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Abstract: The central limit theorem (CLT) and its generalization to stable distributions have been 
widely described in literature. However, many variations of the theorem have been defined and often 
their applicability in practical situations is not straightforward. In particular, the applicability of the 
CLT is essential for a derivation of heterogeneous ensemble of Brownian particles (HEBP). Here, we 
analyze the role of the CLT within the HEBP approach in more detail and derive the conditions under 
which the existing theorems are valid.

Keywords: Central Limit Theorem; Anomalous diffusion; Stable distribution; Fractional Calculus; 
Power Law.8

1. Introduction9

The heterogeneous ensemble of Brownian particle (HEBP) approach [1,2] is based on the idea10

that a population of scales in the system in which particles are diffusing may generate the anomalous11

diffusing behaviour observed in many physical and biological systems [3–6]. Long time and space12

correlation, characteristics of many anomalous diffusion processes [7–9], are often described through13

the introduction of memory kernels and integral operators [10,11], as the fractional derivatives are [12],14

leading in general to non-Markovianity and/or non-locality of the processes.15

The HEPB approach maintains the Markovianity of the process, because the fundamental process16

remains the classical Brownian motion (Bm), but the heterogeneity of the scales involved in the17

system permits to describe a process with stationary features which deviate from the Bm at least in a18

intermediate time limit [13]. Furthermore, the model structure permits to keep the standard dynamical19

laws, with integer time derivative of physical variables like velocity (V) and displacement (X), and to20

avoid the introduction of fractional time derivatives.21

In the Langevin description of HEPB [1], one of the scales contributing to the anomalous behaviour22

is the time scale τ. In particular, the presence of a population of time scales, described by a carefully23

chosen distribution, generates a process with the same one-time one-point probability density function24

(PDF) of the fractional Brownian motion (fBm), i.e. a normal distribution with variance (the mean25

squared displacement of the process, MSD) scaling as a power law of time in the long time limit:26

σ2
x(t) = 〈(x(t + t0)− x(t0))

2〉 = Dαtα , (1)

where 0 < α ≤ 2 and Dα is the constant playing the role of diffusion coefficient. Depending on the27

value of the exponent α, it is possible to distinguish what is called super-diffusion and sub-diffusion,28

associated respectively to super-linear and sub-linear values of the parameter.29
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The convergence of the PDF to a normal distribution is connected to the applicability of the30

classical CLT. We will demonstrate later that by choosing properly the population of the time scales31

according to certain PDFs, both the Gaussian shape of the PDF and the anomalous scaling of the32

variance can be guaranteed.33

The central limit theorem (CLT), in all the varieties in which has been formulated, represents a34

cornerstone in probability theory. It states that when a large amount of one -or multi-dimensional,35

real-valued and independent (or weakly dependent [14]) random variables are summed, the probability36

distribution of their sum will tend to the Gaussian distribution G, defined by its characteristic function:37

ĝG(k) = exp(−iµk− k2σ

2
) . (2)

This result has been generalized to a larger class of stable distributions described by the following38

characteristic function [15]:39

ĝα(k) = exp(−iµk− C|k|α[1 + iβ(sign(k))ω(k, α)]) (3)

where α, β, µ, C ∈ R, ω(k, α) = tan(απ/2) if α 6= 1, else ω(k, α) = 2/πln(|k|). The Gaussian40

distribution can be found to be a special yet fundamental case when α = 2. The sum of the sub-class41

of stable variables characterized by infinite variance is governed by the generalized CLT [15], and it42

is applied to obtain random walk with infinite large displacements as the well known Lévy-Feller43

diffusion process [8,16,17] in which such a distribution is a stable distribution evolving in time.44

In the following sections we first briefly review the CLT formulation, then we introduce the45

HEBP model, which indeed consider some infinite variance distribution in its derivation, to clarify the46

importance of theorem applicability to get the desired behaviour of the physical variables.47

2. The classical CLT formulation48

For completeness, we provide a formal representation of the most famous versions of the CLT49

and introduce some useful notation and definitions.50

For parameters µ ∈ R and σ ∈ R+, a normal (or Gaussian) distribution N (µ, σ2) is a continuous51

probability distribution defined by its density function52

f (x | µ, σ2) =
1√

2πσ2
e−

(x−µ)2

2σ2 , (4)

where µ and σ2 are the expectation and variance of the distribution, respectively. For µ = 0 and σ = 1,53

we obtain what is usually called the standard normal distribution N (0, 1).54

For the sequence of random variables (Xn)n≥1, we define random variables (Sn)n≥1 as partial55

sums Sn = X1 + X2 + · · ·+ Xn. Central limit theorem is trying to find conditions for which there exist56

sequences of constants (an)n≥1, an > 0, and (bn)n≥1 such that the sequence
(

Sn−bn
an

)
n≥1

converges in57

distribution to a non-degenerate random variable. In particular, CLT describes the convergence to58

standard normal distribution with constants defined as a2
n = ∑n

k=1 Var [Xk] and bn = ∑n
k=1 E [Xk].59

Different constraints on variables X1, X2, . . . lead to different versions of the CLT. We will briefly60

review the most prominent results of the theory of central limit theorems. For details, an interested61

reader can consult any book which deals with the theory of probability and classic literature for a more62

historical perspective [18–24].63

We start with the case when variables X1, X2, . . . are independent and identically distributed.64

With additional requirements of finite mean µ and positive, finite variance σ2 of variables Xn, we65

obtain:66

Sn − nµ

σ
√

n
d−→ N (0, 1) as n→ ∞. (5)
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Dealing with independent, but not necessary identically distributed, random variables X1, X2, . . .67

with finite variance, we define µk = EXk, σ2
k = VarXk and s2

n = ∑n
k=1 σ2

k for every k ≥ 1. To obtain the68

main result, we need two Lindeberg’s conditions:69

L1(n) = max
1≤k≤n

σ2
k

s2
n
→ 0 as n→ ∞, (6)

and

L2(n) =
1
s2

n

n

∑
k=1

E |Xk −mk|2 I {|Xk −mk| > εsn} → 0 as n→ ∞ (for every ε > 0) . (7)

The Lindeberg-Lévy-Feller theorem provides sufficient and necessary conditions for the following
result:

Sn −ESn

sn

d−→ N (0, 1) as n→ ∞. (8)

Lindeberg and Lévy proved (using different techniques) that if (7) holds, so do (6) and (8). Feller70

proved that if both (6) and (8) are satisfied, then so is (7).71

Since the Lindeberg’s condition (7) can be hard to verify, we can instead use the Lyapounov’s
condition which assumes that for some δ > 0, E |Xk|2+δ < ∞ (for all k ≥ 1) and

1
s2+δ

n

n

∑
k=1

E |Xk − µk|2+δ → 0 as n→ ∞. (9)

If for independent random variables X1, X2, . . . the Lyapounov’s condition is satisfied, then the central72

limit theorem (8) holds. Since the Lyapounov’s condition implies the Linderberg’s second condition73

this result follows directly from the Lindeberg-Lévy theorem.74

In all versions of the CLT mentioned so far, the assumption of finite variance was crucial. To
extend our observations to the case when variance does not exist (or is infinite), we introduce the
notion of domains of attraction. We are observing a sequence X, X1, X2, . . . of independent, identically
distributed random variables. We say that X, or, equivalently, its distribution function FX , belongs to
the domain of attraction of the (non-degenerate) distribution G if there exist normalizing sequences
(an)n≥1, an > 0, and (bn)n≥1, such that

Sn − bn

an

d−→ G as n→ ∞. (10)

Another important concept is a stable distribution. Retaining the same notion, the distribution X75

is stable if there exist constants (cn)n≥1, cn > 0, and (dn)n≥1 such that Sn
d
= cnX + dn (for all n ≥ 1).76

It can be shown that only stable distributions possess a domain of attraction [18]. The most
notable stable distribution is Gaussian and by the classical CLT we know that all distributions X with
finite variance belong to the domain of attraction of the Gauss Law. However, there are also some
distribution with infinite variance that belong to it. More precisely, it can be shown [25] that random
variable X with the distribution function FX belongs to the domain of the attraction of the Gauss Law
if and only if

lim
x→+∞

x2 [1− FX(x) + FX(−x)]∫ x
−x t2dFX(t)

= 0. (11)

3. CLT for a population of Gaussian random variables77

We reviewed the fundamental theorems related to the classical CLT, having the Gaussian78

distribution as limit distribution of the sum of random variables Sn. The recurrent and sufficient79

(but not necessary) condition leading to the classical CLT description is that the variance of the80

i.i.d. random variables that are summed should be finite. However, there exist distributions with81
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infinite variance that fall in the Gaussian domain of attraction [15,25]. In this paragraph we provide a82

preparatory example to introduce the role of the CLT in the HEBP. The sum of a population of a priori83

known Gaussian variables which variances can tend to infinity, is here rewritten as the sum of i.i.d.84

random variables with finite variance, thus satisfying the standard CLT conditions.85

Let us consider partial sums of independent Gaussian random variables86

Sn =
n

∑
k=1

Xk , (12)

where, denoting with fk(xk) the PDF of Xk, we have:87

fk(x) ∼ N(0, σ2
k ) . (13)

The distribution of the sum of n random variables can be exploited in term of a convolution88

integral. Thus, we can derive explicitly the limit distribution of equation (12) by inverting the89

characteristic function φ(ω) of Sn, which corresponds to the product of the characteristics φk(ω)90

of Xk:91

φ(ω) = Πn
k=1φk(ω) (14)

which gives92

φ(ω) = Πn
k=1

(
e−

ω2
2 σ2

k

)
(15)

= e−
ω2
2 ∑n

k=1 σ2
k . (16)

Assuming σk ∼
√

Λ, with Λ distributed according to a generic PDF f (λ). If the first moment of Λ93

exists in the limit of large n, by applying the law of large numbers, we can rewrite equation (16) in94

terms of EΛ:95

φ(ω) = e−
ω2
2 ·n·EΛ , (17)

which is indeed the characteristic function of a Gaussian distribution with variance n ·EΛ for finite96

expectation of f (λ) even if the supremum of Λ does not exists.97

The convergence of Sn can be proven using the CLT for the sequence of independent, identically98

distributed random variables X, X1, X2, . . . with X ∼ N (0, Λ). These variables in general won’t have a99

Gaussian shape and can equivalently be defined as the product100

X =
√

Λ · Z, (18)

where Z ∼ f1(z) = N(0, 1), Λ ∼ f2(λ), Λ ∈ R+. The PDF f (x) of X can be represented by the integral101

form [26]102

f (x) =
∫ ∞

0
f1(x/

√
λ) f2(λ)

dλ√
λ

. (19)

Since Z is a Gaussian distribution, it follows that 1√
λ

f1(x/
√

λ) = N(0, λ). Using Fubini’s theorem,103

now it is easy to compute the second moment of X:104

VarX =
∫ ∞

−∞
x2
∫ ∞

0
f1(x/

√
λ) f2(λ)

dλ√
λ

dx (20)

=
∫ ∞

0
λ f2(λ)dλ = EΛ. (21)
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If EΛ < ∞ the partial sums Sn = X1 + · · · + Xn of i.i.d. random variables Xk converge in105

distribution to a Gaussian106

Sn
d−→ N (0, n ·EΛ) . (22)

In general, in the case of infinite EΛ, the distribution f (x) does not fall in the Gaussian domain107

of attraction. For example by choosing Λ to be the extremal Lévy density distribution, f (x) is the108

symmetric Lévy stable distribution [27], solution of space fractional diffusion equation [10], and of109

Lévy-Feller random walk. Since in this case f (x) is itself a stable distribution, it belongs to its own110

domain of attraction. Nevertheless, under certain constraints on the tail of the distribution f (x), it111

satisfies (11) and falls in Gaussian domain of attraction, for example if its PDF for large x is proportional112

to x−3 , x−3log(x) , x−3/log(x) [15].113

4. Application of the CLT in the HEBP114

In the HEBP Langevin model [1] the anomalous time scaling of the ensemble averaged MSD is115

generated by the superposition of a population of Bm processes in a similar way to equation (12),116

where each single process is characterized by its own independent timescale, and with frequency of117

appearance of such timescale described by the same PDF.118

CLT applicability guarantees that after averaging over a properly chosen timescale distribution119

the shape of the PDF will remain Gaussian despite the time scaling will change from being linear in120

time to be a power low of time in the long time limit, following equation (1). In order to show this121

applicability let first introduce the HEPB construction.122

Let us start with the classic Langevin equation describing the dynamics of a free particle moving123

in a viscous medium (or Bm):124

dV = − 1
τ

Vdt +
√

2νdW (23)

where V is the random process representing the particle velocity, τ in classical approach corresponds125

to the characteristic time scale of the process, i.e. the scale of decorrelation of the system. In the classic126

Langevin description the timescale is defined by the ratio m
γ , with m being the mass of the diffusing127

particle and γ the Stoke’s drag force coefficient of the velocity. The multiplicative constant of the128

Wiener noise increment dW in the square root, ν, represents the velocity diffusivity and is related to129

the drag term by the fluctuation dissipation theorem (FDT) [28]. This relation does not depend on the130

mass of the particle but on the average energy of the environment (the fluid) and the cross-sectional131

interaction between the medium and the particle moving. The Wiener increment dW is the increment132

per infinitesimal time induced by the presence of a Gaussian white noise with unit variance and is133

hence fully characterized by its first two moments:134

〈dW(t)〉 = 0 , 〈dW(t)2〉 = t . (24)

The presence of Gaussian increments in the stochastic equation leads to the stationary state135

V ∼ N(0, kT/m) and, being V = dX/dt, to the stationary increments process X(t) ∼ N(x0, σ2
x(t)),136

with σ2
x(t) = ντ2t.137

Let now the parameters ν and τ be time independent random variables: ν ∼ pν(ν) and τ ∼ pτ(τ).138

The way it will affect V(t) and X(t) is clear in the case of ν, but more complicated to specify in the case139

of τ.140

Let us consider the velocity defined as a product of random variables V =
√

νV′. It is easy141

to show that
√

ν factorizes out from the stochastic differential equation, resulting in the following142

description of the evolution of V′:143

dV′ = − 1
τ

V′dt +
√

2dW . (25)
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Therefore, the PDF associated to the processes V(t) and X(t) can be derived by applying the same144

integral formula of equation (19), eventually producing non Gaussian PDF and weak ergodicity145

breaking stochastic processes as result [29–31].146

Dealing with random timescales is much more tricky because the variable τ is embedded in the147

correlation functions and is not possible to factorize it out without simultaneously transforming the148

time variable. Furthermore, because of the time variable transformation different realizations of the149

process would not be comparable directly anymore without reverse transformation.150

To avoid these complications, we define V′ as the superposition of Nτ independent Bm processes151

each with its own timescale:152

V′(t) =
1

Nτ
∑
τ

V′′(t|τ) , (26)

where V′′(t) can still be described by the equation (25). If the resulting process V′(t) is still a Gaussian153

process, the previously described approach to derive V =
√

νV′ can be applied without further154

changes. However, all the correlation functions of V′ and moments will become the sum of the155

correlation functions of the single processes V′′(t|τ), which is equivalent to averaging with respect to156

pτ(τ). A careful choice of this distribution permits to obtain non linear time scaling of the MSD of V′.157

Let us demonstrate the applicability of the CLT explicitly making use of the equation (17).158

Assuming that a global stationary state (in the sense of stationary increments) has been reached,159

the relation between the MSD and the VACF determined by the free particle Langevin dynamics can160

be expressed by:161

σ2
x(t, τ) = 2

∫ t

0
(t− s)R(s, τ) ds , (27)

where R(t, τ) = ντe−t/τ , with ν being an arbitrary constant, is the stationary VACF of the process162

associated to the realization τ of the timescale, V′′(t|τ).163

By omitting time dependence for sake of conciseness, we can define λ = σ2
x = f (τ), which164

can be considered as a random variable itself distributed according to the PDF P(λ) = pτ( f−1(λ)) ·165

∂λ( f−1(λ)). The average over λ is thus equivalent to computation of the expectation 〈 f (τ)〉 with166

respect to τ.167

In principle we may compute the expectation after the integration of equation (27), however it is168

much easier to compute it before performing the integration to avoid self canceling terms:169

〈λ〉 = 2
∫ t

0
(t− s)〈R(s, τ)〉τ ds , (28)

For a generic PDF pτ(τ) we obtain:170

〈R(t, τ)〉τ = ν
∫ ∞

0
τe−t/τ pτ(τ)dτ. (29)

This expression is finite for any value of time only if 〈τ〉 is finite. Moreover, this is a very important171

physical condition. In fact, when times goes to zero, 〈R(t = 0, τ)〉τ is proportional to the average172

kinetic energy of the system.173

The distribution pτ(τ) should have a power law tail to introduce the desired anomalous time174

scaling of λ but a finite value of the first moment of τ to maintain CLT applicability. The importance175

of this assumption can be seen explicitly by solving the integral in equation (29) for the distribution176

employed in [1]:177

pτ(τ) =
α

Γ(1/α)

1
τ

Lα
α(

τ

C
), (30)

where the constant C = 〈τ〉 Γ(1/α)
α serves to control the value of the average.178
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By considering the integral representation of the extremal Lévy density distribution and the179

Euler’s gamma function with some more simplification, the result in (29) can be represented by the180

integral form:181

R(t) = ν〈τ〉 1
2πi

∫ γ+i∞

γ−i∞

Γ(z/α + 1)Γ(−z)
Γ(z + 1)

(
t
C

)z
dz . (31)

This expression can be solved through the residues theorem considering the poles z/α + 1 = −n182

or z = n, with n = 0, 1, 2, . . . , ∞, to obtain the short or the long time scaling of the variable. An183

interested reader can verify the explicit derivation in [1,32]. By plugging this result in equation (28),184

without any assumption about time values, we observe that the condition of finite 〈τ〉 is necessary to185

guarantee 〈λ〉 to be finite too, ensuring the Gaussian form of the PDF.186

5. Discussion187

The CLT has a fundamental role in the HEBP approach and, generally, in the theory of stochastic188

processes. The domain of attraction of the distribution of the increments determines the shape of the189

PDF of the stochastic process in the long time limit. In this work we reviewed the main conditions of190

the classical CLT, by including also the less known case of distributions with infinite variance which191

fall in the Gaussian domain (with slower convergence). We proposed and analysed a preparatory192

exercise to give the mathematical foundations to understand the approach used in HEBP to generate193

PDFs with Gaussian shape and non linear scaling of the variance in time for the long time limit. It is194

shown that the sum of such population of Gaussian random variables is mathematically defined by195

the sum of a more complex, and in general non-Gaussian, i.i.d. random variables. The population of196

Gaussian distributions can be interpreted, within a Bayesian approach, as the likelihood modulated197

by the prior distribution of a parameter of the model. The formal randomization of the parameter of198

the distribution (equation (19)) is equivalent to the computation of the marginal likelihood, which199

correspond indeed to the PDF of the i.i.d. random variables. This approach could be easily generalized200

to other distributions and parameters for statistical application purposes. The role of CLT in HEPB is201

then clarified. After recalling the derivation of the model, the conditions obtained in the preparatory202

example have been explicitly proven.203
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The following abbreviations are used in this manuscript:214

215

MDPI Multidisciplinary Digital Publishing Institute
CLT Central Limit Theorem
MSD Mean squared displacement
VACF Velocity auto-correlation function
Bm Brownian motion
HEPB Heterogeneous ensemble of Brownian particles
PDF Probability density function
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