

On a laser (3+1)-dimensional vectorial cubic-quintic complex Ginzburg-Landau equation and modulational instability

Alain Djazet^{1,2*}, Serge I. Fewo^{1†}, Conrad B. Tabi^{3‡}, and Timoléon C. Kofané^{1,2,3§}

¹Laboratoire de Mécanique, Département de Physique, Faculté des Sciences, Université de Yaoundé I, B.P. 812 Yaoundé, Cameroun

²Centre d'Excellence Africain en Technologies de l'Information et de la Communication (CETIC), University of Yaounde I, Cameroon

³Botswana International University of Science and Technology, Private Bag 16 Palapye, Botswana

September 11, 2019

¹ Abstract

² Interaction of an electromagnetic field with matter in a laser cavity without the assumption of a fixed direction of the transverse electric field, described by the two-level Maxwell-Bloch equations, is studied. By using a perturbative nonlinear analysis, performed near the laser threshold, we report on the derivation of the laser (3+1)D vectorial complex cubic-quintic complex Ginzburg-Landau equation. Furthermore, we study the modulational instability of the plane waves both theoretically using the linear stability analysis, and numerically, using direct simulations via the split-step Fourier method. The linear theory predicts instability for any amplitude of the primary waves. Our numerical simulations confirm the theoretical predictions of the linear theory as well as the threshold of the amplitude of perturbations. The system under study shows a deep dependence on the laser cavity parameters, for which there appear wave patterns in accordance with the predictions from the gain spectrum.

¹³

*nguitewo@gmail.com (A. Djazet)

†sergefewo@yahoo.fr (S. I. Fewo)

‡conrad@aims.ac.za or tabic@biust.ac.bw (C. B. Tabi)

§tckofane@yahoo.com (T. C. Kofané)

¹⁴ **Keywords:** Laser cavity; Two-level Maxwell-Bloch equations; Complex Ginzburg-Landau
¹⁵ equation; Modulational instability; Pattern formation.

¹⁶

¹⁷ 1 Introduction

¹⁸ New theoretical approaches, experimental analyses, and systematic use of computer science in
¹⁹ data processing have been developed during the past 20 years in several types of lasers, which
²⁰ are very complex devices, having a rich temporal, spatial, and spatiotemporal dynamics [1].
²¹ These different types of lasers can be classified into [2] Class A (for example, dye lasers) [3, 4],
²² Class B (semiconductor lasers, CO_2 lasers, and solid-sate lasers) [5, 6], and Class C (the only
²³ example is the far-infrared lasers) [7], depending on the decay rate of the photons, the carriers,
²⁴ and the material polarization. However, this classification is not applicable to inhomogeneously
²⁵ broadened lasers that included He-Ne, argon-ion, and Xe lasers, for example. Comparing these
²⁶ lasers, different dynamical features have been described, including instabilities, cascades of bi-
²⁷ furcations, multistability, and sudden chaotic transitions [1]. Many other fascinating features
²⁸ and properties concerned with chaotic dynamics have been extensively addressed in relevant
²⁹ semiconductor laser systems, because of their potential applications in chaotic optical commu-
³⁰ nications [8]. Further studies have suggested that optical cavities, also called cavity solitons,
³¹ are present in a large variety of externally driven optical systems. However, their existence in
³² laser systems is limited to the well-known laser with saturable absorbers, two-photon lasers,
³³ lasers with dense amplifying medium, or lasers pumped by squeezed vacuum [9].

³⁴ Several models have been proposed to describe how the spatiotemporal dynamics emerges
³⁵ in large-aperture lasers. For example, the two-photon lasers have been the subject of continued
³⁶ theoretical attention since the early days of the laser era. The theoretical interest of the two-
³⁷ photon laser lies in the intrinsic nonlinear nature of the two-photon interaction. The most
³⁸ successful theoretical approach is given by the Maxwell-Bloch (MB) equations. In fact, the laser
³⁹ is a system where the number of photons is much larger than one, thus allowing a semi-classical
⁴⁰ treatment of the electromagnetic field inside the cavity through the Maxwell equations, which
⁴¹ has been developed by Lamb [10] and independently by Haken [11]. The semi-classical laser

42 theory ignores the quantum-mechanical nature of the electromagnetic field, and the amplifying
43 medium is modeled quantum mechanically, as a collection of two-level atoms through the Bloch
44 equations.

45 The linear analysis and numerical integration of the full MB equations [12] have been used
46 to interpret the features of the experiment that cannot be fully understood with a perturbative
47 model, such as the observed evolution from order to fully developed turbulence as the Fresnel
48 number increases up to a critical control-parameter threshold [13]. In addition, it has been
49 shown that the MB equations with homogeneous line broadening are appropriate for the de-
50 scription of the amplification of short pulses in the multilevel atomic iodine amplifier [14]. Some
51 prototype of nonlinear evolution equations has been constructed by singular perturbation meth-
52 ods, using the MB equations as the starting point, in order to reproduce the spatiotemporal
53 dynamics of the large-aperture lasers.

54 The first class of prototype equations which describe, for example, the class-A laser pattern
55 dynamics, such as the multi-transverse-mode lasers, is the cubic complex Ginzburg-Landau
56 (CGL) equation. In fact, the existence of a vortex solution of the laser equations, the stabil-
57 ity of symmetric vortex lattices in the laser beams, the transition to nonsymmetric patterns
58 dominated by tilted waves, and to disordered spatial distribution have been well-reproduced by
59 the cubic CGL equation [15, 16]. To prevent the "blowup" of the solutions of the cubic CGL
60 equation for negative detuning, the laser cubic CGL equation, which possesses fourth- and
61 higher-order diffusion terms and which describes correctly the excitation of transverse modes
62 and structure formation in a laser, has been derived [17]. It should also be mentioned that the
63 adiabatic elimination of irrelevant variables has been shown to be very sensitive to the method
64 used for the perturbation expansions in the case of partial differential equations which describe
65 laser dynamics. That is why the center manifold theorem for the elimination of irrelevant vari-
66 ables has been used, leading to the cubic CGL equation in the small-field limit. The particular
67 feature of the center manifold theory is that it is a solid mathematical framework within which
68 the fast variables as well as the characteristic scaling of the long-term dynamics are properly
69 determined [18]. It has also been shown that the cubic-quintic CGL equation is a continuous
70 approximation to the dynamics of the field in a passively mode-locked laser [19].

71 The second class of prototype equations which provides the generic description of transverse
72 pattern formation in wide aperture, single longitudinal mode, two-level lasers, when the laser is
73 operating near peak gain, is the complex Swift - Hohenberg equation for class A and C lasers [20].
74 Indeed, the complex Swift - Hohenberg equation comes naturally as a solvability condition for
75 the existence of solutions to the MB laser equations in the form of asymptotic series in powers
76 of the small detuning parameter [20]. In addition, when the laser pattern dynamics is sensitive
77 to the degree of stiffness of the original physical problem, such as in the class-B lasers, the
78 amplitude equations are the complex Swift - Hohenberg equation coupled to a mean flow [20],
79 which is consistent with the observation that the population inversion variable in the MB laser
80 equations acts as a weakly damped mode. Otherwise, the Swift-Hohenberg equation has been
81 considered for a passive optical cavity driven by an external coherent field, valid close to the
82 onset of optical bistability [21]. Moreover, theoretical studies of spatiotemporal structures of
83 lasers with a large Fresnel number of the laser cavity have been successfully described in the
84 cases in which two coupled fields are involved in the dynamics for class-B lasers. For example, it
85 has been shown that the homogeneous steady-state solution may be destabilized by two generic
86 instabilities. The first is a long wavelength instability which is related to the phase invariance
87 of the electromagnetic field and is described by a scalar field obeying the Kuramoto-Shivasinsky
88 equation. The second is a short wavelength instability which corresponds to a Hopf bifurcation
89 and is described by a complex field which obeys a Swift-Hohenberg equation.

90 The third class of prototype equations which contains a phenomenological aspect and whose
91 use in the theoretical description of the pulse dynamics in a mode-locked laser was pioneered
92 by Haus and Mecozzi [22]. Assuming that only one polarization state plays a role and that the
93 change of the pulse per round trip is small, so that one can replace the discrete laser components
94 with continuous approximations, Haus and Mecozzi [22] obtained a master equation which is
95 nothing but the stationary version of the cubic CGL equation. The coefficients that appear in
96 the model were related to the physical parameters in a rather phenomenological way [22, 23].

97 All these three classes of prototype equations are scalar since it is usually considered that the
98 polarization degree of freedom of the electromagnetic field is fixed either by material anisotropies
99 or by experimental arrangement. Thus, the description of the dynamics is done in terms of a

scalar field. It has been shown that the cavity-synchronous phase or amplitude modulation technique transforms passively mode-locked optical oscillators into actively mode-locked lasers [24]. Mixing passive and active mode-locking in the same device results in a new class of optical oscillators capable of generating short pulses. To model this laser system, as an example, the scalar cubic-quintic CGL equation has been used with terms corresponding to active mode-locking in addition to the usual passive mode-locking terms [25]. However, the inclusion of a quintic saturating term in the scalar cubic-quintic CGL equation was shown to be essential for the stability of pulsed solutions [26]. Since the scalar cubic-quintic CGL equation is non-integrable, which means that general analytical solutions are not available, selected analytical solutions can only be found for specific relations between the equation parameters. More complicated solutions for the cubic-quintic CGL equations, such as pulsating, creeping, or exploding solutions have been reported numerically [27]. It is also well known that laser systems are made of several components, an accurate model then should involve consecutive sets of propagation equations. Models can be vectorial, when the polarization nature of light is involved, and can also include the delayed response of the saturable absorber and gain medium. The possibility of vectorial topological defects which are not predictable by the scalar theory were first analyzed by Gil [28]. Using standard perturbative nonlinear analysis performed near the laser threshold, Gil derived a (3+1)-dimensional ((3+1)D) vectorial cubic CGL equation when considering the interaction of an electromagnetic field with matter in a laser cavity without the assumption of a fixed direction of the transverse electric field. Different kinds of pattern formation are present in the dynamic states of the one-spatial dimension (localized structures) [29] and of the two-spatial dimensions (topological defects) [30, 31, 32, 33] for the vectorial cubic CGL equation. Examples are the synchronization properties of spatiotemporally chaotic states [30], the identification of a transition from a glass to a gas phase [31], and the formation and annihilation processes leading to the different types of defects [32]. In addition, creation and annihilation processes of different kinds of vector defects, as well as a transition between different regimes of spatiotemporal dynamics have been described [33].

The objective of the present work is to get a qualitative understanding of the physical processes involved in spatial pattern formation from a two-level atomic system controlled by

129 an intense laser field. The approach taken here parallels that of Gil [28] for the vectorial cubic
 130 CGL equation. We start with the Maxwell-Bloch equations describing the propagation of a
 131 slowly varying field envelope through a collection of two-level atoms when the interaction of
 132 an electromagnetic field with matter in a laser cavity is considered without the assumption
 133 of a fixed direction of the transverse electric field. Then, we report on the derivation of the
 134 laser (3+1)D vectorial cubic-quintic CGL equation. Furthermore, we discuss, theoretically and
 135 numerically, modulational instability (MI) of plane waves on this equation. MI, which is an
 136 indispensable mechanism for understanding pattern formation in a uniform medium, is a process
 137 in which the amplitude and phase modulations of a wave grow under the combined effects of
 138 nonlinearity and diffraction or dispersion in a spatially nonlinear field [34, 35, 36, 37, 38, 39].
 139 We examine their stability by means of both the rigorous analysis of linearized equations for
 140 small perturbations, and in direct numerical simulations to support our analytical results.

141 The rest of the paper is organized as follows. In Sec. II, we derive the laser (3+1) vectorial
 142 cubic-quintic CGL equation which describes the laser pattern dynamics. In Sec. III, the
 143 linear stability analysis of MI is performed, and the instability zones, as well as the analytical
 144 expressions of the gain of MI are obtained. In Sec. IV, we focus on the role played by the
 145 loss/gain coefficient. Then, in Sec. V, we perform direct numerical integrations to check the
 146 validity of the MI conditions found analytically. Section VI concludes the paper.

147 2 Derivation of the laser (3+1)D vectorial cubic-quintic 148 CGL equation

149 We consider the behavior of a slowly varying field envelope through a collection of two-level
 150 atoms with a transition frequency w_a between the lasing levels, and relaxation rate γ_{\perp} and γ_{\parallel}
 151 for the polarization and the population inversion, respectively, and when the interaction of an
 152 electromagnetic field with matter in a laser cavity is considered without the assumption of a
 153 fixed direction of the transverse electric field. The basic equations of motion are the well-known
 154 MB equations [28, 40] written as

$$\frac{\partial^2 \mathbf{E}}{\partial t^2} = -\mu_0 c^2 \frac{\partial^2 \mathbf{P}}{\partial t^2} + c^2 [\nabla^2 \mathbf{E} - \nabla(\nabla \cdot \mathbf{E})] - \kappa \frac{\partial \mathbf{E}}{\partial t}, \quad (1a)$$

155

$$\frac{\partial^2 \mathbf{P}}{\partial t^2} = -\gamma_{\perp} \frac{\partial \mathbf{P}}{\partial t} - w_a^2 \mathbf{P} - g D \mathbf{E}, \quad (1b)$$

156

$$\frac{\partial D}{\partial t} = -\gamma_{\parallel} (D - D_0) + \frac{2}{\hbar w} \left(\mathbf{E} \cdot \frac{\partial \mathbf{P}}{\partial t} \right), \quad (1c)$$

157 where $\nabla = \frac{\partial}{\partial x} \mathbf{i} + \frac{\partial}{\partial y} \mathbf{j} + \frac{\partial}{\partial z} \mathbf{k}$ and $\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$, with \mathbf{i} , \mathbf{j} and \mathbf{k} the spatial directions,
 158 for the envelope of the electric field \mathbf{E} , the envelope variable of the atomic polarization \mathbf{P} , and
 159 the population inversion D , respectively; μ_0 is the magnetic susceptibility, c is the velocity of
 160 light, κ is the cavity damping coefficient and \hbar is Planck's constant. Assuming that the electric
 161 field frequency w is very close to the atomic frequency w_a , it follows that $\hbar w$ is the energy gap
 162 between the two atomic levels, g is the coupling constant between the electric field and the
 163 population inversion, and D_0 is the pumping term [28]. Now, let us concentrate on the atomic
 164 polarization properties of the two-level atoms which can be expanded as

$$\mathbf{P} = \epsilon \mathbf{P}_1 + \epsilon^2 \mathbf{P}_2 + \epsilon^3 \mathbf{P}_3, \quad (2)$$

165 where ϵ is a small parameter. In the following, we assume that the electric field \mathbf{E} is taken
 166 as $\mathbf{E} = \epsilon \mathbf{E}_1$, which restrict, ourselves to the case of a single harmonic. Assuming also that
 167 $\mathbf{E}_1 = \mathbf{E}_1^1$, we obtain

$$\mathbf{P}_1 = \mathbf{P}_1^1, \quad \mathbf{P}_2 = \mathbf{P}_2^1, \quad \mathbf{P}_3 = \mathbf{P}_3^1 + \mathbf{P}_3^3, \quad (3)$$

168 with

$$\mathbf{P}_1^1 = \frac{1}{\mu_0 c^2} \left(-1 + \frac{ik}{w_a} \right) \mathbf{E}_1^1, \quad (4a)$$

169

$$\mathbf{P}_2^1 = \frac{ig}{\gamma_{\perp} w_a} (D_1^0 \mathbf{E}_1^1), \quad (4b)$$

170

$$\mathbf{P}_3^1 = \frac{ig}{\gamma_{\perp} w_a} (D_2^0 \mathbf{E}_1^1 + D_2^2 \mathbf{E}_1^{-1}), \quad (4c)$$

171

$$\mathbf{P}_3^3 = \frac{ig}{(8w_a - 3i\gamma_{\perp})} (D_2^2 \mathbf{E}_1^1), \quad (4d)$$

172 and

$$D_1^0 = D_0, \quad D_2^0 = \frac{2i}{\hbar\gamma_{\parallel}} (\mathbf{P}_1^1 \mathbf{E}_1^{-1} - \mathbf{P}_1^{-1} \mathbf{E}_1^1), \quad D_2^2 = \frac{2i}{\hbar(\gamma_{\parallel} + 2iw_a)} (\mathbf{P}_1^1 \mathbf{E}_1^1) \quad (5)$$

173 (see Appendix).

174 We assume also that the traveling waves are lasing with frequency w_a and critical vector
 175 $k_c = \pm w_a/c$. In addition, the longitudinal direction \mathbf{z} is selected by the geometry of the laser
 176 medium or the mirrors. The direction of propagation is given by $\mathbf{K}_c = k_c \mathbf{z}$, though a priori both
 177 directions of propagation are equiprobable. Once the atomic polarizability is known, the well-
 178 established perturbative nonlinear analysis is performed near the laser threshold by introducing
 179 a small parameter ($\epsilon \ll 1$) defined by [28]

$$D_0 = D_{OC} + \epsilon^2 \tilde{D}_0, \quad (6)$$

where D_{OC} is a critical value given by [28]

$$D_{OC} = \frac{\kappa\gamma_{\perp}}{\mu_0 c^2 g}.$$

180 Now, the laser variable will also depend on two slow spatial and temporal scales, respectively,

$$X = \epsilon x, \quad Y = \epsilon y, \quad (7a)$$

181 and

$$Z = \epsilon^2 z, \quad T = \epsilon^2 t. \quad (7b)$$

182 Then, close enough to the laser threshold, we look for solutions $(\mathbf{E}, \mathbf{P}, D)$ of Eqs. (1) in the
 183 form of a power series expansion in the small parameter ϵ as follows

$$\begin{pmatrix} \mathbf{E} \\ \partial_t \mathbf{E} \\ \mathbf{P} \\ \partial_t \mathbf{P} \\ D \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ D_0 \end{pmatrix} + \epsilon \begin{pmatrix} \mathbf{E}_1 \\ \partial_t \mathbf{E}_1 \\ \mathbf{P}_1 \\ \partial_t \mathbf{P}_1 \\ D_1 \end{pmatrix} + \epsilon^2 \begin{pmatrix} \mathbf{E}_2 \\ \partial_t \mathbf{E}_2 \\ \mathbf{P}_2 \\ \partial_t \mathbf{P}_2 \\ D_2 \end{pmatrix} + \dots \quad (8)$$

184 with

$$\begin{pmatrix} \mathbf{E}_1 \\ \partial_t \mathbf{E}_1 \\ \mathbf{P}_1 \\ \partial_t \mathbf{P}_1 \\ D_1 \end{pmatrix} = \begin{pmatrix} \mathbf{A} \\ iw_a \mathbf{A} \\ \frac{1}{\mu_0 c^2} (-1 + \frac{ik}{w_a}) \mathbf{A} \\ \frac{iw_a}{\mu_0 c^2} (-1 + \frac{ik}{w_a}) \mathbf{A} \\ 0 \end{pmatrix} e^{i(wt - k_c z)} + c.c., \quad (9)$$

185 with $\mathbf{A} \perp \mathbf{Z}$, where \mathbf{A} is slowly varying field amplitude in space and time. After inserting Eqs.
 186 (6)-(8) into the MB equations, rearranging terms and making use of Eqs. (3), (5) and (9), and
 187 identifying the coefficients of powers ϵ at each order, we obtain, by applying the solvability
 188 conditions at $0(\epsilon^2)$ and $0(\epsilon^3)$, the laser $(3+1)D$ vectorial cubic-quintic CGL equation

$$\frac{\partial \mathbf{A}}{\partial T} = z_1 \mathbf{A} - z_2 \left(\frac{\partial}{\partial \mathbf{Z}} + \frac{i}{2k_c} \nabla_{\perp}^2 \right) \mathbf{A} + z_3 \left(\frac{\partial}{\partial Z} + \frac{i}{2k_c} \nabla_{\perp}^2 \right)^2 \mathbf{A} - z_4 (\mathbf{A} \cdot \mathbf{A}^*) \mathbf{A} - z_5 (\mathbf{A} \cdot \mathbf{A}) \mathbf{A}^* \\ + z_6 (\mathbf{A}^2 \cdot \mathbf{A}^{*2}) \mathbf{A} + z_7 (\mathbf{A}^3 \cdot \mathbf{A}^*) \mathbf{A}^*, \quad (10)$$

189 where $\nabla_{\perp}^2 = \frac{\partial^2}{\partial X^2} + \frac{\partial^2}{\partial Y^2}$, represents a two-dimensional Laplacian operator and the asterisk (*)
 190 stands for the complex conjugate, while the coefficients are given in the Appendix. Eq. (10)
 191 describes the behavior of the electric field in the medium (dielectric medium). When coefficients
 192 $z_6 = z_7 = 0$, in Eq. (10), we recover the laser $(3+1)D$ vectorial cubic CGL equation that was
 193 introduced early by Gil [28] as a vector order parameter for an unpolarized laser and its vectorial
 194 topological defects.

195 Due to the highly nonlinear nature of Eq. (10), we introduce a number of useful simplifi-
 196 cations: (i) we use the traditional uniform field limit which requires that both the mirror
 197 transmittivity and the gain per pass of the active medium be small, while their ratio may be
 198 arbitrary but finite; (ii) a large free spectral range; (iii) the number of modes that are signifi-
 199 cantly excited is manageable small [41]; (iv) the fourth-order derivative has been neglected [28].
 200 In this way, the new field amplitude obeys the equation of motion

$$\mathbf{A} = \mathbf{B}(X, Y, T) \exp(-i\Delta Z), \quad (11)$$

201 where the amplitude $B(X, Y, T)$ is governed by the equation

$$\frac{\partial \mathbf{B}}{\partial T} = c_1 \mathbf{B} + c_2 \nabla^2 \mathbf{B} - c_3 (\mathbf{B} \cdot \mathbf{B}^*) \mathbf{B} - c_4 (\mathbf{B} \cdot \mathbf{B}) \mathbf{B}^* + c_5 (\mathbf{B}^2 \cdot \mathbf{B}^{*2}) \mathbf{B} + c_6 (\mathbf{B}^3 \cdot \mathbf{B}^*) \mathbf{B}^*, \quad (12)$$

202 where $c_1 = z_1 + \Delta(-\Delta z_3 + iz_2)$, $c_2 = \frac{(2\Delta z_3 - iz_2)}{2k_c}$, $c_3 = z_4$; $c_4 = z_5$, $c_5 = z_6$, $c_6 = z_7$.
 203 with $\mathbf{B} \perp \mathbf{Z}$. Considering the case where \mathbf{B} has two complex components such as $\mathbf{B} = (B_x, B_y)$
 204 (cartesian components), describing the complex slowly varying amplitudes of the electric field
 205 [42]. The right and left circularly polarized components (B_+, B_-) are related to the cartesian
 206 components by the relations $B_x = (B_+ + B_-)/\sqrt{2}$ and $B_y = (B_+ - B_-)/i\sqrt{2}$. We then obtain

207 the coupled equations describing the dynamics of the circular components after usual scaling
 208 transformations [43]

$$\frac{\partial B_+}{\partial T} = (1 + i\alpha)B_+ + (1 + i\beta)\nabla^2 B_+ + (1 + i\varepsilon)|B_+|^2 B_+ + (1 + i\mu)\nu|B_+|^4 B_+ + (\gamma_r + i\gamma_i)|B_-|^2 B_+ + (\delta_r + i\delta_i)|B_-|^4 B_+ + 2(\delta_r + i\delta_i)|B_-|^2|B_+|^2 B_+, \quad (13a)$$

$$\frac{\partial B_-}{\partial T} = (1 + i\alpha)B_- + (1 + i\beta)\nabla^2 B_- + (1 + i\varepsilon)|B_-|^2 B_- + (1 + i\mu)\nu|B_-|^4 B_- + (\gamma_r + i\gamma_i)|B_+|^2 B_- + (\delta_r + i\delta_i)|B_+|^4 B_- + 2(\delta_r + i\delta_i)|B_+|^2|B_-|^2 B_-, \quad (13b)$$

210 where

$$\begin{aligned} \alpha &= -c_{1i}/c_{1r}, \quad \beta = c_{2i}/c_{2r}, \quad \varepsilon = c_{3i}/c_{3r}, \quad \mu = c_{5i}/c_{5r}, \quad \gamma_r = (c_{3r} + 2c_{4r})/c_{3r}, \\ \gamma_i &= (c_{3i} + 2c_{4i})/c_{3r}, \quad \delta_r = -(c_{5r} + 3c_{6r})/2c_{5r}, \quad \delta_i = -(c_{5i} + 3c_{6i})/2c_{5r}, \end{aligned} \quad (14)$$

211 with $\nu = \text{sign}(c_{5r}/c_{3r}^2)$, $(X, Y) = \sqrt{c_{2r}}(X, Y)$, $B_{\pm} = B_{\pm}/\sqrt{c_{3r}}$. In Eq. (13), $\nabla^2 B_+$ and $\nabla^2 B_-$
 212 represent a two-dimensional Laplacian operator describing diffraction in the transverse (X, Y) plane,
 213 $|B_+|^2 B_+$ and $|B_-|^2 B_-$ denote the cubic self-phase modulation (SPM), $|B_-|^2 B_+$ and
 214 $|B_+|^2 B_-$ correspond to the cubic cross-phase modulation (XPM), $|B_+|^4 B_+$ and $|B_-|^2 B_-$ denote
 215 the quintic SPM, $|B_-|^2|B_+|^2 B_+$ and $|B_+|^2|B_-|^2 B_-$ represent the mixed quintic XPM, and
 216 $|B_-|^4 B_+$ and $|B_+|^4 B_-$ denote the quintic XPM. In the following δ , β , ε , μ , γ_r , γ_i , δ_r , and
 217 δ_i are real parameters of SPM and XPM terms of Eq. (13). α is related to the linear loss
 218 ($\alpha < 0$) or gain ($\alpha > 0$). β is related to the strength of diffraction, and ε to the nonlinear
 219 frequency detuning. μ stands for the saturation of the nonlinear frequency detuning, γ_r and
 220 γ_i are the nonlinear cross coefficients related to the cubic XPM, δ_r and δ_i are the nonlinear
 221 cross coefficients related to the quintic XPM, ν represents the nonlinear coefficient related to
 222 the quintic SPM.

223 3 Modulational instability: Linear analysis

224 MI constitutes one of the most fundamental effects associated with wave propagation in non-
 225 linear media. It signifies the exponential growth of a weak perturbation of the wave as it
 226 propagates. The gain leads to the amplification of sidebands, which break up the otherwise
 227 uniform wave and generate fine localized structures. Thus, it may act as a precursor for the

228 formation of bright solitons. In order to study the MI of Eqs.(13a) and (13b), describing the
 229 dynamics of the circular components, we use the standard linear stability analysis. In doing so,
 230 we consider the propagation of the exact continuous-wave solutions of Eqs.(13a) and (13b) to
 231 take the form of two plane waves [39]

$$B_+ = M \exp\{i(k_1 X + l_1 Y - w_1 T)\}, \quad (15a)$$

232

$$B_- = P \exp\{i(k_2 X + l_2 Y - w_2 T)\}, \quad (15b)$$

233 where the positive real numbers M and P represent the amplitudes of waves $B_+(X, Y, T)$ and
 234 $B_-(X, Y, T)$, respectively. w_1 and w_2 are real numbers representing the angular frequencies.
 235 The wave vectors are represented by real numbers k_1 , k_2 , l_1 , and l_2 . The substitution of plane
 236 wave solutions B_+ and B_- into the system of the coupled cubic-quintic CGLE Eqs. (13a) and
 237 (13b) leads to a set of four equations (requiring both imaginary and real parts to be zero),
 238 representing the dispersion relations

$$1 - (k_1^2 + l_1^2) + (1 + \nu M^2) M^2 + \left(\gamma_r + \frac{1}{2} \delta_r P^2 \right) P^2 + \delta_r P^2 M^2 = 0, \quad (16a)$$

239

$$1 - (k_2^2 + l_2^2) + (1 + \nu P^2) P^2 + \left(\gamma_r + \frac{1}{2} \delta_r M^2 \right) M^2 + \delta_r P^2 M^2 = 0, \quad (16b)$$

240

$$w_1 = \nu \mu M^4 - (\varepsilon + P^2 \delta_i) M^2 - \frac{1}{2} P^4 \delta_i - \alpha + \beta (k_1^2 + l_1^2) - \gamma_i P^2, \quad (16c)$$

241

$$w_2 = \nu \mu P^4 - (\varepsilon + M^2 \delta_i) P^2 - \frac{1}{2} M^4 \delta_i - \alpha + \beta (k_2^2 + l_2^2) - \gamma_i M^2. \quad (16d)$$

242 Assuming that $B_+(X, Y, T)$ and $B_-(X, Y, T)$ remain space-independent during propagation
 243 inside the medium, i.e., $B_+ = M e^{(-i w_1 T)}$ and $B_- = P e^{(i w_2 T)}$, Eqs. (16a)-(16d) are readily
 244 solved to obtain the steady-state solutions. For the case where $P = M$, it follows that

$$M_{\pm} = \sqrt{\frac{-(1 + \gamma_r) \pm \sqrt{(1 + \gamma_r)^2 - 2(2\nu + 3\delta_r)}}{(2\nu + 3\delta_r)}}. \quad (17)$$

245 For $P \neq M$, and M given by Eq. (17), we obtain

$$P_{\pm} = \sqrt{\frac{-(\gamma_r + M^2\delta_r) \pm \sqrt{(\gamma_r + M^2\delta_r)^2 - 2\delta_r(1 + P^2 + \nu P^4)}}{\delta_r}}, \quad (18)$$

246 and

$$w_1 = -\nu\mu M^4 - (\varepsilon + P^2\delta_i)M^2 - \frac{1}{2}P^4\delta_i - \alpha - \gamma_i P^2, \quad (19a)$$

247

$$w_2 = -\nu\mu P^4 - (\varepsilon + M^2\delta_i)P^2 - \frac{1}{2}M^4\delta_i - \alpha - \gamma_i M^2. \quad (19b)$$

248 Then, the plane wave solutions are completely defined as functions of the model parameters.

249 Therefore, the question about the stability of these steady-state solutions arises. To have more
250 insights, a perturbation analysis is conducted in order to verify if these solutions are stable
251 against small perturbations. Assuming perturbations in the form

$$B_+(X, Y, T) = [P + \epsilon V(X, Y, T)] e^{i(k_2 X + l_2 Y - w_2 T)}, \quad (20a)$$

252

$$B_-(X, Y, T) = [M + \epsilon U(X, Y, T)] e^{i(k_1 X + l_1 Y - w_1 T)}, \quad (20b)$$

253 where $U(X, Y, T)$ and $V(X, Y, T)$ are small deviations from the stationary solutions of the
254 right and left circular polarized components, i.e., both $|U(X, Y, T)|$ and $|V(X, Y, T)|$ are small
255 compared to M and P . Substituting Eqs. (20) into Eqs.(13a) and (13b), and linearizing in U
256 and V , we obtain that the dynamical equations for the perturbations are written as

$$\begin{aligned} \frac{\partial U}{\partial T} = & (1 + i\beta)\nabla_{\perp}^2 U + 2(-\beta + i)(k_1 \frac{\partial U}{\partial x} + l_1 \frac{\partial U}{\partial y}) + (1 + i\varepsilon)M^2(U + U^*) \\ & + (\gamma_r + i\gamma_i)MP(V + V^*) + \nu(1 + i\mu)M^4(U + U^*) \end{aligned} \quad (21a)$$

$$+ 2(\delta_r + i\delta_i)M^2P^2(U + U^*) + (\delta_r + i\delta_i)(MP^3 + M^3P)(V + V^*),$$

257

$$\begin{aligned} \frac{\partial V}{\partial T} = & (1 + i\beta)\nabla_{\perp}^2 V + 2(-\beta + i)(k_2 \frac{\partial V}{\partial x} + l_2 \frac{\partial V}{\partial y}) + (1 + i\varepsilon)P^2(V + V^*) \\ & + (\gamma_r + i\gamma_i)MP(U + U^*) + \nu(1 + i\mu)P^4(V + V^*) \end{aligned} \quad (21b)$$

$$+ 2(\delta_r + i\delta_i)M^2P^2(V + V^*) + (\delta_r + i\delta_i)(MP^3 + M^3P)(U + U^*),$$

258 where $U^*(V^*)$ stands for the complex conjugate of the perturbation in the field amplitude. This
 259 pair of coupled complex linear equations can be solved by taking its general solutions as

$$U(X, Y, T) = A_1 e^{i(KX+LY-\Omega T)} + A_2^* e^{-i(KX+LY-\Omega^* T)}, \quad (22a)$$

260

$$V(X, Y, T) = B_1 e^{i(KX+LY-\Omega T)} + B_2^* e^{-i(KX+LY-\Omega^* T)}, \quad (22b)$$

261 where K and L are the wave numbers, Ω is the modulation frequency, A_1 , A_2 , B_1 , and B_2 are
 262 constant complex amplitudes. By substituting Eq. (22) into the pair of coupled complex linear
 263 equations (21a) and (21b), we obtain a linear homogeneous system of equations in terms of A_1 ,
 264 A_2 , B_1 and B_2 , i.e.,

$$H \times (A_1 \quad A_2 \quad B_1 \quad B_2)^T = 0, \quad (23)$$

265 where the fourth-order square matrix of the system is given by

$$H = \begin{pmatrix} (n_{11} + i\Omega) & n_{12} & n_{13} & n_{12} \\ n_{21} & (n_{23} + i\Omega) & n_{22} & n_{22} \\ n_{12} & n_{12} & (n_{32} + i\Omega) & n_{34} \\ n_{22} & n_{22} & n_{42} & (n_{44} + i\Omega) \end{pmatrix}, \quad (24)$$

266 with the matrix elements $n_{i,j}$ ($i, j = 1, 2, 3, 4$) being

$$\begin{aligned} n_{11} &= -(1 + i\beta)(l^2 + k^2 + 2(Ll_1 + Kk_1)) + (1 + i\varepsilon)M^2 + 2\nu(1 + i\mu)M^4 + 2(\delta_r + i\delta_i)M^2P^2 \\ n_{12} &= (\gamma_r + i\gamma_i)MP + 2(\delta_r + i\delta_i)(MP^3 + M^3P), \\ n_{13} &= (1 + i\varepsilon)M^2 + 2\nu(1 + i\mu)M^4 + 2(\delta_r + i\delta_i)M^2P^2, \\ n_{21} &= (1 - i\varepsilon)M^2 + 2\nu(1 - i\mu)M^4 + 2(\delta_r - i\delta_i)M^2P^2, \\ n_{22} &= (\gamma_r - i\gamma_i)MP + 2(\delta_r - i\delta_i)(MP^3 + M^3P), \\ n_{23} &= -(1 - i\beta)(l^2 + k^2 - 2(Ll_1 + Kk_1)) + (1 - i\varepsilon)M^2 + 2\nu(1 - i\mu)M^4 + 2(\delta_r - i\delta_i)M^2P^2, \\ n_{32} &= -(1 + i\beta)(l^2 + k^2 + 2(Ll_2 + Kk_2)) + (1 + i\varepsilon)P^2 + 2\nu(1 + i\mu)P^4 + 2(\delta_r + i\delta_i)M^2P^2, \\ n_{34} &= (1 + i\varepsilon)P^2 + 2\nu(1 + i\mu)P^4 + 2(\delta_r + i\delta_i)M^2P^2, \\ n_{42} &= (1 - i\varepsilon)P^2 + 2\nu(1 - i\mu)P^4 + 2(\delta_r - i\delta_i)M^2P^2, \\ n_{44} &= -(1 - i\beta)(l^2 + k^2 - 2(Ll_2 + Kk_2)) + (1 - i\varepsilon)P^2 + 2\nu(1 - i\mu)P^4 + 2(\delta_r - i\delta_i)M^2P^2. \end{aligned}$$

267 The nontrivial solutions of this system require that $\text{Det}(H) = 0$, which leads to the nonlinear
 268 dispersion relation

$$\Omega^4 + C\Omega^3 + D\Omega^2 + E\Omega + F = 0, \quad (25)$$

269 where

$$\begin{aligned}
 C &= -I(n_{32} + n_{11} + n_{23} + n_{44}), \\
 D &= -n_{32}(n_{44} + n_{11}) - n_{23}(n_{32} + n_{11} + n_{44}) + (n_{12} + n_{22})^2 + n_{34}n_{42} + n_{21}n_{13} - n_{44}n_{11}, \\
 E &= In_{22}^2(n_{34} + n_{13} - n_{32} - n_{11}) + In_{12}^2(n_{42} + n_{21} - n_{44} - n_{23}) + In_{12}n_{22}(n_{21} + n_{13} + n_{34} \\
 &\quad + n_{42} - n_{11} - n_{23} - n_{44} - n_{32}) + In_{11}(n_{44}n_{23} + n_{32}n_{23} + n_{44}n_{32} - n_{42}n_{34}) \\
 &\quad - In_{21}n_{13}(n_{44} + n_{32}) + In_{23}(n_{44}n_{32} - n_{34}n_{42}), \\
 F &= n_{11}(n_{22}^2(n_{34} - n_{32}) + n_{12}n_{22}(n_{42} - n_{44}) + n_{23}(n_{44}n_{32} - n_{34}n_{42}) + n_{23}(n_{32}n_{44} - n_{43}n_{42})) \\
 &\quad + n_{12}^2(n_{44}(n_{21} - n_{23}) + n_{42}(n_{23} - n_{21})) + n_{12}(n_{22}n_{23}(n_{34} - n_{32}) + n_{22}(n_{21}(n_{32} - n_{34}) \\
 &\quad + n_{13}(n_{44} - n_{42}))) + n_{13}n_{22}^2(n_{32} - n_{34}) + n_{21}n_{13}(n_{34}n_{42} - n_{32}n_{44}).
 \end{aligned}$$

270 It is obvious that the coefficients in Eq. (25) are complex, and are functions of the wave vectors,
 271 amplitudes and system parameters, respectively. It is important to mention that an equation
 272 similar to Eq. (25) was obtained by Gholam-Ali et al. [39]. Nevertheless, one should note that
 273 our results encompasses theirs, due to the presence of additional terms brought by the model
 274 under consideration. These new terms are proportional to the complex parameters $(\delta_r + i\delta_i)$
 275 in the relation defining the quantities n_{jk} ($j, k = 1, \dots, 4$) of the 4×4 complex matrix H . From
 276 the solutions of the dispersion relation, we investigate about the stability of the steady-state
 277 solutions by determining the MI gain. In that direction, the roots of the dispersion relation
 278 (25) are found to be

$$\Omega_{+}^{\pm} = \pm \frac{1}{2} \sqrt{\frac{-C^3 + 4CD - 8E}{4P_2} + \frac{3C^2}{4} - 2D - p_2^2} - \frac{C}{4} + \frac{p_2}{2}, \quad (26a)$$

$$\Omega_{-}^{\pm} = \pm \frac{1}{2} \sqrt{-\frac{-C^3 + 4CD - 8E}{4P_2} + \frac{3C^2}{4} - 2D - p_2^2} - \frac{C}{4} - \frac{p_2}{2}, \quad (26b)$$

280 where $P_2 = \sqrt{\frac{C^2}{4} + \frac{-3CE + D^2 + 12F}{3P_1} - \frac{2D - p_1}{3}}$, $p_1 = 2^{-1/3} \sqrt[3]{p_0 + 27C^2F - 9CDE + 2D^3 - 72DF + 27E^3}$,
 281 and $p_0 = \sqrt{(27C^2F - 9CDE + 2D^3 - 72DF + 27E)^2 - 4(-3CE + D^2 + 12F)^3}$.

282 As it is obvious, the quantities Ω_{\pm}^+ and Ω_{\pm}^- depend on the laser cavity parameters that
 283 are included in the dispersion relation coefficients. MI occurs only when at least one of the
 284 eigenvalues of the stability matrix H possesses a nonzero and negative imaginary part, which
 285 results in an exponential growth of the amplitude with the perturbation. MI is measured by
 286 the power gain and is defined as

$$G_{\pm}^{\pm} = 2\text{Im}(\Omega_{\pm}^{\pm}) > 0, \quad (27)$$

287 where $\text{Im}(\Omega_{\pm}^{\pm})$ denotes the imaginary part of Ω_{\pm}^{\pm} [39, 44].

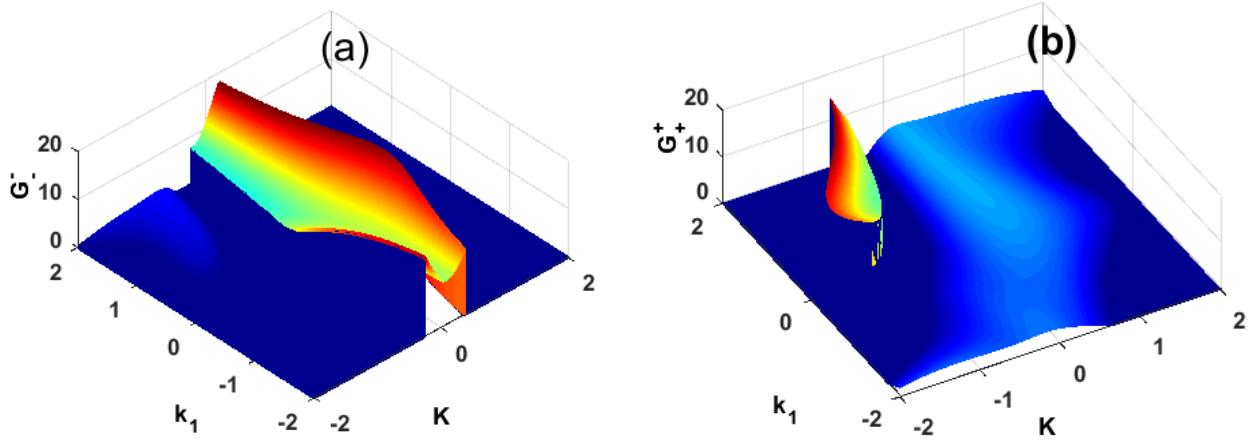


Figure 1: (Color online) Gain spectrum versus perturbed wavenumber K and non perturbed wavenumber k_1 , at $l_1 = 10.20$; $l_2 = 10$; $k_2 = 1$, and $L = 0.4$.

288 4 MI Analysis

289 Considering the MI gain (see Eq. (22)), several qualitative situations emerge depending on
 290 the system parameters. The regions of instability are called MI gain spectra and this takes
 291 place when $G_-^- = 2\text{Im}(\Omega_-^-) > 0$, or $G_-^+ = 2\text{Im}(\Omega_-^+) > 0$, or $G_+^- = 2\text{Im}(\Omega_+^-) > 0$, or $G_+^+ =$
 292 $2\text{Im}(\Omega_+^+) > 0$. It is well-known that pattern formation may take place in the cubic-quintic CGL
 293 equation when the gain/loss and diffraction/nonlinearities are well balanced. We start our
 294 investigation by analysing the influence of wavenumbers K and k_1 on the MI. We consider the
 295 following parameters of MB equation, $\gamma_\perp = 9.9 \times 10^{10} s^{-1}$, $\gamma_\parallel = 3 \times 10^7 s^{-1}$, $w_a = 0.52 \times 10^9 s^{-1}$,
 296 $\kappa = 6.9 \times 10^7$, $\tilde{D}_0 = 12.5$ and the lasing wavelength $\lambda = 10.6 \mu\text{m}$ [40], Fig. 1 shows the
 297 dependence of the gain G with respect to the wavenumbers K and k_1 .

298 Figs. 1(a) and (b), describe the MI process given by Ω_+^+ (see 26(a)) and Ω_-^- (see 26(b)),
 299 respectively . Fig. 1(a) shows the MI process around the perturbed wavenumber $K = 0$, and
 300 in Fig. 1(b), the maximum instability is isolated in the domains $K < 0$ and $k_1 > 0$, the second
 301 domain of hight intensity, but lower than the preceding isolate MI domain for the same figure
 302 is observed around $K = 0$. Fig. 2 shows more insight the manifestation of the MI when
 303 increasing the value of w_a .

304 Figs. 2 (a) and 2 (c) correspond to the MI gain spectrum related to Ω_-^- , and Figs. 2 (b)
 305 and 2 (d) correspond to Ω_+^+ . Figures 2 (a) and 2 (b) are obtained for $w_a = 0.34 \times 10^9 s^{-1}$, Fig.
 306 2 (a), in particular seems similar to Fig. 1 (a), while the edge and the width of the sidelobe

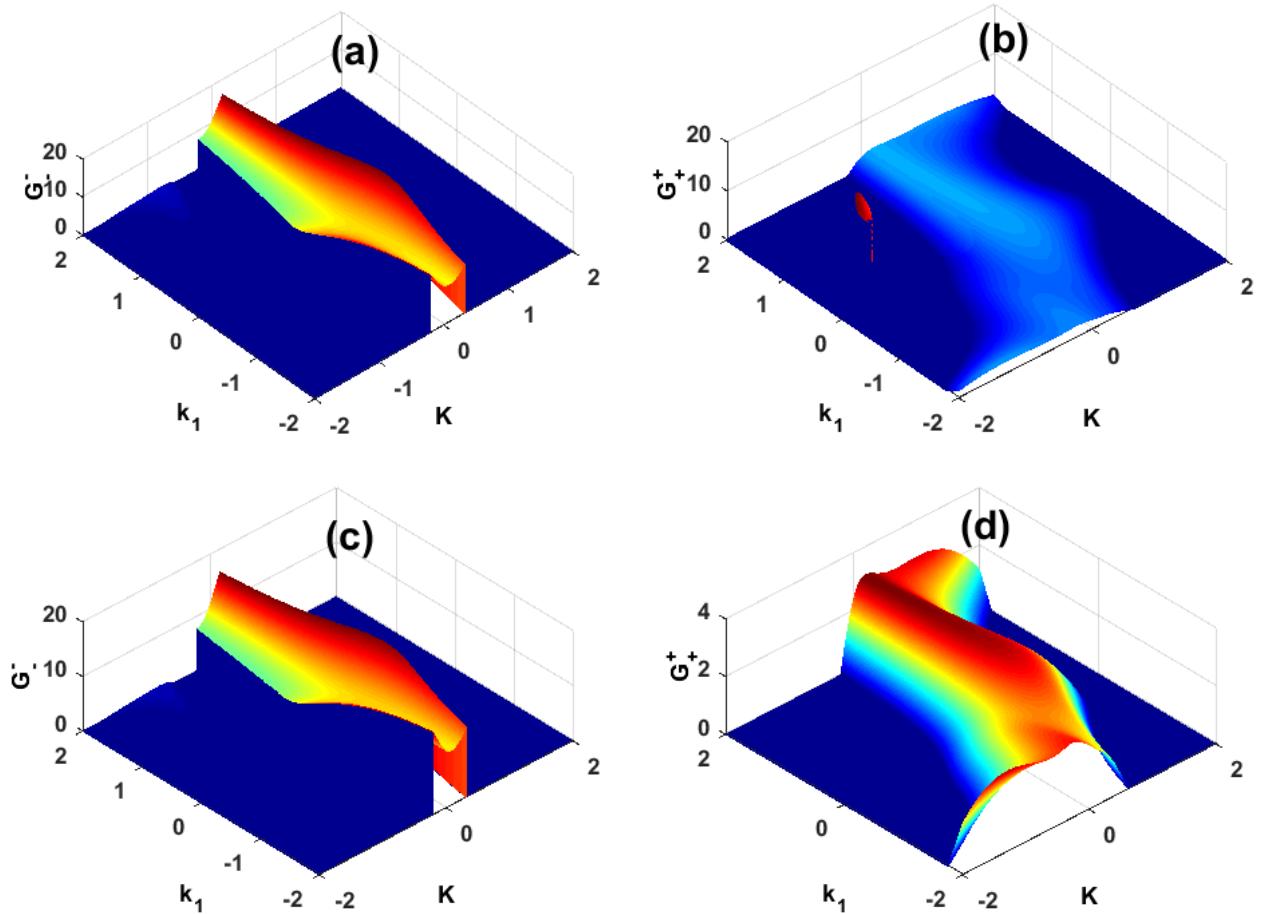


Figure 2: (Color online) First line Gain spectrum related to the solution Ω_- and Ω_+ in the second line, versus the perturbed wavenumber K and the wavenumber k_1 at $\kappa = 6.9 \times 10^7$, $\gamma_\perp = 3.9 \times 10^{10}$, $\gamma_\parallel = 3 \times 10^7$. (a) and (b) $w_a = 0.34 \times 10^9$, (c) and (d) $w_a = 0.52 \times 10^9$.

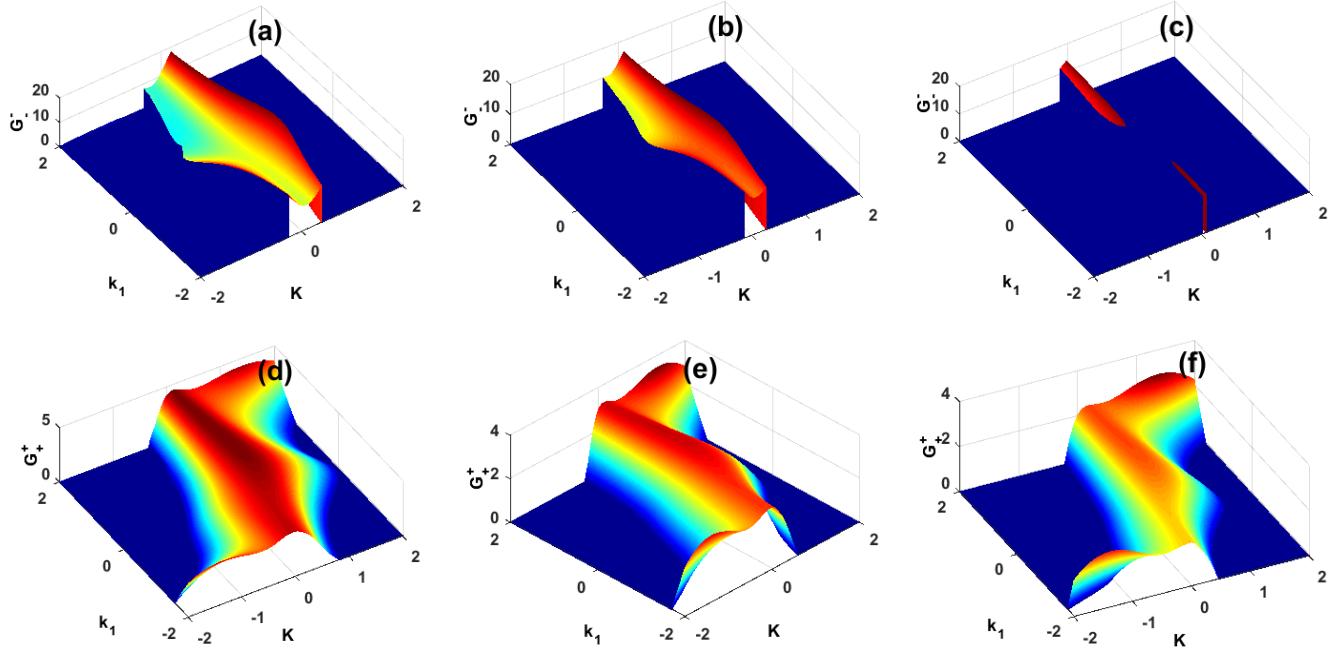


Figure 3: Color online) first line Gain spectrum related to the solution Ω_-^- and Ω_+^+ in the second line, versus the perturbed wavenumber K and the wavenumber k_1 at $w_a = 0.52 \times 10^9$, $\gamma_\perp = 3.9 \times 10^{10}$, $\gamma_\parallel = 3 \times 10^7$. (a) and (d) $\kappa = 6.9 \times 10^7$, (b) and (e) $\kappa = 4.9 \times 10^7$, and (c) and (e) $\kappa = 4.1 \times 10^7$.

307 observed in Fig. 1 (b), have been considerably reduced keeping the same intensity (see Fig 2
 308 (b)). On the other hand, when slightly increasing the value of w_a to 0.52×10^9 , we observe in
 309 Fig. 2 (d), the disappearance of the sidelobe obtained in Fig. 2 (b) and Fig. 1 (b). Also, the
 310 intensity of the MI gain of Fig. 2 (d) has decreased in comparison to Figs. 1 (b) and Figs. 2(b),
 311 and more importantly, unstable waves may be expected for $0.5 \leq w_a \leq w_{acr}$.

312 Next, we analyze the influence of the cavity damping coefficient κ on the MI. Here, we
 313 keep the rest of the parameters of the MB equation the same as in Figs. 2 (c) and (d), while
 314 varying the cavity damping coefficient κ . Fig. 3 shows the gain spectrum for $\kappa = 6.9 \times 10^7 s^{-1}$,
 315 $\kappa = 4.9 \times 10^7 s^{-1}$ and $\kappa = 4.1 \times 10^7 s^{-1}$, respectively, with $\gamma_\perp = 3.9 \times 10^{10} s^{-1}$.

316 In Figs. 3(a) - (c), the gain spectrum is symmetric with respect to the line $K = 0$ and
 317 the MI gain decreases with the decreasing of κ , and collapses for $0.41 < \kappa < \kappa_{cr}$. Despite the
 318 decreasing of the width of the MI gain G_-^- , its intensity remains constant when decreasing the
 319 value of κ . Figs. 3(d) - (f) describe the evolution of the MI gain when κ decreases. Contrary
 320 to the MI gain spectrum G_-^- , the gain spectrum G_+^+ evolves with low intensity, and it also
 321 decreases when κ decreases. The same remark is made on its width (see Figs. 3(d)-(f)). As a

322 whole, we have noted the disappearance of the MI gain spectrum for $\kappa < 4 \times 10^7 s^{-1}$. Otherwise,
 323 for $\kappa = 4.9 \times 10^7 s^{-1}$, we have observed that when increasing γ_{\parallel} , the MI gain spectrum also
 324 disappears at $\gamma_{\parallel} \simeq 3.9 \times 10^7 s^{-1}$. This suitably agree with the fact that in class B laser,
 325 $\gamma_{\perp} \gg \kappa > \gamma_{\parallel}$ [28, 40].

326 So, to enhance the MI gain, we can adjust the system in order for its parameters to corre-
 327 spond to a specific class of laser, such as class B laser which is the concern of this work. They
 328 can bring about new sidebands, shift the existing sidebands, or merge them.

329 As noticed in this analysis, laser parameters are very influential to the occurrence of MI,
 330 especially when plane wave parameters fall well inside the instability domain. Under such
 331 conditions, the plane wave solution will be said to be unstable under modulation, and the
 332 direct consequence will be its disintegration into nonlinear wave patterns. Otherwise, wave
 333 modulation will not take place, since the choice of parameters will not be favorable to a suitable
 334 balance between gain/loss and diffractive/nonlinear effects.

335 5 Numerical simulations

336 To further study the MI phenomena, numerical simulations are reported in this section. They
 337 are in fact used to check the accuracy of our analytical predictions. Computer simulations
 338 are performed using the laser (2+1)D vectorial cubic-quintic CGL Eq. (13) by means of the
 339 split-step Fourier Method, with a time-step $\Delta T = 10^{-3}$, on a mesh of size 100×100 , with
 340 space-steps $\Delta X = \Delta Y = 0.01$ and fixed boundary conditions at the edges of the domain. The
 341 used initial conditions are slightly modulated plane waves given by [32]

$$342 B_{-}(X, Y, T = 0) = M [1 + A_m \sin(2\pi(KX + LY))] e^{-i(k_1 X + l_1 Y)}, \quad (28a)$$

$$343 B_{+}(X, Y, T = 0) = P [1 + A_p \sin(2\pi(KX + LY))] e^{-i(k_2 X + l_2 Y)}, \quad (28b)$$

344 where A_m and A_p are amplitude modulations, K and L are the frequencies of weak sinusoidal
 345 modulations imposed on the continuous waves, in the X and Y directions, respectively.

346 For the rest, we consider the competing effects between of cubic and quintic terms based
 347 on the laser parameters. From various numerical examples, we note that when $\kappa > \gamma_{\parallel}$, the

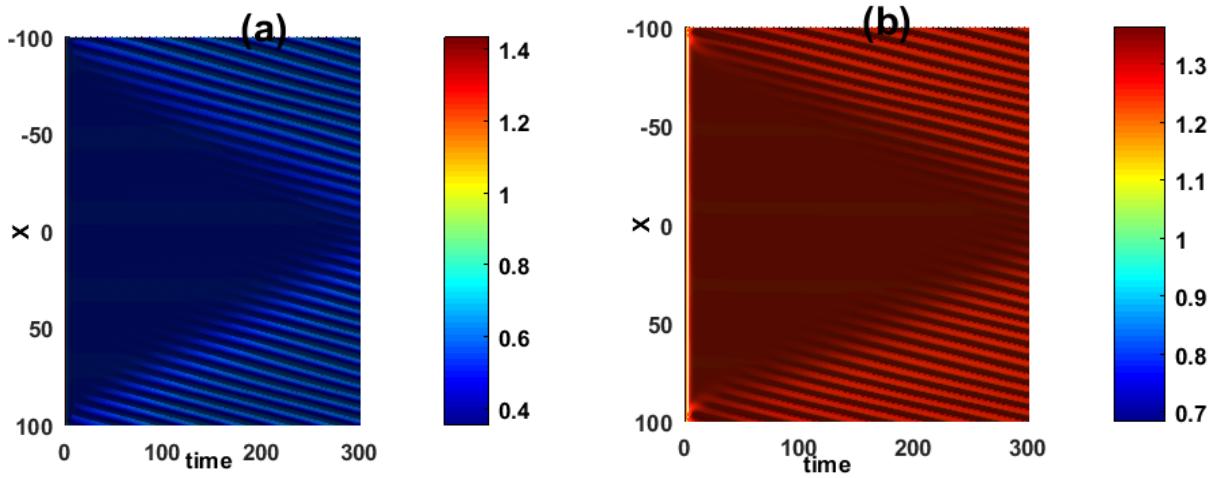


Figure 4: Panels (a) and (b) show the evolution of a plane wave leading to chaotic behavior at $\alpha = -0.0147$, $\beta = 0.0147$, $\varepsilon = 0.0267$, $\gamma_r = 1.4892$, $\gamma_i = 0.0147$, $\mu = 0.0267$, $\delta_r = -0.5013$, and $\delta_i = 0.0170$.

347 outcome is the generation of periodic or nonlinear structures, due to the competition between
 348 loss and gain, diffraction and nonlinearity. However, when we neglect the quintic nonlinear term
 349 [28], the system does not show any propagation, but collapses after laps time of propagation.
 350 However, keeping only the quintic nonlinearity term, we obtain the generation of incoherent
 351 patterns.

352 Fig. 4 shows the space-time plot of a continuous wave, under MI, using the parameters
 353 $w_a = 0.52 \times 10^9 s^{-1}$, $\gamma_{\perp} = 3.9 \times 10^{10} s^{-1}$, $\gamma_{\parallel} = 3.85 \times 10^7 s^{-1}$, and $\kappa = 4.9 \times 10^7 s^{-1}$. The related
 354 dissipation parameters are given in the figure caption. MI manifests itself with the appearance
 355 of new instability features, where Figs. 4(a) and (b) show the spatiotemporal evolution of
 356 $B_-(X, 0, T)$ and $B_+(X, 0, T)$, respectively, represented by their corresponding density plots.
 357 In two dimensions, the phenomenon is more ostensible as shown in Fig. 5, at different times,
 358 where panels Figs. 5 (a)-(d) are obtained at the respective times $T = 0$, $T = 400$, $T = 2000$ and
 359 $T = 10000$. There is, in fact, an exponential decrease of the wave amplitudes at the initial time
 360 of propagation, followed by an important explosion of wave amplitudes, with lower intensities.
 361 This, in fact, corroborates our predictions, which, due to the chosen parameter values from the
 362 gain spectrum (see Fig. 3(e)), lead to the disintegration of the initial plane wave solutions.

363 Figure 6 reveals more insight into the effect of the relaxation rate γ_{\perp} and γ_{\parallel} for the po-
 364 larization and the population inversion, respectively, the atomic frequency w_a and the cavity
 365 damping coefficient κ , on the generation of nonlinear structures. The following experimental

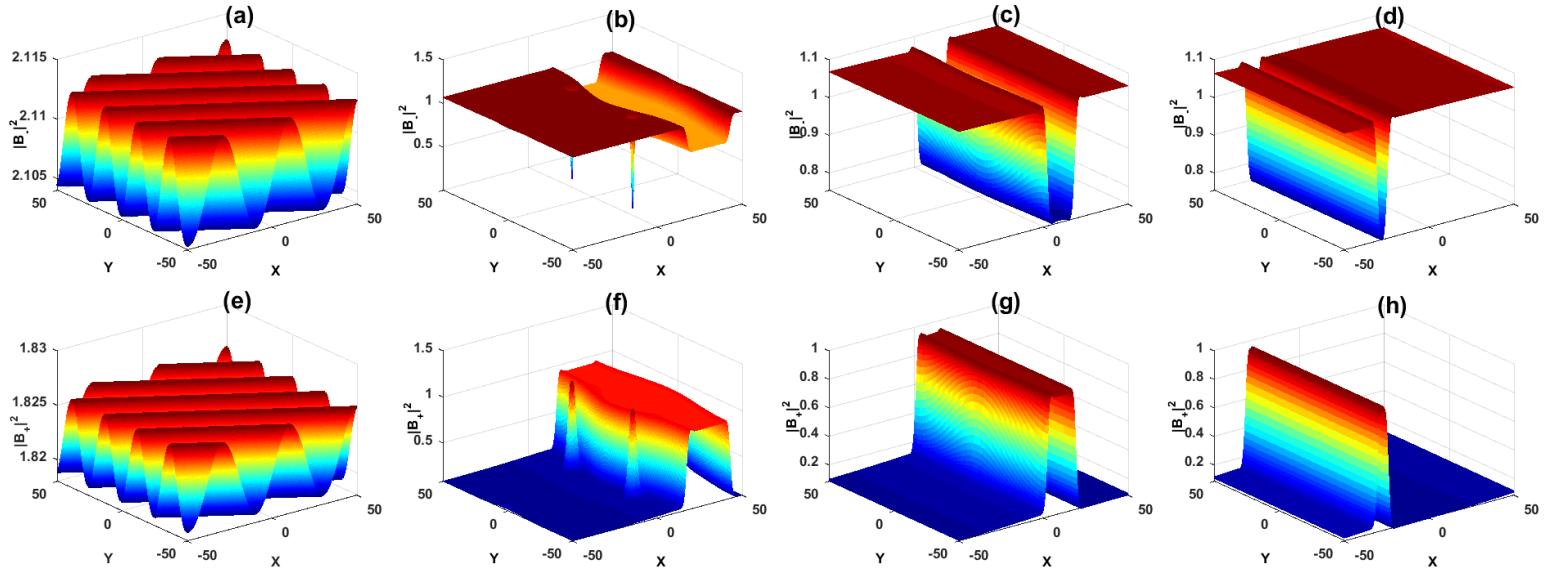


Figure 5: Two-dimensional manifestation of MI at different instants: (a) and (e) $T = 2$, (b) and (f) $T = 400$, (c) and (g) $T = 2000$, (d) and (h) $T = 10000$. (a) to (d) correspond to B_- , (e) to (h) correspond to B_+ .

parameter values have been used [40]: $\lambda = 10.6\mu m$, $\gamma_{\perp} = 3.95 \times 10^9 s^{-1}$, $\gamma_{\parallel} = 4.5 \times 10^6 s^{-1}$, $w_a = 2.8 \times 10^8 s^{-1}$, linear loss $\alpha = -0.0401$, diffusion parameter $\beta = 0.0401$, cubic nonlinear gain $\varepsilon = 0.0267$, quintic nonlinear loss $\mu = -0.0267$, cubic coupled parameters $\gamma_r = 1.3952$ and $\gamma_i = 0.0148$, and quintic coupled parameters $\delta_r = -0.5013$ and $\delta_i = 0.0176$.

In comparison to Fig. 5, we have increased the photon lifetime $\tau = \frac{1}{\gamma_{\parallel}} s$ inside the cavity to plot Fig. 6. Beyond some parameter change, the features at Fig. 6 are similar to those in Fig. 5. However, we realize in Figs. 6 (a)-(d), and Figs. 6 (e)-(h), that during the propagation, the wave amplitude initially decreases. Thereafter, we observe a stage of constant amplitude with patterns, that ends by aperiodic wave structures. Here, we note that when the soliton becomes stable, the two wave behave in phases, with the same intensity. As mentioned at the beginning of this section, the class B laser is described by three- or four- level atomic schemes, where the extra levels are necessary for obtaining population inversion with large lifetime of population inversion, which is a necessary condition to for amplification and lasing [45]. Obviously, the propagation of the soliton is altered. Moreover, when the quintic nonlinearity (quintic loss and coupled) is not taken into account, the soliton amplitude abruptly and exponentially decreases under MI and does not show any change. So, in order for stable periodic soliton to form, all terms in Eq. (13) should be considered.



Figure 6: Two-dimensional manifestation of MI at different instants: (a) and (e) $T = 25$, (b) and (f) $T = 400$, (c) and (g) $T = 5000$, (d) and (h) $T = 50000$. (a) to (d) correspond to B_- , (e) to (h) correspond to B_+ .

383 In general, the balance between gain/loss and diffraction/nonlinearities gives rise to plane
 384 wave disintegration, main characteristics of MI. This leads to localized modes that display
 385 interesting and new behaviors, related to the change in the laser cavity parameters. This
 386 means that with more choices of suitable parameters, the system might display more exotic
 387 behaviors under the activation of the MI.

388 6 Conclusion

389 In summary, the first achievement of the present work was the successful derivation of the
 390 (3+1)D vectorial cubic-quintic complex GL equation, modeling the interaction of an electro-
 391 magnetic field with matter in a laser, near the lasing threshold. Then, in the second one, we
 392 used the linear stability analysis to find the instability criteria and growth rate of instability
 393 from which we got regions of parameters where wave patterns can emerge in the studied model.
 394 This has been followed by direct numerical simulation, on the generic model, in order to confirm
 395 our analytical predictions. A good agreement between the two approaches has been obtained,
 396 especially the disintegration of the plane wave solutions into nonlinear waves patterns.

397 Acknowledgments

398 The authors would like to thank the CETIC (University of Yaoundé I, Cameroon) for their
399 helpful support. CBT has received research grant from the Botswana International University
400 of Science and Technology, under the grant **DVC/RDI/2/1/16I (25)**. CBT also thanks the
401 Kavli Institute for Theoretical Physics (KITP), University of California Santa Barbara (USA),
402 where this work was supported in part by the National Science Foundation, Grant no.NSF
403 **PHY-1748958**.

404 Appendix : Multimodal method

405 The equations describing the interaction of electromagnetic field with the matter is described
 406 by the Maxwell-Bloch equation Eqs. (1.1)-(1.3). The quantities \mathbf{E} , \mathbf{P} and D are taken in the
 407 following form

$$\mathbf{E} = \sum_{j=1}^{\infty} \epsilon^j \sum_{n=-j}^{+j} \mathbf{E}_j^n(r) \exp(inwt), \quad (A.1)$$

$$\mathbf{P} = \sum_{j=1}^{\infty} \epsilon^j \sum_{n=-j}^{+j} \mathbf{P}_j^n(r) \exp(inwt), \quad (A.2)$$

$$D = \sum_{j=1}^{\infty} \epsilon^j \sum_{n=-j}^{+j} D_j^n(r) \exp(inwt), \quad (A.3)$$

409 under the conditions $\mathbf{E}_j^{-n} = (\mathbf{E}_j^n)^*$, $\mathbf{P}_j^{-n} = (\mathbf{P}_j^n)^*$, and $D_j^{-n} = (D_j^n)^*$. We assume that
 410 permanent electric field, that leads to

$$\forall j > 0 \text{ leads to } \mathbf{E}_j^0 = 0. \quad (A.4)$$

411 We focus our study to the case of $E = E_1^1$, $D_0^0 = D_0$ In the presence of the intense field in
 412 the system, we have $D_0 \ll \frac{2}{\hbar w_a} (E \cdot \frac{\partial P}{\partial t})$. Inserting the relation of \mathbf{P} and D given from Eq.
 413 (24) into Eqs. (1.2)-(1.3), it comes, for any $e^{inw_a t}$, the following relations:

$$w_a [(1 - n^2) w_a + i\gamma_{\perp}] (\epsilon \mathbf{P}_1^n + \epsilon^2 \mathbf{P}_2^n + \epsilon^3 \mathbf{P}_3^n + ...) = -g \sum_{p+q=n} (\epsilon D_1^q + \epsilon^2 D_2^q + ...) (\epsilon \mathbf{E}_1^p + \epsilon^2 \mathbf{E}_2^p + ...) \quad (A.5)$$

$$(\gamma_{\parallel} + inw_a) (\epsilon D_1^n + \epsilon^2 D_2^n + ...) = \frac{2i}{\hbar} \sum_{p+q=n} q (\epsilon \mathbf{E}_1^p + \epsilon^2 \mathbf{E}_2^p + ...) (\epsilon \mathbf{P}_1^q + \epsilon^2 \mathbf{P}_2^q + \epsilon^3 \mathbf{P}_3^q + ..), \quad (A.6)$$

414 where p and q can take the negative values, and $p+q = n$. For any power of ϵ , solving these equa-

$$\epsilon^1, n = 0 : \quad \mathbf{P}_1^0 = 0, \quad D_1^0 = D_0.$$

$$\epsilon^1, n = 1 : \quad \mathbf{P}_1^1 = \frac{1}{\mu_0 c^2} \left(-1 + \frac{ik}{w_a} \right) \mathbf{E}_1^1, \quad D_1^1 = 0.$$

$$\epsilon^2, n = 0 : \quad \mathbf{P}_2^0 = 0, \quad D_2^0 = \frac{2i}{\hbar \gamma_{\parallel}} (\mathbf{P}_1^1 \mathbf{E}_1^{-1} - \mathbf{P}_1^{-1} \mathbf{E}_1^1).$$

$$\epsilon^2, n = 1 : \quad \mathbf{P}_2^1 = \frac{ig}{\gamma_{\perp} w_a} (D_1^0 \mathbf{E}_1^1), \quad D_2^1 = 0.$$

415 416 where p and q can take the negative values, and $p+q = n$. For any power of ϵ , solving these equa-

$$\epsilon^2, n = 2 : \quad \mathbf{P}_2^2 = 0, \quad D_2^2 = \frac{2i}{\hbar(\gamma_{\parallel} + 2iw_a)} (\mathbf{P}_1^1 \mathbf{E}_1^1).$$

$$\epsilon^3, n = 0 : \quad \mathbf{P}_3^0 = 0, \quad D_3^0 = \frac{2i}{\hbar \gamma_{\parallel}} (\mathbf{P}_2^1 \mathbf{E}_1^{-1} - \mathbf{P}_2^{-1} \mathbf{E}_1^1).$$

$$\epsilon^3, n = 1 : \quad \mathbf{P}_3^1 = \frac{ig}{\gamma_{\perp} w_a} (D_2^0 \mathbf{E}_1^1 + D_2^2 \mathbf{E}_1^{-1}), \quad D_3^1 = 0.$$

$$\epsilon^3, n = 2 : \quad \mathbf{P}_3^2 = 0, \quad D_3^2 = \frac{2i}{\hbar(\gamma_{\parallel} + 2iw_a)} (\mathbf{P}_2^1 \mathbf{E}_1^1).$$

$$\epsilon^3, n = 3 : \quad \mathbf{P}_3^3 = \frac{ig}{(8w_a - 3i\gamma_{\perp})} (D_2^2 \mathbf{E}_1^1), \quad D_3^3 = 0,$$

417 418 with $\mathbf{P} = \epsilon \mathbf{P}_1 + \epsilon^2 \mathbf{P}_2 + \epsilon^3 \mathbf{P}_3$ with $\mathbf{P}_1 = \mathbf{P}_1^1$, $\mathbf{P}_2 = \mathbf{P}_2^1$ and $\mathbf{P}_3 = \mathbf{P}_3^1 + \mathbf{P}_3^3$. $\quad (A.16)$

In the following we performs the nonlinear perturbation analysis near the laser threshold by introducing a small parameter defined by $D_0 = D_{0C} + \epsilon^2 \tilde{D}_0$ ($\epsilon \ll 1$), $(X, Y) = \epsilon(x, y)$, $(Z, T) = \epsilon^2(z, t)$ [28].

$$\begin{pmatrix} \mathbf{E} \\ \partial_t \mathbf{E} \\ \mathbf{P} \\ \partial_t \mathbf{P} \\ D \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ D_0 \end{pmatrix} + \epsilon \begin{pmatrix} \mathbf{E}_1 \\ \partial_t \mathbf{E}_1 \\ \mathbf{P}_1 \\ \partial_t \mathbf{P}_1 \\ D_1 \end{pmatrix} + \epsilon \begin{pmatrix} \mathbf{E}_2 \\ \partial_t \mathbf{E}_2 \\ \mathbf{P}_2 \\ \partial_t \mathbf{P}_2 \\ D_2 \end{pmatrix} + \dots, \quad (A.17)$$

with

$$\begin{pmatrix} \mathbf{E}_1 \\ \partial_t \mathbf{E}_1 \\ P_1 \\ \partial_t \mathbf{P}_1 \\ D_1 \end{pmatrix} = \begin{pmatrix} A \\ iw_a \mathbf{A} \\ \frac{1}{\mu_0 c^2} (-1 + \frac{ik}{w_a}) \mathbf{A} \\ \frac{iw_a}{\mu_0 c^2} (-1 + \frac{ik}{w_a}) \mathbf{A} \\ 0 \end{pmatrix} e^{i(wt - k_c z)} + c.c., \quad A \perp \hat{Z} \quad (A.18)$$

Moreover, from the MB equations, some algebraic manipulation yields the following solvability condition

$$\kappa \frac{\partial \mathbf{E}_1}{\partial T} = -2iw_a \frac{\partial \mathbf{E}_1}{\partial T} - 2iw_a c \left(\frac{\partial}{\partial Z} + \frac{i}{2k_c} \nabla_{\perp}^2 \right) \mathbf{E}_1 - \mu_0 c^2 \left(2 \frac{\partial}{\partial T} \frac{\partial \mathbf{P}_1}{\partial t} \right), \quad (A.19)$$

$$2 \frac{\partial}{\partial T} \frac{\partial \mathbf{P}_1}{\partial t} = -\gamma_{\perp} 2 \frac{\partial \mathbf{P}_1}{\partial T} - g \left(\tilde{D}_0 + D_2 \right) \mathbf{E}_1, \quad (A.20)$$

$$\frac{\partial D_2}{\partial t} = -\gamma_{\parallel} D_2 + \frac{2}{\hbar w_a} \left(\mathbf{E}_1 \cdot \frac{\partial \mathbf{P}_1}{\partial t} \right) \quad (A.21)$$

Combining Eqs. (A. 5) and (A. 6) just gives

$$\frac{\partial \mathbf{E}_1}{\partial T} = \frac{2c(\gamma_{\perp} - iw_a)}{k - \gamma_{\perp} + 2iw_a} \left(\frac{\partial}{\partial Z} + \frac{i}{2k_c} \nabla_{\perp}^2 \right) \mathbf{E}_1 + \frac{\mu_0 c^2 g}{k - \gamma_{\perp} + 2iw_a} \left(\tilde{D}_0 + D_2 \right) \mathbf{E}_1 \quad (A.22)$$

The nonlinearities comes from the interaction between the population inversion and the electric field. In order to analyze the higher order diffusive term in this system, the higher-order correction $\gamma_{\perp}^2 \frac{\partial^2 \mathbf{P}_1}{\partial T^2}$ is needed to the polarization equation Eq.(31.2)

$$\kappa \frac{\partial \mathbf{E}_1}{\partial T} = -2iw_a \frac{\partial \mathbf{E}_1}{\partial T} - 2iw_a c \left(\frac{\partial}{\partial Z} + \frac{i}{2k_c} \nabla_{\perp}^2 \right) \mathbf{E}_1 - \mu_0 c^2 \left(2 \frac{\partial}{\partial T} \frac{\partial \mathbf{P}_1}{\partial t} \right). \quad (A.23)$$

$$2 \frac{\partial}{\partial T} \frac{\partial \mathbf{P}_1}{\partial t} = -\gamma_{\perp} \frac{\partial \mathbf{P}_1}{\partial t} + \gamma_{\perp}^2 \frac{\partial^2 \mathbf{P}_1}{\partial T^2} - g \left(\tilde{D}_0 + D_2 \right) \mathbf{E}_1. \quad (A.24)$$

$$\frac{\partial D_2}{\partial t} = -\gamma_{\parallel} D_2 + \frac{2}{\hbar w_a} \left(\mathbf{E}_1 \cdot \frac{\partial \mathbf{P}_1}{\partial t} \right). \quad (A.25)$$

Substituting Eq.(A.24) into Eq.(A. 23); we obtain

$$(\kappa - \gamma_{\perp} + 2iw_a) \left[1 + \frac{2\gamma_{\perp}^2}{\kappa - \gamma_{\perp} + 2iw_a} \left(\frac{\partial}{\partial Z} + \frac{i}{2k_c} \nabla_{\perp}^2 \right) \right] \frac{\partial \mathbf{E}_1}{\partial T} = 2c(\gamma_{\perp} - iw_a) \left(\frac{\partial}{\partial Z} + \frac{i}{2k_c} \nabla_{\perp}^2 \right) \mathbf{E}_1 + \mu_0 c^2 g \left(\tilde{D}_0 + D_2 \right) \mathbf{E}_1. \quad (A.26)$$

Multiplying both sides of Eq. (A. 26) by $\left((\kappa - \gamma_{\perp} + 2iw_a) \left[1 + \frac{2\gamma_{\perp}^2}{\kappa - \gamma_{\perp} + 2iw_a} \left(\frac{\partial}{\partial Z} + \frac{i}{2k_c} \nabla_{\perp}^2 \right) \right] \right)^{-1}$ leads to the following amplitude equation derived by Gil [28]:

$$\frac{\partial}{\partial T} \mathbf{A} = C_1 A + C_2 \left(\frac{\partial}{\partial Z} + \frac{i}{2k_c} \nabla_{\perp}^2 \right) \mathbf{A} + C_3 \left(\frac{\partial}{\partial Z} + \frac{i}{2k_c} \nabla_{\perp}^2 \right)^2 \mathbf{A} + C_4 (\mathbf{A} \cdot \mathbf{A}^*) \mathbf{A} + C_5 (\mathbf{A} \cdot \mathbf{A}) \mathbf{A}^*, \quad (A.27)$$

with

$$C_1 = \frac{\mu_0 c^2 g \tilde{D}_0 (\kappa - \gamma_{\perp} + 2iw_a)}{((\kappa - \gamma_{\perp})^2 + 4w_a^2)}, \quad (A.28)$$

$$C_2 = -\frac{2c(\gamma_{\perp}(\gamma_{\perp} - \kappa) + 2w_a^2 + iw_a(\kappa - 3\gamma_{\perp}))}{((\kappa - \gamma_{\perp})^2 + 4w_a^2)}, \quad (A.29)$$

$$C_3 = -\frac{4c^2 \gamma_{\perp} (\gamma_{\perp}^2 (2\kappa - \gamma_{\perp}) + \kappa (\kappa \gamma_{\perp} - 4w_a^2) - i\gamma_{\perp} (3\gamma_{\perp}^2 + 4w_a^2 - \kappa (2\gamma_{\perp}^2 - \kappa)))}{((\kappa - \gamma_{\perp})^2 + 4w_a^2)^2}, \quad (A.30)$$

$$C_4 = \frac{4kg(-(\kappa - \gamma_{\perp}) + 2iw_a)}{\hbar w_a \gamma_{\parallel} ((\kappa - \gamma_{\perp})^2 + 4w_a^2)}, \quad (A.31)$$

$$C_5 = \frac{2g(\gamma_{\parallel} (2w_a^2 + \kappa (\kappa - \gamma_{\parallel}^2)) - 2w_a^2 (\kappa + \gamma_{\perp}) - iw_a (\gamma_{\parallel} (\kappa + \gamma_{\perp}) + 2\kappa (\kappa - \gamma_{\perp}) + 4w_a^2))}{\hbar w_a (\gamma_{\parallel}^2 + 4w_a^2) ((\kappa - \gamma_{\perp})^2 + 4w_a^2)} \quad (A.32).$$

429 In order to analyze higher order nonlinearities in the system, the nonlinear polarization

430 term \mathbf{P}_3 is need. Therefore, the second correction is need, taking into account the nonlinear

431 polarization into the population inversion equation Eq.(A.21)

$$k \frac{\partial \mathbf{E}_1}{\partial T} = -2iw_a \frac{\partial \mathbf{E}_1}{\partial T} - 2iw_a c \left(\frac{\partial}{\partial Z} + \frac{i}{2k_c} \nabla_{\perp}^2 \right) \mathbf{E}_1 - \mu_0 c^2 \left(2 \frac{\partial}{\partial T} \frac{\partial \mathbf{P}_1}{\partial t} \right). \quad (A.33)$$

$$2 \frac{\partial}{\partial T} \frac{\partial \mathbf{P}_1}{\partial t} = -\gamma_{\perp} \frac{\partial \mathbf{P}_1}{\partial T} + \gamma_{\perp}^2 \frac{\partial^2 \mathbf{P}_1}{\partial T^2} - g \left(\tilde{D}_0 + D_2 \right) \mathbf{E}_1. \quad (A.34)$$

$$\frac{\partial D_2}{\partial t} = -\gamma_{\parallel} D_2 + \frac{2}{\hbar w_a} \left(\mathbf{E}_1 \cdot \frac{\partial (\mathbf{P}_1 + \mathbf{P}_3)}{\partial t} \right). \quad (A.35)$$

D_2 is again obtained by solving Eq.(A.35):

$$D_2 = D_{20} + D_{22} e^{2i(w_a t - k_c z)} + D_{22}^* e^{-2i(w_a t - k_c z)} + D_{24} e^{4i(w_a t - k_c z)} + D_{24}^* e^{-4i(w_a t - k_c z)}, \quad (A.36)$$

432 with

$$D_{20} = \frac{4}{\hbar \mu_0 c^2 w_a \gamma_{\parallel}} (-k \mathbf{A} \mathbf{A}^* + \frac{kg \mathbf{A}^2 \mathbf{A}^{*2}}{\hbar w_a \gamma_{\perp}} (\frac{4}{\gamma_{\parallel}} + \frac{1}{(\gamma_{\parallel} - 2iw_a)} + \frac{1}{(\gamma_{\parallel} + 2iw_a)}) + \frac{ig \mathbf{A}^2 \mathbf{A}^{*2}}{\hbar w_a \gamma_{\perp}} (\frac{1}{(\gamma_{\parallel} + 2iw_a)} - \frac{1}{(\gamma_{\parallel} - 2iw_a)})) \quad (A.37)$$

$$D_{22} = \frac{2}{\hbar \mu_0 c^2 w_a (\gamma_{\parallel} + 2iw_a)} (-\mathbf{A}^2 (k + iw_a) + \frac{2g \mathbf{A}^3 \mathbf{A}^*}{\hbar} (\frac{k}{\gamma_{\perp} w_a} (\frac{1}{(\gamma_{\parallel} + 2iw_a)} + \frac{2}{\gamma_{\parallel}}) + \frac{3}{(\gamma_{\parallel} + 2iw_a) (8w_a - 3i\gamma_{\perp})} + \frac{i}{(\gamma_{\parallel} + 2iw_a)} (\frac{1}{\gamma_{\perp}} - \frac{3k}{w_a (8w_a - 3i\gamma_{\perp})}))) \quad (A.38)$$

$$D_{24} = \frac{12g \mathbf{A}^4}{\hbar^2 \mu_0 c^2 w_a (\gamma_{\parallel} + 4iw_a) (8w_a - 3i\gamma_{\perp})} \left(1 - \frac{ik}{w_a} \right) \quad (A.39)$$

433 Substituting Eq.(A.36) into Eq.(A. 26), we obtain the following (3+1)D vectorial cubic-quintic

434 CGL equation

$$\frac{\partial \mathbf{A}}{\partial T} = z_1 \mathbf{A} + z_2 \left(\frac{\partial}{\partial Z} + \frac{i}{2k_c} \nabla_{\perp}^2 \right) \mathbf{A} + z_3 \left(\frac{\partial}{\partial Z} + \frac{i}{2k_c} \nabla_{\perp}^2 \right)^2 \mathbf{A} + z_4 (\mathbf{A} \cdot \mathbf{A}^*) \mathbf{A} + z_5 (\mathbf{A} \cdot \mathbf{A}) \mathbf{A}^* + z_6 (\mathbf{A}^2 \cdot \mathbf{A}^{*2}) \mathbf{A} + z_7 (\mathbf{A}^3 \cdot \mathbf{A}^*) \mathbf{A}^* \quad (A.40)$$

435 with

$$z_1 = \frac{\mu_0 c^2 g \tilde{D}_0 (k - \gamma_{\perp} + 2iw_a)}{(k - \gamma_{\perp})^2 + 4w_a^2}, \quad (A.41)$$

$$z_2 = \frac{2c (2w_a^2 + \gamma_{\perp} (\gamma_{\perp} - k) + iw_a (k - 3\gamma_{\perp}))}{(k - \gamma_{\perp})^2 + 4w_a^2}, \quad (A.42)$$

$$z_3 = \frac{4c^2 \gamma_{\perp} (\gamma_{\perp}^2 (2k - \gamma_{\perp}) + k (k\gamma_{\perp} - 4w_a^2) - i\gamma_{\perp} (3\gamma_{\perp}^2 + 4w_a^2 - k (2\gamma_{\perp} - k)))}{((k - \gamma_{\perp})^2 + 4w_a^2)^2}, \quad (A.43)$$

$$z_4 = \frac{4kg ((k - \gamma_{\perp}) - 2iw_a)}{\hbar w_a \gamma_{\parallel} ((k - \gamma_{\perp})^2 + 4w_a^2)}, \quad (A.44)$$

$$z_5 = \frac{2g (\gamma_{\parallel} (2w_a^2 + k (k - \gamma_{\perp}^2)) - 2w_a^2 (k + \gamma_{\perp}) - iw_a (\gamma_{\parallel} (k + \gamma_{\perp}) + 2k (k - \gamma_{\perp}) + 4w_a^2))}{\hbar w_a ((k - \gamma_{\perp})^2 + 4w_a^2) (\gamma_{\parallel}^2 + 4w_a^2)}, \quad (A.45)$$

$$z_6 = \frac{8kg^2 (\gamma_{\parallel} (k + 2\gamma_{\parallel}) + 10w_a^2) (k - \gamma_{\perp} - 2iw_a)}{\hbar^2 w_a^2 \gamma_{\perp} \gamma_{\parallel}^2 ((k - \gamma_{\perp})^2 + 4w_a^2) (\gamma_{\parallel}^2 + 4w_a^2)}, \quad (A.46)$$

$$z_{7r} = \frac{4g^2 \left((\gamma_{\parallel} (k (3\gamma_{\parallel}^2 + 4w_a^2) + 4w_a^2 \gamma_{\parallel}) (9\gamma_{\perp}^2 + 64w_a^2) + 3\gamma_{\perp} \gamma_{\parallel} ((8w_a^2 + 3k\gamma_{\perp}) (\gamma_{\parallel}^2 - 4w_a^2) + 4\gamma_{\parallel} w_a^2 (-8k + 3\gamma_{\perp})) (k - \gamma_{\perp}) + 2w_a^2 (((\gamma_{\parallel}^2 - 4w_a^2 - 4k\gamma_{\parallel}) \gamma_{\parallel} - 4k(\gamma_{\parallel}^2 + 4w_a^2)) (9\gamma_{\perp}^2 + 64w_a^2) + 3\gamma_{\parallel} \gamma_{\perp} ((-8k + 3\gamma_{\perp}) (\gamma_{\parallel}^2 - 4w_a^2) - 4(8w_a^2 + 3k\gamma_{\perp}) \gamma_{\parallel})) \right)}{\hbar^2 w_a^2 \gamma_{\perp} \gamma_{\parallel} (\gamma_{\parallel}^2 + 4w_a^2)^2 (9\gamma_{\perp}^2 + 64w_a^2) ((k - \gamma_{\perp})^2 + 4w_a^2)} \quad (A.47)$$

$$z_{7i} = \frac{4g^2 \left((w_a (((\gamma_{\parallel}^2 - 4(w_a^2 + k\gamma_{\parallel})) - 4k(\gamma_{\parallel}^2 + 4w_a^2)) (9\gamma_{\perp}^2 + 64w_a^2) + 3\gamma_{\parallel} \gamma_{\perp} ((-8k + 3\gamma_{\perp}) (\gamma_{\parallel}^2 - 4w_a^2) - 4\gamma_{\parallel} (8w_a^2 + 3k\gamma_{\perp})) (k - \gamma_{\perp}) - 2(\gamma_{\parallel} (k (3\gamma_{\parallel}^2 + 4w_a^2) + 4w_a^2 \gamma_{\parallel}) (9\gamma_{\perp}^2 + 64w_a^2) + 3w_a \gamma_{\parallel} \gamma_{\perp} ((8w_a^2 + 3k\gamma_{\perp}) (\gamma_{\parallel}^2 - 4w_a^2) + 4w_a^2 \gamma_{\parallel} (3\gamma_{\perp} - 8k))) \right)}{\hbar^2 w_a^2 \gamma_{\perp} \gamma_{\parallel} (\gamma_{\parallel}^2 + 4w_a^2)^2 (9\gamma_{\perp}^2 + 64w_a^2) ((k - \gamma_{\perp})^2 + 4w_a^2)} \quad (A.48)$$

437 References

438 [1] F. T. Arecchi, S. Boccaletti and P. L. Ramazza, Physics Reports **318**, 1 (1999).

439 [2] J. R. Tredicce, F. T. Arecchi, G. L. Lippi, and G. P. Puccioni, J. Opt. Soc. Am. B **2**, 173
440 (1985).

441 [3] S. Ciuchi, F. de Pasquale, M. San Miguel, and N.B. Abraham, Phys. Rev. A **44**, 7657
442 (1991).

443 [4] E. Hernandez-Garcia, R. Toral, and M. S. Miguel, Phys. Rev. A **42**, 6823 (1990).

444 [5] G. P. Agrawal and N. K. Dutta, Long-Wavelength Semiconductor Lasers (Van Nostrand
445 Reinhold, New York, 1986).

446 [6] C. O. Weiss and R. Vilaseca, Dynamics of Lasers (VCH Publishers, Weinheim, 1991).

447 [7] F. Strumia, in: Advances in laser spectroscopy, eds. F.T. Arecchi, F. Strumia and H. Walther
448 (Plenum Press, New York, 1983) p. 267.

449 [8] P. Colet and R. Roy , J. Opt. Lett. **19**, 2056 (1994).

450 [9] L. Lugiato, F. Prati, and M. Brambilla, Nonlinear Optical Systems (Cambridge University
451 Press, Cambridge, U.K., 2015).

452 [10] W. E. Lamb, Jr., Phys. Rev. **134**, A1429 (1964).

453 [11] H. Haken, Laser Theory (Springer-Verlag, Berlin, 1984).

454 [12] I. Leyva and J. M. Guerra, Phys. Rev. A **66**, 023820 (2002).

455 [13] F. Encinas-Sanz, I. Leyva, and J. M. Guerra, Phys. Rev. Lett. **84**, 883 (2000).

456 [14] M. Riley, T. D. Padrick, and R. Palmer, IEEE J. Quantum Electr. QE **15**, 178 (1979).

457 [15] P. Coullet, L. Gil and F. Rocca, Opt. Commun. **73**, 403 (1989).

458 [16] K. Staliunas and C.O. Weiss, Physica D **81**, 79 (1995).

459 [17] K. Staliunas, Phys. Rev. A **48**, 1573 (1993).

460 [18] G. L. Oppo, G. D'Alessandro and W. J. Firth, Phys. Rev. A **44**, 4712 (1991).

461 [19] J. M. Soto-Crespo, N. N. Akhmediev, and V. V. Afanasjev, J. Opt. Soc. Am. B **13**, 1439
462 (1996).

463 [20] J. Lega, J.V. Moloney and A.C. Newell, Phys. Rev. Lett. **73**, 2978 (1994).

464 [21] M. Tlidi, M. Giorgiou, and P. Mandel, Phys. Rev. A **48**, 4605 (1993).

465 [22] H. A. Haus and A. Mecozzi, IEEE J. Quantum Electron. **29**, 983 (1993).

466 [23] C. R. Menyuk, J. K. Wahlstrand, J. Willits, R. P. Smith, T. R. Schibli, and S. T. Cundiff,
467 Opt. Express **15**, 6677 (2007).

468 [24] W.-W. Hsiang, C.-Y. Lin, and Y. Lai, Opt. Lett. **31**, 1627 (2006).

469 [25] W. Chang, N. Akhmediev, and S. Wabnitz, Phys. Rev. A **80**, 013815 (2009).

470 [26] J. N. Kutz, SIAM Rev. **48**, 629 (2006).

471 [27] J. M. Soto-Crespo, N. Akhmediev, and A. Ankiewicz, Phys. Rev. Lett. **85**, 2937 (2000).

472 [28] L. Gil, Phys. Rev. Lett. **70**, 162 (1993).

473 [29] A. Amengual, E. Hernández-Garcia, R. Montagne and M. San Miguel, Phys. Rev. Lett.
474 **78**, 4379 (1997).

475 [30] E. Hernández-Garcia, M. Hoyuelos, P. Colet, M. San Miguel and R. Montagne, Int. J. Bif.
476 Chaos **9**, 2257 (1999).

477 [31] M. Hoyuelos, E. Hernández-Garcia, P. Colet and M. S. Miguel, Comp. Phys. Comm. **121**,
478 414 (1999).

479 [32] E. Hernández-Garcia, M. Hoyuelos, P. Colet and M. S. Miguel, Phys. Rev. Lett. **85**, 744
480 (2000).

481 [33] M. Hoyuelos, E. Hernández-Garcia, P. Colet and M. S. Miguel, Physica D **174**, 176 (2003).

482 [34] A. J. Kenfack and T. C. Kofane, J. Phys. Soc. Jpn. **72**, 1800 (2003).

483 [35] A. Mohamadou, A. J. Kenfack, and T. C. Kofane, Phys. Rev. E **72**, 036220 (2005).

484 [36] A. Mohamadou, B. E. Ayissi, and T. C. Kofane, Phys. Rev. E **74**, 046604 (2006).

485 [37] C. B. Tabi, I. Maïna, A. Mohamadou, H. P. F. Ekobena and T. C. Kofané, Physica A **435**,
486 1 (2015).

487 [38] C. G. Latchio Tiofack, A. Mohamadou, T. C. Kofane, and A. B. Moubissi, Phys. Rev. E
488 **80**, 066604 (2009).

489 [39] G. Zakeri and E. Yomba, Phys. Rev. E **91**, 062904 (2015).

490 [40] A. E. Siegman: *Lasers* (University Science Books, Mill Valley, 1986), P. 943, Eq. (50) and
491 P. 946, Eq. (56)

492 [41] L. A. Lugiato, G. L. Oppo, J. R. Tredicce, L. M. Narducci, and M. A. Pernigo, J. Opt.
493 Soc. Am. B **7**, 1019 (1990)

494 [42] M. Hoyuelos, E. Hernández-García , P. Colet and M. S. Miguel, Physica D **174**, 176 (2003)

495 [43] Y. Kuramoto: *in Chemical Oscillations, Waves and Turbulence*, ed. by H. Haken, Springer
496 Series in Synergetics Vol. **19** (Springer, Berlin, (1984))

497 [44] P. H. Tatsing, A. Mohamadou, C. Bouri, C. G. Latchio Tiofack and T. C. Kofané, J. Opt.
498 Soc. Am. B **29**, 12 (2012)

499 [45] J. Ohtsubo: *Semiconductor lasers stability, instability and chaos* ed. by Springer series
500 in optical sciences vol. **111** (Springer Verlag, (2008))