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Abstract1

Interaction of an electromagnetic field with matter in a laser cavity without the assumption2

of a fixed direction of the transverse electric field, described by the two-level Maxwell-Bloch3

equations, is studied. By using a perturbative nonlinear analysis, performed near the laser4

threshold, we report on the derivation of the laser (3+1)D vectorial complex cubic-quintic com-5

plex Ginzburg-Landau equation. Furthermore, we study the modulational instability of the6

plane waves both theoretically using the linear stability analysis, and numerically, using direct7

simulations via the split-step Fourier method. The linear theory predicts instability for any8

amplitude of the primary waves. Our numerical simulations confirm the theoretical predictions9

of the linear theory as well as the threshold of the amplitude of perturbations. The system10

understudy shows a deep dependence on the laser cavity parameters, for which there appear11

wave patterns in accordance with the predictions from the gain spectrum.12
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1 Introduction17

New theoretical approaches, experimental analyses, and systematic use of computer science in18

data processing have been developed during the past 20 years in several types of lasers, which19

are very complex devices, having a rich temporal, spatial, and spatiotemporal dynamics [1].20

These different types of lasers can be classified into [2] Class A (for example, dye lasers) [3, 4],21

Class B (semiconductor lasers, CO2 lasers, and solid-sate lasers) [5, 6], and Class C (the only22

example is the far-infrared lasers) [7], depending on the decay rate of the photons, the carriers,23

and the material polarization. However, this classification is not applicable to inhomogeneously24

broadened lasers that included He-Ne, argon-ion, and Xe lasers, for example. Comparing these25

lasers, different dynamical features have been described, including instabilities, cascades of bi-26

furcations, multistability, and sudden chaotic transitions [1]. Many other fascinating features27

and properties concerned with chaotic dynamics have been extensively addressed in relevant28

semiconductor laser systems, because of their potential applications in chaotic optical commu-29

nications [8]. Further studies have suggested that optical cavities, also called cavity solitons,30

are present in a large variety of externally driven optical systems. However, their existence in31

laser systems is limited to the well-known laser with saturable absorbers, two-photon lasers,32

lasers with dense amplifying medium, or lasers pumped by squeezed vacuum [9].33

Several models have been proposed to describe how the spatiotemporal dynamics emerges34

in large-aperture lasers. For example, the two-photon lasers have been the subject of continued35

theoretical attention since the early days of the laser era. The theoretical interest of the two-36

photon laser lies in the intrinsic nonlinear nature of the two-photon interaction. The most37

successful theoretical approach is given by the Maxwell-Bloch (MB) equations. In fact, the laser38

is a system where the number of photons is much larger than one, thus allowing a semi-classical39

treatment of the electromagnetic field inside the cavity through the Maxwell equations, which40

has been developed by Lamb [10] and independently by Haken [11]. The semi-classical laser41
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theory ignores the quantum-mechanical nature of the electromagnetic field, and the amplifying42

medium is modeled quantum mechanically, as a collection of two-level atoms through the Bloch43

equations.44

The linear analysis and numerical integration of the full MB equations [12] have been used45

to interpret the features of the experiment that cannot be fully understood with a perturbative46

model, such as the observed evolution from order to fully developed turbulence as the Fresnel47

number increases up to a critical control-parameter threshold [13]. In addition, it has been48

shown that the MB equations with homogeneous line broadening are appropriate for the de-49

scription of the amplification of short pulses in the multilevel atomic iodine amplifier [14]. Some50

prototype of nonlinear evolution equations has been constructed by singular perturbation meth-51

ods, using the MB equations as the starting point, in order to reproduce the spatiotemporal52

dynamics of the large-aperture lasers.53

The first class of prototype equations which describe, for example, the class-A laser pattern54

dynamics, such as the multi-transverse-mode lasers, is the cubic complex Ginzburg-Landau55

(CGL) equation. In fact, the existence of a vortex solution of the laser equations, the stabil-56

ity of symmetric vortex lattices in the laser beams, the transition to nonsymmetric patterns57

dominated by titled waves, and to disordered spatial distribution have been well-reproduced by58

the cubic CGL equation [15, 16]. To prevent the ”blowup” of the solutions of the cubic CGL59

equation for negative detuning, the laser cubic CGL equation, which possesses fourth- and60

higher-order diffusion terms and which describes correctly the excitation of transverse modes61

and structure formation in a laser, has been derived [17]. It should also be mentioned that the62

adiabatic elimination of irrelevant variables has been shown to be very sensitive to the method63

used for the perturbation expansions in the case of partial differential equations which describe64

laser dynamics. That is why the center manifold theorem for the elimination of irrelevant vari-65

ables has been used, leading to the cubic CGL equation in the small-field limit. The particular66

feature of the center manifold theory is that it is a solid mathematical framework within which67

the fast variables as well as the characteristic scaling of the long-term dynamics are properly68

determined [18]. It has also been shown that the cubic-quintic CGL equation is a continuous69

approximation to the dynamics of the field in a passively mode-locked laser [19].70
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The second class of prototype equations which provides the generic description of transverse71

pattern formation in wide aperture, single longitudinal mode, two-level lasers, when the laser is72

operating near peak gain, is the complex Swift - Hohenberg equation for class A and C lasers [20].73

Indeed, the complex Swift - Hohenberg equation comes naturally as a solvability condition for74

the existence of solutions to the MB laser equations in the form of asymptotic series in powers75

of the small detuning parameter [20]. In addition, when the laser pattern dynamics is sensitive76

to the degree of stiffness of the original physical problem, such as in the class-B lasers, the77

amplitude equations are the complex Swift - Hohenberg equation coupled to a mean flow [20],78

which is consistent with the observation that the population inversion variable in the MB laser79

equations acts as a weakly damped mode. Otherwise, the Swift-Hohenberg equation has been80

considered for a passive optical cavity driven by an external coherent field, valid close to the81

onset of optical bistability [21]. Moreover, theoretical studies of spatiotemporal structures of82

lasers with a large Fresnel number of the laser cavity have been successfully described in the83

cases in which two coupled fields are involved in the dynamics for class-B lasers. For example, it84

has been shown that the homogeneous steady-state solution may be destabilized by two generic85

instabilities. The first is a long wavelength instability which is related to the phase invariance86

of the electromagnetic field and is described by a scalar field obeying the Kuramoto-Shivasinsky87

equation. The second is a short wavelength instability which corresponds to a Hopf bifurcation88

and is described by a complex field which obeys a Swift-Hohenberg equation.89

The third class of prototype equations which contains a phenomenological aspect and whose90

use in the theoretical description of the pulse dynamics in a mode-locked laser was pioneered91

by Haus and Mecozzi [22]. Assuming that only one polarization state plays a role and that the92

change of the pulse per round trip is small, so that one can replace the discrete laser components93

with continuous approximations, Haus and Mecozzi [22] obtained a master equation which is94

nothing but the stationary version of the cubic CGL equation. The coefficients that appear in95

the model were related to the physical parameters in a rather phenomenological way [22, 23].96

All these three classes of prototype equations are scalar since it is usually considered that the97

polarization degree of freedom of the electromagnetic field is fixed either by material anisotropies98

or by experimental arrangement. Thus, the description of the dynamics is done in terms of a99
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scalar field. It has been shown that the cavity-synchronous phase or amplitude modulation tech-100

nique transforms passively mode-locked optical oscillators into actively mode-locked lasers [24].101

Mixing passive and active mode-locking in the same device results in a new class of optical oscil-102

lators capable of generating short pulses. To model this laser system, as an example, the scalar103

cubic-quintic CGL equation has been used with terms corresponding to active mode-locking104

in addition to the usual passive mode-locking terms [25]. However, the inclusion of a quintic105

saturating term in the scalar cubic-quintic CGL equation was shown to be essential for the106

stability of pulsed solutions [26]. Since the scalar cubic-quintic CGL equation is non-integrable,107

which means that general analytical solutions are not available, selected analytical solutions108

can only be found for specific relations between the equation parameters. More complicated109

solutions for the cubic-quintic CGL equations, such as pulsating, creeping, or exploding solu-110

tions have been reported numerically [27]. It is also well known that laser systems are made111

of several components, an accurate model then should involve consecutive sets of propagation112

equations. Models can be vectorial, when the polarization nature of light is involved, and can113

also include the delayed response of the saturable absorber and gain medium. The possibility of114

vectorial topological defects which are not predictable by the scalar theory were first analyzed115

by Gil [28]. Using standard perturbative nonlinear analysis performed near the laser threshold,116

Gil derived a (3+1)-dimensional ((3+1)D) vectorial cubic CGL equation when considering the117

interaction of an electromagnetic field with matter in a laser cavity without the assumption118

of a fixed direction of the transverse electric field. Different kinds of pattern formation are119

present in the dynamic states of the one-spatial dimension (localized structures) [29] and of the120

two-spatial dimensions (topological defects) [30, 31, 32, 33] for the vectorial cubic CGL equa-121

tion. Examples are the synchronization properties of spatiotemporally chaotic states [30], the122

identification of a transition from a glass to a gas phase [31], and the formation and annihilation123

processes leading to the different types of defects [32]. In addition, creation and annihilation124

processes of different kinds of vector defects, as well as a transition between different regimes125

of spatiotemporal dynamics have been described [33].126

The objective of the present work is to get a qualitative understanding of the physical127

processes involved in spatial pattern formation from a two-level atomic system controlled by128
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an intense laser field. The approach taken here parallels that of Gil [28] for the vectorial cubic129

CGL equation. We start with the Maxwell-Bloch equations describing the propagation of a130

slowly varying field envelope through a collection of two-level atoms when the interaction of131

an electromagnetic field with matter in a laser cavity is considered without the assumption132

of a fixed direction of the transverse electric field. Then, we report on the derivation of the133

laser (3+1)D vectorial cubic-quintic CGL equation. Furthermore, we discuss, theoretically and134

numerically, modulational instability (MI) of plane waves on this equation. MI, which is an135

indispensable mechanism for understanding pattern formation in a uniform medium, is a process136

in which the amplitude and phase modulations of a wave grow under the combined effects of137

nonlinearity and diffraction or dispersion in a spatially nonlinear field [34, 35, 36, 37, 38, 39].138

We examine their stability by means of both the rigorous analysis of linearized equations for139

small perturbations, and in direct numerical simulations to support our analytical results.140

The rest of the paper is organized as follows. In Sec. II, we derive the laser (3+1) vectorial141

cubic-quintic CGL equation which describes the laser pattern dynamics. In Sec. III, the142

linear stability analysis of MI is performed, and the instability zones, as well as the analytical143

expressions of the gain of MI are obtained. In Sec. IV, we focus on the role played by the144

loss/gain coefficient. Then, in Sec. V, we perform direct numerical integrations to check the145

validity of the MI conditions found analytically. Section VI concludes the paper.146

2 Derivation of the laser (3+1)D vectorial cubic-quintic147

CGL equation148

We consider the behavior of a slowly varying field envelope through a collection of two-level149

atoms with a transition frequency wa between the lasing levels, and relaxation rate γ⊥ and γ∥150

for the polarization and the population inversion, respectively, and when the interaction of an151

electromagnetic field with matter in a laser cavity is considered without the assumption of a152

fixed direction of the transverse electric field. The basic equations of motion are the well-known153

MB equations [28, 40] written as154

∂2E

∂t2
= −µ0c

2∂
2P

∂t2
+ c2

[
∇2E−∇(∇.E)

]
− κ

∂E

∂t
, (1a)

6
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155

∂2P

∂t2
= −γ⊥

∂P

∂t
− w2

aP− gDE, (1b)

156

∂D

∂t
= −γ∥ (D −D0) +

2

h̄w

(
E.

∂P

∂t

)
, (1c)

where ∇ = ∂
∂x
i + ∂

∂y
j + ∂

∂z
k and ∇2 = ∂2

∂x2 +
∂2

∂y2
+ ∂2

∂z2
, with i , j and k the spatial directions,157

for the envelope of the electric field E, the envelope variable of the atomic polarization P, and158

the population inversion D, respectively; µ0 is the magnetic susceptibility, c is the velocity of159

light, κ is the cavity damping coefficient and h̄ is Planck’s constant. Assuming that the electric160

field frequency w is very close to the atomic frequency wa, it follows that h̄w is the energy gap161

between the two atomic levels, g is the coupling constant between the electric field and the162

population inversion, and D0 is the pumping term [28]. Now, let us concentrate on the atomic163

polarization properties of the two-level atoms which can be expanded as164

P = ϵP1 + ϵ2P2 + ϵ3P3, (2)

where ϵ is a small parameter. In the following, we assume that the electric field E is taken165

as E = ϵE1, which restrict, ourselves to the case of a single harmonic. Assuming also that166

E1 = E1
1, we obtain167

P1 = P1
1, P2 = P1

2, P3 = P1
3 +P3

3, (3)

with168

P1
1 =

1

µ0c2

(
−1 +

ik

wa

)
E1

1, (4a)

169

P1
2 =

ig

γ⊥wa

(
D0

1E
1
1

)
, (4b)

170

P1
3 =

ig

γ⊥wa

(
D0

2E
1
1 +D2

2E
−1
1

)
, (4c)

171

P3
3 =

ig

(8wa − 3iγ⊥)

(
D2

2E
1
1

)
, (4d)
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and172

D0
1 = D0, D0

2 =
2i

h̄γ∥

(
P1

1E
−1
1 −P−1

1 E1
1

)
, D2

2 =
2i

h̄
(
γ∥ + 2iwa

) (P1
1E

1
1

)
(5)

(see Appendix).173

We assume also that the traveling waves are lasing with frequency wa and critical vector174

kc=±wa/c. In addition, the longitudinal direction z is selected by the geometry of the laser175

medium or the mirrors. The direction of propagation is given by Kc = kcz, though a priori both176

directions of propagation are equiprobable. Once the atomic polarizability is known, the well-177

established perturbative nonlinear analysis is performed near the laser threshold by introducing178

a small parameter (ϵ << 1) defined by [28]179

D0 = DOC + ϵ2D̃0, (6)

where DOC is a critical value given by [28]

DOC =
κγ⊥
µ0c2g

.

Now, the laser variable will also depend on two slow spatial and temporal scales, respectively,180

X = ϵx, Y = ϵy, (7a)

and181

Z = ϵ2z, T = ϵ2t. (7b)

Then, close enough to the laser threshold, we look for solutions (E, P, D) of Eqs. (1) in the182

form of a power series expansion in the small parameter ϵ as follows183 
E
∂tE
P
∂tP
D

 =


0
0
0
0
D0

+ ϵ


E1

∂tE1

P1

∂tP1

D1

+ ϵ2


E2

∂tE2

P2

∂tP2

D2

+ ... (8)

with184 
E1

∂tE1

P1

∂tP1

D1

 =


A
iwaA
1

µ0c2
(−1 + ik

wa
)A

iwa

µ0c2
(−1 + ik

wa
)A

0

 ei(wt−kcz) + c.c., (9)
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with A ⊥ Z, where A is slowly varying field amplitude in space and time. After inserting Eqs.185

(6)-(8) into the MB equations, rearranging terms and making use of Eqs. (3), (5) and (9), and186

identifying the coefficients of powers ϵ at each order, we obtain, by applying the solvability187

conditions at 0(ϵ2) and 0(ϵ3), the laser (3 + 1)D vectorial cubic-quintic CGL equation188

∂A

∂T
= z1A− z2

(
∂

∂Z
+

i

2kc
∇2

⊥

)
A+ z3

(
∂

∂Z
+

i

2kc
∇2

⊥

)2

A− z4 (A ·A∗)A− z5 (A ·A)A∗

+ z6
(
A2 ·A∗2)A+ z7

(
A3 ·A∗)A∗,

(10)

where ∇2
⊥ = ∂2

∂X2 +
∂2

∂Y 2 , represents a two-dimensional Laplacian operator and the asterisk (∗)189

stands for the complex conjugate, while the coefficients are given in the Appendix. Eq. (10)190

describes the behavior of the electric field in the medium (dielectric medium). When coefficients191

z6 = z7 = 0, in Eq. (10), we recover the laser (3 + 1)D vectorial cubic CGL equation that was192

introduced early by Gil [28] as a vector order parameter for an unpolarized laser and its vectorial193

topological defects.194

Due to the highly nonlinear nature of Eq. (10), we introduce a number of useful simpli-195

fications: (i) we use the traditional uniform field limit which requires that both the mirror196

transmittivity and the gain per pass of the active medium be small, while their ratio may be197

arbitrary but finite; (ii) a large free spectral range; (iii) the number of modes that are signifi-198

cantly excited is manageably small [41]; (iv) the fourth-order derivative has been neglected [28].199

In this way, the new field amplitude obeys the equation of motion200

A = B (X,Y, T ) exp (−i∆Z) , (11)

where the amplitude B(X, Y, T ) is governed by the equation201

∂B

∂T
= c1B+ c2∇2B− c3 (B.B∗)B− c4 (B.B)B∗ + c5

(
B2.B∗2)B+ c6

(
B3.B∗)B∗, (12)

where c1 = z1 + ∆(−∆z3 + iz2), c2 = (2∆z3−iz2)
2kc

, c3 = z4; c4 = z5, c5 = z6, c6 = z7.202

with B ⊥ Z. Considering the case where B has two complex components such as B = (Bx, By)203

(cartesian components), describing the complex slowly varying amplitudes of the electric field204

[42]. The right and left circularly polarized components (B+, B−) are related to the cartesian205

components by the relations Bx = (B+ + B−)/
√
2 and By = (B+ − B−)/i

√
2. We then obtain206

9
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the coupled equations describing the dynamics of the circular components after usual scaling207

transformations [43]208

∂B+

∂T
= (1 + iα)B+ + (1 + iβ)∇2B+ + (1 + iε)|B+|2B+ + (1 + iµ)ν|B+|4B+ + (γr + iγi)|B−|2B+

+ (δr + iδi)|B−|4B+ + 2(δr + iδi)|B−|2|B+|2B+,

(13a)

209

∂B−

∂T
= (1 + iα)B− + (1 + iβ)∇2B− + (1 + iε)|B−|2B− + (1 + iµ)ν|B−|4B− + (γr + iγi)|B+|2B−

+ (δr + iδi)|B+|4B− + 2(δr + iδi)|B−|2|B+|2B−,

(13b)

where210

α = −c1i/c1r, β = c2i/c2r, ε = c3i/c3r, µ = c5i/c5r, γr = (c3r + 2c4r)/c3r,

γi = (c3i + 2c4i)/c3r, δr = −(c5r + 3c6r)/2c5r, δi = −(c5i + 3c6i)/2c5r,
(14)

with ν=sign(c5r/c
2
3r), (X, Y ) =

√
c2r(X, Y ), B± = B±/

√
c3r. In Eq. (13), ∇2B+ and ∇2B−211

represent a two-dimensional Laplacian operator describing diffraction in the transverse (X,212

Y ) plane, |B+|2B+ and |B−|2B− denote the cubic self-phase modulation (SPM), |B−|2B+ and213

|B+|2B− correspond to the cubic cross-phase modulation (XPM), |B+|4B+ and |B−|2B− denote214

the quintic SPM, |B−|2|B+|2B+ and |B+|2|B−|2B− represent the mixed quintic XPM, and215

|B−|4B+ and |B+|4B− denote the quintic XPM. In the following δ, β, ε, µ, γr, γi, δr, and216

δi are real parameters of SPM and XPM terms of Eq. (13). α is related to the linear loss217

(α < 0) or gain (α > 0). β is related to the strength of diffraction, and ε to the nonlinear218

frequency detuning. µ stands for the saturation of the nonlinear frequency detuning, γr and219

γi are the nonlinear cross coefficients related to the cubic XPM, δr and δi are the nonlinear220

cross coefficients related to the quintic XPM, ν represents the nonlinear coefficient related to221

the quintic SPM.222

3 Modulational instability: Linear analysis223

MI constitutes one of the most fundamental effects associated with wave propagation in non-224

linear media. It signifies the exponential growth of a weak perturbation of the wave as it225

propagates. The gain leads to the amplification of sidebands, which break up the otherwise226

uniform wave and generate fine localized structures. Thus, it may act as a precursor for the227
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formation of bright solitons. In order to study the MI of Eqs.(13a) and (13b), describing the228

dynamics of the circular components, we use the standard linear stability analysis. In doing so,229

we consider the propagation of the exact continuous-wave solutions of Eqs.(13a) and (13b) to230

take the form of two plane waves [39]231

B+ = M exp{i(k1X + l1Y − w1T}, (15a)

232

B− = P exp{i(k2X + l2Y − w2T}, (15b)

where the positive real numbers M and P represent the amplitudes of waves B+(X, Y, T ) and233

B−(X, Y, T ), respectively. w1 and w2 are real numbers representing the angular frequencies.234

The wave vectors are represented by real numbers k1, k2, l1, and l2. The substitution of plane235

wave solutions B+ and B− into the system of the coupled cubic-quintic CGLE Eqs. (13a) and236

(13b) leads to a set of four equations (requiring both imaginary and real parts to be zero),237

representing the dispersion relations238

1−
(
k2
1 + l21

)
+
(
1 + νM2

)
M2 +

(
γr +

1

2
δrP

2

)
P 2 + δrP

2M2 = 0, (16a)

239

1−
(
k2
2 + l22

)
+
(
1 + νP 2

)
P 2 +

(
γr +

1

2
δrM

2

)
M2 + δrP

2M2 = 0, (16b)

240

w1 = νµM4 − (ε+ P 2δi)M
2 − 1

2
P 4δi − α + β(k2

1 + l21)− γiP
2, (16c)

241

w2 = νµP 4 − (ε+M2δi)P
2 − 1

2
M4δi − α + β(k2

2 + l22)− γiM
2. (16d)

Assuming that B+(X,Y, T ) and B−(X,Y, T ) remain space-independent during propagation242

inside the medium, i.e., B+ = Me(−iw1T ) and B− = Pe(iw2T ), Eqs. (16a)-(16d) are readily243

solved to obtain the steady-state solutions. For the case where P = M , it follows that244

M± =

√√√√− (1 + γr)±
√
(1 + γr)

2 − 2 (2ν + 3δr)

(2ν + 3δr)
. (17)

11
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For P ̸= M , and M given by Eq. (17), we obtain245

P± =

√√√√− (γr +M2δr)±
√

(γr +M2δr)
2 − 2δr (1 + P 2 + νP 4)

δr
, (18)

and246

w1 = −νµM4 − (ε+ P 2δi)M
2 − 1

2
P 4δi − α− γiP

2, (19a)

247

w2 = −νµP 4 − (ε+M2δi)P
2 − 1

2
M4δi − α− γiM

2. (19b)

Then, the plane wave solutions are completely defined as functions of the model parameters.248

Therefore, the question about the stability of these steady-state solutions arises. To have more249

insights, a perturbation analysis is conducted in order to verify if these solutions are stable250

against small perturbations. Assuming perturbations in the form251

B+(X, Y, T ) = [P + ϵV (X, Y, T )] ei(k2X+l2Y−w2T ), (20a)

252

B−(X,Y, T ) = [M + ϵU(X,Y, T )] ei(k1X+l1Y−w1T ), (20b)

where U(X, Y, T ) and V (X, Y, T ) are small deviations from the stationary solutions of the253

right and left circular polarized components, i.e., both |U(X,Y, T )| and |V (X, Y, T )| are small254

compared to M and P . Substituting Eqs. (20) into Eqs.(13a) and (13b), and linearizing in U255

and V, we obtain that the dynamical equations for the perturbations are written as256

∂U

∂T
=(1 + iβ)∇2

⊥U + 2(−β + i)(k1
∂U

∂x
+ l1

∂U

∂y
) + (1 + iε)M2(U + U∗)

+ (γr + iγi)MP (V + V ∗) + ν(1 + iµ)M4(U + U∗)

+ 2(δr + iδi)M
2P 2(U + U∗) + (δr + iδi)(MP 3 +M3P )(V + V ∗),

(21a)

257

∂V

∂T
=(1 + iβ)∇2

⊥V + 2(−β + i)(k2
∂V

∂x
+ l2

∂V

∂y
) + (1 + iε)P 2(V + V ∗)

+ (γr + iγi)MP (U + U∗) + ν(1 + iµ)P 4(V + V ∗)

+ 2(δr + iδi)M
2P 2(V + V ∗) + (δr + iδi)(MP 3 +M3P )(U + U∗),

(21b)

12
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where U∗(V ∗) stands for the complex conjugate of the perturbation in the field amplitude. This258

pair of coupled complex linear equations can be solved by taking its general solutions as259

U(X,Y, T ) = A1e
i(KX+LY−ΩT ) + A∗

2e
−i(KX+LY−Ω∗T ), (22a)

260

V (X, Y, T ) = B1e
i(KX+LY−ΩT ) +B∗

2e
−i(KX+LY−Ω∗T ), (22b)

where K and L are the wave numbers, Ω is the modulation frequency, A1, A2, B1, and B2 are261

constant complex amplitudes. By substituting Eq. (22) into the pair of coupled complex linear262

equations (21a) and (21b), we obtain a linear homogeneous system of equations in terms of A1,263

A2, B1 and B2, i.e.,264

H × (A1 A2 B1 B2)
T = 0, (23)

where the fourth-order square matrix of the system is given by265

H =


(n11 + iΩ) n12 n13 n12

n21 (n23 + iΩ) n22 n22

n12 n12 (n32 + iΩ) n34

n22 n22 n42 (n44 + iΩ)

 , (24)

with the matrix elements ni,j (i, j = 1, 2, 3, 4) being266

n11 = − (1 + iβ) (l2 + k2 + 2 (Ll1 +Kk1)) + (1 + iε)M2 + 2ν (1 + iµ)M4 + 2 (δr + iδi)M
2P 2

n12 = (γr + iγi)MP + 2 (δr + iδi) (MP 3 +M3P ) ,
n13 = (1 + iε)M2 + 2ν (1 + iµ)M4 + 2 (δr + iδi)M

2P 2,
n21 = (1− iε)M2 + 2ν (1− iµ)M4 + 2 (δr − iδi)M

2P 2,
n22 = (γr − iγi)MP + 2 (δr − iδi) (MP 3 +M3P ) ,
n23 = − (1− iβ) (l2 + k2 − 2 (Ll1 +Kk1)) + (1− iε)M2 + 2ν (1− iµ)M4 + 2 (δr − iδi)M

2P 2,
n32 = − (1 + iβ) (l2 + k2 + 2 (Ll2 +Kk2)) + (1 + iε)P 2 + 2ν (1 + iµ)P 4 + 2 (δr + iδi)M

2P 2,
n34 = (1 + iε)P 2 + 2ν (1 + iµ)P 4 + 2 (δr + iδi)M

2P 2,
n42 = (1− iε)P 2 + 2ν (1− iµ)P 4 + 2 (δr − iδi)M

2P 2,
n44 = − (1− iβ) (l2 + k2 − 2 (Ll2 +Kk2)) + (1− iε)P 2 + 2ν (1− iµ)P 4 + 2 (δr − iδi)M

2P 2.

The nontrivial solutions of this system require that Det(H) = 0, which leads to the nonlinear267

dispersion relation268

Ω4 + CΩ3 +DΩ2 + EΩ + F = 0, (25)

13
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where269

C =− I (n32 + n11 + n23 + n44) ,

D =− n32 (n44 + n11)− n23 (n32 + n11 + n44) + (n12 + n22)
2 + n34n42 + n21n13 − n44n11,

E =In2
22 (n34 + n13 − n32 − n11) + In2

12 (n42 + n21 − n44 − n23) + In12n22(n21 + n13 + n34

+ n42 − n11 − n23 − n44 − n32) + In11(n44n23 + n32n23 + n44n32 − n42n34)

− In21n13 (n44 + n32) + In23 (n44n32 − n34n42) ,

F =n11(n
2
22 (n34 − n32) + n12n22 (n42 − n44) + n23 (n44n32 − n34n42) + n23(n32n44 − n43n42))

+ n2
12 (n44 (n21 − n23) + n42 (n23 − n21)) + n12(n22n23(n34 − n32) + n22(n21(n32 − n34)

+ n13(n44 − n42))) + n13n
2
22(n32 − n34) + n21n13(n34n42 − n32n44).

It is obvious that the coefficients in Eq. (25) are complex, and are functions of the wave vectors,270

amplitudes and system parameters, respectively. It is important to mention that an equation271

similar to Eq. (25) was obtained by Gholam-Ali et al. [39]. Nevertheless, one should note that272

our results encompasses theirs, due to the presence of additional terms brought by the model273

under consideration. These new terms are proportional to the complex parameters (δr + iδi)274

in the relation defining the quantities njk (j, k = 1, ..., 4) of the 4× 4 complex matrix H. From275

the solutions of the dispersion relation, we investigate about the stability of the steady-state276

solutions by determining the MI gain. In that direction, the roots of the dispersion relation277

(25) are found to be278

Ω±
+ = ±1

2

√
−C3 + 4CD − 8E

4P2

+
3C2

4
− 2D − p22 −

C

4
+

p2
2
, (26a)

279

Ω±
− = ±1

2

√
−−C3 + 4CD − 8E

4P2

+
3C2

4
− 2D − p22 −

C

4
− p2

2
, (26b)

where P2 =
√

C2

4
+ −3CE+D2+12F

3P1
− 2D−p1

3
, p1 = 2−1/3 3

√
p0 + 27C2F − 9CDE + 2D3 − 72DF + 27E3,280

and p0 =
√

(27C2F − 9CDE + 2D3 − 72DF + 27E)2 − 4(−3CE +D2 + 12F )3.281

As it is obvious, the quantities Ω+
± and Ω−

± depend on the laser cavity parameters that282

are included in the dispersion relation coefficients. MI occurs only when at least one of the283

eigenvalues of the stability matrix H possesses a nonzero and negative imaginary part, which284

results in an exponential growth of the amplitude with the perturbation. MI is measured by285

the power gain and is defined as286

G±
± = 2Im(Ω±

±) > 0, (27)

where Im(Ω±
±) denotes the imaginary part of Ω±

±) [39, 44].287
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Figure 1: (Color online) Gain spectrum versus perturbed wavenumber K and non perturbed
wavenumber k1, at l1 = 10.20; l2 = 10; k2 = 1, and L = 0.4.

4 MI Analysis288

Considering the MI gain (see Eq. (22)), several qualitative situations emerge depending on289

the system parameters. The regions of instability are called MI gain spectra and this takes290

place when G−
− = 2Im(Ω−

−) > 0, or G+
− = 2Im(Ω+

−) > 0, or G−
+ = 2Im(Ω−

+) > 0, or G+
+ =291

2Im(Ω+
+) > 0. It is well-known that pattern formation may take place in the cubic-quintic CGL292

equation when the gain/loss and diffraction/nonlinearities are well balanced. We start our293

investigation by analysing the influence of wavenumbers K and k1 on the MI. We consider the294

following parameters of MB equation, γ⊥ = 9.9× 1010s−1, γ∥ = 3× 107s−1, wa = 0.52× 109s−1,295

κ = 6.9 × 107, D̃0 = 12.5 and the lasing wavelength λ = 10.6µm [40], Fig. 1 shows the296

dependence of the gain G with respect to the wavenumbers K and k1.297

Figs. 1(a) and (b), describe the MI process given by Ω+
+ (see 26(a)) and Ω−

− (see 26(b)),298

respectively . Fig. 1(a) shows the MI process around the perturbed wavenumber K = 0, and299

in Fig. 1(b), the maximum instability is isolated in the domains K < 0 and k1 > 0, the second300

domain of hight intensity, but lower than the preceding isolate MI domain for the same figure301

is observed around K = 0. Fig. 2 shows more insight the manifestation of the MI when302

increasing the value of wa.303

Figs. 2 (a) and 2 (c) correspond to the MI gain spectrum related to Ω−
−, and Figs. 2 (b)304

and 2 (d) correspond to Ω+
+. Figures 2 (a) and 2 (b) are obtained for wa = 0.34× 109s−1, Fig.305

2 (a), in particular seems similar to Fig. 1 (a), while the edge and the width of the sidelobe306

15
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Figure 2: (Color online) First line Gain spectrum related to the solution Ω−
− and Ω+

+ in the
second line, versus the perturbed wavenumber K and the wavenumber k1 at κ = 6.9 × 107,
γ⊥ = 3.9× 1010, γ∥ = 3× 107. (a) and (b) wa = 0.34× 109, (c) and (d) wa = 0.52× 109.

16
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Figure 3: Color online) first line Gain spectrum related to the solution Ω−
− and Ω+

+ in the
second line, versus the perturbed wavenumber K and the wavenumber k1 at wa = 0.52 × 109,
γ⊥ = 3.9× 1010, γ∥ = 3× 107. (a) and (d) κ = 6.9× 107, (b) and (e) κ = 4.9× 107, and (c) and
(e) κ = 4.1× 107.

observed in Fig. 1 (b), have been considerably reduced keeping the same intensity (see Fig 2307

(b)). On the other hand, when slightly increasing the value of wa to 0.52× 109, we observe in308

Fig. 2 (d), the disappearance of the sidelobe obtained in Fig. 2 (b) and Fig. 1 (b). Also, the309

intensity of the MI gain of Fig. 2 (d) has decreased in comparison to Figs. 1 (b) and Figs. 2(b),310

and more importantly, unstable waves may be expected for 0.5 ≤ wa ≤ wacr.311

Next, we analyze the influence of the cavity damping coefficient κ on the MI. Here, we312

keep the rest of the parameters of the MB equation the same as in Figs. 2 (c) and (d), while313

varying the cavity damping coefficient κ. Fig. 3 shows the gain spectrum for κ = 6.9× 107s−1,314

κ = 4.9× 107s−1 and κ = 4.1× 107s−1, respectively, with γ⊥ = 3.9× 1010s−1.315

In Figs. 3(a) - (c), the gain spectrum is symmetric with respect to the line K = 0 and316

the MI gain decreases with the decreasing of κ, and collapses for 0.41 < κ < κcr. Despite the317

decreasing of the width of the MI gain G−
−, its intensity remains constant when decreasing the318

value of κ. Figs. 3(d) - (f) describe the evolution of the MI gain when κ decreases. Contrary319

to the MI gain spectrum G−
−, the gain spectrum G+

+ evolves with low intensity, and it also320

decreases when κ decreases. The same remark is made on its width (see Figs. 3(d)-(f)). As a321
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whole, we have noted the disappearance of the MI gain spectrum for κ < 4×107s−1. Otherwise,322

for κ = 4.9 × 107s−1, we have observed that when increasing γ∥, the MI gain spectrum also323

disappears at γ∥ ≃ 3.9 × 107s−1. This suitably agree with the fact that in class B laser,324

γ⊥ >> κ > γ∥ [28, 40].325

So, to enhance the MI gain, we can adjust the system in order for its parameters to corre-326

spond to a specific class of laser, such as class B laser which is the concern of this work. They327

can bring about new sidebands, shift the existing sidebands, or merge them.328

As noticed in this analysis, laser parameters are very influential to the occurrence of MI,329

especially when plane wave parameters fall well inside the instability domain. Under such330

conditions, the plane wave solution will be said to be unstable under modulation, and the331

direct consequence will be its disintegration into nonlinear wave patterns. Otherwise, wave332

modulation will not take place, since the choice of parameters will not be favorable to a suitable333

balance between gain/loos and diffractive/nonlinear effects.334

5 Numerical simulations335

To further study the MI phenomena, numerical simulations are reported in this section. They336

are in fact used to check the accuracy of our analytical predictions. Computer simulations337

are performed using the laser (2+1)D vectorial cubic-quintic CGL Eq. (13) by means of the338

split-step Fourier Method, with a time-step ∆T = 10−3, on a mesh of size 100× 100, with339

space-steps ∆X = ∆Y = 0.01 and fixed boundary conditions at the edges of the domain. The340

used initial conditions are slightly modulated plane waves given by [32]341

B− (X,Y, T = 0) = M [1 + Am sin(2π(KX + LY ))] e−i(k1X+l1Y ), (28a)

342

B+ (X, Y, T = 0) = P [1 + AP sin(2π(KX + LY ))] e−i(k2X+l2Y ), (28b)

where Am and Ap are amplitude modulations, K and L are the frequencies of weak sinusoidal343

modulations imposed on the continuous waves, in the X and Y directions, respectively.344

For the rest, we consider the competiting effects between of cubic and quintic terms based345

on the laser parameters. From various numerical examples, we note that when κ > γ∥, the346
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Figure 4: Panels (a) and (b) show the evolution of a plane wave leading to chaotic behavior at
α = −0.0147, β = 0.0147, ε = 0.0267, γr = 1.4892, γi = 0.0147, µ = 0.0267, δr = −0.5013, and
δi = 0.0170.

outcome is the generation of periodic of nonlinear structures, due to the competition between347

loss and gain, diffraction and nonlinearity. However, when we neglect the quintic nonlinear term348

[28], the system does not show any propagation, but collapses after laps time of propagation.349

However, keeping only the quintic nonlinearity term, we obtain the generation of incoherent350

patterns.351

Fig. 4 shows the space-time plot of a continuous wave, under MI, using the parameters352

wa = 0.52× 109s−1, γ⊥ = 3.9× 1010s−1, γ∥ = 3.85× 107s−1, and κ = 4.9× 107s−1. The related353

dissipation parameters are given in the figure caption. MI manifests itself with the appearance354

of new instability features, where Figs. 4(a) and (b) show the spatiotemporal evolution of355

B−(X, 0, T ) and B+(X, 0, T ), respectively, represented by their corresponding density plots.356

In two dimensions, the phenomenon is more ostensible as shown in Fig. 5, at different times,357

where panels Figs. 5 (a)-(d) are obtained at the respective times T = 0, T = 400, T = 2000 and358

T = 10000. There is, in fact, an exponential decrease of the wave amplitudes at the initial time359

of propagation, followed by an important explosion of wave amplitudes, with lower intensities.360

This, in fact, corroborates our predictions, which, due to the chosen parameter values from the361

gain spectrum (see Fig. 3(e)), lead to the disintegration of the initial plane wave solutions.362

Figure 6 reveals more insight into the effect of the relaxation rate γ⊥ and γ∥ for the po-363

larization and the population inversion, respectively, the atomic frequency wa and the cavity364

damping coefficient κ, on the generation of nonlinear structures. The following experimental365
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Figure 5: Two-dimensional manifestation of MI at different instants: (a) and (e) T = 2, (b)
and (f) T = 400, (c) and (g) T = 2000, (d) and (h) T = 10000. (a) to (d) correspond to B−,
(e) to (h) correspond to B+.

parameter values have been used [40]: λ = 10.6µm, γ⊥ = 3.95 × 109s−1, γ∥ = 4.5 × 106s−1,366

wa = 2.8 × 108s−1, linear loss α = −0.0401, diffusion parameter β = 0.0401, cubic nonlinear367

gain ε = 0.0267, quintic nonlinear loss µ = −0.0267, cubic coupled parameters γr = 1.3952 and368

γi = 0.0148, and quintic coupled parameters δr = −0.5013 and δi = 0.0176.369

In comparison to Fig. 5, we have increased the photon lifetime τ = 1
γ∥
s inside the cavity to370

plot Fig. 6. Beyond some parameter change, the features at Fig. 6 are similar to those in Fig. 5.371

However, we realize in Figs. 6 (a)-(d), and Figs. 6 (e)-(h), that during the propagation, the372

wave amplitude initially decreases. Thereafter, we observe a stage of constant amplitude with373

patterns, that ends by aperiodic wave structures. Here, we note that when the soliton becomes374

stable, the two wave behave in phases, with the same intensity. As mentioned at the beginning375

of this section, the class B laser is described by three- or four- level atomic schemes, where the376

extra levels are necessary for obtaining population inversion with large lifetime of population377

inversion, which is a necessary condition to for amplification and lasing [45]. Obviously, the378

propagation of the soliton is altered. Moreover, when the quintic nonlinearity (quintic loss and379

coupled) is not taken into account, the soliton amplitude abruptly and exponentially decreases380

under MI and does not show any change. So, in order for stable periodic soliton to form, all381

terms in Eq. (13) should be considered.382
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Figure 6: Two-dimensional manifestation of MI at different instants: (a) and (e) T = 25, (b)
and (f) T = 400, (c) and (g) T = 5000, (d) and (h) T = 50000. (a) to (d) correspond to B−,
(e) to (h) correspond to B+.

In general, the balance between gain/loss and diffraction/nonlinearities gives rise to plane383

wave disintegration, main characteristics of MI. This leads to localized modes that display384

interesting and new behaviors, related to the change in the laser cavity parameters. This385

means that with more choices of suitable parameters, the system might display more exotic386

behaviors under the activation of the MI.387

6 Conclusion388

In summary, the first achievement of the present work was the successful derivation of the389

(3+1)D vectorial cubic-quintic complex GL equation, modeling the interaction of an electro-390

magnetic field with matter in a laser, near the lasing threshold. Then, in the second one, we391

used the linear stability analysis to find the instability criteria and growth rate of instability392

from which we got regions of parameters where wave patterns can emerge in the studied model.393

This has been followed by direct numerical simulation, on the generic model, in order to confirm394

our analytical predictions. A good agreement between the two approaches has been obtained,395

especially the disintegration of the plane wave solutions into nonlinear waves patterns.396
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Appendix : Multimodal method404

The equations describing the interaction of electromagnetic field with the matter is described405

by the Maxwell-Bloch equation Eqs. (1.1)-(1.3). The quantities E, P and D are taken in the406

following form407

E =
∞∑
j=1

∈j
+j∑

n=−j

En
j (r) exp(inwt), (A.1)

P =
∞∑
j=1

∈j
+j∑

n=−j

Pn
j (r) exp(inwt), (A.2)

D =
∞∑
j=1

∈j
+j∑

n=−j

Dn
j (r) exp(inwt), (A.3)

408

under the conditions E−n
j = (En

j )
∗, P−n

j = (Pn
j )

∗, and D−n
j = (Dn

j )
∗. We assume that409

permanent electric field, that leads to410

∀j > 0 leads to E0
j = 0. (A.4)411

We focus our study to the case of E = E1
1 , D

0
1 = D0 In the presence of the intense field in412

the system, we have D0 << 2
h̄wa

(
E · ∂P

∂t

)
. Inserting the relation of P and D given from Eq.413

(24) into Eqs. (1.2)-(1.3), it comes, for any einwat, the following relations:414

wa [(1− n2)wa + iγ⊥] (ϵP
n
1 + ϵ2Pn

2 + ϵ3Pn
3 + ...) = −g

∑
p+q=n

(ϵDq
1 + ϵ2Dq

2 + ...) (ϵEp
1 + ϵ2Ep

2 + ...) (A.5)(
γ∥ + inwa

)
(ϵDn

1 + ϵ2Dn
2 + ...) = 2i

h̄

∑
p+q=n

q (ϵEp
1 + ϵ2Ep

2 + ..) (ϵPq
1 + ϵ2Pq

2 + ϵ3Pq
3 + ..), (A.6)

415

where p and q can take the negative values, and p+q = n. For any power of ϵ, solving these equa-416

tion, we have obtained:

ϵ1, n = 0 : P0
1 = 0, D0

1 = D0. (A.7)

ϵ1, n = 1 : P1
1 =

1
µ0c2

(
−1 + ik

wa

)
E1

1, D1
1 = 0. (A.8)

ϵ2, n = 0 : P0
2 = 0, D0

2 =
2i
h̄γ∥

(
P1

1E
−1
1 −P−1

1 E1
1

)
. (A.9)

ϵ2, n = 1 : P1
2 =

ig
γ⊥wa

(
D0

1E
1
1

)
, D1

2 = 0. (A.10)

ϵ2, n = 2 : P2
2 = 0, D2

2 =
2i

h̄(γ∥+2iwa)

(
P1

1E
1
1

)
. (A.11)

ϵ3, n = 0 : P0
3 = 0, D0

3 =
2i
h̄γ∥

(
P1

2E
−1
1 −P−1

2 E1
1

)
. (A.12)

ϵ3, n = 1 : P1
3 =

ig
γ⊥wa

(
D0

2E
1
1 +D2

2E
−1
1

)
, D1

3 = 0. (A.13)

ϵ3, n = 2 : P2
3 = 0, D2

3 =
2i

h̄(γ∥+2iwa)

(
P1

2E
1
1

)
. (A.14)

ϵ3, n = 3 : P3
3 =

ig
(8wa−3iγ⊥)

(
D2

2E
1
1

)
, D3

3 = 0, (A.15)

417

withP = ϵP1+ϵ2P2+ϵ3P3 withP1 = P1
1, P2 = P1

2 andP3 = P1
3+P3

3. (A.16)418

In the following we performs the nonlinear perturbation analysis near the laser threshold

by introducing a small parameter defined by D0 = D0C + ϵ2D̃0 (ϵ << 1), (X, Y ) = ϵ(x, y),

(Z, T ) = ϵ2(z, t) [28].
E
∂tE
P
∂tP
D

 =


0
0
0
0
D0

+ϵ


E1

∂tE1

P1

∂tP1

D1

+ϵ


E2

∂tE2

P2

∂tP2

D2

+..., (A.17)
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with
E1

∂tE1

P1

∂tP1

D1

 =


A
iwaA
1

µ0c2
(−1 + ik

wa
)A

iwa

µ0c2
(−1 + ik

wa
)A

0

 ei(wt−kcz) + c.c., A⊥Ẑ (A.18)

Moreover, from the MB equations, some algebraic manipulation yields the following solv-419

ability condition420

κ
∂E1

∂T
= −2iwa

∂E1

∂T
−2iwac

(
∂

∂Z
+

i

2kc
∇2

⊥

)
E1−µ0c

2

(
2
∂

∂T

∂P1

∂t

)
, (A.19)

2
∂

∂T

∂P1

∂t
= −γ⊥2

∂P1

∂T
−g

(
D̃0 +D2

)
E1, (A.20)

∂D2

∂t
= −γ∥D2+

2

h̄wa

(
E1.

∂P1

∂t

)
(A.21)

Combining Eqs. (A. 5) and (A. 6) just gives421

∂E1

∂T
=

2c(γ⊥ − iwa)

k − γ⊥ + 2iwa

(
∂

∂Z
+

i

2kc
∇2

⊥

)
E1+

µ0c
2g

k − γ⊥ + 2iwa

(
D̃0 +D2

)
E1 (A.22)

The nonlinearities comes from the interaction between the population inversion and the422

electric field. In order to analyze the higher order diffusive term in this system, the higher-423

order correction γ2
⊥
∂2P1

∂T 2 is needed to the polarization equation Eq.(31.2)424

κ∂E1

∂T
= −2iwa

∂E1

∂T
− 2iwac

(
∂
∂Z

+ i
2kc

∇2
⊥

)
E1 − µ0c

2
(
2 ∂
∂T

∂P1

∂t

)
. (A.23)

2 ∂
∂T

∂P1

∂t
= −γ⊥

∂P1

∂t
+ γ2

⊥
∂2P1

∂T 2 − g
(
D̃0 +D2

)
E1. (A.24)

∂D2

∂t
= −γ∥D2 +

2
h̄wa

(
E1.

∂P1

∂t

)
. (A.25)

Substituting Eq.(A.24) into Eq.(A. 23); we obtain

(κ− γ⊥ + 2iwa)
[
1 +

2γ2
⊥

κ−γ⊥+2iwa
( ∂
∂Z

+ i
2kc

∇2
⊥)
]

∂E1

∂T
= 2c (γ⊥ − iwa) (

∂
∂Z

+ i
2kc

∇2
⊥)E1

+µ0c
2g

(
D̃0 +D2

)
E1. (A.26)

Multiplying both sides of Eq. (A. 26 ) by
(
(κ− γ⊥ + 2iwa)

[
1 +

2γ2
⊥

κ−γ⊥+2iwa

(
∂
∂Z

+ i
2kc

∇2
⊥

)])−1

425

leads to the following amplitude equation derived by Gil [28]:426

∂

∂T
A = C1A+C2

(
∂

∂Z
+

i

2kc
∇2

⊥

)
A+C3

(
∂

∂Z
+

i

2kc
∇2

⊥

)2

A+C4 (A ·A∗)A+C5 (A ·A)A∗, (A.27)

with427
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C1 =
µ0c2gD̃0(κ−γ⊥+2iwa)

((κ−γ⊥)2+4w2
a)

, (A.28)

C2 = −2c(γ⊥(γ⊥−κ)+2w2
a+iwa(κ−3γ⊥))

((κ−γ⊥)2+4w2
a)

, (A.29)

C3 = −4c2γ⊥(γ2
⊥(2κ−γ⊥)+κ(κγ⊥−4w2

a)−iγ⊥(3γ2
⊥+4w2

a−κ(2γ2
⊥−κ)))

((κ−γ⊥)2+4w2
a)

2 , (A.30)

C4 =
4kg(−(κ−γ⊥)+2iwa)

h̄waγ∥((κ−γ⊥)2+4w2
a)
, (A31)

C5 =
2g(γ∥(2w2

a+κ(κ−γ2
∥))−2w2

a(κ+γ⊥)−iwa(γ∥(κ+γ⊥)+2κ(κ−γ⊥)+4w2
a))

h̄wa

(
γ2
∥+4w2

a

)
((κ−γ⊥)2+4w2

a)
(A.32).

428

In order to analyze higher order nonlinearities in the system, the nonlinear polarization429

term P3 is need. Therefore, the second correction is need, taking into account the nonlinear430

polarization into the population inversion equation Eq.(A.21)431

k ∂E1

∂T
= −2iwa

∂E1

∂T
− 2iwac

(
∂
∂Z

+ i
2kc

∇2
⊥

)
E1 − µ0c

2
(
2 ∂
∂T

∂P1

∂t

)
. (A.33)

2 ∂
∂T

∂P1

∂t
= −γ⊥

∂P1

∂T
+ γ2

⊥
∂2P1

∂T 2 − g
(
D̃0 +D2

)
E1. (A.34)

∂D2

∂t
= −γ∥D2 +

2
h̄wa

(
E1.

∂(P1+P3)
∂t

)
. (A.35)

D2 is again obtained by solving Eq.(A.35):

D2 = D20 +D22e
2i(wat−kcz) +D∗

22e
−2i(wat−kcz) +D24e

4i(wat−kcz) +D∗
24e

−4i(wat−kcz), (A.36)

with432

D20 =
4

h̄µ0c2waγ∥
(−kAA∗ +

kgA2A∗2

h̄waγ⊥
(
4

γ∥
+

1(
γ∥ − 2iwa

) +
1(

γ∥ + 2iwa

))
+

igA2A∗2

h̄waγ⊥
(

1(
γ∥ + 2iwa

) − 1(
γ∥ − 2iwa

))) (A.37)

D22 =
2

h̄µ0c2wa

(
γ∥ + 2iwa

)(−A2(k + iwa) +
2gA3A∗

h̄
(

k

γ⊥wa

(
1(

γ∥ + 2iwa

) +
2

γ∥
)

+
3(

γ∥ + 2iwa

)
(8wa − 3iγ⊥)

+
i(

γ∥ + 2iwa

)( 1

γ⊥
− 3k

wa (8wa − 3iγ⊥)
))) (A.38)

D24 =
12gA4

h̄2µ0c2wa

(
γ∥ + 4iwa

)
(8wa − 3iγ⊥)

(
1− ik

wa

)
(A.39)

Substituting Eq.(A.36) into Eq.(A. 26), we obtain the following (3+1)D vectorial cubic-quintic433

CGL equation434

∂A

∂T
= z1A+ z2

(
∂

∂Z
+

i

2kc
∇2

⊥

)
A+ z3

(
∂

∂Z
+

i

2kc
∇2

⊥

)2

A+ z4 (A ·A∗)A+ z5 (A ·A)A∗

+ z6
(
A2 ·A∗2)A+ z7

(
A3 ·A∗)A∗ (A.40)
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with435

z1 =
µ0c

2gD̃0 (k − γ⊥ + 2iwa)

(k − γ⊥)
2 + 4w2

a

, (A.41)

z2 =
2c (2w2

a + γ⊥ (γ⊥ − k) + iwa (k − 3γ⊥))

(k − γ⊥)
2 + 4w2

a

, (A.42)

z3 =
4c2γ⊥ (γ2

⊥ (2k − γ⊥) + k (kγ⊥ − 4w2
a)− iγ⊥ (3γ2

⊥ + 4w2
a − k (2γ⊥ − k)))(

(k − γ⊥)
2 + 4w2

a

)2 , (A.43)

z4 =
4kg ((k − γ⊥)− 2iwa)

h̄waγ∥
(
(k − γ⊥)

2 + 4w2
a

) , (A.44)

z5 =
2g

(
γ∥ (2w

2
a + k (k − γ2

⊥))− 2w2
a (k + γ⊥)− iwa

(
γ∥ (k + γ⊥) + 2k (k − γ⊥) + 4w2

a

))
h̄wa

(
(k − γ⊥)

2 + 4w2
a

) (
γ2
∥ + 4w2

a

) , (A.45)

z6 =
8kg2

(
γ∥

(
k + 2γ∥

)
+ 10w2

a

)
(k − γ⊥ − 2iwa)

h̄2w2
aγ⊥γ

2
∥
(
(k − γ⊥)

2 + 4w2
a

) (
γ2
∥ + 4w2

a

) , (A.46)

436

z7r =

4g2

 (γ∥(k(3γ
2
∥ + 4w2

a) + 4w2
aγ∥)(9γ

2
⊥ + 64w2

a) + 3γ⊥γ∥((8w
2
a + 3kγ⊥)(γ

2
∥
− 4w2

a)

+ 4γ∥w
2
a(−8k + 3γ⊥)))(k − γ⊥) + 2w2

a(((γ
2
∥ − 4w2

a − 4kγ∥)γ∥ − 4k(γ2
∥ + 4w2

a))(9γ
2
⊥ + 64w2

a)

+ 3γ∥γ⊥((−8k + 3γ⊥)(γ
2
∥ − 4w2

a)− 4(8w2
a + 3kγ⊥)γ∥))


h̄2w2

aγ⊥γ∥(γ
2
∥ + 4w2

a)
2
(9γ2

⊥ + 64w2
a)((k − γ⊥)

2 + 4w2
a)

(A.47)

z7i =

4g2

 (wa(((γ
2
∥
− 4(w2

a + kγ∥))− 4k(γ2
∥ + 4w2

a))(9γ
2
⊥ + 64w2

a) + 3γ∥γ⊥((−8k + 3γ⊥)(γ
2
∥
− 4w2

a)

− 4γ∥(8w
2
a + 3kγ⊥)))(k−γ⊥)− 2(γ∥(k(3γ

2
∥ + 4w2

a) + 4w2
aγ∥)(9γ

2
⊥ + 64w2

a) + 3waγ∥γ⊥((8w
2
a

+ 3kγ⊥)(γ
2
∥ − 4w2

a) + 4w2
aγ∥(3γ⊥ − 8k)))


h̄2w2

aγ⊥γ∥(γ
2
∥ + 4w2

a)
2
(9γ2

⊥ + 64w2
a)((k − γ⊥)

2 + 4w2
a)

(A.48)
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