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Abstract: Cloud robotics is becoming an alternative to support advanced services of robots with low 9 
computing power as network technology advances. Recently, fog robotics has gained attention since 10 
the approach has merit relieving latency and security issues over the conventional cloud robotics. 11 
In this paper, a Function-as-a-Service based Fog Robotic (FaaS-FR) for cognitive robots is proposed. 12 
The model distributes the cognitive functions according to the computational power, latency and 13 
security with a public robot cloud and fog robot server. During the experiment with a Raspberry Pi 14 
as an edge, the proposed FaaS-FR model shows efficient and practical performance in the proper 15 
distribution of the computational work of the cognitive system. 16 

Keywords: Robot Cloud; Cognition as a Service; cognitive robots; sentential cognitive system; cloud 17 
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 19 

1. Introduction 20 

Cloud computing is a widely advancing information and communications technology service 21 
and is a key technology of the advanced industry. Robot clouds applying cloud computing to robots 22 
allows robots to connect to a cloud environment, uses a huge computational infrastructure, and 23 
obtains results of high level programs from the cloud [3]. The cloud robots share information 24 
including environments, actions, and objects and offload heavy computation to a cloud server. 25 

However, such cloud robot services could give rise to security issues of privacy breaches and 26 
latency issues of control signals delays for robot motions. Recently, to solve these issues, fog robotics, 27 
distributing computing work properly with fog servers and edges, is getting attention as it has the 28 
advantages of reducing latency and security matters (Figure 1) [18,19,25].  29 

These merits of fog robotics can accord with cognitive robots to reduce the cost of the robot and 30 
its Human-Robot Interaction (HRI) services. If the cognitive robot adopts fog robotics model 31 
offloading burdened computing tasks to clouds or fog servers, it also needs to consider privacy, 32 
security and latency as well as abundant computing power for advanced intelligent functions. 33 
Especially, the cognitive robots can represent experienced cognitive information, store it in a proper 34 
form, and retrieve it using a reasoning procedure. It means that the fog robotics model of cognitive 35 
robots need to consider the characteristics of the cognitive structure.  36 

In this paper, a Function-as-a-Service based Fog Robotics (FaaS-FR) for the Sentential Cognitive 37 
System (SCS) of cognitive robots is proposed. FaaS-FR model includes the edge as the local robot 38 
system, the fog robot servers for the private, security and computing power, and the robot clouds for 39 
the high performance computation. The previous SCS consists of multiple modules to recognize new 40 
events that the robot has experienced and describes them in a sentential form to be stored in a 41 
sentential memory and retrieved with a reasoning process in the future [24]. In this approach, the 42 
SCS adopts FaaS-FR, and each module of the SCS is classified with the functionality of privacy, 43 
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security, and latency as well as required computing power. According to the functionality, the 44 
computation of modules is executed on the edge or offloaded to fog robot servers or robot clouds [7].  45 

The merit of FaaS-FR is that advanced services utilizing high performance computation is 46 
possible even in the edge system of low cost and low computing capability. A module in the SCS 47 
acquires and transfers raw data to the fog sever or a cloud. Then, the server processes the data and 48 
sends back the results to the SCS. In the implementation and test, we can observe that the FaaS-FR 49 
can make cognitive robots more efficient via proper distribution of the computing power and 50 
information sharing. 51 

The contributions of this study are as follows: (1) a fog robotics model, FaaS-FR model, is 52 
suggested to be applied to a cognitive robot for efficient and advance services at a low cost. (2) with 53 
this model, a functionality based modular networking in SCS of a robot is proposed and tested. 54 

This paper is organized as follows. In section 2, related work on robot cloud and fog robotics are 55 
described. Section 3 details the theoretical background of the proposed FaaS-FR model. Section 4 56 
describes an application of the model to a SCS for a cognitive robot platform. Section 5 provides the 57 
implementation of the proposed approach to a service robot through experimental results. Finally 58 
conclusions and future work are presented in section 6. 59 

 60 
 61 

 62 
 63 

Figure 1. Fog robotics schematic [27] 64 

2. Related Work  65 

Cloud robot services applying the technology of cloud computing to robots utilize computation, 66 
storage, and communication in internet infrastructure. For instance, RoboEarth, a pioneering robot 67 
cloud service, supports the service of storing software components, mapping information, behavior 68 
information, and object information in a database (DB) and utilizing a cloud engine for services; 69 
robots can use it by virtualizing the information [9]. 70 

However, there have been different opinions regarding the usefulness of robot clouds. An 71 
advocative side, on one hand, agrees that a robot can enhance its capability by combining it with 72 
robot cloud services. Kuffner insists that the robot cloud, for a robot system having limited computing 73 
power, can carry over burdened tasks to cloud servers [10]. On the other hand, Laumond noted that 74 
the approach of robot clouds could result in harmful effects to the performance of robots [11]. He 75 
insisted that the rapid advancement of real-time capability of on-board processing could make the 76 
concept of cloud robotics meaningless, and the cloud robot depending on the network could weaken 77 
the autonomy and reliability of robots.  78 

Nevertheless, a robot cloud has characteristics of cloud computing and robot technology and the 79 
unique characteristics of the robot cloud itself. Particularly at the robotics level, robots in the robot 80 
cloud can communicate with each other to share the burden of tasks rather than serve as isolated 81 
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devices that allow only data exchange with remote servers. As a result, the robot cloud will optimize 82 
the outstanding achievements that exist in robotics. 83 

There are different levels of service in the field of cloud computing comprising Infrastructure-84 
as-a-Service (IaaS), Platform-as-a-Service (PaaS), and Software-as-a-Service (SaaS) [12]. These models 85 
can be applied to robot clouds and multiple studies regarding them have been introduced. 86 
Mourandian et al. [13] highlighted aspects of IaaS in robotic applications. They proposed an 87 
architecture that enables cost-effectiveness by delegating virtualization and dynamic tasks to robots, 88 
including robots that could belong to other clouds. Gerardi et al. [14] proposed a PaaS approach to a 89 
configurable suite of products based on cloud robotics applications. It allowed end users to be free 90 
from the low-level decisions needed to construct architectures of complex systems distributed among 91 
robots and clouds. For example, if the REALabs platform was built using a PaaS model, it was 92 
predicted that many robot applications could be developed in this area [15]. In the framework of 93 
SaaS, a robot used a remote server for the training of locations with a neural network [16]. This case 94 
was used to establish communication between the cloud and the robot through a wide environment 95 
and to identify its location in images transmitted by the robot at the SaaS level. Chen and Hu [17] 96 
described Robot-as-a-Service (RaaS) with the Internet of Things. The RaaS was able to create a local 97 
pool of intelligent devices using autonomous and intelligent robots and make local decisions without 98 
communicating with the cloud.  99 

However, networking robots has given rise to security and latency issues. DeMarinis et. al [26] 100 
checked a number of robots can be accessible and controllable from the Internet and dangerous to 101 
both the robot and the human, and the robot’s sensors can be viewed to be a threat to privacy. 102 
Chinchali et. al [19] issued that cloud robotics comes with a key communicating with the cloud over 103 
congested wireless networks may result in latency or loss of data, and formulated offloading as a 104 
sequential decision making problem, and proposed a solution using deep reinforcement learning. 105 

To overcome security and latency matters of cloud robotics, fog robotics, a new network model, 106 
was introduced [27]. The model, as shown in Figure 1, distributes storage, computer and networking 107 
resources between the cloud and the edge in a federate manner. Gudi et. al [25] first suggested fog 108 
robotics that fog robot servers gather the cloud information and server it to the private robots. 109 
Tanwani et. al [18] introduced a fog robotics approach for secure and distributed deep robot learning. 110 
It provides that deep learning models are trained on public synthetic images in the cloud, the private 111 
real images are adapted at the edge within a trusted network.  112 

In summary, the robot cloud systems aim to improve robot performance with the aid of clouds 113 
enhancing computing power and data management capability. However, the robot cloud structure 114 
is challenged by the issues of real-time control, synchronizations, and stability risks. Alternatively,  115 
the fog robotics aims to improve the performance of robots by distributing computation burden with 116 
cloud, fog, and edge computing works, and at same time enhancing security and latency. In the next 117 
section, an advanced fog robotics model, the FaaS-FR model, distributing computing tasks according 118 
to the cognitive functions based on SCS is detailed. 119 

 120 
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 121 
Figure 2. The schematic of FaaS-FR 122 

3. FaaS -FR model for cognitive robots 123 

In the cloud robot paradigm, there are various deployment models, including private, 124 
community, public, and hybrid clouds. Wang et al. introduced these models into the robot clouds [6]. 125 
This study proposes and evaluates various connection methods that occur in the implementation of 126 
cloud robots. Public cloud models exchange large amounts of data and information across networks 127 
and clouds. The cloud can be used to share data in a computing environment that everyone can share. 128 
However, the exclusive materials of an individual should be served in a proper separate manner. In 129 
a personal robot cloud, a server or cloud is privately connected to a home or company. Personal robot 130 
clouds can form an external and independent cloud and distribute the robot's computing power 131 
through the servers.  132 

In the view of fog robotics, the function of personal cloud servers can be matched with fog robot 133 
servers which personally support edges (local robot system) [25]. Therefore, we adopt the term of 134 
“fog robotic server” than “cloud robotic server” because the server works not for other’s robots but 135 
for specific robots privately.  136 

However, the fog robotics models generally have a hierarchical model consisting of clouds, fog 137 
servers, and edges. With these models, it is difficult for edges directly to access to a cloud and get the 138 
result of services which have specific functionality with enough computing power.    139 

In this paper, to overcome these matters, an advanced model, FaaS-FR model, is proposed as 140 
shown in Figure 2. In the model, all the functional modules of cognitive robot are classified according 141 
to privacy, security and computing power, and have their own networking with concept of fog 142 
robotics. The functions of the robot are suitably divided for being worked on edges, fog robot servers, 143 
and public robot clouds respectively. In the case of information possibly being a violation of privacy, 144 
it is computed and stored in an edge or a fog robot server. If the edge need to uses the public robot 145 
cloud to utilize an advanced computing service, it can access the cloud directly to reduce latency or 146 
go through a fog robot server to the cloud. The reason that a new term is coined, FaaS, is that the 147 
classified functions of robot can be offloaded on the cloud or fog servers according to the security, 148 
latency, privacy, as well as computing power  149 

 150 
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 151 
Figure 3. A schema of cognitive robot functionality 152 

 153 
Figure 3 shows a schema of modular cognitive functions of a general structure of cognitive 154 

robots. It has perception modules comprising sensing, object recognition, and speech recognition. 155 
Therefore, the robot can talk with humans regarding the visual situation that the robot recognizes. 156 
The robot also has behavior modules such as utterance and motion. In the higher part, there are 157 
interpretation and generation modules which can produce descriptive cognitive information from 158 
the perceptional. Memory modules are used to store the descripted cognitive information, and can 159 
be retrieved for the future by a reasoning procedure with virtual imager and cognitive grammar. In 160 
the view of functionality including privacy, security, safety, latency, and computing power, the 161 
functions can be divided with 3 parts; Sensing and Actuation Part (SAP), Privacy and Security Part 162 
(PSP), and High Performance Part (HPP). 163 

The SAP which covered by solid line and marked with a circle, is the essential part including 164 
OS, sensing and actuation which are indispensable for the robot. This part should have OS, 165 
perception functions including sensors, cameras and microphones, and behavior functions including 166 
speakers and actuators. These functions are dependent on the hardware of the robot and cannot be 167 
taken over by others.  168 

The PSP covered with dashed single-dotted line and marked with a rectangle should be installed 169 
on edges or fog servers. For low cost robot services with minimum computing power and network 170 
infrastructure, this part needs to be offloaded to clouds; however, these functions can be related to 171 
private and security information. Therefore, it is reasonable that this part is working on the edges or 172 
a fog servers. In the case that the private information is not serious and well secured, it could be 173 
offloaded to a public cloud. 174 

The HPP which has dashed line with a triangle marked is dependent on public robot cloud tools 175 
that can supply high-quality performance such as speech recognition, Natural Language Processing 176 
(NLP), 2D and 3D object recognition, and Text-To-Speech (TTS). The Google Cloud Application 177 
Programming Interface (API) supports multiple modules of deep learning in its public cloud [8].  178 

 179 
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 180 
          (a)          (b)          (c)          (d)           (e)           (f) 181 

Figure 4. Various distribution of robot functions and offloading levels 182 
(a) Stand-alone type, (b) and (c) are using private servers for offloading computation burden, (d), 183 
(e) and (f) adopt clouds. The proposed FaaS-FR adopts model (e). 184 

 185 
Figure 4 shows various distribution of functions and offloading levels. As shown in the top, 186 

according from the left to right side, the functions of the robot is dependent of the servers and clouds. 187 
On the contrary, the security and privacy could be weaken with the direction.  188 

The stand-alone type (a) is a conventional type of robot computing in which the edge covers all 189 
parts (SAP, PSP and HPP). (b) and (c) both use private servers for the functional parts. Edge_3 of (c) 190 
offloads the PSP to the private server, then the edge can work with lower computing power. In these 191 
cases, the HPP and PSP should be developed and installed on the server by developers for the 192 
functions of the robots.  193 

In the case of (d) and (f), the conventional robot cloud models, all the high performance 194 
computations is offloaded on the cloud. In the case of (d), the edge has computing power to cover 195 
PSP. However, the model of (f) even transfers the PSP to the cloud to reduce the computational load 196 
of the edge. We will be able to see this case for mass robot service providers. The public cloud should 197 
safely manage private information for the robot 198 

The model of (e) shows the typical characteristics of fog robotics. It provides flexibility in 199 
adopting applications among the edge, the server, and the cloud. Specifically, Private Server_3 can 200 
be a fog robot server to do the job of PSP. This is applicable to achieve high quality functions with 201 
low computing power by offloading them to clouds. In this case, there are two kinds of services: The 202 
first method is that the edge directly access the cloud for the HPP service. The other method is that 203 
the fog robot server mediates for receiving the service from the cloud and additive processing, and 204 
then transfer it to the edge. In this paper, the model (e) is adopted as FaaS-FR. 205 

 206 
Table 1. The characteristics computing of FaaS-FR 207 

Computing type Functional parts Service levels 

Public robot cloud HPP PaaS, SaaS 

Fog robot server PSP  PaaS, SaaS 

Edge OS, SAP - 

 208 
The FaaS-FR model can be applied according to the specified functionality and the service level. 209 

Table 1 shows the level of FaaS in the fog robotics model. In the cloud, the function is offloading high 210 
performance computation. In the case of fog robot server, it is used to privacy and security as well 211 
computing power distribution. Edges, shallow computing systems, covers OS and elementary data 212 
acquisition and actuation. For the clouds and fog servers, both PaaS and SaaS can be adopted 213 
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according to the functionality and the computing power of the edge. In the PaaS case, the user should 214 
develop an application using APIs supported by the PaaS [22]. On the contrary, SaaS supports 215 
applications without any application development.  216 

 217 

 218 
Figure 5. The block diagram of the SCS based on FaaS-FR that offloads the computation of modules.  219 

 220 

Table 2. Examples of sentences stored in sentential memory 221 

# Time Module 
Sentence 

VERB AUX ARG1 ARG2 SPACE TIME 

1 t1 VM appeared - (NP A cup) - (PP at (NP x, y, z))  

2 t2 LM move - -    (NP the cup) 
(PP to (NP the front) (PP of (NP 

the bottle))) - 

3 t3 MM picked up - (NP I) (NP the cup) - - 

VM: Vision module, LM: Listening module, MM: Motion module 222 

4. A SCS model based on FaaS-FR  223 

Figure 5 shows that the proposed FaaS-FR model which is applied to the SCS of a service robot. 224 
The functions are categorized according to cognitive functions for allocation according to 225 
functionality. The modular functions with dotted line are offloaded to a public robot cloud or a fog 226 
robot server. The applications for the functions use APIs of PaaS or SaaS of the cloud and the fog 227 
server.  228 

In the memory of the SCS, the sentential memory stores a series of sentences describing cognitive 229 
information of events as shown in Table 2 [24]. When an event occurs in a module, the system 230 
converts the cognitive information of the event to a sentential form and stores it in a sentential 231 
memory. Each sentence has a modular and time tags for being used to query the memory for 232 
reasoning. SCS uses an object descriptor to store the features of objects, such as labels, shapes, and 233 
current poses, for expressing visual events. The motion descriptor stores the information of physical 234 
actions of the robot hierarchically [7]. Each module of the memory is related to the privacy and 235 
security and indispensable for the essential functions of robots. In the view of FaaS-FR, the memory 236 
modules can be worked on the edge when the computing power is enough. If the computing power 237 
of the edge is limited, the task of the module can be moved to the fog robot server 238 
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 The event manager controls the interpretation and reasoning of events. The event interpreter 239 
interprets the cognitive information obtained from the modules and creates sentences. The event 240 
manager stores the sentences in the sentential memory. Schematic imagery is an imitation of a human 241 
mental model for spatial reasoning. If the SCS needs a reasoning of the visual situation at a certain 242 
time, it produces a virtual scene by placing the models of the objects and derives sentences that 243 
express the spatial context of the scene. The cognitive grammar DB (CGDB) has grammar rules to 244 
generate sentences from the cognitive information of the events. For the purpose of FaaS-FR, the 245 
function of the event manager is essential for the robots to work properly. Therefore, the modules 246 
can be work on the edge or in the robot fog servers. 247 

There are perception and behavior modules linked to and from the external world in the lower 248 
part of the Figure 5. The vision module is used to recognize visual events by capturing scenes by a 249 
camera and recognizing objects. The sensor module includes all sensing functions of the robot 250 
acquired by data acquisitions that include physical contacts, sound, and temperature. The listening 251 
module captures human speeches and transfers it to the cloud to use a speech recognition application 252 
to get sentences. Then, it analyzes the acquired sentences via an NLP including syntactic and semantic 253 
parsing. The utterance module generates sentences using a sentence generator and utters them with 254 
TTS application.  255 

The action module controls the motion of the robot. A physical emergency situation could be 256 
happened and therefore the motion must be managed and controlled in the edge to keep security and 257 
privacy. This approach adopts a hierarchical motion model to provide effective handling of objects 258 
by using predefined primitive actions (Table 3). It comprises three levels: episodes, primitive actions, 259 
and atomic functions [4]. Episodes could be human commands asking the robot to perform a task via 260 
a series of primitive actions. The primitive action calls the predefined atomic functions with the 261 
atomic functions in the motion descriptor of an SCS, and physically performs them in the motion 262 
module. For example, as shown in Table 3, if a user orders “bring oi to poi,” it can consist of a series of 263 
primitive actions: “identify oi,” “pick up oi,” “move the hand to poi,” and “place oi.” A primitive action, 264 
such as “pick up oi,” calls the atomic functions: extend (oi), grasp (oi), and retract (). The motion 265 
descriptor of the SCS stores the elements of each level of the hierarchical model, sustains their linkage, 266 
and physically responds to the human speech commands. 267 

Table 3. An example of action events with the action descriptor. 268 
Episodes Primitive actions Atomic functions 

bring oi to poi 

identify oi 

pick up oi 

move the hand to poi 

place oi 

(search oi in the object descriptor) 

extend(oi), grasp(oi), retract() 

move_hand_to(poi) 

open_hand(oi), retract() 

  269 
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 270 

 271 
Figure 6. The schematic of the FaaS-FR service implementation with an edge of low computing power. 272 

5. Implementation and experimental results 273 

In this paper, the proposed FaaS-FR model was implemented in a mobile robot and tested object 274 
recognition, speech recognition, and object handling motion. Figure 6 shows the schematic of 275 
implemented FaaS-FR. The functions of the robot service were distributed with SAP, PSP, and HPP 276 
which worked for their own tasks. Figure 7 shows a two handed mobile robot as a testbed of the edge. 277 
The system of the edge was Raspberry Pi 3 using Linux OS (Ubuntu) that has low computing power, 278 
and a desktop computer with Windows 10 was used as the fog robot server. Table 4 shows the system 279 
specifications of the edge and the fog robot server. In the vision module, there is an Xtion sensor 280 
made by ASUS for acquiring color and depth (RGB-D) image. For the listening model, it had a 281 
microphone on the edge system and captured the human speech, and transferred it to Google Cloud 282 
to get the recognized text data. The acquired text data was transferred to a parsing cloud, Link parser 283 
server, and got the parsed results. 284 

The test scenario of the FaaS-FR was that a user asks a speech order to the robot to move an 285 
object and place it a specific position. For the execution of the order, the robot used the listening 286 
module for understanding the human speech, the vision module for 3D object recognition, and the 287 
motion module to bring the object. The FaaS-FR based SCS distributed tasks on the edge, a robot fog 288 
server, and Clouds. Table 5 shows the functions and fog computing types.  289 

For the listening module, the speech recognition was executed with the cloud (Google Cloud), 290 
but the NLP was done on the fog server (Link parser server). For the speech recognition, the edge 291 
first acquired a human speech and transfer it to the Google Cloud to get the text of the speech. The 292 
speech recognition application utilized Google Cloud speech API as a PaaS. And the result of speech 293 
recognition was transferred to the fog robot server to recognize the meaning of the sentence with 294 
syntactic and semantic parsing. The event interpreter requested a motion to execute the order of the 295 
human.  296 

 In the case of vision module, if the scene is changed, the module transfers the capture RGB-D 297 
data to the fog server, then the server runs an object recognition application. In this paper, for the 298 
object recognition, You Only Look Once (Yolo), a Convolution Neural Network (CNN), was adopted 299 
[20]. It produced Bounding Boxes (BBX) and labels of the objects in the RGB image. The trained 300 
weight files were brought from a cloud (Yolo server), but the object recognition was done on the fog 301 
robot server as a SaaS. The depth data were converted to XYZ coordinates for being used for 3D 302 
segmentation and extracting the real coordinates of the objects to be handled by the robot.  303 

 304 
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   305 
 (a)                                  (b) 306 

Figure 7. A test bed of FaaS-FR using Raspberry Pi. 307 
(a) The service robot, (b) a Raspberry Pi and perception and behavior modules 308 

 309 

Table 4. The system specification of an edge and a fog robot server. 310 

Specification Edge Fog robot server 

System 

CPU 

Clock 

RAM 

Network 

Bandwidth 

Raspberry Pi 3 B 

Quad Cortex A54  

1.2GHz 

1GB SDRAM 

Wifi 

14.4 Mbit/sec 

Desktop  

Intel® Core™ i7-770 

3.6GHz 

8GB RAM 

LAN 

94.5 Mbit/sec 

 311 

Table 5. The functions of the robot and service types. 312 

Modules Tasks Servers 
Fog computation 

types 
Functionality 

Listening module 
Speech recognition Google Cloud Cloud-Fog-Edge 

High performance 

computation 

Semantic parsing Link parser Fog-Edge Computing power 

Vision module Object recognition  Yolo Fog-Edge Computing power 

Motion module Object handling Motion application Edge Security & privacy 

 313 
Figure 8 shows the results of vision module with a fog server. When the module of SCS of the 314 

robot captures the RGB-D data by using an Xtion sensor, the SCS executes the vision processing in 315 
the fog cloud by transferring the acquired data. The fog server receives the data and processes an 316 
object recognition algorithm that needs a relatively higher computing power and then transfers the 317 
results of the processing to the cognitive system. Figure 8 (a) and (b) show the RGB and depth data 318 
of the Xtion sensor. Figure 8 (c) shows the result of object recognition using Yolo. The vision module 319 
had the result of BBX and label of the object with offloaded on the cloud fog server. Figure 8 (d) shows 320 
the 3D view of scene using OpenGL library to get x, y, z coordinates of the cloud points from the 321 
acquired RGB-D data, which were processed in the fog robot server. Figure 8 (e) shows the result of 322 
3D object recognition obtained by using 3D segmentation on the BBX area of the object. It provided 323 
x, y, z coordinates of the object to be used for the handling of the robot hand 324 

For the action to handle objects, the action module analyzed the meaning of the ordered sentence. 325 
The argument of the sentence was linked with the cup in the object descriptor and search the position 326 
and pose of the object. Figure 9 shows the motion executing an episode, “bring the cup to the front 327 
of the bottle.” The order was an episode and divided with primitive actions: (a) “identify the cup,” 328 
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(b) “pick up the cup,” (c) “move the hand to the front of the bottle,” and (d) “place the cup.” These 329 
primitive actions are executed with atomic functions. 330 

In this paper, FaaS-FR model was tested by comparing the two fog computing types. Table 6 331 
shows two sentences and their speech signals for testing FaaS-FR. Two sentences, “bring the cup” 332 
and “bring the cup to the front of the bottle” were tested with the Link parser cloud in textual 333 
syntactic parsing and Google Cloud for speech recognition. Figure 10 shows the average computing 334 
times with two types of FaaS-FR models to utilize the Google Cloud for speech recognition. The graph 335 
shows that the Cloud-Fog-Edge type is better in the response time. Figure 11 shows Link parser 336 
response time. We can see Fog-Edge type is best to reduce the computation time.  337 

From the results of two cases, the response time of the services are not proportional to the size 338 
of the data. The syntactic parsing shows that the response time performance between Cloud-Fog-339 
Edge and Cloud-Edge is largely different, but the speech recognition produces relatively small 340 
difference. It could be related to the bandwidth, computing time, and overhead of files. Therefore, 341 
when one selects a fog computation type, a previous performance test is needed.  342 

 343 
 344 

   345 
(a)                                       (b) 346 

 347 

 348 
                             (c)                                           (d) 349 
  350 

   351 

 (e) 352 
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Figure 8. The result of object recognition with the fog robot service: (a) an RGB image, (b) a depth image, 353 
(c) the result of object recogntin with BBX and label, (d) a 3D view of scene, (e) the result of 3D object recognition 354 
after 3D segmenatation on the BBX areas. 355 

 356 

  357 
         (a)                                        (b) 358 

 359 

  360 
                             (c)                                        (d) 361 

Figure 9. The motion of the service robot excuting “bring the cup to the front of the bottle”: (a) identify 362 
the cup, (b) pick up the cup, (c) move the hand to the front of the bottle, (d) place the cup. 363 

 364 

Table 6. The sentences and speech signals for testing FaaS-FR. 365 

 Sentence_1 Sentence_2 

Text 

Time (sec) 

File size (Kbyte) 

“bring the cup” 

1.55 

135 

“bring the cup to the front of the bottle” 

2.93 

180 

 366 

     367 
Figure 10. Google speech cloud computing time according to the fog service model 368 

 369 
 370 
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 371 
Figure 11. Link parser computing time according to the fog service model 372 

6. Conclusion 373 

In this paper, a FaaS-FR model for cognitive robots is proposed. The functions of cognitive 374 
system are categorized as SAP, PSP and HPP according to functionality of security, privacy, high 375 
performance computation, and needed computing power. The modular functions of SCS of the robot 376 
are divided into classes apt to be proper to edges, fog robot servers, and public robot clouds. FaaS-377 
FR was implemented on Raspberry Pi as an edge, and PCs as a fog robot server, and Google Cloud 378 
and Link parser server as robot clouds. From the test of objects handling, the edge system of the robot 379 
worked successfully even it had a low cost Raspberry Pi in speech recognition, 3D object recognition, 380 
and object handling motion. The test showed that the robot can work more efficiently even in the 381 
cases of low specification edges by properly selecting the computation types. The proposed FaaS-FR 382 
model can be an alternative selection for low cost but high performance service robots. In the future, 383 
the issue of an autonomous selecting of fog computation types needs to be studied to produce the 384 
best performance even low cost edges of cognitive robots.  385 
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