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 14 

Abstract: The feasibility of a steady-state visual evoked potential (SSVEP) brain-computer interface 15 

(BCI) with a single flicker stimulus for multiple-target decoding has been demonstrated in a number 16 
of recent studies. The single-flicker BCIs have mainly employed the direction information for 17 
encoding the targets, i.e. different targets are placed at different spatial directions relative to the 18 
flicker stimulus. The present study explored whether visual eccentricity information can also be 19 
used to encode target for the purpose of increasing the number of targets in the single-flicker BCIs. 20 
A total number of 16 targets were encoded, placed at eight spatial directions, and two eccentricities 21 
(2.5° and 5°) relative to a 12 Hz flicker stimulus. Whereas distinct SSVEP topographies were elicited 22 
when participants gazed at targets of different directions, targets of different eccentricities were 23 
mainly represented by different signal-to-noise ratios (SNRs). Using a canonical correlation 24 
analysis-based classification algorithm, simultaneous decoding of both direction and eccentricity 25 
information was achieved, with an offline 16-class accuracy of 66.8±16.4% averaged over 12 26 
participants and a best individual accuracy of 90.0%. Our results demonstrate a single-flicker BCI 27 
with a substantially increased target number towards practical applications. 28 

Keywords: steady-state visual evoked potential; brain-computer interface; direction; eccentricity; 29 

canonical correlation analysis 30 
 31 

1. Introduction 32 

Steady-state visual evoked potential (SSVEP), as one of the most widely used responses in 33 
electroencephalogram (EEG) -based brain-computer interfaces (BCIs), has received sustained 34 
attention [1-7]. When participants attend a periodic visual stimulus, SSVEPs are elicited at the 35 
stimulation frequency and its harmonics [8]. Correspondingly, by encoding different targets with 36 
distinct frequencies, BCI systems can be realized via real-time frequency recognition of the recorded 37 
SSVEPs [3,9]. To date, the frequency-coding SSVEP BCIs have achieved significant progress, featured 38 
by the relatively large number of simultaneously decodable targets and the high communication 39 
speed [5,6], hereby promising for real-life applications such as letter typing.  40 

 When flicker stimuli were presented at different spatial locations in the visual field, distinct 41 
SSVEP responses would be elicited [10]. The phenomenon, known as the retinotopic mapping [11,12], 42 
has gained increasing interest in recent BCI studies. Based on the retinotopic mapping of SSVEP, 43 
while pilot BCI studies have mainly focused on designing visual spatial patterns to increase possible 44 
BCI target numbers [13] or enhance the signal-to-noise ratio (SNR) of SSVEP [14], efforts have been 45 
devoted to decoding the spatial information embedded in SSVEP responses directly recent years 46 
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[15,16]. Unlike the traditional frequency-coded SSVEP BCI paradigm in which SSVEP responses were 47 
modulated by targets with different frequencies [3,9], it is feasible to design a spatially-coded SSVEP 48 
BCI by encoding responses by targets with different spatial locations. Indeed, previous studies have 49 
demonstrated that overtly attending to targets at distinct spatial directions relative to a centrally-50 
displayed flicker stimulus could evoke separable SSVEP responses [15,16]. Moreover, the differences 51 
in responses are sufficient to support the decoding of directions at a single-trial level to achieve a dial 52 
[15] and spatial navigation task [16], suggesting the feasibility of a single-stimulus, multi-targets 53 
SSVEP BCI. Compared with the frequency-coded BCIs in which multiple stimuli are required to 54 
encode multiple targets, this single-stimulus design can considerably simplify the stimulation setup 55 
and the user interface of BCIs [17,18]. In addition, given the fact that the stimulus always appears in 56 
the peripheral visual field, this single-flicker SSVEP BCI paradigm is expected to reduce the visual 57 
burden at the same time [16], indicating its potential to be a good candidate for practical applications.  58 

However, the previous spatially-coded SSVEP studies only utilized spatial directions to encode 59 
targets, the resulting nine- or four-command designs have limited the potential applications of 60 
spatially-coded BCIs when compared with the conventional frequency-coded SSVEP BCIs. For 61 
example, in a drone control task, while previous designs are only sufficient to control the moving 62 
directions, it is possible to send more commands such as speeding, stopping, climbing etc., if more 63 
command channels could be achieved. One way to extend the feasible application scenarios is to 64 
include the visual eccentricity information for increasing the number of targets. Indeed, SSVEP 65 
responses have been observed to reduce along with the increase of the eccentricity of stimuli from 66 
the fixation spot [19], providing neurophysiological evidence in support of the eccentricity decoding 67 
in SSVEP responses. Joint decoding of eccentricity and direction information is expected to 68 
substantially increase the number of targets, by making a better use of the visual spatial information. 69 
Nvertheless, the eccentricity information could contribute to extending the encoding dimension only 70 
when the spatial patterns remain separable even with a large eccentricity. Specifically, the weaker 71 
SSVEP responses along with increasing eccentricities may lead to a reduced accuracy for the direction 72 
classification at the same time, thus influencing the BCI performance in a complex way. Although 73 
there are previous studies suggesting a relatively stable spatial patterns of visual motion-onset 74 
responses with increasing eccentricities [17,18], efforts are still needed to evaluate how visual 75 
eccentricity information modulates the SSVEP responses and whether this modulation could 76 
contribute to decoding visual spatial information at a single-trial level. 77 

In the present study, the feasibility of a spatially-coded BCI to encode targets with both the 78 
eccentricity and direction information simultaneously was evaluated. Eight directions (left, left-up, 79 
up, right-up, right, right-down, down, and left-down) and two eccentricities (2.5° and 5°) relative to 80 
one flicker stimulus were employed to encode 16 targets. During the experiment, participants were 81 
instructed to direct their overt attention to one of the targets with EEG recorded. Then, SSVEP 82 
responses modulated by different visual directions and eccentricities were analyzed, and the 16-83 
target classification performances were evaluated in an offline manner. Our results suggest the 84 
feasibility of the simultaneous decoding of visual eccentricity and direction information based on 85 
SSVEP. 86 

2. Methods  87 

2.1. Participants 88 

Twelve participants (five females, aged from 23 to 28 years, mean 24.8 years) with normal or 89 
corrected-to-normal vision participated in the experiment. All participants were given informed 90 
consent before experiments and received financial compensation for their participation. The study 91 
was approved by the local Ethics Committee at the Department of Psychology, Tsinghua University. 92 

2.2. Visual Stimulation 93 

The visual stimulation in the experiment is illustrated at the top panel of Figure. 1. An LCD 94 
computer monitor (144 Hz refresh rate, 1920×1080 pixel resolution, 23.6-inch, and a viewing distance of 95 
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50 cm) was used to present the stimulation. A white disk (radius = 2.5°) was centrally displayed on the 96 
screen (indicated as the gray disk in the top panel of Fig. 1). During the experiment, the disk flickered 97 
at 12 Hz with a sampled sinusoidal stimulation method [20], forming a flicker stimulus to elicit SSVEPs. 98 
The stimulus lasted 4000 ms in total. One small red square (0.25°×0.25°) would appear on the screen to 99 
indicate where the participants should direct their overt attention during the experiment. There are 16 100 
possible targets arranged surrounding the central circle at eight directions (left, left-up, up, right-up, 101 
right, right-down, down, and left-down) and two eccentricities (2.5° and 5°). Since a previous study 102 
observed a rapid drop of SSVEP responses when the stimulus presented beyond 5° away from the 103 
central fixation spot [19], 2.5° and 5° were chosen conservatively to evaluate the feasibility of eccentricity 104 
decoding in the present study. Eccentricities larger than 5° will be explored in further studies. 105 

 106 

 
 

 
 

Figure 1. Stimulus (top) and timing (bottom) of the experiment.  107 

2.3. Experimental Procedure 108 

The experiment included ten blocks in total. The duration of the inter-block intervals was 109 
controlled by participants themselves with a lower limit of 30 seconds set in the experimental 110 
program. In each block, 16 trials corresponding to each attention target were presented with a random 111 
order. As demonstrated at the bottom panel of Figure. 1, for each trial, one red square was displayed 112 
to cue the to-be-attended target for 1000 ms at the beginning, then following by a 4000-ms flicker 113 
stimulus. The red square existed for the whole flickering duration for the participants to attend. The 114 
inter-trial interval varied from 1000 to 1500 ms, during which participants could blink or swallow. 115 
The Psychophysics Toolbox [20,21] based on MATLAB (The Mathworks, Natick, MA, USA) was 116 
employed to present the stimulation. 117 

2.3. EEG Recordings 118 

EEG was recorded continuously at a sampling rate of 1000 Hz with a SynAmps2 amplifier 119 
(Compumedics NeuroScan, USA). Sixty-four electrodes were recorded according to the international 120 
10-20 system with a reference at the vertex and a forehead ground at AFz. Electrode impedances were 121 
kept below 10 kΩ during the experiment. The experiment was carried out in an electromagnetically 122 
shielded room. 123 

2.4. Data preprocessing 124 

Continuous EEG data were first band-pass filtered to 1.5-80 Hz, and a 50-Hz notch filter was 125 
used to remove the line noise. Next, EEG data were segmented into 4000-ms trials after the onset of 126 
the stimulus, resulting in 10 trials for each of the 16 attentional targets. Then, a set of 9 electrodes 127 
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covering the parietal-occipital (PO5/6/7/8, O1/2, Pz, POz, and Oz), where the SSVEPs typically show 128 
maximal responses, was chosen for further analysis. 129 

2.5. SNR evaluation 130 

In order to describe the SSVEP response strength when attending to targets at different 131 
directions and eccentricities in a quantitively way, a newly-proposed method [22], which could 132 
evaluate the SSVEP SNR of the multi-channel EEG data response while considering multiple 133 
harmonics, was employed in this present study. Here, the stimulus frequency, as well as its second 134 
and third harmonics, were included in SNR calculation and the following-up BCI classification. 135 

First, for each subject, the segmented EEG data were averaged for each attentional target. Then, 136 
the SSVEP signal was defined as the projection of the averaged EEG data in the subspace of the 137 
stimulus frequency and its harmonics, while noise was defined as the residual after the projection. 138 
SNR, which was defined as the ratio between signal and noise, was calculated as the index of the 139 
responses for each attentional target with the formula (1). Details about the mathematical derivation 140 
could be found in [22]. 141 

SNR= 
signal

noise
= 

trace(TϕHϕTH)

trace[T(I-ϕHϕ)TH]
                   (1) 

 142 
Here, T is the 9-channel averaged EEG data, and ϕ is the reference signal. I is a Unit matrix  143 

 144 

      ϕ= 

[
 
 
 
 
 
 
sin(2πfstimt)

cos(2πfstimt)

sin(4πfstimt)

cos(4πfstimt)

sin(6πfstimt)

cos(6πfstimt)]
 
 
 
 
 
 

                 (2) 

 145 
Finally, a two-way repeated measure analysis of variance (RMANOVA) with two within-subject 146 

factors, i.e., direction (left, left-up, up, right-up, right, right-down, down and left-down) and 147 
eccentricity (2.5° and 5°), was conducted to determine their possible effects on the SNR of SSVEP 148 
statistically. P values smaller than 0.05 were considered statistically significant after Greenhouse-149 
Geisser correction. Statistical analyses were performed with SPSS (22.0.0, IBM, Armonk, NewYork, 150 
USA). 151 

2.5. BCI Classification  152 

In the offline performance evaluation, the single-trial 4000-ms EEG data were used for BCI 153 
classification without any artifact rejection. A canonical correlation analysis (CCA) based 154 
classification algorithm [23] was employed to capture the distinct SSVEP patterns, as reported in 155 
[15,16]. Note that all the offline classifications were evaluated with a 10-fold cross-validation 156 
procedure. 157 

First of all, in order to evaluate how directions and eccentricities contribute to the classification 158 
performances, 8-directions classification at each eccentricity and the 2-eccentricity classification in 159 
each direction were conducted.  160 

In the training phase, K-trial EEG data when the participant was attending to the target location 161 
c were concatenated as Xc . Then, the reference signal Y was obtained by replicating the ϕ (see 162 
formula (2)) K times: 163 

Y= [ϕ ϕ… ϕ].                  (3) 

 164 
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Here K is 9 for each target as 90% of the EEG data were used as the training set. CCA was 165 
employed to find spatial filters Wxc and Wy

c
 (c = 1, 2, …, N) to maximize the canonical correlation 166 

𝑟𝑐  = [𝜌1 … 𝜌𝑀] between X and reference signal Y: 167 

      rcWx,Wy
max =

E[Wxc
T XcYTWyc

T ]

√E[Wxc
T XcXTWxc

T ]E[Wyc
T YYTWyc

T ]
              (4) 

 168 
Here, N is the target number. For 8-directions classification, N = 8, and for the 2-eccentricity 169 

classification, N = 2. The M is the number of canonical correlation coefficients and is set as 6, the same 170 
as reported in [15-16]. 171 

Then, for each trial in the training set, a 1×(N*M) feature vector was composed by calculating 172 
the canonical correlations 𝑟𝑐  for all N targets and concatenating them as [r1 r2… rN], which was used 173 
to train a support vector machine (SVM) classifier using the LIBSVM toolbox [24].  174 

In the testing phase, the EEG trial to be classified is filtered with Wxc , and the correlation 175 
coefficients 𝑟𝑐  with the corresponding reference signals Wy

c
ϕ are computed, (c = 1, 2, …, N).The 176 

concatenated correlation coefficients [r1 r2… rN] constituted the feature vector for the testing trial, 177 
which then was used to recognize the target by the classifier.  178 

After decoding the directions and eccentricities separately, a 16-target classification which 179 
decoded the visual eccentricity and direction information simultaneously was conducted with the 180 
above-mentioned CCA method. Here, N = 16. 181 

Finally, in order to evaluate how the visual eccentricity information influences the joint 182 
classification of directions and eccentricities, three conditions: individual filter, 2.5° filter, and 5° filter 183 
were compared. The individual filter means the spatial filters Wxc and Wy

c
 (c = 1, 2, …, 16) were 184 

trained with data from their respective eccentricities, corresponding to the results in Table I. The 2.5° 185 
filter, however, indicates the classification accuracies were calculated all by using spatial filters 186 
trained with data with an eccentricity of 2.5°, even for those with an eccentricity of 5°. The 5° filter 187 
could be explained similarly. 188 

3. Results 189 

As illustrated in Figure. 2, a typical SSVEP response over occipital and parietal areas could be 190 
found across conditions. When attending to targets at different directions and eccentricities, distinct 191 
SNR topographies for SSVEP were elicited with a shift of the response over the parietal-occipital 192 
areas. Specifically, when participants attended to the target at the right side, the flicker stimulus 193 
appeared in their left visual field, leading to a right-dominant response, and the opposite relation 194 
held for the target at the left side, suggesting a contralateral response. In addition, the SSVEP spatial 195 
patterns remained similar, along with the increasing eccentricities of the flicker stimulus. 196 
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Figure 2. The topographies of the SNR of SSVEP from a representative participant (sub 2). The inner 197 
circle represents the eccentricity of 2.5°, while the outer circle represents the eccentricity of 5°. All 198 
SNRs were normalized into z-values so that the positive and negative values indicate SNRs above 199 
and below the mean level across electrodes, respectively, in z units.  200 

Figure. 3 showed the SNRs when attending to targets at different eccentricities and directions. 201 
At the eccentricity of 2.5°, the SNRs are -6.74±3.49 dB, -5.91±4.50 dB, -6.30±4.43 dB, -6.11±3.63 dB, 202 
6.09±4.26 dB, -6.66±4.29 dB, -7.52±4.55 dB, and -7.63 ±4.44 dB for left, left-up, up, right-up, right, right-203 
down, down and left-down, respectively. At the eccentricity of 5°, the SNRs are -9.06±5.11 dB, -8.18 ± 204 
4.97 dB, -8.78±5.21 dB, -8.46 ±5.51 dB,8.95±4.80 dB, -10.23±5.51 dB, -8.85±5.94 dB, and -9.16±5.65 dB for 205 
left, left-up, up, right-up, right, right-down, down and left-down, respectively. In addition, the 206 
baseline SNRs was also calculated from the EEG data recorded during the rest time when no flicker 207 
stimulus existed. The average baseline across paticipants is -17.2±4.01 dB. Obviously, even when 208 
attending to targets at the eccentricity of 5°, SNRs were still much higher than the baseline, suggesting 209 
a robust SSVEP response.  210 
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Figure 3. The bar plot of SNRs when attending to targets at different eccentricities and directions. The 211 
error bar indicated standard errors. 212 

RMANOVA showed a significant main effect of eccentricity on SSVEP SNRs (2.5°> 5°, F(1, 12) 213 
=13.1, p = 0.004), suggesting SNRs decreased as the eccentricity increased. A significant main effect of 214 
the direction was found on SSVEP SNRs (F(1, 12) =2.99, p = 0.042). However, no significance was 215 
found between any two directions in post-hoc tests. Besides, no significant interaction effect was 216 
observed on SSVEP SNR (F(1, 12) =0.73, p = 0.562). 217 
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Figure 4. The 8-direction classification accuracy at the eccentricity of 2.5° and 5°, respectively. The 218 
thick dark line indicated the average accuracy and the thin line indicated accuracies for each subject. 219 
The black dashed line indicated the chance level of classification. 220 

The 8-direction classification accuracies at the eccentricity of 2.5° and 5° are shown in Figure 4. 221 
The accuracies were 75.5±14.9%, and 59.4 ±15.0% at 2.5° and 5°, respectively. As observed, the 222 
classification accuracy is reduced for the targets with the larger eccentricity.  223 

 

 

Figure 5. The boxplot of the 2-eccentricity classification accuracy at each of the eight directions. The 224 
black dashed line indicated the chance level of classification. 225 

As reflected in Figure 5, the 2-eccentricity classification achieved an accuracy of 89.6±15.0%, 91.7 226 
±10.7%, 89.6±13.3%, 84.2 ±11.0%, 91.7±13.0%, 93.8±9.38%, 87.9±16.0%, and 90.4 ±9.00% for left, left-up, 227 
up, right-up, right, right-down, down and left-down, respectively. There was no significant 228 
difference between any pair of directions after a paired t-test with Bonferroni correction.  229 

The results so far demonstrated the feasibility of decoding directions and eccentricities 230 
separately. Then, the 16-target classification results, which decoded directions and eccentricities at 231 
the same time, are summarized in Table I. When using a 4-s data, the mean accuracy across 232 
participants is 66.8 ±16.4%, well above chance level for the 16-target classification problem (i.e., 233 
6.25%). Note that an individual difference could be found in classification accuracies, ranging from 234 
38.8% to 90.0%.  235 

Table 1. The summary of 16-target classification accuracy when using 4-s SSVEP data. 236 

Subject id Accuracy (%) 

1 58.1 

2 86.9 

3 90.0 

4 67.5 

5 59.4 
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6 76.3 

7 80.6 

8 38.8 

9 51.3 

10 45.0 

11 70.6 

12 76.9 

Average 66.8 

Standard 

deviant 
16.4 

 237 
Then, accuracies obtained by using different spatial filters were shown in Figure.6. The 238 

accuracies were 66.8 ±15.7%, 62.3±15.5%, and 61.0 ±16.4% for individual filter, 2.5° filter, and 5° filter 239 
respectively. A decreasing trend can be observed in three conditions. A paired t-test was used to 240 
conduct a comparison with Bonferroni correction. No significant difference between accuracies was 241 
obtained in the individual filter condition and the 2.5° filter condition (t(11)= 2.20, p = 0.956). 242 
Furthermore, although accuracies obtained in both two conditions were higher than those from the 243 
5° filter condition significantly (individual filter > 5° filter, t(11)= 2.20, p <0.001); 2.5° filter> 5° filter, 244 
t(11)= 2.20, p <0.001), it should be noted that the absolute numbers of the accuracies are comparable.  245 

 246 

 

Figure 6. The boxplot of accuracies influenced by spatial filters. The individual filter means the spatial 247 
filters were trained with data from their respective eccentricities. The 2.5° filter label indicates the 248 
classification accuracies were calculated all by using spatial filters trained with data with an 249 
eccentricity of 2.5°. The 5° filter label could be explained in a similar way. The black dashed line 250 
indicated the chance level of classification. 251 

Then, we took a closer look at the classification results as well. First of all, the top panel of Figure. 252 
7 demonstrated the confusion matrix for the 16-target classification (8 directions * 2 eccentricities) 253 
with individual filters. As shown, classification achieved better performance at the eccentricity of 2.5° 254 
than 5°. Most of the misclassification happened between the adjacent directions and eccentricities. 255 
Besides, when using spatial filters trained with data at the eccentricity of 2.5° or 5°, similar but lower 256 
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performances could be obtained as demonstrated in the bottom panel of Figure. 7. Note that no matter 257 
in which filter condition, classifications at the eccentricity of 2.5° always outperformed those at the 258 
eccentricity of 5°.  259 

 

Figure 7. Confusion matrix for 16-target classifications. L, LU, U, RU, R, RD, D, LD are short for left, 260 
left-up, up, right-up, right, right-down, down, and left-down. The rows show true labels and the 261 
columns show predicted labels. The 2.5° filter label means the confusion matrix was calculated by all 262 
using spatial filters trained with data at an eccentricity of 2.5°. The 5° filter label could be explained 263 
in a similar way. The individual filter means the spatial filters were trained with data from their 264 
respective eccentricities. 265 

Finally, we also explored the effect of data length on BCI performance. Data from the first 266 
N seconds (N = 2,3,and 4) within one trial were used to keep the number of trials the same among 267 
different conditions. As shown in Figure. 8, the accuracies were 48.6±17.2%, 59.3±15.5%, and 66.8 268 
±15.7% for using data with a length at 2s, 3s, and 4s, respectively. Although a decreasing trend 269 
could be observed, the 2-s data still provided accuracies well above chance level. 270 
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Figure 8. Classification accuracies as the function of data length. Error bars indicate standard error. 271 
The black dashed line indicated the chance level of classification. 272 

4. Discussion 273 

By encoding targets with visual direction and eccentricity information simultaneously, a single-274 
stimulus 16-target SSVEP BCI was proposed in the present study. When participants attended to 275 
targets at different spatial directions and eccentricities relative to a single flicker stimulus, distinct 276 
SNRs and spatial patterns of SSVEPs could be elicited. For the first time, visual eccentricity is 277 
considered as a classification label in SSVEP responses, and the classification results suggested the 278 
responses modulated by visual eccentricities can be recognized by a machine-classifier at a single-279 
trial level, implying a possible real-time eccentricity decoding. Moreover, the offline 16-target 280 
classification achieved an average accuracy at 66.8% and the best accuracy at 90.0%, suggesting the 281 
feasibility of decoding visual direction and eccentricity information at the same time with only one 282 
stimulus. By utilizing the visual direction and eccentricity information simultaneously, the proposed 283 
single-flicker BCI has increased the number of targets to 16, which is by far the largest number of 284 
targets reported in spatially-coded SSVEP BCIs, indicating its potentials for more practical scenarios. 285 

This present study also took a closer look at how the visual eccentricity information contributed 286 
to this spatially-coding paradigm. First of all, when attending to targets at increased eccentricities, 287 
the corresponding reduced SNRs and decreased 8-direction classification accuracies suggested a 288 
weaker response along with the larger eccentricity. Furthermore, this decrease of SSVEP responses 289 
could be a contributing feature for the eccentricity decoding, supported by the 2-eccentricity 290 
classification accuracies ranged from 84.2% to 93.8% in 8 directions. Then, the 8-direction 291 
classification accuracies at 5° were found to achieve an accuracy of 59.4 ±15.0%, much higher than 292 
chance level. More importantly, compared with those classifications using spatial filters trained from 293 
their corresponding eccentricities, the 16-target classification accuracies, though significantly 294 
decreased, still remained comparable when using spatial filters from data with an eccentricity of 5°. 295 
These classification accuracies provide evidence in support of the weaker yet stable spatial patterns 296 
across eccentricities. Taken all, our results suggested that the decreased SSVEP responses and 297 
relatively stable spatial patterns provided the neural basis of the joint decoding of visual eccentricity 298 
and direction information, supporting the feasibility of the visual eccentricity information as an 299 
encoding dimension in spatially-coded BCIs. Besides, it should also be noted that the feasibility of 300 
transferring spatial filters across eccentricities indicated the potentials to reduce training time, if it is 301 
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possible to train targets at a certain eccentricity, while using targets at multiple eccentricities for 302 
online tasks.   303 

We noticed the individual differences in the classification performance, which may be explained 304 
by the variation of SSVEP signal quality across subjects (see the standard errors in Figure.3). This 305 
phenomenon has been found in previous SSVEP BCI studies as well [16,25,26]. What’s more, it should 306 
be noted that the stimulus in this study was not presented in the center of the visual field, leading to 307 
a smaller visual burden but relatively weak SSVEP responses [19,27]. As suggested in a previous 308 
high-frequency SSVEP study about BCI demographics, the relatively weaker response may result in 309 
a larger individual difference [28]. Therefore, the present study provided the extrafoveal evidence of 310 
individual differences in SSVEP responses as a supplement for findings based on the central vision 311 
stimulation, and the individual differences in classification performances were expected to be 312 
overcome with recent progress in SSVEP BCI algorithms [6, 22, 29].  313 

In order to realize BCI systems for practical applications, there are other issues needed to be 314 
discussed. As a first step to evaluate the feasibility of eccentricity decoding in SSVEP responses, only 315 
two eccentricities and one stimulus frequency were included in the present study, as a further step, 316 
it would also be worthwhile to conduct more explorations to evaluate how the response 317 
characteristics vary when the stimulus appears at the peripheral visual field and how the 318 
performance varied across frequencies. Then, since the proposed SSVEP BCI system demonstrated 319 
that only one flicker stimulus is sufficient to encode 16 output channels, by incorporating multiple 320 
stimuli, it is possible to further increase the target number and cover a larger visual field.  321 
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