

Article

The role of the central limit theorem in the heterogeneous ensemble of Brownian particles approach

Silvia Vitali ^{1,‡,*}, Iva Budimir ^{1,‡}, Claudio Runfola ¹, Gastone Castellani ¹

¹ University of Bologna, Department of Physics and Astronomy;

Viale Berti Pichat 6/2, Bologna, Italy, 40127

* Correspondence: silvia.vitali4@unibo.it

‡ These authors contributed equally to this work.

1 **Abstract:** The central limit theorem (CLT) and its generalization to stable distributions have been
2 widely described in literature. However, many variations of the theorem have been defined and often
3 their applicability in practical situations is not straightforward. In particular, the applicability of the
4 CLT is essential for a derivation of heterogeneous ensemble of Brownian particles (HEBP). Here, we
5 analyze the role of the CLT within the HEBP approach in more detail and derive the conditions under
6 which the existing theorems are valid.

7 **Keywords:** Central Limit Theorem; Anomalous diffusion; Stable distribution; Fractional Calculus;
8 Power Law.

9 1. Introduction

10 The heterogeneous ensemble of Brownian particle (HEBP) approach [1,2] is based on the idea
11 that a population of scales in the system in which particles are diffusing may generate the anomalous
12 diffusing behaviour observed in many physical and biological systems [3–6]. Long time and space
13 correlation, characteristics of many anomalous diffusion processes [7–9], are often described through
14 the introduction of memory kernels and integral operators [10,11], as the fractional derivatives are [12],
15 leading in general to non-Markovianity and/or non-locality of the processes.

16 The HEPB approach maintains the Markovianity of the process, because the fundamental process
17 remains the classical Brownian motion (Bm), but the heterogeneity of the scales involved in the
18 system permits to describe a process with stationary features which deviate from the Bm at least in a
19 intermediate time limit [13]. Furthermore, the model structure permits to keep the standard dynamical
20 laws, with integer time derivative of physical variables like velocity (V) and displacement (X), and to
21 avoid the introduction of fractional time derivatives.

22 In the Langevin description of HEPB [1], one of the scales contributing to the anomalous behaviour
23 is the time scale τ . In particular, the presence of a population of time scales, described by a carefully
24 chosen distribution, generates a process with the same one-time one-point probability density function
25 (PDF) of the fractional Brownian motion (fBm), i.e. a normal distribution with variance (the mean
26 squared displacement of the process, MSD) scaling as a power law of time in the long time limit:

$$\sigma_x^2(t) = \langle (x(t + t_0) - x(t_0))^2 \rangle = D_\alpha t^\alpha, \quad (1)$$

27 where $0 < \alpha \leq 2$ and D_α is the constant playing the role of diffusion coefficient. Depending on the
28 value of the exponent α , it is possible to distinguish what is called super-diffusion and sub-diffusion,
29 associated respectively to super-linear and sub-linear values of the parameter.

30 The convergence of the PDF to a normal distribution is connected to the applicability of the
 31 classical CLT. We will demonstrate later that by choosing properly the population of the time scales
 32 according to certain PDFs, both the Gaussian shape of the PDF and the anomalous scaling of the
 33 variance can be guaranteed.

34 The *central limit theorem* (CLT), in all the varieties in which has been formulated, represents a
 35 cornerstone in probability theory. It states that when a large amount of one -or multi-dimensional,
 36 real-valued and independent (or weakly dependent [14]) random variables are summed, the probability
 37 distribution of their sum will tend to the Gaussian distribution \mathcal{G} , defined by its characteristic function:

$$\hat{g}_{\mathcal{G}}(k) = \exp\left(-i\mu k - \frac{k^2\sigma^2}{2}\right). \quad (2)$$

38 This result has been generalized to a larger class of stable distributions described by the following
 39 characteristic function [15]:

$$\hat{g}_{\alpha}(k) = \exp\left(-i\mu k - C|k|^{\alpha}[1 + i\beta(\text{sign}(k))\omega(k, \alpha)]\right) \quad (3)$$

40 where $\alpha, \beta, \mu, C \in \mathbb{R}$, $\omega(k, \alpha) = \tan(\alpha\pi/2)$ if $\alpha \neq 1$, else $\omega(k, \alpha) = 2/\pi\ln(|k|)$. The Gaussian
 41 distribution can be found to be a special yet fundamental case when $\alpha = 2$. The sum of the sub-class
 42 of stable variables characterized by infinite variance is governed by the generalized CLT [15], and it
 43 is applied to obtain random walk with infinite large displacements as the well known Lévy-Feller
 44 diffusion process [8,16,17] in which such a distribution is a stable distribution evolving in time.

45 In the following sections we first briefly review the CLT formulation, then we introduce the
 46 HEBP model, which indeed consider some infinite variance distribution in its derivation, to clarify the
 47 importance of theorem applicability to get the desired behaviour of the physical variables.

48 2. The classical CLT formulation

49 For completeness, we provide a formal representation of the most famous versions of the CLT
 50 and introduce some useful notation and definitions.

51 For parameters $\mu \in \mathbb{R}$ and $\sigma \in \mathbb{R}_+$, a normal (or Gaussian) distribution $\mathcal{N}(\mu, \sigma^2)$ is a continuous
 52 probability distribution defined by its density function

$$f(x | \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad (4)$$

53 where μ and σ^2 are the expectation and variance of the distribution, respectively. For $\mu = 0$ and $\sigma = 1$,
 54 we obtain what is usually called the standard normal distribution $\mathcal{N}(0, 1)$.

55 For the sequence of random variables $(X_n)_{n \geq 1}$, we define random variables $(S_n)_{n \geq 1}$ as partial
 56 sums $S_n = X_1 + X_2 + \dots + X_n$. Central limit theorem is trying to find conditions for which there exist
 57 sequences of constants $(a_n)_{n \geq 1}$, $a_n > 0$, and $(b_n)_{n \geq 1}$ such that the sequence $\left(\frac{S_n - b_n}{a_n}\right)_{n \geq 1}$ converges in
 58 distribution to a non-degenerate random variable. In particular, CLT describes the convergence to
 59 standard normal distribution with constants defined as $a_n^2 = \sum_{k=1}^n \text{Var}[X_k]$ and $b_n = \sum_{k=1}^n \mathbb{E}[X_k]$.

60 Different constraints on variables X_1, X_2, \dots lead to different versions of the CLT. We will briefly
 61 review the most prominent results of the theory of central limit theorems. For details, an interested
 62 reader can consult any book which deals with the theory of probability and classic literature for a more
 63 historical perspective [18–24].

64 We start with the case when variables X_1, X_2, \dots are independent and identically distributed.
 65 With additional requirements of finite mean μ and positive, finite variance σ^2 of variables X_n , we
 66 obtain:

$$\frac{S_n - n\mu}{\sigma\sqrt{n}} \xrightarrow{d} \mathcal{N}(0, 1) \quad \text{as } n \rightarrow \infty. \quad (5)$$

67 Dealing with independent, but not necessary identically distributed, random variables X_1, X_2, \dots
 68 with finite variance, we define $\mu_k = \mathbb{E}X_k$, $\sigma_k^2 = \text{Var}X_k$ and $s_n^2 = \sum_{k=1}^n \sigma_k^2$ for every $k \geq 1$. To obtain the
 69 main result, we need two *Lindeberg's conditions*:

$$L_1(n) = \max_{1 \leq k \leq n} \frac{\sigma_k^2}{s_n^2} \rightarrow 0 \quad \text{as } n \rightarrow \infty, \quad (6)$$

and

$$L_2(n) = \frac{1}{s_n^2} \sum_{k=1}^n \mathbb{E} |X_k - \mu_k|^2 I\{|X_k - \mu_k| > \epsilon s_n\} \rightarrow 0 \quad \text{as } n \rightarrow \infty \quad (\text{for every } \epsilon > 0). \quad (7)$$

The Lindeberg-Lévy-Feller theorem provides sufficient and necessary conditions for the following result:

$$\frac{S_n - \mathbb{E}S_n}{s_n} \xrightarrow{d} \mathcal{N}(0, 1) \quad \text{as } n \rightarrow \infty. \quad (8)$$

70 Lindeberg and Lévy proved (using different techniques) that if (7) holds, so do (6) and (8). Feller
 71 proved that if both (6) and (8) are satisfied, then so is (7).

Since the Lindeberg's condition (7) can be hard to verify, we can instead use the *Lyapounov's condition* which assumes that for some $\delta > 0$, $\mathbb{E} |X_k|^{2+\delta} < \infty$ (for all $k \geq 1$) and

$$\frac{1}{s_n^{2+\delta}} \sum_{k=1}^n \mathbb{E} |X_k - \mu_k|^{2+\delta} \rightarrow 0 \quad \text{as } n \rightarrow \infty. \quad (9)$$

72 If for independent random variables X_1, X_2, \dots the Lyapounov's condition is satisfied, then the central
 73 limit theorem (8) holds. Since the Lyapounov's condition implies the Lindeberg's second condition
 74 this result follows directly from the Lindeberg-Lévy theorem.

In all versions of the CLT mentioned so far, the assumption of finite variance was crucial. To extend our observations to the case when variance does not exist (or is infinite), we introduce the notion of *domains of attraction*. We are observing a sequence X, X_1, X_2, \dots of independent, identically distributed random variables. We say that X , or, equivalently, its distribution function F_X , belongs to the domain of attraction of the (non-degenerate) distribution G if there exist normalizing sequences $(a_n)_{n \geq 1}$, $a_n > 0$, and $(b_n)_{n \geq 1}$, such that

$$\frac{S_n - b_n}{a_n} \xrightarrow{d} G \quad \text{as } n \rightarrow \infty. \quad (10)$$

75 Another important concept is a *stable* distribution. Retaining the same notion, the distribution X
 76 is stable if there exist constants $(c_n)_{n \geq 1}$, $c_n > 0$, and $(d_n)_{n \geq 1}$ such that $S_n \xrightarrow{d} c_n X + d_n$ (for all $n \geq 1$).

It can be shown that only stable distributions possess a domain of attraction [18]. The most notable stable distribution is Gaussian and by the classical CLT we know that all distributions X with finite variance belong to the domain of attraction of the Gauss Law. However, there are also some distribution with infinite variance that belong to it. More precisely, it can be shown [25] that random variable X with the distribution function F_X belongs to the domain of the attraction of the Gauss Law if and only if

$$\lim_{x \rightarrow +\infty} \frac{x^2 [1 - F_X(x) + F_X(-x)]}{\int_{-x}^x t^2 dF_X(t)} = 0. \quad (11)$$

77 3. CLT for a population of Gaussian random variables

78 We reviewed the fundamental theorems related to the classical CLT, having the Gaussian
 79 distribution as limit distribution of the sum of random variables S_n . The recurrent and sufficient
 80 (but not necessary) condition leading to the classical CLT description is that the variance of the
 81 i.i.d. random variables that are summed should be finite. However, there exist distributions with

82 infinite variance that fall in the Gaussian domain of attraction [15,25]. In this paragraph we provide a
 83 preparatory example to introduce the role of the CLT in the HEBP. The sum of a population of *a priori*
 84 known Gaussian variables which variances can tend to infinity, is here rewritten as the sum of i.i.d.
 85 random variables with finite variance, thus satisfying the standard CLT conditions.

86 Let us consider partial sums of independent Gaussian random variables

$$S_n = \sum_{k=1}^n X_k, \quad (12)$$

87 where, denoting with $f_k(x_k)$ the PDF of X_k , we have:

$$f_k(x) \sim N(0, \sigma_k^2). \quad (13)$$

88 The distribution of the sum of n random variables can be exploited in term of a convolution
 89 integral. Thus, we can derive explicitly the limit distribution of equation (12) by inverting the
 90 characteristic function $\phi(\omega)$ of S_n , which corresponds to the product of the characteristics $\phi_k(\omega)$
 91 of X_k :

$$\phi(\omega) = \prod_{k=1}^n \phi_k(\omega) \quad (14)$$

92 which gives

$$\phi(\omega) = \prod_{k=1}^n \left(e^{-\frac{\omega^2}{2} \sigma_k^2} \right) \quad (15)$$

$$= e^{-\frac{\omega^2}{2} \sum_{k=1}^n \sigma_k^2}. \quad (16)$$

93 Assuming $\sigma_k \sim \sqrt{\Lambda}$, with Λ distributed according to a generic PDF $f(\lambda)$. If the first moment of Λ
 94 exists in the limit of large n , by applying the law of large numbers, we can rewrite equation (16) in
 95 terms of $\mathbb{E}\Lambda$:

$$\phi(\omega) = e^{-\frac{\omega^2}{2} \cdot n \cdot \mathbb{E}\Lambda}, \quad (17)$$

96 which is indeed the characteristic function of a Gaussian distribution with variance $n \cdot \mathbb{E}\Lambda$ for finite
 97 expectation of $f(\lambda)$ even if the supremum of Λ does not exists.

98 The convergence of S_n can be proven using the CLT for the sequence of independent, identically
 99 distributed random variables X, X_1, X_2, \dots with $X \sim \mathcal{N}(0, \Lambda)$. These variables in general won't have a
 100 Gaussian shape and can equivalently be defined as the product

$$X = \sqrt{\Lambda} \cdot Z, \quad (18)$$

101 where $Z \sim f_1(z) = N(0, 1)$, $\Lambda \sim f_2(\lambda)$, $\Lambda \in \mathbf{R}_+$. The PDF $f(x)$ of X can be represented by the integral
 102 form [26]

$$f(x) = \int_0^\infty f_1(x/\sqrt{\lambda}) f_2(\lambda) \frac{d\lambda}{\sqrt{\lambda}}. \quad (19)$$

103 Since Z is a Gaussian distribution, it follows that $\frac{1}{\sqrt{\lambda}} f_1(x/\sqrt{\lambda}) = N(0, \lambda)$. Using Fubini's theorem,
 104 now it is easy to compute the second moment of X :

$$\text{Var}X = \int_{-\infty}^{\infty} x^2 \int_0^\infty f_1(x/\sqrt{\lambda}) f_2(\lambda) \frac{d\lambda}{\sqrt{\lambda}} dx \quad (20)$$

$$= \int_0^\infty \lambda f_2(\lambda) d\lambda = \mathbb{E}\Lambda. \quad (21)$$

105 If $\mathbb{E}\Lambda < \infty$ the partial sums $S_n = X_1 + \dots + X_n$ of i.i.d. random variables X_k converge in
 106 distribution to a Gaussian

$$S_n \xrightarrow{d} \mathcal{N}(0, n \cdot \mathbb{E}\Lambda). \quad (22)$$

107 In general, in the case of infinite $\mathbb{E}\Lambda$, the distribution $f(x)$ does not fall in the Gaussian domain
 108 of attraction. For example by choosing Λ to be the extremal Lévy density distribution, $f(x)$ is the
 109 symmetric Lévy stable distribution [27], solution of space fractional diffusion equation [10], and of
 110 Lévy-Feller random walk. Since in this case $f(x)$ is itself a stable distribution, it belongs to its own
 111 domain of attraction. Nevertheless, under certain constraints on the tail of the distribution $f(x)$, it
 112 satisfies (11) and falls in Gaussian domain of attraction, for example if its PDF for large x is proportional
 113 to $x^{-3}, x^{-3}\log(x), x^{-3}/\log(x)$ [15].

114 4. Application of the CLT in the HEBP

115 In the HEBP Langevin model [1] the anomalous time scaling of the ensemble averaged MSD is
 116 generated by the superposition of a population of Bm processes in a similar way to equation (12),
 117 where each single process is characterized by its own independent timescale, and with frequency of
 118 appearance of such timescale described by the same PDF.

119 CLT applicability guarantees that after averaging over a properly chosen timescale distribution
 120 the shape of the PDF will remain Gaussian despite the time scaling will change from being linear in
 121 time to be a power low of time in the long time limit, following equation (1). In order to show this
 122 applicability let first introduce the HEPB construction.

123 Let us start with the classic Langevin equation describing the dynamics of a free particle moving
 124 in a viscous medium (or Bm):

$$dV = -\frac{1}{\tau}Vdt + \sqrt{2\nu}dW \quad (23)$$

125 where V is the random process representing the particle velocity, τ in classical approach corresponds
 126 to the characteristic time scale of the process, i.e. the scale of decorrelation of the system. In the classic
 127 Langevin description the timescale is defined by the ratio $\frac{m}{\gamma}$, with m being the mass of the diffusing
 128 particle and γ the Stoke's drag force coefficient of the velocity. The multiplicative constant of the
 129 Wiener noise increment dW in the square root, ν , represents the velocity diffusivity and is related to
 130 the drag term by the fluctuation dissipation theorem (FDT) [28]. This relation does not depend on the
 131 mass of the particle but on the average energy of the environment (the fluid) and the cross-sectional
 132 interaction between the medium and the particle moving. The Wiener increment dW is the increment
 133 per infinitesimal time induced by the presence of a Gaussian white noise with unit variance and is
 134 hence fully characterized by its first two moments:

$$\langle dW(t) \rangle = 0, \quad \langle dW(t)^2 \rangle = t. \quad (24)$$

135 The presence of Gaussian increments in the stochastic equation leads to the stationary state
 136 $V \sim N(0, kT/m)$ and, being $V = dX/dt$, to the stationary increments process $X(t) \sim N(x_0, \sigma_x^2(t))$,
 137 with $\sigma_x^2(t) = \nu\tau^2 t$.

138 Let now the parameters ν and τ be time independent random variables: $\nu \sim p_\nu(\nu)$ and $\tau \sim p_\tau(\tau)$.
 139 The way it will affect $V(t)$ and $X(t)$ is clear in the case of ν , but more complicated to specify in the case
 140 of τ .

141 Let us consider the velocity defined as a product of random variables $V = \sqrt{\nu}V'$. It is easy
 142 to show that $\sqrt{\nu}$ factorizes out from the stochastic differential equation, resulting in the following
 143 description of the evolution of V' :

$$dV' = -\frac{1}{\tau}V'dt + \sqrt{2}dW. \quad (25)$$

144 Therefore, the PDF associated to the processes $V(t)$ and $X(t)$ can be derived by applying the same
 145 integral formula of equation (19), eventually producing non Gaussian PDF and weak ergodicity
 146 breaking stochastic processes as result [29–31].

147 Dealing with random timescales is much more tricky because the variable τ is embedded in the
 148 correlation functions and is not possible to factorize it out without simultaneously transforming the
 149 time variable. Furthermore, because of the time variable transformation different realizations of the
 150 process would not be comparable directly anymore without reverse transformation.

151 To avoid these complications, we define V' as the superposition of N_τ independent Bm processes
 152 each with its own timescale:

$$V'(t) = \frac{1}{N_\tau} \sum_\tau V''(t|\tau), \quad (26)$$

153 where $V''(t)$ can still be described by the equation (25). If the resulting process $V'(t)$ is still a Gaussian
 154 process, the previously described approach to derive $V = \sqrt{\nu}V'$ can be applied without further
 155 changes. However, all the correlation functions of V' and moments will become the sum of the
 156 correlation functions of the single processes $V''(t|\tau)$, which is equivalent to averaging with respect to
 157 $p_\tau(\tau)$. A careful choice of this distribution permits to obtain non linear time scaling of the MSD of V' .

158 Let us demonstrate the applicability of the CLT explicitly making use of the equation (17).
 159 Assuming that a global stationary state (in the sense of stationary increments) has been reached,
 160 the relation between the MSD and the VACF determined by the free particle Langevin dynamics can
 161 be expressed by:

$$\sigma_x^2(t, \tau) = 2 \int_0^t (t-s) R(s, \tau) ds, \quad (27)$$

162 where $R(t, \tau) = \nu \tau e^{-t/\tau}$, with ν being an arbitrary constant, is the stationary VACF of the process
 163 associated to the realization τ of the timescale, $V''(t|\tau)$.

164 By omitting time dependence for sake of conciseness, we can define $\lambda = \sigma_x^2 = f(\tau)$, which
 165 can be considered as a random variable itself distributed according to the PDF $P(\lambda) = p_\tau(f^{-1}(\lambda)) \cdot$
 166 $\partial_\lambda(f^{-1}(\lambda))$. The average over λ is thus equivalent to computation of the expectation $\langle f(\tau) \rangle$ with
 167 respect to τ .

168 In principle we may compute the expectation after the integration of equation (27), however it is
 169 much easier to compute it before performing the integration to avoid self canceling terms:

$$\langle \lambda \rangle = 2 \int_0^t (t-s) \langle R(s, \tau) \rangle_\tau ds, \quad (28)$$

170 For a generic PDF $p_\tau(\tau)$ we obtain:

$$\langle R(t, \tau) \rangle_\tau = \nu \int_0^\infty \tau e^{-t/\tau} p_\tau(\tau) d\tau. \quad (29)$$

171 This expression is finite for any value of time only if $\langle \tau \rangle$ is finite. Moreover, this is a very important
 172 physical condition. In fact, when times goes to zero, $\langle R(t=0, \tau) \rangle_\tau$ is proportional to the average
 173 kinetic energy of the system.

174 The distribution $p_\tau(\tau)$ should have a power law tail to introduce the desired anomalous time
 175 scaling of λ but a finite value of the first moment of τ to maintain CLT applicability. The importance
 176 of this assumption can be seen explicitly by solving the integral in equation (29) for the distribution
 177 employed in [1]:

$$p_\tau(\tau) = \frac{\alpha}{\Gamma(1/\alpha)} \frac{1}{\tau} L_\alpha^\alpha(\frac{\tau}{C}), \quad (30)$$

178 where the constant $C = \langle \tau \rangle \frac{\Gamma(1/\alpha)}{\alpha}$ serves to control the value of the average.

179 By considering the integral representation of the extremal Lévy density distribution and the
 180 Euler's gamma function with some more simplification, the result in (29) can be represented by the
 181 integral form:

$$R(t) = \nu \langle \tau \rangle \frac{1}{2\pi i} \int_{\gamma-i\infty}^{\gamma+i\infty} \frac{\Gamma(z/\alpha + 1)\Gamma(-z)}{\Gamma(z+1)} \left(\frac{t}{C}\right)^z dz. \quad (31)$$

182 This expression can be solved through the residues theorem considering the poles $z/\alpha + 1 = -n$
 183 or $z = n$, with $n = 0, 1, 2, \dots, \infty$, to obtain the short or the long time scaling of the variable. An
 184 interested reader can verify the explicit derivation in [1,32]. By plugging this result in equation (28),
 185 without any assumption about time values, we observe that the condition of finite $\langle \tau \rangle$ is necessary to
 186 guarantee $\langle \lambda \rangle$ to be finite too, ensuring the Gaussian form of the PDF.

187 5. Discussion

188 The CLT has a fundamental role in the HEBP approach and, generally, in the theory of stochastic
 189 processes. The domain of attraction of the distribution of the increments determines the shape of the
 190 PDF of the stochastic process in the long time limit. In this work we reviewed the main conditions of
 191 the classical CLT, by including also the less known case of distributions with infinite variance which
 192 fall in the Gaussian domain (with slower convergence). We proposed and analysed a preparatory
 193 exercise to give the mathematical foundations to understand the approach used in HEBP to generate
 194 PDFs with Gaussian shape and non linear scaling of the variance in time for the long time limit. It is
 195 shown that the sum of such population of Gaussian random variables is mathematically defined by
 196 the sum of a more complex, and in general non-Gaussian, i.i.d. random variables. The population of
 197 Gaussian distributions can be interpreted, within a Bayesian approach, as the likelihood modulated
 198 by the prior distribution of a parameter of the model. The formal randomization of the parameter of
 199 the distribution (equation (19)) is equivalent to the computation of the marginal likelihood, which
 200 correspond indeed to the PDF of the i.i.d. random variables. This approach could be easily generalized
 201 to other distributions and parameters for statistical application purposes. The role of CLT in HEPB is
 202 then clarified. After recalling the derivation of the model, the conditions obtained in the preparatory
 203 example have been explicitly proven.

204 **Author Contributions:** Conceptualization, S.V. and G.C.; methodology, S.V. and I.B.; formal analysis, S.V. and
 205 I.B.; investigation, S.V., I.B. and C.R.; writing—original draft preparation, S.V., I.B. and C.R..

206 **Funding:** This research received no external funding.

207 **Acknowledgments:** G.C. and I.B. acknowledge IMforFUTURE project under H2020-MSCA-ITN grant agreement
 208 number 721815 for funding their research. S.V. acknowledge University of Bologna (DIFA) and HARMONY
 209 project, funded through the Innovative Medicines Initiative (IMI) 2 Joint Undertaking and listed under grant
 210 agreement No. 116026. All the authors acknowledge F. Mainardi, G. Pagnini and P. Paradisi for useful discussions
 211 and for their past contributions to the theory behind the model analysed in the present paper.

212 **Conflicts of Interest:** The authors declare no conflict of interest.

213 Abbreviations

214 The following abbreviations are used in this manuscript:

215	MDPI	Multidisciplinary Digital Publishing Institute
	CLT	Central Limit Theorem
	MSD	Mean squared displacement
216	VACF	Velocity auto-correlation function
	Bm	Brownian motion
	HEPB	Heterogeneous ensemble of Brownian particles
	PDF	Probability density function

217 References

- 218 1. Vitali, S. et al. Langevin equation in complex media and anomalous diffusion *Journal of the Royal Society Interface* **2018** doi: 10.1098/rsif.2018.0282.
- 219 2. Sliusarenko, O.Y. et al. Finite-energy Lévy-type motion through heterogeneous ensemble of Brownian particles *Journal of Physics A: Mathematical and Theoretical* **2019**, 52, 9, doi: 10.1088/1751-8121/aafe90
- 220 3. Golding, I.; Cox, E.C. Physical nature of bacterial cytoplasm, *Phys. Rev. Lett.* **2006** 96 098102
- 221 4. Hofling, F.; Franosch, T. Anomalous transport in the crowded world of biological cells, *Rep. Prog. Phys.* **2013**, 76, (4), 046602.
- 222 5. Javer, A.; Kuwada, N.; Long, Z.; Benza, V.; Dorfman, K.; Wiggins, P.; Cicuta, P.; Lagomarsino, M. Persistent super-diffusive motion of escherichia coli chromosomal loci, *Nat. Comm.* **2014**, 5, 3854.
- 223 6. Caspi, A.; Granek, R.; Elbaum, M. Enhanced diffusion in active intracellular transport, *Phys. Rev. Lett.* **2000**, 85, 5655–5658.
- 224 7. Mandelbrot, B.B. ; Van Ness, J.W. Fractional brownian motions, fractional noises and applications, *SIAM Rev.* **1968**, 10, (4), 422–437.
- 225 8. Dubkov, A.A.; Spagnolo, B.; Uchaikin, V.V. Lévy flight superdiffusion: an introduction, *International Journal of Bifurcation and Chaos* **2008**, 18, 09, 2649–2672.
- 226 9. Eliazar, I.I.; Shlesinger, M.F. Fractional motions, *Physics Reports* **2013**, 527, 2, 101-129.
- 227 10. Mainardi, F; Luchko, Y.; Pagnini, G. The fundamental solution of the space-time fractional diffusion equation. *Fractional Calculus and Applied Analysis* **2001**, 4, 2, 153-192.
- 228 11. Lutz, E. Fractional Langevin equation. *Physical Review E* **2001**, 64, 051106
- 229 12. Mainardi, F. *Fractional Calculus and Waves in Linear Viscoelasticity*, Imperial College Press, London (2010), pp. 340, ISBN 978-1-84816-329-4.
- 230 13. d'Ovidio, M. et al. Centre-of-mass like superposition of Ornstein–Uhlenbeck processes: a pathway to non-autonomous stochastic differential equations and to fractional diffusion *Fractional Calculus and Applied Analysis* **2018** 21, 1420-1435, doi: 10.1515/fca-2018-0074
- 231 14. Fischer, J.W. *A History of Central Limit Theorem - from Classical to Modern Probability Theory*; Buchwald, J.Z., Berggren, J.L., Lützen, J., Eds; Springer: New York, USA, 2011.
- 232 15. Bouchaud, P.; Georges, A. , Anomalous diffusion in disordered media: statistical mechanics, models and physical applications. *PHYSICS REPORTS (Review Section of Physics Letters)* **1990**, 195, 4, 5, 127-293.
- 233 16. Montroll, E.W.; Shlesinger, O.F. , The wonderful world of random walks, in Non equilibrium Phenomena. From Stochastics to Hydrodynamics, *Studies In Statistical Mechanics* **1984**, 11, eds J L Lebowitz and E W Montroll (North-Holland, Amsterdam)
- 234 17. Gorenflo, R.; De Fabritiis, G.; Mainardi, F. Discrete random walk models for symmetric Lévy - Feller diffusion processes *Physica A* **1999**, 269, 1, 79-89.
- 235 18. Gut, A. *Probability: A Graduate Course*; Casella, G., Fienberg, S., Olkin, I.; Springer: New York, USA, **2005**
- 236 19. Le Cam, L.M. The Central Limit Theorem around 1935 *Statistical Science* **1986**, 1, 78-96.
- 237 20. Chebyshev, P.L. Sur deux théorèmes relatifs aux probabilités *Acta mathematica* **1891**, 14, 305-315.
- 238 21. Markov, A.A. Sur les racines de l'équation $e^{x^2} \frac{d^l e^{-x^2}}{dx^l}$ *Bulletin de l'Académie Impériale des Sciences de St. Pétrobourg* **1898**, 9, 435-446.
- 239 22. Seneta, E. The Central Limit Problem and Linear Least Squares in Pre-Revolutionary Russia: The Background *Math. Scientist* **1983**, 9, 37-77.
- 240 23. Lindeberg, J.W. Über das Gauss'sche Fehlergesetz. *Skandinavisk Aktuarieridskrift* **1922**, 5, 217–234.
- 241 24. Billingsley, P. The Central Limit Theorem. In *Probability and Measure*, 3rd Ed.; John Wiley & Sons, Inc.: Canada, 1995; pp.357-363, ISBN.
- 242 25. Mainardi, F; Rogosin, S.V. The Legacy of A.Ya. Khintchine's Work in Probability Theory. Cambridge Scientific Publishers, **2010**.
- 243 26. Mainardi, F.; Pagnini, G.; Gorenflo, R., Mellin transform and subordination laws in fractional diffusion processes. *Fractional Calculus and Applied Analysis* **2003**, 6, 4, 441-459.
- 244 27. Pagnini, G.; Paradisi, P. A stochastic solution with Gaussian stationary increments of the symmetric space-time fractional diffusion equation. *Fractional Calculus and Applied Analysis* **2016** 19.2 408–440.
- 245 28. Kubo, R. The fluctuation-dissipation theorem. *Reports on Progress in Physics* **1966**, 29, Part I.

268 29. Molina-García, D.; Minh Pham, T.; Paradisi, P.; Manzo, C.; Pagnini, G. Fractional kinetics emerging from
269 ergodicity breaking in random media. *Phys. Rev. E* **2016**, *94*, 052147.

270 30. Mura, A. Non-Markovian Stochastic Processes and their Applications: from Anomalous Diffusion to Time
271 Series Analysis *Alma Mater Tesi* **2008** 25 207

272 31. Sposini, V. et al. First passage statistics for diffusing diffusivity *Journal of Physics A: Mathematical and
273 Theoretical* **2018**, *52*, 4, doi: 10.1088/1751-8121/aaf6ff

274 32. Vitali, S. *Modeling of birth-death and diffusion processes in biological complex environments* **2018**, University of
275 Bologna, PhD Thesis, Supervisors: Pagnini, G.; Castellani, G.