Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 October 2019 d0i:10.20944/preprints201910.0171.v1

On a laser (3+41)-dimensional vectorial
cubic-quintic complex Ginzburg-Landau
equation and modulational instability

Alain Djazet!?* Serge 1. Fewo!l Conrad B. Tabi*! and Timoléon C. Kofané?3

I aboratoire de Mécanique, Département de Physique, Faculté des Sciences, Université de Yaoundé I,
B.P. 812 Yaoundé, Cameroun
2Centre d’Excellence Africain en Technologies de I'Information et de la Communication (CETIC),
University of Yaounde I, Cameroon

3Botswana International University of Science and Technology, Private Bag 16 Palapye, Botswana

September 11, 2019

, Abstract

> Interaction of an electromagnetic field with matter in a laser cavity without the assumption
s of a fixed direction of the transverse electric field, described by the two-level Maxwell-Bloch
+ equations, is studied. By using a perturbative nonlinear analysis, performed near the laser
s threshold, we report on the derivation of the laser (341)D vectorial complex cubic-quintic com-
s plex Ginzburg-Landau equation. Furthermore, we study the modulational instability of the
7 plane waves both theoretically using the linear stability analysis, and numerically, using direct
s simulations via the split-step Fourier method. The linear theory predicts instability for any
o amplitude of the primary waves. Our numerical simulations confirm the theoretical predictions
10 of the linear theory as well as the threshold of the amplitude of perturbations. The system
1 understudy shows a deep dependence on the laser cavity parameters, for which there appear
12 wave patterns in accordance with the predictions from the gain spectrum.
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- 1 Introduction

18 New theoretical approaches, experimental analyses, and systematic use of computer science in
19 data processing have been developed during the past 20 years in several types of lasers, which
20 are very complex devices, having a rich temporal, spatial, and spatiotemporal dynamics [1].
2 These different types of lasers can be classified into [2] Class A (for example, dye lasers) [3, 1],
» Class B (semiconductor lasers, CO, lasers, and solid-sate lasers) [, 0], and Class C (the only
23 example is the far-infrared lasers) [7], depending on the decay rate of the photons, the carriers,
2 and the material polarization. However, this classification is not applicable to inhomogeneously
»s  broadened lasers that included He-Ne, argon-ion, and Xe lasers, for example. Comparing these
% lasers, different dynamical features have been described, including instabilities, cascades of bi-
2 furcations, multistability, and sudden chaotic transitions [!]. Many other fascinating features
s and properties concerned with chaotic dynamics have been extensively addressed in relevant
2 semiconductor laser systems, because of their potential applications in chaotic optical commu-
s nications [8]. Further studies have suggested that optical cavities, also called cavity solitons,
a1 are present in a large variety of externally driven optical systems. However, their existence in
3 laser systems is limited to the well-known laser with saturable absorbers, two-photon lasers,
13 lasers with dense amplifying medium, or lasers pumped by squeezed vacuum [9].

3 Several models have been proposed to describe how the spatiotemporal dynamics emerges
55 in large-aperture lasers. For example, the two-photon lasers have been the subject of continued
3 theoretical attention since the early days of the laser era. The theoretical interest of the two-
57 photon laser lies in the intrinsic nonlinear nature of the two-photon interaction. The most
1 successful theoretical approach is given by the Maxwell-Bloch (MB) equations. In fact, the laser
3 is a system where the number of photons is much larger than one, thus allowing a semi-classical
w0 treatment of the electromagnetic field inside the cavity through the Maxwell equations, which

s has been developed by Lamb [10] and independently by Haken [I1]. The semi-classical laser

2
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22 theory ignores the quantum-mechanical nature of the electromagnetic field, and the amplifying
s medium is modeled quantum mechanically, as a collection of two-level atoms through the Bloch
s equations.

45 The linear analysis and numerical integration of the full MB equations [12] have been used
s to interpret the features of the experiment that cannot be fully understood with a perturbative
s model, such as the observed evolution from order to fully developed turbulence as the Fresnel
s number increases up to a critical control-parameter threshold [13]. In addition, it has been
s shown that the MB equations with homogeneous line broadening are appropriate for the de-
o scription of the amplification of short pulses in the multilevel atomic iodine amplifier [11]. Some
s1  prototype of nonlinear evolution equations has been constructed by singular perturbation meth-
s ods, using the MB equations as the starting point, in order to reproduce the spatiotemporal
53 dynamics of the large-aperture lasers.

54 The first class of prototype equations which describe, for example, the class-A laser pattern
ss dynamics, such as the multi-transverse-mode lasers, is the cubic complex Ginzburg-Landau
ss  (CGL) equation. In fact, the existence of a vortex solution of the laser equations, the stabil-
s7 ity of symmetric vortex lattices in the laser beams, the transition to nonsymmetric patterns
ss dominated by titled waves, and to disordered spatial distribution have been well-reproduced by
so the cubic CGL equation [15, 16]. To prevent the "blowup” of the solutions of the cubic CGL
s equation for negative detuning, the laser cubic CGL equation, which possesses fourth- and
&1 higher-order diffusion terms and which describes correctly the excitation of transverse modes
2 and structure formation in a laser, has been derived [17]. It should also be mentioned that the
s adiabatic elimination of irrelevant variables has been shown to be very sensitive to the method
& used for the perturbation expansions in the case of partial differential equations which describe
s laser dynamics. That is why the center manifold theorem for the elimination of irrelevant vari-
e ables has been used, leading to the cubic CGL equation in the small-field limit. The particular
o7 feature of the center manifold theory is that it is a solid mathematical framework within which
e the fast variables as well as the characteristic scaling of the long-term dynamics are properly
o determined [18]. It has also been shown that the cubic-quintic CGL equation is a continuous

70 approximation to the dynamics of the field in a passively mode-locked laser [19].
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7 The second class of prototype equations which provides the generic description of transverse
72 pattern formation in wide aperture, single longitudinal mode, two-level lasers, when the laser is
73 operating near peak gain, is the complex Swift - Hohenberg equation for class A and C lasers [20)].
7 Indeed, the complex Swift - Hohenberg equation comes naturally as a solvability condition for
7 the existence of solutions to the MB laser equations in the form of asymptotic series in powers
76 of the small detuning parameter [20]. In addition, when the laser pattern dynamics is sensitive
77 to the degree of stiffness of the original physical problem, such as in the class-B lasers, the
72 amplitude equations are the complex Swift - Hohenberg equation coupled to a mean flow [20],
7o which is consistent with the observation that the population inversion variable in the MB laser
s equations acts as a weakly damped mode. Otherwise, the Swift-Hohenberg equation has been
a1 considered for a passive optical cavity driven by an external coherent field, valid close to the
&2 onset of optical bistability [21]. Moreover, theoretical studies of spatiotemporal structures of
&3 lasers with a large Fresnel number of the laser cavity have been successfully described in the
g cases in which two coupled fields are involved in the dynamics for class-B lasers. For example, it
s has been shown that the homogeneous steady-state solution may be destabilized by two generic
s instabilities. The first is a long wavelength instability which is related to the phase invariance
s7  of the electromagnetic field and is described by a scalar field obeying the Kuramoto-Shivasinsky
ss equation. The second is a short wavelength instability which corresponds to a Hopf bifurcation
s and is described by a complex field which obeys a Swift-Hohenberg equation.

90 The third class of prototype equations which contains a phenomenological aspect and whose
o1 use in the theoretical description of the pulse dynamics in a mode-locked laser was pioneered
» by Haus and Mecozzi [22]. Assuming that only one polarization state plays a role and that the
o3 change of the pulse per round trip is small, so that one can replace the discrete laser components
o with continuous approximations, Haus and Mecozzi [22] obtained a master equation which is
os nothing but the stationary version of the cubic CGL equation. The coefficients that appear in
o the model were related to the physical parameters in a rather phenomenological way [22, 23].
o7 All these three classes of prototype equations are scalar since it is usually considered that the
e polarization degree of freedom of the electromagnetic field is fixed either by material anisotropies

o or by experimental arrangement. Thus, the description of the dynamics is done in terms of a
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o scalar field. It has been shown that the cavity-synchronous phase or amplitude modulation tech-
1 nique transforms passively mode-locked optical oscillators into actively mode-locked lasers [2].
102 Mixing passive and active mode-locking in the same device results in a new class of optical oscil-
103 lators capable of generating short pulses. To model this laser system, as an example, the scalar
s cubic-quintic CGL equation has been used with terms corresponding to active mode-locking
s in addition to the usual passive mode-locking terms [25]. However, the inclusion of a quintic
s saturating term in the scalar cubic-quintic CGL equation was shown to be essential for the
w7 stability of pulsed solutions [26]. Since the scalar cubic-quintic CGL equation is non-integrable,
s which means that general analytical solutions are not available, selected analytical solutions
e can only be found for specific relations between the equation parameters. More complicated
o solutions for the cubic-quintic CGL equations, such as pulsating, creeping, or exploding solu-
i tions have been reported numerically [27]. Tt is also well known that laser systems are made
2 of several components, an accurate model then should involve consecutive sets of propagation
3 equations. Models can be vectorial, when the polarization nature of light is involved, and can
ns  also include the delayed response of the saturable absorber and gain medium. The possibility of
us  vectorial topological defects which are not predictable by the scalar theory were first analyzed
us by Gil [28]. Using standard perturbative nonlinear analysis performed near the laser threshold,
u7  Gil derived a (3+1)-dimensional ((3+1)D) vectorial cubic CGL equation when considering the
us interaction of an electromagnetic field with matter in a laser cavity without the assumption
no of a fixed direction of the transverse electric field. Different kinds of pattern formation are
120 present in the dynamic states of the one-spatial dimension (localized structures) [29] and of the
21 two-spatial dimensions (topological defects) [30, 31, 32, 33] for the vectorial cubic CGL equa-
122 tion. Examples are the synchronization properties of spatiotemporally chaotic states [30], the
13 identification of a transition from a glass to a gas phase [31], and the formation and annihilation
e processes leading to the different types of defects [32]. In addition, creation and annihilation
125 processes of different kinds of vector defects, as well as a transition between different regimes
16 of spatiotemporal dynamics have been described [33].

127 The objective of the present work is to get a qualitative understanding of the physical

128 processes involved in spatial pattern formation from a two-level atomic system controlled by
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120 an intense laser field. The approach taken here parallels that of Gil [28] for the vectorial cubic
10 CGL equation. We start with the Maxwell-Bloch equations describing the propagation of a
w slowly varying field envelope through a collection of two-level atoms when the interaction of
12 an electromagnetic field with matter in a laser cavity is considered without the assumption
133 of a fixed direction of the transverse electric field. Then, we report on the derivation of the
13 laser (3+1)D vectorial cubic-quintic CGL equation. Furthermore, we discuss, theoretically and
s numerically, modulational instability (MI) of plane waves on this equation. MI, which is an
16 indispensable mechanism for understanding pattern formation in a uniform medium, is a process
137 in which the amplitude and phase modulations of a wave grow under the combined effects of
13s nonlinearity and diffraction or dispersion in a spatially nonlinear field [34, 35, 36, 37, 38, 39].
1o We examine their stability by means of both the rigorous analysis of linearized equations for
1o small perturbations, and in direct numerical simulations to support our analytical results.

141 The rest of the paper is organized as follows. In Sec. II, we derive the laser (3+1) vectorial
12 cubic-quintic CGL equation which describes the laser pattern dynamics. In Sec. III, the
13 linear stability analysis of MI is performed, and the instability zones, as well as the analytical
s expressions of the gain of MI are obtained. In Sec. IV, we focus on the role played by the

s loss/gain coefficient. Then, in Sec. V, we perform direct numerical integrations to check the

us validity of the MI conditions found analytically. Section VI concludes the paper.

w 2 Derivation of the laser (3+1)D vectorial cubic-quintic
” CGL equation

u  We consider the behavior of a slowly varying field envelope through a collection of two-level
150 atoms with a transition frequency w, between the lasing levels, and relaxation rate v, and 7
11 for the polarization and the population inversion, respectively, and when the interaction of an
12 electromagnetic field with matter in a laser cavity is considered without the assumption of a
153 fixed direction of the transverse electric field. The basic equations of motion are the well-known

1+ MB equations [28, 10] written as

O°E PP, OE
o = HC 5 +*[VPE-V(V.E)| - Ko (1a)
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155

0*P oP
ST = T w?P — gDE, (1b)
156
oD 2 opP
E R 7 (Ea) 7 (1c)

157 where V = %i + a%j + %k and V2 = 88—;2 + 6‘9—;2 + 8%22, with %, 7 and k the spatial directions,
18 for the envelope of the electric field E, the envelope variable of the atomic polarization P, and
159 the population inversion D, respectively; pg is the magnetic susceptibility, ¢ is the velocity of
wo light,  is the cavity damping coefficient and % is Planck’s constant. Assuming that the electric
e field frequency w is very close to the atomic frequency w,, it follows that hw is the energy gap
12 between the two atomic levels, g is the coupling constant between the electric field and the

16 population inversion, and Dy is the pumping term [28]. Now, let us concentrate on the atomic

1 polarization properties of the two-level atoms which can be expanded as
P= €P1 + €2P2 + €3P3, (2)

s where € is a small parameter. In the following, we assume that the electric field E is taken
16 as E = eE;, which restrict, ourselves to the case of a single harmonic. Assuming also that

167 E1 = E%, we obtain

P, =P, P,=P, P;=P,+P; (3)
168 With
1 ik
Pl=— (-1+—)E; 4
= (s D) ey (42
169
g 1
P! = DYE!) | 4h
2 ’YJ_wa( 1 1) ( )
170
Pl . Zg DOEl D2E—1 4
3= ( ol + Dok )a (C)
rYJ_wa
171
3 g 211


http://dx.doi.org/10.20944/preprints201910.0171.v1

Preprints (www.preprints.org)

172

173

174

176

177

178

179

180

181

182

183

184

| NOT PEER-REVIEWED | Posted: 16 October 2019

and
24

DY=D S
! 0 h (’)/” + ina)

-P'E), Dj= (P1E) (5)

(see Appendix).

We assume also that the traveling waves are lasing with frequency w, and critical vector
k.=tw,/c. In addition, the longitudinal direction z is selected by the geometry of the laser
medium or the mirrors. The direction of propagation is given by K. = k.z, though a priori both
directions of propagation are equiprobable. Once the atomic polarizability is known, the well-
established perturbative nonlinear analysis is performed near the laser threshold by introducing

a small parameter (e << 1) defined by [28]
Do = Doc + €* Dy,

where Doc is a critical value given by [28]

R7YL
toc?g

Doc =
Now, the laser variable will also depend on two slow spatial and temporal scales, respectively,
X =ex,

Y = ey, (Ta)

and

(7b)

Then, close enough to the laser threshold, we look for solutions (E, P, D) of Egs. (1) in the

form of a power series expansion in the small parameter € as follows

E 0 E; Es
8tE 0 @El 5’tE2
P =10 +e| Py +e | Py + ... (8)
0tP 0 atPl atPQ
D Dy D, D,
with
E; A
0, Eq Tw,A
P, [ =| de(1+2)A [elr g e, 9)
O,P, o (] 4 KA
D, 0

d0i:10.20944/preprints201910.0171.v1
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165 with A | Z, where A is slowly varying field amplitude in space and time. After inserting Egs.
s (6)-(8) into the MB equations, rearranging terms and making use of Egs. (3), (5) and (9), and
17 identifying the coefficients of powers e at each order, we obtain, by applying the solvability

s conditions at 0(¢*) and 0(e?), the laser (3 + 1)D vectorial cubic-quintic CGL equation

oA o i, o i\’ . .
a—T—ZlA—ZQ(a—Z—FQ_kCVL)A‘FZ?,(a—Z—FTkCVL)A—Z4(AA)A—Z5(AA)A

+26 (A7 A®) A+ 27 (A% AY) A7,
(10)

10 where V2 = Ba_); + 6‘9—;2, represents a two-dimensional Laplacian operator and the asterisk ()
o stands for the complex conjugate, while the coefficients are given in the Appendix. Eq. (10)
1 describes the behavior of the electric field in the medium (dielectric medium). When coefficients
w2 2z = z7 = 0, in Eq. (10), we recover the laser (3 + 1)D vectorial cubic CGL equation that was
103 introduced early by Gil [28] as a vector order parameter for an unpolarized laser and its vectorial
104 topological defects.

105 Due to the highly nonlinear nature of Eq. (10), we introduce a number of useful simpli-
s fications: (i) we use the traditional uniform field limit which requires that both the mirror
17 transmittivity and the gain per pass of the active medium be small, while their ratio may be
s arbitrary but finite; (ii) a large free spectral range; (iii) the number of modes that are signifi-
1o cantly excited is manageably small [11]; (iv) the fourth-order derivative has been neglected [25].

200 In this way, the new field amplitude obeys the equation of motion
A=B(X,Y,T)exp(—iAZ), (11)

20 where the amplitude B(X,Y,T) is governed by the equation

B
g_T =B+ V2B — ¢ (BB)B — ¢, (B.B)B* +¢; (B2B?) B + ¢ (B> B") B*,  (12)
202 where ¢; = 21 +A(—A23—|—i22), Cy = %, C3 = 24; C4 = 25, C5 = Zg, Cg = Z7.

20s with B L Z. Considering the case where B has two complex components such as B = (B,, B,)
204 (cartesian components), describing the complex slowly varying amplitudes of the electric field
205 [12]. The right and left circularly polarized components (B, B_) are related to the cartesian

25 components by the relations B, = (By + B_)/v/2 and B, = (B; — B_)/iv/2. We then obtain
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207 the coupled equations describing the dynamics of the circular components after usual scaling

208 transformations [13]

OB,
aT

= (1+i0)By + (14 iB)V?By + (14 ie)|B4|*By + (1 4 ip)v|B.|" By + (9 + )| B_|°B;

+ (6, +10:)| B|" By +2(6, + i6:)| B_|’| B4 |* By,
(13a)

209

0B_

7 = (L+ie)B_+ (1+ iB)V2B_ 4 (1 +ie)|B_|?B_ + (1 +ip)v|B_[*B_ + (y + iv:)| B+|* B_

+ (8, 4 i0;)|B+|*B_ 4 2(6, +i6;)|B_|*| BL|’B_,
(13b)

210 where

a=—ci/cry, B=cyfca, €=c3ifCs, I=C5ifCsr, Vr = (C3r+ 2ca)/Csr,

(14)

vi = (€3 + 2¢4;)/cary 6r = —(C5r + 3cor) /25, 0; = —(Ci + 3¢6i)/2C5r,
a with v=sign(cs./c3,), (X,Y) = /c2,(X,Y), By = By/\/c5,. In Eq. (13), V2B, and V?B_
22 represent a two-dimensional Laplacian operator describing diffraction in the transverse (X,
ns V) plane, |By|?B, and |B_|*B_ denote the cubic self-phase modulation (SPM), |B_|*B, and
24 |By|?B_ correspond to the cubic cross-phase modulation (XPM), |B,|*B, and |B_|? B_ denote
zs  the quintic SPM, |B_|*|By|?B; and |B,|*|B_|*B_ represent the mixed quintic XPM, and
2 |B_|*B, and |B,|*B_ denote the quintic XPM. In the following &, 3, €, i, ¥, v, 0, and
a7 0; are real parameters of SPM and XPM terms of Eq. (13). « is related to the linear loss
28 (o < 0) or gain (o > 0). [ is related to the strength of diffraction, and ¢ to the nonlinear
a9 frequency detuning. p stands for the saturation of the nonlinear frequency detuning, 7, and
20 y; are the nonlinear cross coefficients related to the cubic XPM, ¢, and §; are the nonlinear
a1 cross coefficients related to the quintic XPM, v represents the nonlinear coefficient related to

22 the quintic SPM.

=» 3 Modulational instability: Linear analysis

24 MI constitutes one of the most fundamental effects associated with wave propagation in non-
25 linear media. It signifies the exponential growth of a weak perturbation of the wave as it
26 propagates. The gain leads to the amplification of sidebands, which break up the otherwise

227 uniform wave and generate fine localized structures. Thus, it may act as a precursor for the

10
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»s formation of bright solitons. In order to study the MI of Eqgs.(13a) and (13b), describing the
29 dynamics of the circular components, we use the standard linear stability analysis. In doing so,
20 we consider the propagation of the exact continuous-wave solutions of Egs.(13a) and (13b) to

2z take the form of two plane waves [39)]

By = Mexp{i(kiX + 1LY —w T}, (15a)

232

B_ = PeXp{Z(kQX + ng - IUQT}, (15b)

213 where the positive real numbers M and P represent the amplitudes of waves B, (X,Y,T) and
2 B_(X,Y,T), respectively. w; and wy are real numbers representing the angular frequencies.
235 The wave vectors are represented by real numbers ky, ks, [, and l3. The substitution of plane
26 wave solutions B, and B_ into the system of the coupled cubic-quintic CGLE Egs. (13a) and
a7 (13b) leads to a set of four equations (requiring both imaginary and real parts to be zero),

28 representing the dispersion relations

1— (kK +5)+ (1 +vM?*) M? + (%, + %@PQ) P? 46, P*M* =0, (16a)

2%
1— (k3 +13)+ (1+vP?) P* + (% + %&M?) M? +6,P*M* =0, (16b)

210
wy = vuM* — (e + P25;)M* — %P“(Si —a+ B(ki +13) — v P? (16¢)
wy = vuP* — (e + M?85;)P? — %M“éi —a+ B(ks +13) — M2 (16d)

22 Assuming that By (X,Y,T) and B_(X,Y,T) remain space-independent during propagation
us inside the medium, i.e., By = Me(m™1") and B_ = Pe(™2T) Eqgs. (16a)-(16d) are readily

aa solved to obtain the steady-state solutions. For the case where P = M, it follows that

— (147 =+ \/(1 + 90 = 2(2v + 36,)
M = (20 135, ' (17)

11
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25 For P # M, and M given by Eq. (17), we obtain

— (+ M28,) £/ (3, + M25,) — 25, (1 + P + vPY)

Py = 18
+ 5, ) (18)

s and

1
w; = —vpM* — (e + P?5;) M?* — §P45i —a — v P? (19a)
247
1

wy = —vpP* — (e 4+ M?6;) P? — §M45¢ —a —yM?. (19b)

xs  Then, the plane wave solutions are completely defined as functions of the model parameters.
20 Therefore, the question about the stability of these steady-state solutions arises. To have more
0 insights, a perturbation analysis is conducted in order to verify if these solutions are stable

1 against small perturbations. Assuming perturbations in the form
Bi(X,Y,T) = [P+ €V(X,Y,T)] e!thaX 0y ual), (20a)

252

B_(X,Y,T) = [M + ¢U(X,Y,T)] /- Xth¥=unT), (20b)

53 where U(X,Y,T) and V(X,Y,T) are small deviations from the stationary solutions of the
25 right and left circular polarized components, i.e., both |U(X,Y,T)| and |V(X,Y,T)| are small
255 compared to M and P. Substituting Eqgs. (20) into Egs.(13a) and (13b), and linearizing in U

6 and V. we obtain that the dynamical equations for the perturbations are written as

oUu e N, U oU s .
3T =(14+iB8)ViU + 2( 6+z)(k18x +14 ay)+(1+26)]\/[ (U+U)
+ (Y 4+ 7)) MP(V + V*) + v(1 +ip) M*(U + U”) (21a)
+2(8, +i6;)M*P*(U + U*) + (8, + i6;) (M P? + M*P)(V +V*),
oo, oV oV - .
5T =(1+iB)VIV +2(=F + 1) (ko 9 ly a5 )+ (1 +ie)P*(V + V*)
+ (Y 4+ i7) MP(U + U*) + v(1 + ig) PH(V + V*) (21D)

+2(8, +i0;) M2 P*(V + V*) + (8, + i) (M P* + M P)(U + U*),

12
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258 where U*(V*) stands for the complex conjugate of the perturbation in the field amplitude. This

0 pair of coupled complex linear equations can be solved by taking its general solutions as
U(X, K T) _ Alei(KX-i-LY—QT) + A;G_i(KX+LY_Q*T), (22&)

260

V(X, Y, T) — Blei(KX+LY—QT) + B;e_i(KX+LY_Q*T), (22b)

1 where K and L are the wave numbers, € is the modulation frequency, A;, Ay, By, and By are
22 constant complex amplitudes. By substituting Eq. (22) into the pair of coupled complex linear
263 equations (21a) and (21b), we obtain a linear homogeneous system of equations in terms of A,
% Ao, By and Bs, i.e.,

Hx (A, Ay, B By =0, (23)

x5 where the fourth-order square matrix of the system is given by

(ny1 + 192) ni2 ni3 ni2
H— 21 (nog + 1€2) U N22 (24)
ni2 ni2 (nse + 1§2) N34
N2 N2 N2 (nag +182)

266 with the matrix elements n;; (i,7 = 1,2, 3,4) being

ni1=—1+448) (P +k*+2(Ll; + Kky)) + (1 +ie) M? + 2v (1 + ip) M* + 2 (6, + id;) M*P?
N1y = (Y 4 i7i) MP + 2 (6, + i6;) (M P? + M3P) ,

nig = (1 41de) M? + 2v (1 +ip) M* 4+ 2 (6, + id;) M2 P?,

no1 = (1 —ig) M? 4+ 2v (1 —ip) M* + 2 (5, — i6;) M? P2,

ngs = — (1 —if) (124 k* — 2 (Lly + Kky)) 4 (1 — ig) M? + 2 (1 — ip) M* + 2 (0, — id;) M>P2,
nzs = — (14+48) (1> + k* + 2 (Lly + Kko)) + (1 +ie) P2 4+ 2v (1 4+ iu) P* + 2 (6, + id;) M P2,
n3s = (141ig) P24 2v (1 +iu) P* + 2 (6, + i6;) M2 P?,

ngg = (1 —ig) P2+ 2v (1 —ip) P* 4 2(5, — id;) M2 P?,

Ny =— (1 —4f) (P +k? = 2(Lly + Kky)) + (1 —ig) P? + 2v (1 —ip) P* + 2(5, — id;) M2 P2

27 The nontrivial solutions of this system require that Det(H) = 0, which leads to the nonlinear

s  dispersion relation

Q'+ CP+DP +EQ+F =0, (25)

13
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269 Where

C = — I (n3y +ny1 + noz + nua) ,

D = — ngy (nag + n11) — noz (g + nay + nag) + (n12 + 7@22)2 + M34T42 + N21M013 — NaaNy,

E =In3, (n3s + niz — naz — na1) + Indy (no + noy — nug — nag) + Inqonaa(nar + nag + nsa
+ Mg — 11 — Ngz — Ny — Ng2) + In11(Naangs + N3anaes + NugNgy — NuoNizg)
— Inginag (naa + nsp) + Inoz (Naanze — N3anag)

F =ny1(n3y (nas — 1) + niangs (Mg — naa) + nas (nuanaz — naanas) + naz(ngana — nugna))
+ 17y (naa (n21 — naz) + nua (2 — n21)) + nua(noanas(nss — na2) + noa(nar (g2 — nas)

+ n13(nas — nu2))) + nazniy(naz — naa) + nainiz(Naanae — naanaa).
20 1t is obvious that the coefficients in Eq. (25) are complex, and are functions of the wave vectors,
on amplitudes and system parameters, respectively. It is important to mention that an equation
22 similar to Eq. (25) was obtained by Gholam-Ali et al. [39]. Nevertheless, one should note that
a3 our results encompasses theirs, due to the presence of additional terms brought by the model
o under consideration. These new terms are proportional to the complex parameters (9, + ;)
zs in the relation defining the quantities n;; (j,k =1,...,4) of the 4 x 4 complex matrix H. From
ars the solutions of the dispersion relation, we investigate about the stability of the steady-state
o7 solutions by determining the MI gain. In that direction, the roots of the dispersion relation

2s (25) are found to be

1 [—c3+4CD—8E 302 C
+ 2\/ 4P, T Ryt (262)
279
1 | —C3+4CD—8E 3C? C
OF =+-,/— —2D —p2— = &£ 26b
- 2\/ 1P, T P2y Ty (26b)

20 where P, = /< + -BCE;I912+12F — 2B = 27138/ po + 27TC2F — 9CDE + 2D® — T2DF + 2TE3,

2 and py = \/ (27C2F — 9CDE + 2D3 — 72DF + 27E)? — 4(—3CE + D2 + 12F)°,

282 As it is obvious, the quantities Qf and QF depend on the laser cavity parameters that
23 are included in the dispersion relation coefficients. MI occurs only when at least one of the
s eigenvalues of the stability matrix H possesses a nonzero and negative imaginary part, which
s results in an exponential growth of the amplitude with the perturbation. MI is measured by

26 the power gain and is defined as

G =2Im(0F) > 0, (27)
% where Im(€2F) denotes the imaginary part of Q) [39, 44].

14
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(b)

Ky 2 -2 K 1 2 K

Figure 1: (Color online) Gain spectrum versus perturbed wavenumber K and non perturbed
wavenumber ki, at [y = 10.20; I = 10; ks = 1, and L = 0.4.

= 4 IMI Analysis

20 Considering the MI gain (see Eq. (22)), several qualitative situations emerge depending on
20 the system parameters. The regions of instability are called MI gain spectra and this takes
20 place when GZ = 2Im(QZ) > 0, or GT = 2Im(QF) > 0, or G = 2Im(Q7) > 0, or GL =
22 2Im(QL) > 0. It is well-known that pattern formation may take place in the cubic-quintic CGL
23 equation when the gain/loss and diffraction/nonlinearities are well balanced. We start our
24 investigation by analysing the influence of wavenumbers K and k; on the MI. We consider the
s following parameters of MB equation, v, = 9.9 x 101%s7!, v =3 x 107s7 !, w, = 0.52 x 10957,
0w Kk = 6.9 x 107, Dy = 12.5 and the lasing wavelength A = 10.6um [10], Fig. 1 shows the
27 dependence of the gain G with respect to the wavenumbers K and k.

208 Figs. 1(a) and (b), describe the MI process given by QT (see 26(a)) and Q= (see 26(b)),
20 respectively . Fig. 1(a) shows the MI process around the perturbed wavenumber K = 0, and
50 in Fig. 1(b), the maximum instability is isolated in the domains K < 0 and k; > 0, the second
s domain of hight intensity, but lower than the preceding isolate MI domain for the same figure
32 is observed around K = 0. Fig. 2 shows more insight the manifestation of the MI when
33 increasing the value of w,.

304 Figs. 2 (a) and 2 (c) correspond to the MI gain spectrum related to QZ, and Figs. 2 (b)
0s and 2 (d) correspond to Q. Figures 2 (a) and 2 (b) are obtained for w, = 0.34 x 10%s™!, Fig.

w6 2 (a), in particular seems similar to Fig. 1 (a), while the edge and the width of the sidelobe

15
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(a) (b)

II(1 2 2 K k_I 2 2 K

Figure 2: (Color online) First line Gain spectrum related to the solution Q- and QI in the
second line, versus the perturbed wavenumber K and the wavenumber k; at k = 6.9 x 107,
1L =3.9x%x10" 4 =3x10". (a) and (b) w, = 0.34 x 10%, (c) and (d) w, = 0.52 x 10°.
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Figure 3: Color online) first line Gain spectrum related to the solution Q- and QI in the
second line, versus the perturbed wavenumber K and the wavenumber k; at w, = 0.52 x 10,
1L =3.9x10" 4 =3x10". (a) and (d) k = 6.9 x 107, (b) and (e) x = 4.9 x 107, and (c) and
(e) Kk =4.1 x 10"
w7 observed in Fig. 1 (b), have been considerably reduced keeping the same intensity (see Fig 2
26 (b)). On the other hand, when slightly increasing the value of w, to 0.52 x 10°, we observe in
w0 Fig. 2 (d), the disappearance of the sidelobe obtained in Fig. 2 (b) and Fig. 1 (b). Also, the
30 intensity of the MI gain of Fig. 2 (d) has decreased in comparison to Figs. 1 (b) and Figs. 2(b),
sn and more importantly, unstable waves may be expected for 0.5 < w, < Wgep-
312 Next, we analyze the influence of the cavity damping coefficient x on the MI. Here, we
a3 keep the rest of the parameters of the MB equation the same as in Figs. 2 (¢) and (d), while
s varying the cavity damping coefficient . Fig. 3 shows the gain spectrum for x = 6.9 x 10757},
as K =4.9x107s7" and k = 4.1 x 10757}, respectively, with v, = 3.9 x 1010571,
316 In Figs. 3(a) - (c¢), the gain spectrum is symmetric with respect to the line K = 0 and
a7 the MI gain decreases with the decreasing of , and collapses for 0.41 < k < k.. Despite the
sis decreasing of the width of the MI gain GZ, its intensity remains constant when decreasing the
a0 value of k. Figs. 3(d) - (f) describe the evolution of the MI gain when x decreases. Contrary
20 to the MI gain spectrum GZ, the gain spectrum G7 evolves with low intensity, and it also

= decreases when k decreases. The same remark is made on its width (see Figs. 3(d)-(f)). As a

17
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22 whole, we have noted the disappearance of the MI gain spectrum for £ < 4 x 107s~!. Otherwise,
2 for k = 4.9 x 107s™!, we have observed that when increasing -, the MI gain spectrum also
2e disappears at vy ~ 3.9 x 10"s7t. This suitably agree with the fact that in class B laser,
s YL >> K>y [28, 40]

326 So, to enhance the MI gain, we can adjust the system in order for its parameters to corre-
27 spond to a specific class of laser, such as class B laser which is the concern of this work. They
»s can bring about new sidebands, shift the existing sidebands, or merge them.

329 As noticed in this analysis, laser parameters are very influential to the occurrence of MI,
;0 especially when plane wave parameters fall well inside the instability domain. Under such
sn conditions, the plane wave solution will be said to be unstable under modulation, and the
s direct consequence will be its disintegration into nonlinear wave patterns. Otherwise, wave
;33 modulation will not take place, since the choice of parameters will not be favorable to a suitable

s balance between gain/loos and diffractive/nonlinear effects.

= o INumerical simulations

36 1o further study the MI phenomena, numerical simulations are reported in this section. They
;7 are in fact used to check the accuracy of our analytical predictions. Computer simulations
13 are performed using the laser (241)D vectorial cubic-quintic CGL Eq. (13) by means of the
s split-step Fourier Method, with a time-step AT = 1073, on a mesh of size 100 x 100, with
a0 space-steps AX = AY = 0.01 and fixed boundary conditions at the edges of the domain. The

s used initial conditions are slightly modulated plane waves given by [32]
B_(X,Y,T=0)=MI[+ A,sin2r(KX + LY))] e~ ik1X+u¥) (28a)
342
B, (X,Y,T=0)= P[l + Apsin(2n(KX + LY))] e~ "k2X+0Y) (28b)

ss where A,, and A, are amplitude modulations, K and L are the frequencies of weak sinusoidal
sa - modulations imposed on the continuous waves, in the X and Y directions, respectively.
5 For the rest, we consider the competiting effects between of cubic and quintic terms based

16 on the laser parameters. From various numerical examples, we note that when x > ~, the

18
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Figure 4: Panels (a) and (b) show the evolution of a plane wave leading to chaotic behavior at
a = —0.0147, f = 0.0147, e = 0.0267, 7, = 1.4892, ; = 0.0147, p = 0.0267, ¢, = —0.5013, and
0; = 0.0170.

a7 outcome is the generation of periodic of nonlinear structures, due to the competition between
us loss and gain, diffraction and nonlinearity. However, when we neglect the quintic nonlinear term
s0  [28], the system does not show any propagation, but collapses after laps time of propagation.
0 However, keeping only the quintic nonlinearity term, we obtain the generation of incoherent
51 patterns.

352 Fig. 4 shows the space-time plot of a continuous wave, under MI, using the parameters
33 W = 0.52x10% 71, v =3.9x 107!, 7, =3.85x 107s7!, and k = 4.9 x 107s~*. The related
34 dissipation parameters are given in the figure caption. MI manifests itself with the appearance
35 of new instability features, where Figs. 4(a) and (b) show the spatiotemporal evolution of
w6 B_(X,0,T) and B, (X,0,T), respectively, represented by their corresponding density plots.
7 In two dimensions, the phenomenon is more ostensible as shown in Fig. 5, at different times,
33 where panels Figs. 5 (a)-(d) are obtained at the respective times "= 0, T' = 400, T' = 2000 and
0 1= 10000. There is, in fact, an exponential decrease of the wave amplitudes at the initial time
w0 of propagation, followed by an important explosion of wave amplitudes, with lower intensities.
1 This, in fact, corroborates our predictions, which, due to the chosen parameter values from the
32 gain spectrum (see Fig. 3(e)), lead to the disintegration of the initial plane wave solutions.

363 Figure 6 reveals more insight into the effect of the relaxation rate v, and ~ for the po-
s larization and the population inversion, respectively, the atomic frequency w, and the cavity

s damping coefficient k, on the generation of nonlinear structures. The following experimental

19
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Figure 5: Two-dimensional manifestation of MI at different instants: (a) and (e) 7' = 2, (b)

and (f) T'= 400, (c) and (g) 7" = 2000, (d) and (h) 7" = 10000. (a) to (d) correspond to B_,

(e) to (h) correspond to B,.
%6 parameter values have been used [10]: A = 10.6pm, v = 3.95 x 10971, 4 = 4.5 x 105571,
W, = 2.8 x 103571, linear loss a = —0.0401, diffusion parameter 5 = 0.0401, cubic nonlinear
s gain € = 0.0267, quintic nonlinear loss 4 = —0.0267, cubic coupled parameters v, = 1.3952 and
w0 y; = 0.0148, and quintic coupled parameters 6, = —0.5013 and ¢; = 0.0176.
370 In comparison to Fig. 5, we have increased the photon lifetime 7 = %”s inside the cavity to
sn plot Fig. 6. Beyond some parameter change, the features at Fig. 6 are similar to those in Fig. 5.
s However, we realize in Figs. 6 (a)-(d), and Figs. 6 (e)-(h), that during the propagation, the
sz wave amplitude initially decreases. Thereafter, we observe a stage of constant amplitude with
s patterns, that ends by aperiodic wave structures. Here, we note that when the soliton becomes
ws stable, the two wave behave in phases, with the same intensity. As mentioned at the beginning
se  of this section, the class B laser is described by three- or four- level atomic schemes, where the
;7 extra levels are necessary for obtaining population inversion with large lifetime of population
ws inversion, which is a necessary condition to for amplification and lasing [15]. Obviously, the
w0 propagation of the soliton is altered. Moreover, when the quintic nonlinearity (quintic loss and
;0 coupled) is not taken into account, the soliton amplitude abruptly and exponentially decreases

s under MI and does not show any change. So, in order for stable periodic soliton to form, all

s terms in Eq. (13) should be considered.

20
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Figure 6: Two-dimensional manifestation of MI at different instants: (a) and (e) T" = 25, (b)
and (f) 7' = 400, (c) and (g) 7" = 5000, (d) and (h) 7" = 50000. (a) to (d) correspond to B_,
(e) to (h) correspond to B,.
383 In general, the balance between gain/loss and diffraction/nonlinearities gives rise to plane
s« wave disintegration, main characteristics of MI. This leads to localized modes that display
;s interesting and new behaviors, related to the change in the laser cavity parameters. This

s means that with more choices of suitable parameters, the system might display more exotic

sz behaviors under the activation of the MI.

388 6 COIICIU.SiOIl

;0 In summary, the first achievement of the present work was the successful derivation of the
10 (3+1)D vectorial cubic-quintic complex GL equation, modeling the interaction of an electro-
s magnetic field with matter in a laser, near the lasing threshold. Then, in the second one, we
52 used the linear stability analysis to find the instability criteria and growth rate of instability
53 from which we got regions of parameters where wave patterns can emerge in the studied model.
s This has been followed by direct numerical simulation, on the generic model, in order to confirm
35 our analytical predictions. A good agreement between the two approaches has been obtained,

306 especially the disintegration of the plane wave solutions into nonlinear waves patterns.
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Appendix : Multimodal method

The equations describing the interaction of electromagnetic field with the matter is described
by the Maxwell-Bloch equation Egs. (1.1)-(1.3). The quantities E, P and D are taken in the

following form

E= Z el n;] E} (r) exp(inwt), (A.1)
P= Z e’ n; P’ (r) exp(inwt), (A.2)
D= Z el n; DZ%(r) exp(inwt), (A.3)

under the conditions E;" = (E})*, P;" = (P})*, and D;" = (D})*. We assume that

permanent electric field, that leads to
Vj > 0 leads to E) = 0. (A.4)
We focus our study to the case of E = E], D} = Dy In the presence of the intense field in

the system, we have Dy << (E or ) Inserting the relation of P and D given from Eq.

W
(24) into Egs. (1.2)-(1.3), it comes, for any ¢!  the following relations:
we [(1 —n?)w, + 171 ] (P + PL + PL + ..) = —g Y. (DI + 2D+ ...) (eE} + €EL + ...) (A.5)
. p+q=n
() + inw,) (€D} + €Dy +...) = 2 5 q(eE} + 2B} + ..) (P + €2P% + P +..),  (A.6)
ptq=n
where p and ¢ can take the negative values, and p+q = n. For any power of ¢, solving these equa-
en=0: PY=0, D= D,.

en=1: P}:W( 1+Z’“>E}, D! =o.

en=0: Py=0 Dj=2 (PiE' —P E).
e,n=1: Py=-2 (DVE}), Dj=0.
2 YL Wa i 1 1
tion, we have obtained: n=2: P;=0, Dj= (’Y\\imwa) (P El) :
S n=0: P)=0 DO= qu (PE;' — P,'E]) .
¢n=1: Py=_-(DJE; +DIE"), D} =0.
Sn=2: P3=0, Dgzﬁ(PéE}).
I T2*Wa

63,n =3: Pg = m <D2E1) Dg = 0,
with P = eP1+2Py+ePy with Py = Py, Py =P, and Py = P3+P3. (A.16)

In the following we performs the nonlinear perturbation analysis near the laser threshold
by introducing a small parameter defined by Dy = Doc + €Dy (€ << 1), (X,Y) = e(z,y),

(Z,T) = (1) [24].

E 0 E; E,

oE 0 0. Eq 0 Es

P = 0 +e€ P1 +e€ P2 +, (A].?)
o P 0 0P 0:P5

D Dy Dy D,
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with
E, A
OE, Tw,A A
P, = | a1+ i5)A [elwihs) Loe ALZ (A.18)
AWa 'Lk
oP, v (—1+ wa)A
D, 0
419 Moreover, from the MB equations, some algebraic manipulation yields the following solv-
20 ability condition
0E; . 0E; . 0 N 9 0 0P,
— = —2lw,———2 2——— Al
T Wagp —=!Wa (82 ok, VL) Bimmec™\ 257 (4.19)
0 (9P1 0P,
B Eal <D D)E, A.20
9T o gas 9T g\ Do+ D) By ( )
0Dy 2 0P,
2 — _~D E A.21
ot N ( "o ) (4.21)

21 Combining Egs. (A. 5) and (A. 6) just gives

0E; 2¢(y) —iw,) 0 ) Locg .
= D Dy ) E A.22
Il k—yL + 2w, (9Z V k; 7L+2zwa< ot 2) ! ( )

422 The nonlinearities comes from the interaction between the population inversion and the

w3 electric field. In order to analyze the higher order diffusive term in this system, the higher-

224 order correction 'yf 2P1 is needed to the polarization equation Eq.(31.2)

oT?
w9 = 2w, G — 2w (i + 5 V) By — poct (25 %5) (A23)
) ‘
255 % = a; +71 55 — g (Do + D2) E;. (A.24)
=Nt o (B (A.25)

Substituting Eq.(A.24) into Eq.(A. 23); we obtain

. 2~2 i .
(K — 71 + 2iw,) [1 + m(a% + QkCVi)} %131 = 2¢ (v, — tw,) (az VZ)
+M0C2g (DO + DQ) El. (A26)

, -1
425 Multiplying both sides of Eq. (A. 26 ) by ((/1 — 1+ 2iw,) [1 SR - (% + Q%%Viﬂ)

K—71 +2iw,

26 leads to the following amplitude equation derived by Gil [25]:

a 8 2 a 2 2 * *
o7 A = CiA+C <aZ v >A+03<az v ) A+Cy(A-A)A+C5 (A-A)A*, (A27)

427 wit h
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_ poc*gDo(k—y, +2iw,)
R (P ey (4.28)
. _2c('yl('yl—n)+2wg+iwa(n—37l))
> = ((k=v1)*+4w32) ’ (4.29)
" 03 _ _402w_(»yi(2m77l)+n(nfylf4w32)fi'y; (37i+4wgfn(2'yifn)))’ (A 30)
(e 5200 (k=) +4w?)
_ _Akg(=(h—v1)+2iwa
Ci = hway ((k=v1)*+4w2)” (431)
Cn — 29y (202 +r (k=7 ) —2w2 (k1) —iwa (v (k471 )+26(k—y 1 )+4w? ) ) (A4.32)
b hwq (’Yﬁ+4wg> ((n—u)2+4wg) : :
429 In order to analyze higher order nonlinearities in the system, the nonlinear polarization

0 term Pj3 is need. Therefore, the second correction is need, taking into account the nonlinear

s polarization into the population inversion equation Eq.(A.21)

K = —2iwa i — 2w (5 + 5 V) B — poc® (257 52) (4.33)
250 % = —n %I’Tl +42 58 — g (Do+ Ds) Eu. (4.34)
G =Dz o (El-—a(PlafP”) : (A.35)

D, is again obtained by solving Eq.(A.35):

D2 D2O + D e2z(wat kez) + D*26722 wat—kez) _|_ D 1€ 4i(wat—kcz) + D 741 (wat— k:ez)7 <A36)
432 With
4 kgA*A*? 4 1 1
Dy = ———(—kAA" + =2 (— 4 M )
hptoc?w, Y| fwarye (9 = 20wa) () + 2iwa)
igAZA*? 1 1

(A.37)

G+ 20 (o 20a))
2 20A°A* K 1 2
, - + —
hpoc?w, (W + 2zwa) h Y1 W, ('y” + 22wa) ol

3 ? 1 3k

i (’VH + %wa) (8wg — 3iy1) * (7” + ina) <7_L w, (8w, — 3i7¢)))) (A.38)

4 .
Doy = — 129A , (1 _ ik ) (A.39)
he poc?w, (7” + 4zwa) (8w, — 3ivy,)

Dyy = (—A2(k + iw,) +

a3 Substituting Eq.(A.36) into Eq.(A. 26), we obtain the following (341)D vectorial cubic-quintic
s CGL equation

OA G, ) g,
aT_ZlA+Z2(aZ V)A+23(az
+ 25 (A% - A™?) A+z7 (A% A") A (A.40)

2
VQ) A4z (A-A)A+25(A-A)A”
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5 with
2 ~ i .
oy = HoC gDo (k QVL + 2“%)7 (A.41)
(k=) + 4w
2 _ y _
Y (2w? +v. (7L kzr) + iw, (k 3%))7 (A.42)
(B —v1)" + 4w?
APy (V) 2k —y0) + k (ke — 4w?) — iy 3y + 4wk — k(2v. — k)))
- ) : , (A.43)
((k — ")ﬂ_) + 4wg)
4 - - ' a
oy — kg (k=) : 2iwa) (A.44)
fawgy) ((k —v1)” +4w?)
% (v Qwz + E (k —~71)) — 2w (k + 1) — iwa () (k +71) + 2k (k —y1) + 4w?)) (A.45)
5 = ’ '
B ((k — 70)? + dw?) (fyﬁ n 4wg)
8kg? (v (k +2 10w?) (k — v, — 2iw,
o, — k" (o (b 20y) 1008 ( — 1 — 2iw) (A.46)

W2yt (k= 70)” + du) (97 + 4u2)

436

() (R (39 + 4wg) + 4wy (9T + 64w?) + 3y1yy (8w} + 3ky1) (7] — dwy)
Ag® |+ dywi(=8k +37.1))) (k — v1) + 2w; (((vf — 4w; — 4ky))y) — 4k(vf + 4w])) (971 + 64wy)
+ 3L ((=8k + 3v.1) (7 — 4w?) — 4(8w + 3k~y1)y)))

R OF + 40 (17 + 64u2) (k= 7.)” + du2)
(A.47)
(wa (77 = 4wy + k) — 4k + 4w0?) (972 + 64w3) + 3yv ((—8k + 3v.) (77 — 4wy)
497 | — 4oy (Bwj + 3ky1))) (k—=v1) — 20y (k(37f + 4w?) + 4wy ) (977 + 64w?) + 3way v (8w
o\ ) 0F ) + dud (37, — $4)

WPw2yiy (0 + 4w2)* (972 + 64w?) ((k — v1)* + 4w?)
(A.48)
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