginary at any time when we start with pure imaginary spectral functions at initial time.
21 We can use the real statistical parts labeled by the subscripts F and the pure imaginary spectral parts
22 labeled by the subscript p in self-energy in the time evolution. We use the subscript ‘R’, “F” and ‘p’ to
2e3  represent the retarded, statistical and spectral parts in self-energy, respectively.

284 The Kadanoff-Baym equation for the statistical and spectral functions are given by,

2
{P - L —ReXgor + ). Relyyr, Foo} + {ReAOO,R/ZOO,F -) u:m,F}
a=-—1,1 o

1 1
= = (FooZo0,0 — PooZoo,r) — = 3, (FooUaa — P00 Una ) , (82)
1 1

o
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285

2
{PO - % —ReZoor + ), Relyr, Poo} {ReAOO,Rz S00,0 — Y umx,p} =0, (83)
a=—1,1 o

21
{PO _r - Reztm,Rr me} + {ReAzxa,Rr Ztm,F} + {ReVoax,R/ Ag,oux,F} - {ReAg,tm,Rr VM(,F}

1 1
(thuczawcp Pawcz'aa,F) - ? (Ag,aa,F Voczx,p - Ag,txoc,me,F) ’ (84)

287

2
1
{PO -F ReX R, me} + {ReAmx,Rr ertx,p}

=+ {Resza,R/ Ag,:m,p} - {ReAg,aux,R/ leuc,p} =0, (85)

2 1
{PO - Lm — 57 ReZoax,R/ Ag,txa,F} + {ReAg,mx,R/ Zm,l—“}

2 21
1
= ? (Ag,txa,Fsz,p - Ag,m,pzom,l-“) ’ (86)
o p* 1
(3 B d R A )+ (R Faeg)} =0 @
289
1
{Pz — Rellg 1, FT} +{ReDr,r, IIr 7} = = (FrIl,r — prIIET), (88)
{Pz - ReHR,T/PT} + {ReDg 1, 1I,7} = 0, (89)

200 and longitudinal parts given by changing the label T to L in the above two equations (88) and (89).
201 We can write,

Una,r(X, p) = (ede)zE(X)zAg,m,F(P +ad?), Uup(X,p) = (ede)zE(X)zAg,w,p(P +adZ),  (90)
Vi, (X, p) = (ede)*E(X)*Foo(p — ad7), Vaap(X, p) = (ede)*E(X)*po0(p — 207). 1)
202 In case we start with initial condition E»(X? = 0) = 0, 9gE»(X? = 0) = 0 and symmetric Green’s

203 functions for « — —a in spatially homogeneous systems, we can use 9 = 0 in the above equations at
20 any times. We can write the self-energy as,

Sue(p) = —(ed? [ (¥) [FM O ) + (k) + 5 P lE=H T PLE o)
Zop(p) = (et E [ () Fslp ~Rlor0 +p16) + pup ~ KIERR) + (k)] 09
Zanelp) = (el [ (k)] | Rolp ~ 0(Fr(l) + ) + 2R IO L] oy

2
Zap(p) = —(ede)?® [ (K) [Foolp = B)(or (k) +pL (k) +poo(p = K) (Fr(K) + FL (kD] (95)
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Mre) =Terk) = (e ()" L [ [F,m(k +p)F(p) - 3 PP e lp)
—I—Foo(k + P)FM(P) _ EPOO(kI“" p) mei(p) ‘| , (96)
2
() =Tl = —(edef ()" ¥ / [m(k + P)Foolp) — Fas(k + p)poo(p)
+p00(k + p)Faa(p) — Foo(k + p)paa(p) |, 97)

20 Where we have omitted the label of the center-of-mass cordinate X in Green’s functions and self-energy.
20s  We find that the Iy p(k) = Il p(k) are symmetric (ITy p(—k) = Ilp p(k)) under k — —k, and that
200 I, = Il , are anti-symmetric (HT,p(—k) = —HT,p(k)) under k — —k, for any Green’s functions for
a0 dipole fields. When we prepare initial conditions with symmetric Frj and anti-symmetric pr 1 for
;o1 photons, we can derive symmetric Fr ; and anti-symmetric p7 1 at any times. In addition, since II(k)’s
s02 are proportional to (k°)?, there is no mass gap for incoherent photons for the Leading-Order self-energy
03 in the coupling expansion. The velocity of gapless modes of incoherent photons will decrease when
s0s  We increase the density of dipoles in this theory.

305 Finally, we show the energy density Eit. In the spatially homogeneous system in the 2 + 1

. . . 9wt . . .
s20s  dimensions, we can derive 53¢ = 0 with the energy density given by,

1 - 1
Eot = 2 2 ¢Z¢a+§(aoAi)2+/P0 <F00+ Y Fuux) 2/ FT+FL)

a=-—1,1

+2(ed,) 2E2 Y / Foo(p)ReAg aq,r (p + a07) + ReAgo r (p) Ag,aa,r(p + 2dT))
a=-1,1

/ (ReXoo,r Foo + ReAgo rZo0,F) — Y / (ReXyy,RFaa + ReAyy RE 00 F)
p

a=-1,1

2 (ReHR TFT+R6DR THFT +RQHR LFr —|—ReDR LHF L) (98)

sz where we have used the KB equations in this section, the Klein-Gordon equations (20) and the
s Schodinger-like equations (23) (24) in Sec. 2. The 1st term represents the contribution of nonzero
s00 angular momenta for coherent dipole fields. The 2nd term represents the contribution by electric fields
a0 E; = dpA;. The 3rd and the 4th terms represent the contribution by quantum fluctuations for dipoles
su and photons, respectively. When the temperature is nonzero T # 0 at equilibrium states and the
a1z spectral width in the spectral functions is small enough, statistical functions which are proportional

a3 to the Bose-Einstein distributions glve temperature-dependent terms mT? for dipole fields

1
/T _q
se and o« T2 for photon fields in 2 + 1 d1mens1ons. The 5th term represents the potential energy in
a5 processes in Fig. 2 (a). The 6th, 7th and 8th terms represent the potential energy in processes in Fig. 2
s16  (b). The coefficients in the 6th and 7th terms are not % but 1. Although the factor 1 might look like
a1z a contradiction with the preceding research in [73,74] which suggest that the factor % appears in the
sis  interaction with 3-point-vertex, the factor 1 appears due to time derivative (3")? in self-energy for

a0 dipole fields and photon fields.

320 5. Dynamics of coherent fields

321 In this section, we show that our Lagrangian describes the super-radiance phenomena in time
sz evolution equations of coherent fields. We shall assume that all the coherent fields are independent of
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s2s x! (dependent on x° and x?). We also assume the symmetry for « = —1 and « = 1, namely l/_)g*) = 1/_)(;),
s2a Ag1 = Ag_1,and Ayg = A_1. We set initial conditions E, = 0 and 9pE, = 0 at 20 = 0.
325 We define Z = 2|¢1]? — |fo|?. It is possible to derive the following equations from time evolution

226 equations (20), (23) and (24) with their complex conjugates for background coherent fields in Sec. 2.

dZ = idedeEr (Y10 — Pot1), (99)
do (Y1) = %l/_’fllio—l-iedelflz (100)
(@02 = (22)%| B = —2ede(@0)2 [0 + B + Ao (x, %) + Do x, )] (101)

27 We have used moderately varying spatial dependence |V2(_1 1 /m| < [do_1,0,1
a2 Of the super-radiance and the Higgs mechanism in the above three equations.

. We derive aspects

s20 5.1, Super-radiance

330 In this section, we show the super-radiance in time evolution equations for coherent fields with
s the rotating wave approximations neglecting non-resonant terms and quantum fluctuations. We have
sz used the derivations in [75,76] for background coherent fields.

333 We shall consider only k* = 4 in this section, and we expand the electric field E; and the

s transition rate o] as,

E; (XO, x2) _ %e(xol x2)e—i(k0x0—k0x2) + %6* (xol x2)ei(k0x0—k0x2), (102)
Py = %R(xo, x2)e IR0 (103)

s3s We consider the following case,

0e] < [K%|, |9oR| < |K°R],
102e] < |- (104)

s3s  Neglect non-resonant terms like 2% and quantum fluctuations (Green’s functions Ap; and A1) (the
ss7  rotating wave approximation). Then from Egs. (99), (100), and (101), we arrive at the Maxwell-Bloch

;38 equations,

de oe

- 0
ﬁ ﬁ = ledek R, (105)
0Z .
50 = ied,(eR* — €*R), (106)
a&% = —ied.e”Z. (107)
330 We assume that €, Z and R are independent of the spatial coordinate of the x? direction. We shall
0 change € — ie in the above equations, and assume real functions R = R* and € = €*. Then we can
3a1  Write,
de
50 = Cdek'R, (108)
0Z
TXO = _ZedgeR, (109)
R
R~ ez, (110)

9x0
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sz We find the conservation law with the definition B2 = 2R? + 72,
) 9 2, 72
B =55 2R+ 22) =0, 111
b = 5 (K4 o
s The relation 28 = 0 represents the probability conservation since we can rewrite B2 =

9x9
s (2012 + |lﬁo|2)2 by Eq. (103) and Z = 2|¢1|? — |¢Po|*>. We also find the following conservation law,

aixo BeZ + ;koz] =0, (112)

sas  which represents the energy conservation. By this relation, we might be able to estimate the maximum
:a6  energy density of electric fields,

Ty~ Loy Lo
<2e )max = 2k Zmin = 2k B, (113)
sz in case there is no external energy supply. We derive the following solutions in Egs. (108), (109) and
as (110),
1
R(x%) = —=Bsinf(x"), Z(x?) = Bcosf(x"), 114
(x%) 7 (x7), Z(x7) (*") (114)
x0
0(x%) =6y + \fZede/ dx"e(x"°), (115)
0

a0 With % = V/2ed,€ and the constant B in a similar way to [76]. The 6(x”) swings around the position

0 0 = 71 with the frequency Q) = ed,VkYB in case we start with initial conditions at around 6y ~ 7
s (|1]? = 0), since we can rewrite Eq. (108) as

026(x0)

S0 (ed,)*k°Bsin6(x°). (116)

ss2  The B is the order of the number density of dipoles.
353 We introduce the damping term %e for the release of radiation and the propagation length L in
s Eq. (108). We can write,

de 1 ed, kY

W I

5. Nk = % > time derivative, we can neglect the first term in the above equations, then

Bsin6(x°). (117)

30 (ed,)2kB

P sin6(x?). (118)
ss6 The solution is,
21010
0(x°) =2tan"! [exp <W) tan 920] , (119)

57 and ,

1 XV — 1 )]
€= ——X h 120
\/EedeTR |:COS ( TR ( )
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s with Tg = m, and 1p = —1g In(tan 970) The 1 « 1/B ~ 1/N with the number of dipoles N
0 represents the relaxation time of electric fields in the super-radiance. When N dipoles decay within time
seo scales 1/N, the intensity of electric fields becomes the order N? (super-radiant decay with correlation

s among dipoles), not N (spontaneous decay without correlation among dipoles).

se2 5.2, Higgs mechanism and tachyonic instability

363 In this section, we rewrite time evolution equations for coherent fields with only real functions.
ses  We assume the spatially homogeneous case. We do not adopt the rotating wave approximation in this
ses  section. We show how coherent electric fields E; are affected by Z = 2|¢1|? — |¢fo|%.

366 In Eq. (101), the second derivatives of coherent fields on the right-hand-side is written by,

de Tk T kT 2 de ZZ
e G+ gop) + S 2,

sz where we have used Eq. (100). As a result, we arrive at,

[(30)2 —(92)* — MIE)ZZ} Ey = % + % /p(ZPll(X/p) — Foo(X,p) — Ag11,r(X, p))

ed,)?
—|—( IS) E1/p(REAg,u,R(X,P)Foo(X,P)+Ag,n,P(X,P)REAOO,R(X,P))

(edg)Zagl/ aFOO Ag,ll,p +@8Ag,1l,F n (ede)ZE i/ E)FOO Ag,ll,p +@8Ag’11,p (121)
212 9X0 J, \9p0 i i opd 412 1ox0 J,\op0 i i opd )’

s.es  with the x! direction of the dipole moment (density) given by 1 = 2ed, ($;P0 + $5¢1), Fin (X, p) =
21 12 21 12 A2l (X, p)+A2 (X,
An(XfP)JZFAu (Xp) , Foo(X,p) = Aog(XfP);Aoo(Xi’p) ,and Ag11p(X,p) = o p); an(X7) . We have

a0 assumed the self-energy ¥gp = X117 = 0 in deriving the time derivatives of Ajy and Ay in Eq. (101).
s Even if we include contributions of self-energy in Eq. (121), they are higher order O ((ed)*) in the
sz coupling expansion. We have neglected higher order terms in the gradient expansion for quantum
s7s fluctuations. In Eq. (121), we leave the —(9,)2E; term on the left-hand-side in the above equation

2
374 to compare with the sign of — Z(Edf) ZE, term. We find the Higgs mechanism with the mass squared

_ 2(ed.)?Z
I

in the case of the normal population Z = 2|$;|? — |§p|> < 0. On the other hand, the tachyonic
s7e  instability appears in the inverted population Z > 0 in the above equation. Then the electric field E; will
sz increase exponentially until Z becomes negative. In Eq. (121), the second term on the right-hand-side is
s7s  proportional to 2Fj1 — Foo — Ag 11,r- Near equilibrium states, we might find Foo > 2F11 — Ag 11,r, where
s7o  statistical functions Fy1, Fop and A 11 F are proportional to the Bose-Einstein distribution ﬁ plus %

0 (with the Kadanoff-Baym Ansatz) with different dispersion relations p? ~ % for Fyp and p° ~ % + %
sa1 for F1j and Ag 11, F, due to the energy difference % — 2% between the ground state and 1st excited states.
sz S0 the 2F)1 — Foo — Ag 11,F in the 2nd term is negative near the equilibrium states, which might mean no
;a3 tachyonic unstable terms appear from quantum fluctuations near equilibrium states. The contributions
sea  Of quantum fluctuations on the right-hand-side written by statistical functions (2nd, 3rd, 4th and 5th
;e terms) vanish at zero temperature T = 0. Quantum fluctuations represent finite temperature effects
;e at equilibrium states, although we need not restrict ourselves to only the equilibrium case. We have
se7  shown general contributions of quantum fluctuations in both equilibrium and non-equilibrium case in
ses  this paper.
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389 Finally we shall consider remaining equations for coherent dipole fields. By using Eqgs. (99),
0 (100), and the definitions of real functions y; = 2ed. (5o + P59p1), P = iede(Pipo — P;51P1), and
s1 Z = 2|P1|? — |$o|%, we can also derive,

QZ = A4EP, (122)
P

o = 7, (123)

QP = —%— (ede)*E1 Z. (124)

2 We can show 99 (2|¢1|> + [§y]?) = 0 by using these three equations. In these equations with initial
303 conditions E; > 0, Z > 0 (inverted population), P = 0, and y; = 0, the P and the y; decrease at
sea around the initial time and Z starts to decrease due to E;P < 0. In initial conditions E; > 0, Z < 0
s0s  (normal population), P = 0, and y#; = 0, the P and the y; increase at around the initial time and Z
306 starts to increase due to E1P > 0. The absolute values of Z decrease at around the initial time. We find
37 that there is no term of quantum fluctuations in Egs. (122), (123) and (124).

308 We can solve Egs. (121), (122), (123), (124) with real functions in this section, and the
300 Kadanoff-Baym equations with real statistical functions and pure imaginary spectral functions in
a0 Sec. 4, simultaneously.

s01 6. Discussion

a02 In this paper, we have derived time evolution equations, namely the Klein-Gordon equations
a3 for coherent photon fields, the Schrodinger-like equations for coherent electric dipole fields, and
s0s the Kadanoff-Baym equations for quantum fluctuations, starting with the Lagrangian in Quantum
s Electrodynamics with electric dipoles in 2 + 1 dimensions. We have adopted 2-Particle-Irreducible
as Effective Action technique with the Leading-Order self-energy of the coupling expansion. We find that
07 electric dipoles change their angular momenta due to coherent electric fields E; £ inE; with o = £1.
a8 They also change momenta and angular momenta by scattering with incoherent photons. The proof of
200 H-theorem is possible for these processes as shown in Sec. 3. Our analysis provides the dynamics of
a0 both the order parameters with coherent fields and quantum fluctuations for incoherent particles.

a11 In Sec. 2, we adopt two-energy level approximation for the angular momenta of dipoles. Then,
a2 we find that the iA; ! is written by 3 x 3 matrix with zero (—1,1) and (1, —1) components. The form of
a3 the matrix is similar to 3 x 3 matrix in the analysis in open systems, the central region, left and right
a4 reservoirs as in [68-71]. Hence we can simplify the Kadanoff-Baym equations for dipole fields in an
as  isolated system with the same procedures as those in open systems. The difference between QED with
s dipoles and ¢* theory in open systems is that the coherent electric field changes the momenta of dipoles
a1z when the phase «{ in E; £ inE; with « = £1 is dependent on space-time. The space dependence of
a1s  coherent electric fields might disappear in the time evolution due to the instability by the lower entropy
a0 of the system, then electric fields will change angular momenta of dipoles but not change momenta p
a0 due to 97 = 0. We can also trace the dynamics with 0 = 0. By setting the initial conditions with the
a1 symmetry « — —a, namely 1/_15‘*) = 1,[7(_*2, ANyo = A_yo, and Ao, = Ag_,, with initial conditions E, = 0
a2 and doE; = 0 in spatially homogeneous systems in 0" F,» = J, in Eq. (20), we can show E; = 0 at any
a2 times. Then we can use d¢ = 0. This condition simplifies numerical simulations in the Kadanoff-Baym
«2¢ equations since we need not estimate the momentum shift p — p & a9 in the finite-size lattice for the
«2s  momentum space. As a result, the simulations for Kadanoff-Baym equations for dipoles and photons
a2s  will be similar to those in QED with charged bosons in [66].

a2z In Sec. 3, we have introduced a kinetic entropy current and shown the H-theorem in the
a2s  Leading-Order of the coupling expansion with ed,. This entropy approaches the Boltzmann entropy in
420 the limit of zero spectral width as in [58]. The mode-coupling processes between dipoles and photons
a0 produce entropy. When there are deviations between (00) and (a«a) components of Green’s functions,
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a1 entropy production occurs. Entropy production stops when the Bose-Einstein distribution is realized
a2 in the dynamics of Kadanoff-Baym equations.

433 We can also derive the energy shifts in dispersion relations due to nonzero electric fields by using
a3a  the retarded Green’s functions in Sec. 3. The Oth order equations for retarded Green'’s functions are
a5 given by,

2
(p02p+2(ede)2E%Ag,11,R> AOO,R = -1,
m
0o P 1 2r2
~om 21 )2 E7Apo rA = -1
( 2m 21) 1L,k + (ede) "E1Ao0,RAg11,R ,

2
%. Multiply p° — £ — %, take the imaginary parts in the above equations, and

with A =
436 ¢,11,R 5

a7 remember the imagilnazllry parts of retarded Green’s functions are the spectral functions, then we find,
W [ £00 ] - 0,
P11
0_ P _ 1) (,0_F 22
(PP =5 —4) (P — B7) —2(ede)?E3 0
W = ) 2
—(ed, )2 E2 (- & - )

as By setting determinant |W| to be zero, we find the following solutions for dispersion relations,

2
P’ = 57;1 + % + ;\/4112 + 8(ed, )2E1?.

a3 Here we assumed the symmetry for &« = £1 for Green’s functions, and zero self-energy Xy = 217 = 0.
a0 We find how electric fields shift two energy levels 0 and % The above energy shift is similar to the
«a1  energy shift given in [27] in 3 4+ 1 dimensions due to nonzero electric fields.

aa2 In Sec. 5.1, we have derived the super-radiance from time evolution equations for coherent fields.
ss We find that it is possible to derive the Maxwell-Bloch equations from our Lagrangian with the
aaa  probability conservation law and the energy conservation law. Super-radiant decay with intensity of
s the order « N? (N: the number of dipoles) appears in a similar way to [75,76]. It is possible to derive
ass  the maximum energy of electric fields by use of Eq. (113). We know that the moment of inertia of water
a7 moleculeis I = 2myR? with my = 940MeV with R = 0.96 x 1079 m. Hence the k = 5, = 1.1 x 1073
s eV. Since B = % =3.3x10% /m3 for liquid water, we find

1 1
g2 = EkOB = 1.8 x 10 eV/m°.

2 max
a0 When we multiply the volume of all microtubules (MTs) in a brain,
Vmr = 7 x 15nm? x 1000nm x 2000 MTs/neuron x 10'! neurons/brain = 1.4 x 10~7 m?,

450  We can arrive at,

%efnaXVMT =0.41] = 0.1 cal.
1 If we maintain our brain 100 sec without energy supply, we need at least 0.1 X
w2 1072 cal/s or 86 cal/day to maintain the ordered states of memory. ~We can compare
a3 86 cal/day with 4000 cal/day = 2000 kcal/day x 0.2 (energy consumption rate of brain) x
ase 0.01(energy rate to maintain the ordered system). The 86 cal/day is within the 4000 cal/day, which
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ass  is consistent with our experiences. In this derivation, we have used coefficients in 2 + 1 dimensions
sse and the number density of water molecules in 3 + 1 dimensions.

as7 In Sec. 5.2, we have derived time evolution equations for electric field E;. The Higgs mechanism
ass  appears in this equation in normal population Z < 0. As a result, the dynamical mass generation
a0 occurs with the maximum mass Oygiggs = 2ed, k9B = 30k? where the number density of dipoles
wo is B = 2| + |p|> = Y. The period is 27t/ Opiggs = 1.3 X 10713 sec. In normal population
sr  Z < 0, the Meissner effect appears with the penetrating length 1/Qpjges = 6.3 pm. On the other
sz hand, the tachyonic instability occurs in inverted population Z > 0. The electric field E; increases
w3 exponentially with exp(QXO) (with QO < Qmax) where the time scale is 1/Qmax = 2.1 x 10714 sec with
asa Omax = Opiggs. Due to energy conservation, since Z decreases as the absolute value of the electric
ses field increases, tachyonic instability stops in Z < 0.

as6 We have prepared for numerical simulations with time evolution equations, namely the
a7 Schodinger-like equations for coherent electric dipole fields, the Klein-Gordon equations for coherent
s electric fields, and the Kadanoff-Baym equations for quantum fluctuations. Our simulations might
a0 describe the dynamics towards equilibrium states for quantum fluctuations and the dynamics of
a0 super-radiant states for coherent fields. Our analysis is also extended to simulations in open systems
ann by preparing the left and the right reservoirs like those in [71] or networks [72]

a2 7. Conclusion

a73 It is possible to derive equilibration for quantum fluctuations and super-radiance for background
a7a  coherent fields simultaneously in Quantum Electrodynamics with electric dipoles in 2 + 1 dimensions.
ars Total energy consumption to maintain super-radiance in microtubules is consistent with energy
a7ze  consumption in our experiences. This work will be extended to the 3 + 1 dimensional analysis to
a7z describe memory formation processes in numerical simulations. We should derive the Schodinger-like
a7 equations, the Klein-Gordon equations, and the Kadanoff-Baym equations by starting with the single
are  Lagrangian in QED with electric dipoles in 3 + 1 dimensions in the future study. These equations in
a0 3+ 1 dimensions will describe more realistic and practical dynamics in QBD.
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