
 

Article 

Whole genome sequencing of familial non-medullary 

thyroid cancer identifies germline alterations in 

MAPK/ERK and PI3K/AKT signaling pathways 

Aayushi Srivastava 1,2,3,4, Abhishek Kumar 1,5,6, Sara Giangiobbe 1, Elena Bonora 7, Kari Hemminki 1, 

Asta Försti 1,2,3 and Obul Reddy Bandapalli 1,2,3,* 

1 Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), D-69120, Heidelberg, 

Germany; a.srivastava@dkfz.de (A.S.), abhishek.abhishekkumar@gmail.com (A.K.); 

sara.giangiobbe@gmail.com (S.G.); k.hemminki@dkfz.de (K.H.); a.foersti@kitz-heidelberg.de (A.F.) 
2 Hopp Children’s Cancer Center (KiTZ), D-69120, Heidelberg, Germany 
3 Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium 

(DKTK), D-69120, Heidelberg, Germany 
4 Medical Faculty, Heidelberg University, D-69120, Heidelberg, Germany 
5   Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India 
6   Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India 
7 S.Orsola-Malphigi Hospital, Unit of Medical Genetics,40138, Bologna, Italy ; elena.bonora6@unibo.it 

* Correspondence: o.bandapalli@kitz-heidelberg.de; Tel.: +49-6221-42-1709 

Abstract: Evidence of familial inheritance in non-medullary thyroid cancer (NMTC) has accumulated 

over the last few decades. However, known variants account for a very small percentage of the 

genetic burden. Here, we focused on the identification of common pathways and networks enriched 

in NMTC families to better understand its pathogenesis with the final aim of identifying one novel 

high/moderate-penetrance germline predisposition variant segregating with the disease in each 

studied family. We performed whole genome sequencing on 23 affected and 3 unaffected family 

members from five NMTC-prone families and prioritized the identified variants using our Familial 

Cancer Variant Prioritization Pipeline (FCVPPv2). In total, 31 coding variants and 39 variants located 

in upstream, downstream, 5′ or 3′ untranslated regions passed FCVPPv2 filtering. Altogether, 210 

genes affected by variants that passed the first three steps of the FCVPPv2 were analyzed using 

Ingenuity Pathway Analysis software. These genes were enriched in tumorigenic signaling pathways 

mediated by receptor tyrosine kinases and G-protein coupled receptors, implicating a central role of 

PI3K/AKT and MAPK/ERK signaling in familial NMTC. Our approach can facilitate the identification 

and functional validation of causal variants in each family as well as the screening and genetic 

counseling of other individuals at risk of developing NMTC. 

Keywords: papillary thyroid cancer; germline mutations; whole genome sequencing; predisposition 

markers; pathway analysis 

 

1. Introduction 

Thyroid cancer is the most common endocrine malignancy with an age adjusted incidence of 

0.5-20/100,000 persons per year [1]. Significant regional differences exist with Italy being among the 

countries with the highest incidence rates in the world [1]. An increasing incidence has been observed 

worldwide during the past decades, which can to a certain extent be related to changes in the 

availability of medical services and in standard clinical practice. On the other hand, regional 

differences in incidence as well as changes over time may also be related to lifestyle, nutritional iodine, 

ionizing radiation and genetic factors [2]. For instance, the high incidence of thyroid cancer in Italy can 
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be attributed to the disruptive and carcinogenic effect of volcanic environments on the endocrine 

system [3]. The familial relative risk of developing thyroid cancer is estimated to be increased 6.7-fold 

in a study based on the Swedish Family-Cancer Database, in which 3.4% of all thyroid cancer cases had 

a concordant family history [4].  

Approximately 90-95% of all thyroid cancers are non-medullary thyroid cancers (NMTC) [5] and 

can be classified into four histological subtypes: papillary, follicular, Hürthle cell and anaplastic 

thyroid cancer, with papillary thyroid cancer (PTC) being the most common one. Familial NMTC 

(FNMTC) accounts for only a small percentage of all NMTCs and can be divided into non-syndromic 

and syndromic forms. in the first, it occurs as the primary feature and in the second, as a minor 

component of a familial cancer syndrome, such as familial adenomatous polyposis, Gardner’s 

syndrome, Cowden’s disease, Carney’s complex type 1, Werner’s syndrome, papillary renal neoplasia, 

and DICER1 syndrome [6]. Known syndromes explain only a small proportion of all FNMTCs.  

Unlike the case of familial medullary thyroid cancer, in which there is extensive evidence linking 

germline point mutations in the RET proto-oncogene to the development of thyroid cancer, the genetic 

causes for FNMTC remain largely unknown. Over the years, studies seeking genetic factors 

predisposing to NMTC have been performed using linkage analysis, candidate gene sequencing and 

recently also whole genome sequencing. These studies have suggested several genes as potential 

NMTC-predisposing genes, including, FOXE1, SRGAP1, TITF-1/NKX2.1, SRRM2, and HABP2 [7-11]. 

In addition, an imbalance of the telomere-telomerase complex has been demonstrated in the peripheral 

blood of familial PTC patients [12]. Nonetheless, NMTC is one of the most heritable cancers wherein 

first degree relatives of an affected individual have an 8-10-fold increased risk of developing the 

disease [13]. Therefore, there are many underlying germline mutations that are yet to be discovered.  

The identification of such predisposition genes could be of great value in the screening of 

individuals at risk of developing NMTCs as well as in the development of personalized adjuvant 

therapies based on the affected pathways. It has been observed that hereditary NMTC is characterized 

by early onset, a higher degree of aggressiveness and more frequent multifocal disease and recurrence 

compared with its sporadic counterpart [13]. Thus, medical centers recommend more aggressive 

treatment of affected family members, reinforcing the importance of identifying such cases.  

Here we report the germline genomic landscape of five families with NMTC aggregation 

consistent with an autosomal dominant pattern of inheritance. The aim of the current study was to use 

whole genome sequencing (WGS) data to discern pathways affected in the FNMTC families to 

facilitate the identification of possible disease-causing high/moderate-penetrance germline variants in 

each family. With our results, we hope to facilitate genetic counseling and targeted therapy in these 

families and improve screening of other individuals at risk of developing NMTC. 

2. Materials and Methods  

2.1. Ethical Approval 

Blood samples were collected from the participants with informed consent following ethical 

guidelines approved by “Comitato Etico Indipendente dell ‘Azienda Ospedaliero-Universitaria di 

Bologna, Policlinico S. Orsola-Malpighi (Bologna, Italy)” and “comité utiltative de protection des 

personnes dans la recherche biomédicale, Le centre de ute contre le cancer Léon-Bérard (Lyon, France)” 

(ethical code: 736/2016).  

2.2. NMTC Families 

Five families with NMTC aggregation consistent with an autosomal dominant pattern of 

inheritance were provided by the S. Orsola-Malpighi Hospital, Unit of Medical Genetics in Bologna, 

Italy. Samples from a total of 23 affected and 3 unaffected family members from the five families were 

submitted for WGS. Their respective pedigrees are shown in Figure 1. In family 1, the mother (I-1) was 

affected by insular carcinoma of the thyroid whereas three of her children and her grandchild were 

diagnosed with PTC or micro-PTC (II-2, II-3, II-6, III-1) and one child with benign nodules (II-1). Her 
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unaffected son was deemed a reliable control (II-4). WGS (*) was performed on five family members. 

In family 2, there were six cases (III-1, III-3, III-4, IV-3, IV-4, IV-5), one probable case (IV-1) and one 

control (IV-2) out of which six underwent WGS. Family 3 consisted of two related cases (IV-4, IV-5) 

and one unrelated case (III-1) of which all three underwent WGS. Family 4 is characterized by bilateral 

PTCs concurrent with other subtypes of NMTCs (Hürthle cell cancer, follicular cancer). Four family 

members were diagnosed with thyroid cancer of which all underwent WGS (II-2, III-1, III-2, III-3). 

WGS was performed on eight family members of family 5. Five members were affected by PTC, 

Hürthle cell cancer, micro-PTC or a combination of two of the subtypes (II-2, II-3, II-5, II-8, II-9). Four 

members were possible carriers either affected by benign nodules or deceased (I-1, II-4, II-6) and two 

were unaffected (II-1, II-7).  

 

Figure 1. Pedigrees of the five non-medullary thyroid cancer (NMTC)-prone families analyzed in this 

study. 

2.3. Whole genome sequencing and variant evaluation  

WGS for 23 cases and 3 controls was performed using Illumina-based small read sequencing after 

DNA was isolated from peripheral blood using the QIAamp ®  DNA Mini Kit (Qiagen, Cat No. 51104) 

according to the manufacturer’s instructions.  

2.4. Variant Calling Annotation and Filtering 

Sequencing data was mapped to a reference human genome (assembly version Hs37d5) using 

BWA mem (version 0.7.8) and duplicates were removed using biobambam (version 0.0.148). Single 

nucleotide variants (SNVs) and indels were called from all the samples in a family together using 

Platypus (version 0.8.1). ANNOVAR, 1000 Genomes, dbSNP and ExAC (Exome Aggregation 

Consortium) were used in the annotation of variants as explained in detail in our previous paper [14]. 

Variants to be evaluated further were selected using the following criteria: i) A quality score greater 

than 20, and a coverage greater than 5x; ii) All Platypus filters were met. Variants with a minor allele 

frequency (MAF) less than 0.1 % in 1000 genome and ExAC-nonTCGA data were selected for further 

analysis. A pairwise comparison of shared rare variants among the cohort was performed to check for 

sample swaps and family relatedness. 
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2.5. Variant Filtering Following the FCVPPv2 

Variant evaluation was performed using the criteria of our in-house developed Familial Cancer 

Variant Prioritization Pipeline v2 (FCVPPv2) [14]. This process is summarized in Figure 2 and 

explained in the following text.  

 

Figure 2. Summary of the familial cancer variant prioritization pipeline version 2 (FCVPPv2). 

2.5.1. Segregation in Pedigrees 

The variants were filtered based on pedigree data considering family members diagnosed with 

NMTC or micro-PTC as cases, benign nodules or goiter as potential variant carriers and unaffected 

members as controls. The probability of an individual being a Mendelian case or true control was 

considered. The general rule was that variants had to be present in all cases and absent from all 

controls.  

2.5.2. Variant Ranking Using in silico Tools 

After filtering variants based on pedigree segregation, the CADD tool v1.3 [15] was applied. 

Variants with a scaled PHRED-like CADD score greater than 10, which accounts for the top 10% of 

probable deleterious variants in the human genome, were prioritized. Variants were then selected 

according to their conservation scores. High evolutionary conservation suggests functional 

importance of a position. Genomic Evolutionary Rate Profiling (GERP), PhastCons and PhyloP were 

used to assess conservation of the variant position, whereby GERP scores >2.0, PhastCons scores >0.3 

and PhyloP scores >3.0 indicate a high level of conservation and are therefore used as thresholds in the 

selection of potentially causative variants. After that, all missense variants were assessed for 

deleteriousness using the following tools: SIFT, PolyPhen V2-HDIV, PolyPhen V2-HVAR, LRT, 

MutationTaster, Mutation Assessor, FATHMM, MetaSVM, MetLR, PROVEAN, VEST3 and RI using 

dbNSFP [16]. Variants predicted to be deleterious by at least 60% of these tools were shortlisted for 

further analysis. Lastly, intolerance scores were considered. These were merely used to rank the 

variants and not as cutoffs for selection. The ranking of variants according to the intolerance scores of 
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the corresponding genes relies on the assumption that a variant in a gene intolerant to functional 

genetic variation is more likely to be deleterious than one that is tolerant to functional variation. We 

used three intolerance scores based on NHLBI-ESP6500, ExAC datasets and a local dataset, all of 

which were developed with allele frequency data. The ExAC consortium has developed two 

additional scoring systems using large-scale exome sequencing data including intolerance scores (pLI) 

for loss-of-function variants and Z-scores for missense and synonymous variants. These were used for 

nonsense and missense variants respectively. In our final list, we also included missense variants in 

known tumor suppressor genes and oncogenes independent of their deleteriousness and intolerance 

scores. However, all variants had to meet previous cut-offs, i.e., MAF > 0.1, pedigree segregation, 

CADD-PHRED > 10 and positive conservation scores.  

2.5.3. Analysis of Non-Coding Variants 

Non-coding regions make up over 98% of the genome and possess millions of potentially 

regulatory elements and noncoding RNA genes. Hence it is crucial to analyze the potential pathogenic 

impact of such variants in a Mendelian disease. Putative miRNA targets at variant positions within 3′ 

untranslated regions (UTRs) and 1 kb downstream of transcription end sites were detected by 

scanning the entire dataset of the human miRNA target atlas from TargetScan 7.0 [17] with the help of 

the intersect function of bedtools. We scanned the 5UTRs and 1 kb regions upstream of transcription 

start sites for transcription factor binding sites using SNPnexus (version 3; Dec 2017) [18]. For 

regulatory variants, we merged enhancer [19] and promoter [20,21] data from the FANTOM5 

consortium and super-enhancer data from the super-enhancer archive (SEA) [22] and dbSUPER [23] 

using the intersect function of bedtools to identify putative enhancers, promoters and super-enhancers 

in our dataset. We accessed epigenomic data and marks from 127 cell lines from the NIH Roadmap 

Epigenomics Mapping Consortium via CADD v.1.3 [15], which gave us information on chromatin 

states from ChromHmm [24] and Segway [25]. The CADD analysis of 3′ UTRs also gave us mirSVR 

scores for putative miRNA targets; a score lower than -0.1 is indicative of a “good” miRNA target [26]. 

Furthermore, we used SNPnexus to obtain non-coding scores for each variant and to identify 

regulatory variants located in CpG islands. Top 3 ’UTR and downstream variants that had CADD 

scores > 10 and miRNA target site matches with mirSVR scores <-0.1 were short-listed. Similarly, 

upstream and 5′ UTR variants in enhancers, promoters, super-enhancers or transcription factor 

binding sites with CADD scores > 10 were selected. 

2.6. Variant Validation 

In order to increase the confidence in variant calls and reduce the risk of false positives, we 

visually inspected the sequencing data of all short-listed variants for correctness using the Integrative 

Genomics Viewer (IGV; version 2.4.10) [27]. 

2.7. Ingenuity Pathway Analysis (IPA) 

IPA (Qiagen; http://www.qiagen.com/ingenuity; analysis date 08/04/2019) was used to perform a 

core analysis to identify relationships, mechanisms, functions, networks, and pathways relevant to the 

genes affected by variants that passed the mean allele frequency cut-off, fulfilled family-based 

segregation criteria, had CADD scores > 10 and were not intergenic or intronic variants. Data were 

analyzed for all five families together. Top canonical pathways were identified from the IPA pathway 

library and ranked according to their significance to our input data. This significance was determined 

by p-values calculated using the right tailed Fisher’s exact test. These values indicated the probability 

of association of genes from the input dataset with the canonical pathway by random chance alone. 

Ratios were also calculated for each pathway by dividing the number of genes from the input dataset 

that map to the pathway by the total number of genes in that pathway. The ratios did not influence the 

ranking of the canonical pathways.  
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IPA was also used to generate gene networks in which upstream regulators were connected to the 

input dataset genes while taking advantage of paths that involved more than one link (i.e., through 

intermediate regulators). These connections represent experimentally observed cause-effect 

relationships that relate to expression, transcription, activation, molecular modification and transport 

as well as binding events. 

2.8. STRING Analysis 

A protein-protein interaction network was generated for each of the prioritized candidates using 

STRING ((https://string-db.org; v11, 19/01/2019). 

3. Results 

3.1. Whole Genome Sequencing  

In this study, five families with reported recurrence of NMTC were analyzed. WGS identified a 

total of 112254, 207873, 120323, 91427 and 101081 variants which were reduced by pedigree-based 

filtering to 6368, 9373, 3123, 7060 and 2708 in families 1-5, respectively. Non-synonymous SNVs were 

the most common exonic variants (Figure S1).  

3.2. Final Prioritization of Candidates According to the FCVPPv2 

After applying the FCVPPv2, the number of potential pathogenic protein coding variants was 

reduced to 31. These variants are listed in Table 1. A number of genes are of high significance to our 

study as they are either related to cancer or play a role in thyroid metabolism. CHEK2 is a known 

tumor suppressor gene involved in DNA damage response [28]. EWSR1 generates a powerful 

oncogenic protein causing Ewing sarcoma [29], RET is a proto-oncogene well-known in hereditary 

medullary thyroid carcinoma NRP1 is known to be positively associated with the progression of breast 

cancer [30], POT1 is a known predisposing gene in malignant melanoma [31] and TG encodes the 

precursor of iodinated thyroid hormones and is associated with susceptibility to autoimmune thyroid 

diseases (AITD) [32].  

FCVPPv2 also identified 14 upstream and 5′ UTR variants, which are shown in Table 2. Among 

them, three variants are of particular interest in thyroid cancer. The PCM1 variant is a 5′ UTR variant 

that our data showed to affect three transcription factor binding sites (Egr-3, AP-2alphaA and AP-2 

gamma). Chromosomal aberrations involving this gene have been associated with PTC and a variety 

of hematological malignancies [33]. The other 5′ UTR variant is located in the P4HB gene which is 

known to be involved in the structural modification of the thyroglobulin precursor in hormone 

biogenesis [34]. Both variants are present in CpG islands and have been predicted to be localized at an 

active transcription start site by ChromHmm and Segway. The third variant is an upstream variant in 

the DAPL1 gene, shown to affect the binding sites of MAZR and Sp1, a potential tumor suppressor in 

thyroid cancer, by SNPnexus and Segway. 

Furthermore, 25 variants located downstream and in 3′ UTRs were shortlisted (Table 3). Among 

them, two genes of importance can be highlighted, namely ACVR1B and NLK. Mutations in the 

ACVR1B gene are associated with pancreatic cancer [35]. The variant in the 3′UTR of ACVR1B is 

localized at a target site for miR-6871-5p with a context ++ percentile score of 53, indicating a relatively 

good context for repression of the mRNA due to this miRNA. Altered expression of NLK is associated 

with cancer development and has been shown to be an independent prognostic factor in colorectal 

cancer [36]. The corresponding variant to this gene has two predicted miRNA target sites for 

miR-6818-5p and miR-6867-5p with high context ++ percentile scores (88 and 79, respectively).  

Variants prioritized by the FCVPPv2 were also present in pathways, networks, and disease 

categories shown to be significantly enriched in FNMTC by IPA. 
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Table 1.  Top exonic variants prioritized following the FCVPPv2. Chromosomal positions, classifications, PHRED-like CADD scores and the percentage of positive intolerance (Int) and 

deleteriousness (Del) scores are included for each variant. Additional information regarding protein-protein interactions (STRING), localization in protein domains (InterPro [37]) and the 

biological function of the respective protein (GeneCards [38]) is included. 

Family Gene Chrom_Pos_Ref_A

lt 

Exonic 

Classification 

CADD

_PHRE

D 

score 

Int 

(%) 

Del 

(%) 

Interactions 

(STRING) 

Domain Function 

1 CHEK2 22_29107974_C_T nonsynonymou

s SNV 

24.8 75 42 ATM, ATR, CDC25C, 

CDC25A, TP53BP1, 

TP53, MRE11A, 

BRCA1, RAD50, 

H2AFX 

Serine/ 

threonine-protein 

kinase-like domain 

DNA repair, cell cycle arrest or 

apoptosis in response to DNA 

damage; tumor suppressor gene 

1 SLC35A

4 

5_139947647_T_C nonsynonymou

s SNV 

26.5 50 75 SCAMP3, PRKAA1, 

SLC35B2, SLC35D2, 

ABCB10 

Nucleotide-sugar 

transporter 

Pyrimidine nucleotide-sugar 

transmembrane transporter activity, 

sialic acid transmembrane 

transporter activity 

1 ANXA3 4_79531211_C_T nonsynonymou

s SNV 

27.9 50 75 STX4, SNAP23, 

STXBP2, ANXA11, 

ANXA4, FPR1, 

CACNA1B, NLRP3, 

SUMF1, FPR2 

Annexin repeat, 

conserved site 

Phospoholipase A2 inhibition, 

anti-coagulant properties, formation 

of inositol 1-phosphate from inositol 

1,2-cyclic phosphate 

1 EWSR1 22_29687556_C_A nonsynonymou

s SNV 

22.7 100 75 BARD1, ETV1, TAF5, 

TAF5L, FUS, TAF12, 

DHX9, TP53, PIOK2, 

POLR2G 

NA Gene expression, cell signaling, 

RNA processing and transport; 

oncogene 

1 RTTN 18_67776873_G_A nonsynonymou

s SNV 

26.7 25 83 INVS, LEFTY2, 

DNAH11, CCDC102B, 

EN1, CCDC178, 

L3MBTL4, CHML, 

CHM, DLL1 

NA Involved in the genetic cascade that 

governs left-right specification and 

in the maintenance of a normal 

ciliary structure. 
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1 TIAM1 21_32526579_G_A nonsynonymou

s SNV 

35 100 92 CDC42, SRC, RAC1, 

EFNB1, RAC2, NME1, 

EPHA2, RHOA, 

PARD6A, ARF6 

Dbl homology (DH) 

domain 

Modulates the activity of Rho 

GTP-binding proteins, connects 

extracellular signals to cytoskeletal 

activities, activates Rac1, CDC42, 

and to a lesser extent RhoA. 

1 MAN2B

2 

4_6612617_C_T nonsynonymou

s SNV 

34 25 100 MAN2C1, NAAA, 

SIAE, GLB1L3, GLB1, 

PYGB, PYGL, PYGM, 

NAGA 

Glycosyl hydrolase 

family 38, 

C-terminal 

carbohydrate binding, 

alpha-mannosidase activity, 

involved in metabolism and other 

glycan degradation 

2 CLEC18

B 

16_74446758_G_A nonsynonymou

s SNV 

23.3 50 67 FRAS1, LEO1, FREM2 Epidermal growth 

factor-like domain 

Ca2+ independent binding of 

polysaccharides 

2 PTGIR 19_47124811_C_T nonsynonymou

s SNV 

35 100 67 HTR7, NPS, AVP, VIP, 

ADM, AVPR2, 

ADRB2, PTH, ADCY6, 

GNB1 

NA Member of GPCR family 1, receptor 

for prostacyclin, elicits potent 

vasodilation and inhibition of 

platelet aggregation 

2 UBN1 16_4911084_G_A nonsynonymou

s SNV 

34 75 67 ASF1A, HIRA, 

CABIN1, RB1, TP53, 

EP400, HMGA1, 

HMGA2, H1F0, 

HIST1H1C 

Ubinuclein middle 

domain 

Novel regulator of senescence, 

involved in DNA damage/telomere 

stress induced senescence and 

cellular senescence, required for 

replication independent chromatin 

assembly 

2 GALNT

10 

5_153789322_G_C nonsynonymou

s SNV 

24.6 100 67 MUC7, MUC1, 

C1GALT1, MUC5AC, 

GCNT1, 

ST6GALNAC1, 

B3GNT6, MUC2, 

MUC16, C1GALT1C1 

Ricin B-related lectin Catalyzes the initial reaction in 

O-linked oligosaccharide 

biosynthesis 

2 OSGIN2 8_90921899_A_T nonsynonymou

s SNV 

23.7 100 67 CALB1, CA7, DECR1, 

DECR2, CALB2, NBN, 

SLC39A3 

NA Possibly involved in meiosis or the 

maturation of germ cells, associated 

with retinitis pigmentosa  
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2 TG 8_133900661_A_C nonsynonymou

s SNV 

25 0 75 TPO, LRP2, TSHR, 

ASGR1, NKX2-1, INS, 

SLC5A5, PAX8, 

ASGR2, ALB 

Thyroglobulin 

type-1 domain 

Precursors of iodinated thyroid 

hormones (T4) and 

triiodothyronine (T3), associated 

with susceptibility to autoimmune 

thyroid diseases (AITD) 

2 GSR 8_30585111_C_T nonsynonymou

s SNV 

34 100 75 GPX1, GPX3, GPX2, 

CAT, GPX4, GSS, 

GPX7, HPGDS, TXN, 

ACLY 

Pyridine 

nucleotide-disulphi

de oxidoreductase, 

FAD/NAD(P)-bindi

ng domain 

Oxidoreductase activity and flavin 

adenine dinucleotide binding 

2 KCNT1 9_138676399_A_G nonsynonymou

s SNV 

11.1 100 75 GPR55, C11orf40, 

ASRGL1, SLC11A1 

NA Sodium/Chloride/Calcium-activate

d potassium channel subunit, 

activated upon stimulation of 

GPCRs 

2 KLHL18 3_47385160_A_G nonsynonymou

s SNV 

27.4 100 75 COPS5, GPKOW, 

CNIH4, COPS6, 

PDE7A, CNIH3, 

PDE/B, PDE6D, 

EEF1G, CNIH2 

Galactose oxidase, 

beta-propeller 

Involved in the ubiquination 

process, specific role has yet to be 

elucidated 

2 CDRT1, 

RP11-38

5D13.1 

17_15501921_G_A nonsynonymou

s SNV 

25.3 - 83 - WD40/YVTN 

repeat-like-containin

g domain 

CDRT1: a protein-ubiquitin ligase; 

RP11: a component of the 

spliceosome complex, one of several 

retinitis pigmentosa-causing genes 

2 RET 10_43600559_T_C nonsynonymou

s SNV 

26.3 75 83 GDNF, GFRA1, 

NRTN, SHC1, PSPN, 

PIK3CA, GFRA2, 

PIK3CD, PIK3CB, 

GRB2 

Cadherin-like 

domain 

Proto-oncogene, receptor tyrosine 

kinase; involved in cell 

differentiation, growth, migration 

and survival 

2 SCN10A 3_38755465_C_A nonsynonymou

s SNV 

35 50 92 SCN5A, CALM2, 

SCN8A, SCN2A, 

SCN11A, SCH3A, 

SCN1A, SCN9A, 

Ion transport Tetrodotoxin-resistant channel that 

mediates the voltage-dependent 

sodium ion permeability of 

excitable membranes, plays a role in 
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SCN4A, SCN1B neuropathic pain mechanisms 

3 C1orf27 1_186355211_G_A nonsynonymou

s SNV 

25.1 0 67 DRAM1, PID1, 

TXLNG 

ODR-4-like domain Possible involvement in the 

trafficking of a subset of GPCRs 

3 CPXM1 20_2776248_C_T nonsynonymou

s SNV 

32 100 75 FAM196A, PPP2R2B, 

SEC13 

Peptidase M14, 

carboxypeptidase A 

Binds collagen, involved in 

adipogenesis through extracellular 

matrix remodeling, may act as a 

TSG in breast cancer 

3 ZBTB41 1_197128680_C_T nonsynonymou

s SNV 

23.1 100 75 POTEE, POTEI, 

POTEJ, POTEF, 

SKIV2L, CFHR4, 

RIPK4, PHLPP2, 

PHLPP1, C7orf73 

NA May be involved in transcriptional 

regulation 

 

 

 

3 AR X_66765158_T_TG

CAGCAGCA 

 

nonframeshift 

insertion 

12.8 67 - NCOA2, NCOA4, 

KLK3, KDM1A, 

FOXA1, SRC, 

HSP90AA1, FKBP5, 

NCOA1, CCND1 

Androgen receptor 

domain 

Steroid-hormone activated 

transcription factor. Stimulates 

transcription of androgen 

responsive genes. 

4 PKHD1

L1 

8_110477162_G_A nonsynonymou

s SNV 

27.5 0 100 TMEM2, CUEDC1, 

PKHD1, PKD1P1, 

C2orf74, RAD21-AS1, 

FAM135B, CSMD3, 

MUM1L1, HSPA12B 

NA Signaling receptor activity, immune 

response 

4 ECE2 3_184008594_G_C nonsynonymou

s SNV 

32 75 100 RPS6KA2, EDN3, 

EDNRA, DHX40, 

MYSM1. EDNRB, 

EDN1, EZR, LARP6, 

PRKCE 

Peptidase M13, 

neprilysin, 

C-terminal / 

Metallopeptidase, 

catalytic domain 

Metalloprotease involved in the 

generation of functionally 

pleiotropic members of the 

endothelin vasoactive family, 

possibly involved in amyloid-beta 
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processing 

5 EPYC 12_91365726_C_G nonsynonymou

s SNV 

27 25 67 RIPK4, PPIE, POTEI, 

POTEE, POTEJ, 

POTEF, PRKAR1B, 

PRKAR1A, CNBD2, 

PRKAR2B 

Leucine-rich repeat Regulates fibrillogenesis by 

interacting with collagen fibrils and 

other extracellular matrix proteins 

5 SPOCK1 5_136448179_G_A nonsynonymou

s SNV 

25.7 100 67 SPARC, MMP16, FST, 

MMP14, SPARCL1, 

MMP2, CITED2, 

CHD1L, CFTR, 

HMCN1 

Proteinase inhibitor 

I1, Kazal 

Calcium ion binding, cysteine-type 

endopeptidase inhibitor activity, 

cell-cell interactions, may contribute 

to various neuronal mechanisms 

5 MYBPC

1 

12_102046527_A_G nonsynonymou

s SNV 

25.9 100 67 MYH3, TTN, TNNT3, 

NEB, TNNI2, DMD, 

MYL1, TMOD4, 

TNNI1, MYL3 

Immunoglobulin 

subtype 

Member of the myosin-binding 

protein C family, binds actin and 

titin, modulates muscle contraction 

5 ACSS3 12_81593172_T_G nonsynonymou

s SNV 

32 100 83 ALDH2, ALDH3A2, 

EHHADH, ACLY, 

ECHDC1, ACADM, 

ALDH6A1, 

ALDH9A1, ALDH1B1 

AMP-dependent 

synthetase/ligase 

Activates acetate for use in lipid 

synthesis or energy generation 

5 NRP1 10_33469205_G_C nonsynonymou

s SNV 

24.2 75 83 SEMA3A, KDR, FLT1, 

PLXNA1, PLXNA2, 

SEMA3C, PLXNA4, 

SEMA3F, PLXNA3, 

SEMA3E 

Neuropilin-1, 

C-terminal 

Membrane-bound coreceptor to a 

tyrosine kinase receptor for both 

VEGF and semaphorin family 

members; plays roles in 

angiogenesis, axon guidance, cell 

survival, migration and invasion 

5 POT1 7_124532359_C_A nonsynonymou

s SNV 

32 50 92 TERF1, TINF2, ACD, 

TERF2, TERF2IP, 

RAD50, MRE11A, 

H2AFx, DCLRE1B, 

Nucleic 

acid-binding, 

OB-fold 

Member of the shelterin complex; 

involved in regulating telomere 

length and protecting chromosome 

ends from illegitimate 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 October 2019                   doi:10.20944/preprints201910.0154.v1

https://doi.org/10.20944/preprints201910.0154.v1


 12 of 25 

BRCA1 recombination, catastrophic 

instability and abnormal 

segregation 
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Table 2. Top upstream and 5′ UTR variants prioritized according to the FCVPPv2. Variant annotation, chromosomal position, and regulatory consequences according to 

FANTOM5, SEA, CADD and SNPnexus are listed. The FANTOM5 database gives information on known promoters. CADD gives an overall deleteriousness score together 

with chromatin state information based on ChromHmm and Segway scores and information on transcription factor binding sites (TFBSs). Location of the variants within a 

specific TFBS and CpG island were obtained from SNPnexus. A cumulative non-coding score is shown as a percentage of positive scores from all scores listed in the footnote. 

Cut-offs for these scores are also indicated in the footnote.  

Variant Details FANTOM5, 

SEA 

Annotations from CADD SNPnexus 

FI Gene Variation

_ 

Annotatio

n 

Chrom_Pos_Ref

_Alt 

Promoter/ 

Enhancer_ 

Start..End, 

Strand 

CAD

D_PH

RED 

score 

Chromatin StateII TFBS  TFs In a 

CpG 

Island? 

Non-codi

ng scores 

(%)III 

Chrom-H

mm state 

Score Segwa

y 

TFBS TFBS 

PeaksI 

1 PCM1 SNV_UTR

5 

8_17780410_G_A − 17.2 TssA 0.95 TSS 50 92 Egr-3, 

AP-2alphaA, 

AP-2gamma 

Yes 67 

1 STAP1 SNV_UTR

5 

4_68424468_A_G Promoter_6842

4462..68424469,

+ 

15.4 Quies 0.71 GM0 18 24 − No 71 

1 DAPL1 SNV_ 

Upstream 

2_159651789_C_

T 

− 13.1 − − TF0 1 2 MAZR, Sp1 No 50 

2 LRRC48 SNV_UTR

5 

17_17876279_G_

T 

− 10.8 TssA 0.803 GS 28 56 − No 50 

2 P4HB SNV_UTR

5 

17_79818442_T_

G 

− 11.4 TssA 0.945 TSS 51 78 − Yes 60 

2 FAM118

B 

SNV_UTR

5 

11_126081608_C_

T 

− 10.5 TssA 0.969 TSS 60 129 − Yes 33 

2 AZIN1 SNV_UTR

5 

8_103876327_G_

A 

− 12.4 TssA 0.929 TSS 47 76 − No 50 

2 RPS3A SNV_UTR

5 

4_152020778_C_

G 

Promoter_1520

20736..15202078

8,+ 

16.0 TssA 0.961 TSS 81 184 − Yes 86 
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3 C20orf19

4 

SNV_ 

Upstream 

20_3388577_C_A - 13.4 TssA 0.921 TSS 17 26 Egr-2, Egr-3 Yes 50 

4 DNAI1 SNV_UTR

5 

9_34458888_T_C Promoter_3445

8851..34458908,

+ 

14.4 TssAFlnk 0.575 GM1 10 13 − Yes 71 

4 PNPLA2 SNV_UTR

5 

11_819602_G_C Promoter_8196

01..819612,+ 

10.6 TssA 0.945 TSS 38 65 − Yes 50 

4 GNB2 Indel_UT

R5 

7_100271438_G_

GCGCCGCCGC

CGC 

− 17.5 TssA 0.992 TSS 65 115 CUTL-1 Yes 25 

4 PHTF1 SNV_UTR

5 

1_114301745_G_

T 

− 16.2 TssA 0.961 TSS 20 28 CREB, delta 

CREB 

Yes 50 

4 ZKSCAN

1 

SNV_UTR

5 

7_99613211_C_G − 21.4 TssA 0.937 TSS 65 140 Elk-1, LCR-F1 Yes 67 

[I] = Family ID, [II] = ChromHmm and Segway; ChromHmm shows the proportion of 127 cell types in a particular chromatin state (x). Scores closer to 1 indicate a 

higher proportion of cell types in the specified chromatin state. X can be the following: active transcription start sites (TssA), enhancers (Enh), bivalent TSS (TssBiv), 

bivalent enhancers (EnhBiv), genic enhancers (EnhG), flanking transcription states (TxFlnk), flanking bivalent TSS (TssBiv), active transcription flanking sites 

(TssAFlnk), transcription states (Tx) and weak transcription states (TxWk), repressed polycomb (ReprPC) and weak repressed polycomb regions (PeprPCWk), 

heterochromatin (Het) and quiescent regions (Quies). Segway is a software that transforms multiple datasets on chromatin properties into a single annotation of the 

genome. The annotations can be as follows: D: dead, F: FAIRE, R: repression, H3K9me1: histone 3 lysine 9 monomethylation, L: low, GE: gene end, TF: transcription 

factors, C: CTCF, TSS: transcription start site, GS: gene start, E: enhancer, GM: gene middle and ZnfRpts: zinc finger repeats. [III] = Non-coding scores with their 

cut-offs in brackets: FitCons Score (≥0.2), FitCons P-Value (≤0.05), EIGEN (>0, at least 1 of 2 must be positive), FatHMM (>0.5), GWAVA (>0.4, at least 2 of 3 must be 

positive), DeepSEA (>0.5, at least 2 of 3 must be positive), FunSeq2 (>3), ReMM (>0.5). [IV] = TFBS peaks: regions with enrichment of transcription factor binding sites 

(TFBS).
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. 

Table 3. Top downstream and 3′ UTR variants prioritized according to the FCVPPv2. Variant annotation, chromosomal position, and regulatory consequences according to TargetScan, CADD 

and SNPnexus are listed. Information on miRNA target sites from TargetScan and chromatin states from CADD are also included. A cumulative non-coding score is shown as a percentage of 

positive scores from all scores listed in the footnote. Cut-offs for these scores are also indicated in the footnote.  

Variant Details TargetScan Annotations from CADD SNP-n

exus 

FI Gene Variation_ 

Annotation 

Chrom_Pos_Ref_Alt miRNA Target Sites Context 

Score ++ 

PercentileII 

Site Type mirSV

R-Scor

e 

CADD_ 

PHRED 

score 

Chromatin StateIII Non-co

ding 

scores IV 

(%) 

Chrom-

Hmm 

Score Segway 

1 DESI2 SNV_UTR3 1_244872281_A_G DESI2:miR-3651 94 7mer-m8 -0.84 15.6 TxWk 0.73 R2 60 

1 DPYSL3 SNV_UTR3 5_146770537_A_T DPYSL3:miR-4693-5p, 

DPYSL3:miR-4768-3p, 

DPYSL3:miR-6888-5p 

20, 52, 59 7mer-1a, 

7mer-m8, 

7mer-m8 

-0.24 11.1 − − L1 40 

1 MECP2 SNV_UTR3 X_153295452_G_A MECP2:miR-6812-3p 72 7mer-1a NA 10.4 Tx 0.46 TF2 25 

1 RYK SNV_UTR3 3_133876591_C_T RYK:miR-548aq-3p/548

am-3p/548aj-3p/548ah

-3p/548ae-3p/548j-3p/

548x-3p;          

RYK:miR-5582-3p 

93, 95 7mer-m8, 

7mer-m8 

−1.25 12.7 TxWk 0.50 F1 80 

1 SGTB SNV_UTR3 5_64965337_A_C SGTB:miR-3187-3p, 

SGTB:miR-4529-5p 

84, 46 7mer-m8, 

7mer-1a 

−0.75 16.8 TxWk 0.68 GE0 67 

1 SLC25A12 SNV_UTR3 2_172641178_G_A SLC25A12:miR-3622b-5

p 

62 7mer-1a −0.31 15.1 − − GE1 60 

2 ACVR1B SNV_UTR3 12_52388057_A_G ACVR1B:miR-6871-5p 53 7mer-m8 

 

14.8 − − − 60 

2 NCAM2 Indel_UTR3 21_22913891_AT_A NCAM2:miR-6885-3p 46 7mer-m8 NA 11.3 Quies 0.99 F0 50 

2 NOP2 SNV_UTR3 12_6666047_A_T NOP2:miR-3662 98 7mer-1a −1.29 14.2 Tx 0.48 GE0 50 

2 NUPL1 SNV_UTR3 13_25909315_T_C NUPL1:miR-3145-3p 69 8mer − 11.3 − − − 80 
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2 PNPLA8 SNV_UTR3 7_108112453_A_G PNPLA8:miR-3163, 

PNPLA8:miR-4668-3p, 

PNPLA8:miR-551b-5p 

65, 56, 62 7mer-m8, 

7mer-1, 

7mer-m8 

−1.25 13.3 TxWk 0.53 F0 80 

2 STK32A SNV_UTR3 5_146763869_G_A STK32A:miR-4484, 

STK32A:miR-548an, 

STK32A:miR-6768-3p 

99, 80, 74 8mer, 

7mer-1a, 

7mer-1a 

NA 11.8 Quies 0.48 F1 40 

2 SVEP1 SNV_UTR3 9_113128472_T_C SVEP1:miR-1468-3p 96 7mer-m8 −1.32 17.0 Quies 0.77 F1 60 

2 TFCP2 Indel_UTR3 12_51487616_A_AA

CAC 

TFCP2:miR-8485 95 7mer-m8 NA 10.2 Tx, 

TxWk 

0.47, 

0.52 

GE0 67 

2 MRPL51 SNV_ 

downstream 

12_6600160_C_T MRPL51: miR-6802-3p 90 7mer-m8 NA 13.4 TxWk 0.63 H3K9 

me1 

50 

2 ZNF45 SNV_ncRNA_

UTR3 

19_44417402_A_G ZNF45: miR-6777-3p 96 8mer −0.39 11.3 ZnfRpts 0.78 GE1 60 

3 NLK Indel_UTR3 17_26522009_T_TC

ACA 

NLK:miR-6818-5p, 

NLK:miR-6867-5p 

88, 79 7mer-m8, 

8mer 

−0.62 11.7 TxWk 0.63 TF1 100 

4 ADAMTS1 SNV_UTR3 21_28208629_T_C ADAMTS1:miR-325, 

ADAMTS1:miR-628-3p 

88, 97 7mer-1a, 

8mer 

−1.31 16.0 TxWk 0.58 F1 60 

4 GRIA2 SNV_UTR3 4_158284635_G_A GRIA2:miR-486-5p, 

GRIA2:miR-7152-5p 

88, 84 7mer-1a, 

7mer-m8 

−0.87 22.3 Quies 0.84 L1 60 

4 IGSF9 Indel_UTR3 1_159896866_TCAC

A_T 

IGSF9:miR-377-3p, 

IGSF9:miR-5582-3p, 

IGSF9:miR-8485 

98, 82, -1 8mer,7mer

-m8, 

3’compens

atory 

−0.92 17.0 − - TF1 50 

4 MPP6 SNV_UTR3 7_24727611_A_G MPP6:miR-138-2-3p, 

MPP6:miR-205-3p, 

MPP6:miR-498 

93, 50, 48 7mer-m8, 

7mer-1a, 

7mer-1a 

NA 15.5 TxWk, 

Quies 

0.50, 

0.45 

GE0 60 

4 ZNF532 SNV_UTR3 18_56651809_T_C ZNF532:miR-1277-5p 53 7mer-m8 −0.86 15.2 TxWk 0.73 R0 80 

5 KLF7 Indel_UTR3 2_207945783_ATAT

GTG_A 

KLF7:miR-511-3p, 

KLF7:miR-223-5p 

82, 59 7mer-1a, 

7mer-1a 

−1.10 11.9 Tx 0.73 F1 50 
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5 SATB2 SNV_UTR3 2_200134548_A_G SATB2:miR-3156-5p, 

SATB2:miR-3126-3p, 

SATB2:miR-4720-5p/47

99-3p/5588-5p, 

SATB2:miR-3128, 

SATB2:miR-6868-5p 

37, 86, 74, 

76, 83 

7mer-m8, 

7mer-m8, 

7mer-1a, 

8mer, 

7mer-1a 

-1.22 15.2 Quies 0.74 F1 60 

5 ZNF608 SNV_ 

downstream 

5_123972606_C_A ZNF608:miR-4786-3p 87 7mer-m8 NA 16.8 TxWk 0.69 D 60 

[I] = Family ID, [II] = Context score ++ percentile: a higher percentile score indicates a better context for repression of an mRNA due to a miRNA, [III] = ChromHmm 

and Segway; ChromHmm shows the proportion of 127 cell types in a particular chromatin state (x). Scores closer to 1 indicate a higher proportion of cell types in the 

specified chromatin state. X can be the following: active transcription start sites (TssA), enhancers (Enh), bivalent TSS (TssBiv), bivalent enhancers (EnhBiv), genic 

enhancers (EnhG), flanking transcription states (TxFlnk), flanking bivalent TSS (TssBiv), active transcription flanking sites (TssAFlnk), transcription states (Tx) and 

weak transcription states (TxWk), repressed polycomb (ReprPC) and weak repressed polycomb regions (PeprPCWk), heterochromatin (Het) and quiescent regions 

(Quies). Segway is a software that transforms multiple datasets on chromatin properties into a single annotation of the genome. The annotations can be as follows: D: 

dead, F: FAIRE, R: repression, H3K9me1: histone 3 lysine 9 monomethylation, L: low, GE: gene end, TF: transcription factors, C: CTCF, TSS: transcription start site, GS: 

gene start, E: enhancer, GM: gene middle and ZnfRpts: zinc finger repeats. [IV] = Non-coding scores with their cut-offs in brackets: FitCons Score (≥ 0.2), FitCons 

P-Value (≤0.05), EIGEN (> 0, at least 1 of 2 must be positive), FatHMM (>0.5), GWAVA (>0.4, at least 2 of 3 must be positive), DeepSEA (>0.5, at least 2 of 3 must be 

positive), FunSeq2 (>3), ReMM (>0.5).
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3.3. Ingenuity Pathway Analysis (IPA) shows enrichment of GPCR and RTK mediated pathways 

In order to identify key biological functions and signaling pathways affected in FNMTC, we 

filtered the variants according to pedigree segregation, CADD scores and location, excluding intronic 

and intergenic variants. The variants were in 339 genes, with 92, 122, 14, 72 and 39 genes coming from 

families 1-5 respectively. Of these genes, 210 gene IDs could be mapped by IPA and were part of the 

subsequent analysis (Table S1). The remaining 129 genes were uncharacterized genes with RP11 IDs, 

and thus could not be mapped. 

Of the top 150 diseases and bio functions, 123 were cancer-related with thyroid cancer at position 

99 (p= 3.17x10-5), NMTC at position 120 (p=6.39x10-5), differentiated thyroid cancer (DTC) at position 

125 (p=7.88x10-5) and PTC at position 148 (p= 2.16x10-4) (Table S1B). There was a high overlap of 

molecules among the four thyroid cancer related categories. This overlap of eight genes included two 

genes prioritized using our pipeline (RET and TG), that are of particular interest in thyroid cancer.  

With the aim of evaluating the canonical pathway results to determine the most significant 

pathways in our dataset, we created a network of the top 18 overlapping canonical pathways (Table 

S1C, Figure 3). The threshold of common genes between the pathways was set at 2. G-protein coupled 

receptor (GPCR) and receptor tyrosine kinase (RTK) mediated pathways, as major mediators of 

thyroid cancer development, were represented by 12 pathways (Figure 3). The genes involved in the 

top 18 pathways along with their corresponding variants are listed in Table S2. 

 

Figure 3. Top 18 overlapping canonical pathways visualized as a network, which shows each 

pathway as a single “node” colored proportionally to the Fisher’s Exact Test p-value, where 

brighter red indicates higher significance. Nodes marked with asterisk (*) belong to the 

group of GPCR and RTK mediated pathways. 

3.4. Network Analysis Reinforces the Central Role of PI3K/AKT and MAPK/ERK Signaling in FNMTC 

We conducted a network analysis using the IPA software to predict interacting molecular 

networks significant to our input-data and to evaluate genes with a central role in FNMTC (Figure 4, 

Table S1D). Since the IPA network analysis includes paths with intermediate regulators that involve 

more than one link, a comprehensive picture of the possible gene interactions was generated. The 

networks were ranked according to scores that were generated by considering the number of focus 
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genes (input data) and the size of the network to approximate the relevance of the network to the 

original list of focus genes. We focused on the three highest scoring networks, which had scores 

ranging from 33 to 51 (Table S1D). 

In coherence with the pathway analysis, the network analysis reinforces the importance of central 

perpetrators of GPCR and RTK mediated signaling (AKT, ERK1/2: Networks 1 & 3) and their 

downstream effectors (NFκB, CREB: Network 2). Furthermore, Network 3 encompasses a number of 

genes related to thyroid metabolism including TG from our prioritized shortlist.  

 

Figure 4. The top three molecular networks identified by Ingenuity Pathway Analysis (IPA): 

(a) Network 1. Protein Synthesis, Cardiovascular System Development and Function, 

Cellular Assembly and Organization; (b) Network 2. Cell Morphology, Cellular Assembly 

and Organization, Cellular Development and (c) Network 3. Endocrine System Disorders, 

Metabolic Disease, Organismal Injury and Abnormalities. Genes from our input-data that 

were prioritized based on pedigree segregation and PHRED-like CADD scores are shown in 

peach. Our top coding and non-coding candidates are highlighted in dark orange. 

Interactions of central genes of the network are highlighted in blue. 

3.5. Overlapping Pathways in Familial Non-Medullary Thyroid Cancer 
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Since GPCR and RTK mediated signaling were highlighted in both pathway and network 

analyses, we propose a pathway to facilitate a general understanding of FNMTC at a molecular level 

(Figure 5).  

 

Figure 5. Proposed model for the most important molecular mechanisms in FNMTC. Genes 

from our input-data are highlighted in orange and genes corresponding to variants 

prioritized using the FCVPPv2 are highlighted in red. 

Activation of GPCR receptors can activate MAPK/ERK signaling as well as PI3K/AKT signaling 

via one of the four subclasses of G-proteins (Gαs, Gαi/o, Gαq/11, and Gα12/13). Dimerization of 

receptor-tyrosine kinase (RTK) receptors can be induced by growth factors such as EGFR and GDNF, 

which results in the phosphorylation and subsequent activation of the receptor monomers. Receptor 

activation is linked to downstream signal transduction pathways like the MAPK signaling cascade and 

the PI3K/AKT system via adaptor proteins. Genes from our dataset that were present in these 

pathways as activators or regulators are highlighted in Figure 5.  

4. Discussion 

The high heritability of thyroid cancer can be attributed to both rare, high-penetrance mutations 

and common, low-penetrance variants [4,13]. The former is best identified by studying families with a 

Mendelian pattern of inheritance of the disease in question. We used this principle in our study and 

identified 31 exonic and 39 non-coding rare potentially pathogenic variants segregating with the 

disease in five PTC-prone families.  

Scientific and technological advancements in genomics have allowed WGS to become the 

state-of-the-art tool not only for the identification of driver mutations in tumors but also for the 

identification of novel cancer predisposing genes in Mendelian diseases. The former has led to 
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improvements in personalized medicine, wherein therapeutic approaches are based on targeting 

dysregulated pathways specific to the affected individual. There are also some reports of WGS being 

successfully used to implicate rare, high-penetrance germline variants in cancer, for example POT1 

mutations in familial melanoma [39] and POLE and POLD1 mutations in colorectal adenomas and 

carcinomas [40]. Identification of cancer-predisposing mutations is a critical step in cancer risk 

assessment and can help in cancer screening and prevention strategies. Furthermore, the implication 

of predisposition genes and their respective pathways may facilitate development of targeted therapy. 

However, one has to be critical in reporting novel variants before appropriate functional validation 

and evaluation of their penetrance in a large cohort of families. The importance of this step is 

exemplified by controversial findings regarding the implication of HABP2 G534E in familial NMTC 

[41].  

Some of the genes shortlisted based on FCVPPv2 have already been identified in other cancers. 

These include CHEK2 mutations in breast cancers and also in a variety of other cancers including 

thyroid cancer [28], EWSR1 in Ewing sarcoma [29], RET in hereditary medullary thyroid carcinoma, 

NRP1 in breast cancer [30] and germline POT1 variants in malignant melanoma [31]. Moreover, it is 

interesting to note that the expression of NRP2, an important paralog of the NRP1 gene, has been 

correlated to lymph node metastasis of human PTC and is required in the VEGF-C/NRP2 mediated 

invasion and migration of thyroid cancer cells [42]. The upstream variant in the DAPL1 gene is shown 

to affect the binding sites of MAZR and Sp1 by SNPnexus and Segway. MAZR1, also known as PATZ1, 

has been shown to be downregulated and delocalized in thyroid cancer cell lines derived from 

papillary, follicular and anaplastic thyroid carcinomas [43]. Another study has demonstrated the role 

of PATZ1 as a tumor suppressor in thyroid follicular epithelial cells and its involvement in the 

dedifferentiation of thyroid cancer [44]. 

Other genes of interest shortlisted based on the pipeline (PNPLA8, PTGIR, RET, GNB2 and POT1) 

were involved in the enrichment of MAPK/ERK and PI3K/AKT pathways. The MAPK pathway is the 

most frequently mutated signaling pathway in human cancer and is thus considered one of the most 

promising targets for cancer therapy. This pathway plays a central role in the induction of biological 

responses such as cell proliferation, differentiation, growth, migration and apoptosis [45]. Initiated by 

an extracellular mitogenic stimulus that leads to the activation of RTK or GPCR, the MAPK/ERK 

pathway leads to the phosphorylation and subsequent translocation of ERK into the nucleus. ERK 

activation plays a central role in the induction of cell cycle entry and the suppression of negative 

regulators of the cell cycle [46]. Although MEK1 and MEK2 can be activated by multiple MAP kinase 

kinase kinases (MAP3Ks) as well as by RAF, they serve as sole activators of ERK1/2 and thus as 

gatekeepers of the MAPK cascade [47]. Overexpression or aberrant activation of RTKs or their 

immediate downstream targets (PI3K, RAS and SRC) can result in the upregulation of the MAPK/ERK 

signaling pathway [48]. A common somatic mutation in this pathway is BRAFV600E, which has been 

implicated in melanoma [49], thyroid and colorectal cancer [50] and hairy cell leukemia [51]. 

The importance of the PI3K/AKT pathway in thyroid cancer was first recognized when patients 

suffering from Cowden’s syndrome caused by a germline mutation in the PTEN gene were found to 

have FTC [52]. PI3K activation phosphorylates and activates AKT which can have numerous 

downstream effects via activation or inhibition of multiple proteins that are involved in cell growth, 

proliferation, motility, adhesion, angiogenesis, metabolism and apoptosis. 

Furthermore, our findings are in line with recent studies on PTC tissues and PTC cell lines have 

implicated activation of MAPK/ERK and PI3K/AKT pathways in thyroid carcinogenesis [53-55]. 

Interestingly, somatic alterations that lead to the activation of the MAPK pathway as well as of the 

PI3K/AKT pathway are common in aggressive thyroid cancers, such as metastatic or recurrent 

PTC/FTC and ATC [56]. The targeting of downstream RAS effectors has already been shown to be a 

promising approach, however patients treated with RAF or MEK inhibitors frequently develop drug 

resistance [47]. Targeting the downstream ERK kinase, which is also known as the gatekeeper of the 

MAPK cascade, can overcome the acquired drug resistance induced by upstream kinase inhibitors [57]. 

In this context, it is also important to note the similarity between our proposed model for the 
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molecular mechanisms in FNMTC and the reported molecular mechanisms in non-familial NMTC. It 

is known that patients with familial NMTC may have a more aggressive form of the disease, with 

larger tumors in younger patients and increased rates of extra-thyroid extension and lymph node 

metastasis. This suggests that FNMTC should be explored further to gain a better understanding of the 

cause of increased aggressiveness. However, none of the variants were identified in more than one 

family. As the phenotypes of our families differed (as described in Figure 1), it is likely that also the 

mutations causing the disease in the families also are different. We analyzed only 5 families and no 

other WGS data on FNMTC are available, thus restricting the possibility to confirm the variants in 

larger data sets. Functional analysis of promising candidates highlighted in this study may shed some 

light to the mechanisms underlying this phenomenon.  

Interpreting WGS data and selecting one out of millions of genetic variants as the cause of 

hereditary cancer is a daunting task and highlights the importance of the use of a standardized 

protocol like the FCVPPv2. We were able to prioritize 31 exonic and 39 non-coding potential 

cancer-predisposing variants using our family-based pipeline from which we hope to pinpoint one 

candidate gene for each family. The final selection and implication of one candidate gene predisposing 

to cancer in each family is beyond the scope of this paper as it will involve further steps including 

population screening and functional studies. In the present study, we decided to focus on the analysis 

of pathways that are enriched in familial NMTC to see how the variants prioritized using our pipeline 

fit into the general pathway analysis results. The IPA analysis of all genes already presented us with 

valuable data and there was a high involvement of genes prioritized using our pipeline in the top 

diseases and bio functions, canonical pathways and networks generated by IPA. Although IPA could 

give us a general idea of molecular pathways affected in the studied families, it is important to keep in 

mind that the analysis was conducted at a gene level and not at a variant level. The evaluation at a 

variant level is largely dependent on the pipeline and its subsequent steps as mentioned above. We 

have already successfully implemented this pipeline to identify DICER1 as a candidate predisposing 

gene in familial Hodgkin lymphoma [58] and are confident that our pipeline can be applied to the 

NMTC families in a similar manner. 

5. Conclusions 

In conclusion, WGS data analysis of five NMTC-prone families allowed us to prioritize 31 exonic 

and 39 non-coding variants from which we subsequently hope to identify one candidate gene per 

family. Furthermore, we were able to identify pathways and networks significant to our dataset, 

including important tumorigenic pathways such as MAPK/ERK and PI3K/AKT signaling pathways. 

The implication of previously reported tumorigenic signaling pathways and the presence of known 

tumor suppressor or oncogenes in these affected pathways show that the pathogenesis of FNMTC is in 

concordance with characteristic molecular mechanisms of cancer. The next steps will include selecting 

one candidate gene per family and validating it with the help of population screening and functional 

studies. We hope that our results can facilitate personalized therapy in the studied families and 

contribute to the screening of other individuals at risk of developing NMTC. 

Supplementary Materials: The following are available online, Figure S1: Variant Distribution, Table S1: Ingenuity 

Pathway Analysis Results, Table S2: Gene List from Top 20 Canonical Pathways. 

Author Contributions: Conceptualization, O.R.B.; A.F. and K.H.; Data curation, A.S.; A.K.; O.R.B. and 

S.G.; Formal analysis, A.S. and O.R.B.; Funding acquisition, K.H.; Investigation, A.S. and O.R.B.; 

Methodology, A.S.; S.G. and E.B.; Project administration O.R.B.; K.H. and A.F.; Resources, E.B. and A. 

F.; Software, A.K.; Supervision, O.R.B. and AF; Validation, S.G.; Writing – original draft, A.S. and 

O.R.B.; review and editing, K.H. and A.F. 

Funding: This research received no external funding. 

Funding: This research received no external funding. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 October 2019                   doi:10.20944/preprints201910.0154.v1

https://doi.org/10.20944/preprints201910.0154.v1


 

 

 23 of 25 

Acknowledgments: We thank the Genomics and Proteomics Core Facility (GPCF) of the German Cancer Research 

Center (DKFZ), for providing excellent library preparation and sequencing services. We also thank the Omics IT 

and Data management Core Facility (ODCF) of the DKFZ for the whole genome sequencing data management. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: 
Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J 
Clin 2018, 68, 394-424. 

2. Lubina, A.; Cohen, O.; Barchana, M.; Liphshiz, I.; Vered, I.; Sadetzki, S.; Karasik, A. Time trends of 
incidence rates of thyroid cancer in israel: What might explain the sharp increase. Thyroid 2006, 16, 
1033-1040. 

3. Malandrino, P.; Scollo, C.; Marturano, I.; Russo, M.; Tavarelli, M.; Attard, M.; Richiusa, P.; Violi, M.A.; 
Dardanoni, G.; Vigneri, R., et al. Descriptive epidemiology of human thyroid cancer: Experience from a 
regional registry and the "volcanic factor". Front Endocrinol (Lausanne) 2013, 4, 65. 

4. Frank, C.; Sundquist, J.; Yu, H.; Hemminki, A.; Hemminki, K. Concordant and discordant familial cancer: 
Familial risks, proportions and population impact. Int J Cancer 2017, 140, 1510-1516. 

5. Grossman, R.F.; Tu, S.H.; Duh, Q.Y.; Siperstein, A.E.; Novosolov, F.; Clark, O.H. Familial nonmedullary 
thyroid cancer. An emerging entity that warrants aggressive treatment. Arch Surg 1995, 130, 892-897; 
discussion 898-899. 

6. Peiling Yang, S.; Ngeow, J. Familial non-medullary thyroid cancer: Unraveling the genetic maze. 
Endocrine-related cancer 2016, 23, R577-r595. 

7. Gara, S.K.; Jia, L.; Merino, M.J.; Agarwal, S.K.; Zhang, L.; Cam, M.; Patel, D.; Kebebew, E. Germline 
habp2 mutation causing familial nonmedullary thyroid cancer. N Engl J Med 2015, 373, 448-455. 

8. He, H.; Bronisz, A.; Liyanarachchi, S.; Nagy, R.; Li, W.; Huang, Y.; Akagi, K.; Saji, M.; Kula, D.; Wojcicka, 
A., et al. Srgap1 is a candidate gene for papillary thyroid carcinoma susceptibility. J Clin Endocrinol 
Metab 2013, 98, E973-980. 

9. Ngan, E.S.; Lang, B.H.; Liu, T.; Shum, C.K.; So, M.T.; Lau, D.K.; Leon, T.Y.; Cherny, S.S.; Tsai, S.Y.; Lo, C.Y., 
et al. A germline mutation (a339v) in thyroid transcription factor-1 (titf-1/nkx2.1) in patients with 
multinodular goiter and papillary thyroid carcinoma. J Natl Cancer Inst 2009, 101, 162-175. 

10. Pereira, J.S.; da Silva, J.G.; Tomaz, R.A.; Pinto, A.E.; Bugalho, M.J.; Leite, V.; Cavaco, B.M. Identification 
of a novel germline foxe1 variant in patients with familial non-medullary thyroid carcinoma (fnmtc). 
Endocrine 2015, 49, 204-214. 

11. Tomsic, J.; He, H.; Akagi, K.; Liyanarachchi, S.; Pan, Q.; Bertani, B.; Nagy, R.; Symer, D.E.; Blencowe, B.J.; 
Chapelle, A.d.l. A germline mutation in srrm2, a splicing factor gene, is implicated in papillary thyroid 
carcinoma predisposition. Scientific Reports 2015, 5, 10566. 

12. Capezzone, M.; Cantara, S.; Marchisotta, S.; Filetti, S.; De Santi, M.M.; Rossi, B.; Ronga, G.; Durante, C.; 
Pacini, F. Short telomeres, telomerase reverse transcriptase gene amplification, and increased 
telomerase activity in the blood of familial papillary thyroid cancer patients. J Clin Endocrinol Metab 
2008, 93, 3950-3957. 

13. Bauer, A.J. Clinical behavior and genetics of nonsyndromic, familial nonmedullary thyroid cancer. 
Front Horm Res 2013, 41, 141-148. 

14. Kumar, A.; Bandapalli, O.R.; Paramasivam, N.; Giangiobbe, S.; Diquigiovanni, C.; Bonora, E.; Eils, R.; 
Schlesner, M.; Hemminki, K.; Forsti, A. Familial cancer variant prioritization pipeline version 2 (fcvppv2) 
applied to a papillary thyroid cancer family. Sci Rep 2018, 8, 11635. 

15. Kircher, M.; Witten, D.M.; Jain, P.; O'Roak, B.J.; Cooper, G.M.; Shendure, J. A general framework for 
estimating the relative pathogenicity of human genetic variants. Nat Genet 2014, 46, 310-315. 

16. Liu, X.; Wu, C.; Li, C.; Boerwinkle, E. Dbnsfp v3.0: A one-stop database of functional predictions and 
annotations for human nonsynonymous and splice-site snvs. Hum Mutat 2016, 37, 235-241. 

17. Agarwal, V.; Bell, G.W.; Nam, J.W.; Bartel, D.P. Predicting effective microrna target sites in mammalian 
mrnas. eLife 2015, 4. 

18. Dayem Ullah, A.Z.; Oscanoa, J.; Wang, J.; Nagano, A.; Lemoine, N.R.; Chelala, C. Snpnexus: Assessing 
the functional relevance of genetic variation to facilitate the promise of precision medicine. Nucleic 
acids research 2018, 46, W109-W113. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 October 2019                   doi:10.20944/preprints201910.0154.v1

https://doi.org/10.20944/preprints201910.0154.v1


 

 

 24 of 25 

19. Andersson, R.; Gebhard, C.; Miguel-Escalada, I.; Hoof, I.; Bornholdt, J.; Boyd, M.; Chen, Y.; Zhao, X.; 
Schmidl, C.; Suzuki, T., et al. An atlas of active enhancers across human cell types and tissues. Nature 
2014, 507, 455. 

20. Lizio, M.; Harshbarger, J.; Shimoji, H.; Severin, J.; Kasukawa, T.; Sahin, S.; Abugessaisa, I.; Fukuda, S.; 
Hori, F.; Ishikawa-Kato, S., et al. Gateways to the fantom5 promoter level mammalian expression atlas. 
Genome Biology 2015, 16, 22. 

21. Li, H.; Durbin, R. Fast and accurate short read alignment with burrows-wheeler transform. 
Bioinformatics 2009, 25, 1754-1760. 

22. Zhang, B.; Wang, F.; Su, J.; Shang, S.; Zhang, S.; Li, S.; Wang, X.; Wei, Y.; Liu, H.; Zhang, Y., et al. Sea: A 
super-enhancer archive. Nucleic Acids Research 2015, 44, D172-D179. 

23. Khan, A.; Zhang, X. Dbsuper: A database of super-enhancers in mouse and human genome. Nucleic 
acids research 2016, 44, D164-D171. 

24. Ernst, J.; Kellis, M. Chromhmm: Automating chromatin-state discovery and characterization. Nature 
Methods 2012, 9, 215. 

25. Hoffman, M.M.; Buske, O.J.; Wang, J.; Weng, Z.; Bilmes, J.A.; Noble, W.S. Unsupervised pattern 
discovery in human chromatin structure through genomic segmentation. Nature Methods 2012, 9, 
473. 

26. Betel, D.; Wilson, M.; Gabow, A.; Marks, D.S.; Sander, C. The microrna.Org resource: Targets and 
expression. Nucleic Acids Res 2008, 36, D149-153. 

27. Robinson, J.T.; Thorvaldsdottir, H.; Wenger, A.M.; Zehir, A.; Mesirov, J.P. Variant review with the 
integrative genomics viewer. Cancer Res 2017, 77, e31-e34. 

28. Zannini, L.; Delia, D.; Buscemi, G. Chk2 kinase in the DNA damage response and beyond. J Mol Cell Biol 
2014, 6, 442-457. 

29. Noujaim, J.; Jones, R.L.; Swansbury, J.; Gonzalez, D.; Benson, C.; Judson, I.; Fisher, C.; Thway, K. The 
spectrum of ewsr1-rearranged neoplasms at a tertiary sarcoma centre; assessing 772 tumour 
specimens and the value of current ancillary molecular diagnostic modalities. British Journal Of Cancer 
2017, 116, 669. 

30. Hu, C.; Jiang, X. Role of nrp-1 in vegf-vegfr2-independent tumorigenesis. Target Oncol 2016, 11, 
501-505. 

31. Robles-Espinoza, C.D.; Harland, M.; Ramsay, A.J.; Aoude, L.G.; Quesada, V.; Ding, Z.; Pooley, K.A.; 
Pritchard, A.L.; Tiffen, J.C.; Petljak, M., et al. Pot1 loss-of-function variants predispose to familial 
melanoma. Nat Genet 2014, 46, 478-481. 

32. Effraimidis, G.; Wiersinga, W.M. Mechanisms in endocrinology: Autoimmune thyroid disease: Old and 
new players. European journal of endocrinology 2014, 170, R241-252. 

33. O'Leary, N.A.; Wright, M.W.; Brister, J.R.; Ciufo, S.; Haddad, D.; McVeigh, R.; Rajput, B.; Robbertse, B.; 
Smith-White, B.; Ako-Adjei, D., et al. Reference sequence (refseq) database at ncbi: Current status, 
taxonomic expansion, and functional annotation. Nucleic Acids Res 2016, 44, D733-745. 

34. Mezghrani, A.; Courageot, J.; Mani, J.C.; Pugniere, M.; Bastiani, P.; Miquelis, R. Protein-disulfide 
isomerase (pdi) in frtl5 cells. Ph-dependent thyroglobulin/pdi interactions determine a novel pdi 
function in the post-endoplasmic reticulum of thyrocytes. J Biol Chem 2000, 275, 1920-1929. 

35. Su, G.H.; Bansal, R.; Murphy, K.M.; Montgomery, E.; Yeo, C.J.; Hruban, R.H.; Kern, S.E. Acvr1b (alk4, 
activin receptor type 1b) gene mutations in pancreatic carcinoma. Proceedings of the National 
Academy of Sciences of the United States of America 2001, 98, 3254-3257. 

36. Zhang, W.; He, J.; Du, Y.; Gao, X.-H.; Liu, Y.; Liu, Q.-Z.; Chang, W.-J.; Cao, G.-W.; Fu, C.-G. Upregulation 
of nemo-like kinase is an independent prognostic factor in colorectal cancer. World journal of 
gastroenterology 2015, 21, 8836-8847. 

37. Mitchell, A.L.; Attwood, T.K.; Babbitt, P.C.; Blum, M.; Bork, P.; Bridge, A.; Brown, S.D.; Chang, H.Y.; 
El-Gebali, S.; Fraser, M.I., et al. Interpro in 2019: Improving coverage, classification and access to 
protein sequence annotations. Nucleic Acids Res 2019, 47, D351-d360. 

38. Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; 
Lieder, I.; Mazor, Y., et al. The genecards suite: From gene data mining to disease genome sequence 
analyses. Current Protocols in Bioinformatics 2016, 54, 1.30.31-31.30.33. 

39. Wong, K.; Robles-Espinoza, C.D.; Rodriguez, D.; Rudat, S.S.; Puig, S.; Potrony, M.; Wong, C.C.; 
Hewinson, J.; Aguilera, P.; Puig-Butille, J.A., et al. Association of the pot1 germline missense variant 
p.I78t with familial melanoma. JAMA dermatology 2018. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 October 2019                   doi:10.20944/preprints201910.0154.v1

https://doi.org/10.20944/preprints201910.0154.v1


 

 

 25 of 25 

40. Palles, C.; Cazier, J.B.; Howarth, K.M.; Domingo, E.; Jones, A.M.; Broderick, P.; Kemp, Z.; Spain, S.L.; 
Guarino, E.; Salguero, I., et al. Germline mutations affecting the proofreading domains of pole and 
pold1 predispose to colorectal adenomas and carcinomas. Nat Genet 2013, 45, 136-144. 

41. Ngeow, J.; Eng, C. Habp2 in familial non-medullary thyroid cancer: Will the real mutation please stand 
up? J Natl Cancer Inst 2016, 108, djw013. 

42. Tu, D.G.; Chang, W.W.; Jan, M.S.; Tu, C.W.; Lu, Y.C.; Tai, C.K. Promotion of metastasis of thyroid 
cancer cells via nrp-2-mediated induction. Oncol Lett 2016, 12, 4224-4230. 

43. Chiappetta, G.; Valentino, T.; Vitiello, M.; Pasquinelli, R.; Monaco, M.; Palma, G.; Sepe, R.; Luciano, A.; 
Pallante, P.; Palmieri, D., et al. Patz1 acts as a tumor suppressor in thyroid cancer via targeting 
p53-dependent genes involved in emt and cell migration. Oncotarget 2015, 6, 5310-5323. 

44. Iesato, A.; Nakamura, T.; Izumi, H.; Uehara, T.; Ito, K.I. Patz1 knockdown enhances malignant 
phenotype in thyroid epithelial follicular cells and thyroid cancer cells. Oncotarget 2017, 8, 
82754-82772. 

45. Morrison, D.K. Map kinase pathways. Cold Spring Harb Perspect Biol 2012, 4. 
46. Chambard, J.C.; Lefloch, R.; Pouyssegur, J.; Lenormand, P. Erk implication in cell cycle regulation. 

Biochim Biophys Acta 2007, 1773, 1299-1310. 
47. Liu, F.; Yang, X.; Geng, M.; Huang, M. Targeting erk, an achilles' heel of the mapk pathway, in cancer 

therapy. Acta Pharm Sin B 2018, 8, 552-562. 
48. Burotto, M.; Chiou, V.L.; Lee, J.M.; Kohn, E.C. The mapk pathway across different malignancies: A new 

perspective. Cancer 2014, 120, 3446-3456. 
49. Fedorenko, I.V.; Paraiso, K.H.T.; Smalley, K.S.M. Acquired and intrinsic braf inhibitor resistance in braf 

v600e mutant melanoma. Biochemical Pharmacology 2011, 82, 201-209. 
50. Davies, H.; Bignell, G.R.; Cox, C.; Stephens, P.; Edkins, S.; Clegg, S.; Teague, J.; Woffendin, H.; Garnett, 

M.J.; Bottomley, W., et al. Mutations of the braf gene in human cancer. Nature 2002, 417, 949. 
51. Tiacci, E.; Trifonov, V.; Schiavoni, G.; Holmes, A.; Kern, W.; Martelli, M.P.; Pucciarini, A.; Bigerna, B.; 

Pacini, R.; Wells, V.A., et al. Braf mutations in hairy-cell leukemia. N Engl J Med 2011, 364, 2305-2315. 
52. Benvenga, S.; Koch, C.A. Molecular pathways associated with aggressiveness of papillary thyroid 

cancer. Curr Genomics 2014, 15, 162-170. 
53. Zhang, J.; Du, Y.; Zhang, X.; Li, M.; Li, X. Downregulation of bancr promotes aggressiveness in papillary 

thyroid cancer via the mapk and pi3k pathways. J Cancer 2018, 9, 1318-1328. 
54. Liu, Z.; Zhang, J.; Gao, J.; Li, Y. Microrna-4728 mediated regulation of mapk oncogenic signaling in 

papillary thyroid carcinoma. Saudi J Biol Sci 2018, 25, 986-990. 
55. Yu, S.T.; Zhong, Q.; Chen, R.H.; Han, P.; Li, S.B.; Zhang, H.; Yuan, L.; Xia, T.L.; Zeng, M.S.; Huang, X.M. 

Crlf1 promotes malignant phenotypes of papillary thyroid carcinoma by activating the mapk/erk and 
pi3k/akt pathways. Cell Death Dis 2018, 9, 371. 

56. Xing, M. Genetic alterations in the phosphatidylinositol-3 kinase/akt pathway in thyroid cancer. 
Thyroid 2010, 20, 697-706. 

57. Xue, Y.; Martelotto, L.; Baslan, T.; Vides, A.; Solomon, M.; Mai, T.T.; Chaudhary, N.; Riely, G.J.; Li, B.T.; 
Scott, K., et al. An approach to suppress the evolution of resistance in brafv600e-mutant cancer. 
Nature Medicine 2017, 23, 929. 

58. Bandapalli, O.R.; Paramasivam, N.; Giangiobbe, S.; Kumar, A.; Benisch, W.; Engert, A.; Witzens-Harig, 
M.; Schlesner, M.; Hemminki, K.; Forsti, A. Whole genome sequencing reveals dicer1 as a candidate 
predisposing gene in familial hodgkin lymphoma. Int J Cancer 2018, 143, 2076-2078. 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 October 2019                   doi:10.20944/preprints201910.0154.v1

https://doi.org/10.20944/preprints201910.0154.v1

