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1 Abstract: The central limit theorem (CLT) and its generalization to stable distributions have been
= widely described in literature. However, many variations of the theorem have been defined and often
s their applicability in practical situations is not straightforward. In particular, the applicability of the
o CLT is essential for a derivation of heterogeneous ensemble of Brownian particles (HEBP). Here, we
s analyze the role of the CLT within the HEBP approach in more detail and derive the conditions under
¢  which the existing theorems are valid.
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s Power Law.

o 1. Introduction

10 The heterogeneous ensemble of Brownian particle (HEBP) approach [1,2] is based on the idea
1 that a population of scales in the system in which particles are diffusing may generate the anomalous
1z diffusing behaviour observed in many physical and biological systems [3-6]. Long time and space
1z correlation, characteristics of many anomalous diffusion processes [7-9], are often described through
12 the introduction of memory kernels and integral operators [10,11], as the fractional derivatives are [12],
1s leading in general to non-Markovianity and/or non-locality of the processes.

16 The HEPB approach maintains the Markovianity of the process, because the fundamental process
1z remains the classical Brownian motion (Bm), but the heterogeneity of the scales involved in the
e system permits to describe a process with stationary features which deviate from the Bm at least in a
1o intermediate time limit [13]. Furthermore, the model structure permits to keep the standard dynamical
20 laws, with integer time derivative of physical variables like velocity (V) and displacement (X), and to
=z avoid the introduction of fractional time derivatives.

22 In the Langevin description of HEPB [1], one of the scales contributing to the anomalous behaviour
s is the time scale 7. In particular, the presence of a population of time scales, described by a carefully
22 chosen distribution, generates a process with the same one-time one-point probability density function
2 (PDF) of the fractional Brownian motion (fBm), i.e. a normal distribution with variance (the mean
26 squared displacement of the process, MSD) scaling as a power law of time in the long time limit:

o () = ((x(t + to) — x(t0))?) = Dat", @

27 where 0 < & < 2 and D, is the constant playing the role of diffusion coefficient. Depending on the
2s  value of the exponent g, it is possible to distinguish what is called super-diffusion and sub-diffusion,
20 associated respectively to super-linear and sub-linear values of the parameter.
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30 The convergence of the PDF to a normal distribution is connected to the applicability of the
a1 classical CLT. We will demonstrate later that by choosing properly the population of the time scales
s2 according to certain PDFs, both the Gaussian shape of the PDF and the anomalous scaling of the
ss  variance can be guaranteed.

3a The central limit theorem (CLT), in all the varieties in which has been formulated, represents a
s cornerstone in probability theory. It states that when a large amount of one -or multi-dimensional,
ss real-valued and independent (or weakly dependent [14]) random variables are summed, the probability
sz distribution of their sum will tend to the Gaussian distribution G, defined by its characteristic function:

R , Ko
8g (k) = exp(~ipk — =) )
38 This result has been generalized to a larger class of stable distributions described by the following
ss characteristic function [15]:
8a(k) = exp(—ipk — CIk[*[1 + ip(sign(k))w (K, a)]) ®)
40 where a, B, 4,C € R, w(k,a) = tan(art/2) if & # 1, else w(k,a) = 2/mln(]k|). The Gaussian

a1 distribution can be found to be a special yet fundamental case when a« = 2. The sum of the sub-class
a2 of stable variables characterized by infinite variance is governed by the generalized CLT [15], and it
a3 is applied to obtain random walk with infinite large displacements as the well known Lévy-Feller
4s diffusion process [8,16,17] in which such a distribution is a stable distribution evolving in time.

a5 In the following sections we first briefly review the CLT formulation, then we introduce the
ss HEBP model, which indeed consider some infinite variance distribution in its derivation, to clarify the
+z importance of theorem applicability to get the desired behaviour of the physical variables.

s 2. The classical CLT formulation

a9 For completeness, we provide a formal representation of the most famous versions of the CLT
so and introduce some useful notation and definitions.

51 For parameters ¢ € R and ¢ € R, a normal (or Gaussian) distribution N (i, ¢?) is a continuous
s2 probability distribution defined by its density function

1 _ (-p?
e 202 , (4)

2
x|uo°) =
fGpe) 2702

ss where u and o are the expectation and variance of the distribution, respectively. For 4 = 0 and o = 1,
s« we obtain what is usually called the standard normal distribution N/ (0, 1).

55 For the sequence of random variables (X;),>1, we define random variables (S;),>1 as partial
se sums S, = X1 + Xp + - - - + Xj;. Central limit theorem is trying to find conditions for which there exist
sz sequences of constants (a,),>1, a4y > 0, and (b, ),>1 such that the sequence (5"“—;””> ., converges in

ss distribution to a non-degenerate random variable. In particular, CLT describes the convergence to
s standard normal distribution with constants defined as a2 = Y{_, Var [X;] and b, = i E [X].

60 Different constraints on variables X, X5, ... lead to different versions of the CLT. We will briefly
e1 review the most prominent results of the theory of central limit theorems. For details, an interested
ez reader can consult any book which deals with the theory of probability and classic literature for a more
s historical perspective [18-24].

6s We start with the case when variables Xj, X5, ... are independent and identically distributed.
es  With additional requirements of finite mean y and positive, finite variance o2 of variables X, we
66 obtain:
Sp—n
n T Af0,1) as n— oo ®)

av/n
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o7 Dealing with independent, but not necessary identically distributed, random variables X1, X5, . ..
e With finite variance, we define y; = EX}, O'k = VarXy and s2 =Yr (T]% for every k > 1. To obtain the
e main result, we need two Lindeberg’s conditions:

2

_ %k
Li(n) = 1r£1ka<xn 2 —0 as n— oo, (6)

and

1 n
—22 | X — me P T{| X —my| > es,} =0 as n— oo (foreverye >0). (7)
n —

The Lindeberg-Lévy-Feller theorem provides sufficient and necessary conditions for the following
result: s _Es
%&N(o,l) as 1 — oo, ®)
n

7 Lindeberg and Lévy proved (using different techniques) that if (7) holds, so do (6) and (8). Feller
= proved that if both (6) and (8) are satisfied, then so is (7).
Since the Lindeberg’s condition (7) can be hard to verify, we can instead use the Lyapounov’s
condition which assumes that for some § > 0, E \Xk|2+5 < oo (forall k > 1) and

1 245
?I;E|Xk—yk|+ —0 as n— . )

72 If for independent random variables Xj, Xj, . .. the Lyapounov’s condition is satisfied, then the central
73 limit theorem (8) holds. Since the Lyapounov’s condition implies the Linderberg’s second condition
7 this result follows directly from the Lindeberg-Lévy theorem.

In all versions of the CLT mentioned so far, the assumption of finite variance was crucial. To
extend our observations to the case when variance does not exist (or is infinite), we introduce the
notion of domains of attraction. We are observing a sequence X, X1, Xp, . . . of independent, identically
distributed random variables. We say that X, or, equivalently, its distribution function Fx, belongs to
the domain of attraction of the (non-degenerate) distribution G if there exist normalizing sequences
(@n)n>1, an > 0, and (by),>1, such that

Sp—b
70 A G as o (10)
an
75 Another important concept is a stable distribution. Retaining the same notion, the distribution X

7o is stable if there exist constants (¢ ),>1, ¢x > 0, and (d;),>1 such that S, 4 cnX +dy, (foralln > 1).
It can be shown that only stable distributions possess a domain of attraction [18]. The most
notable stable distribution is Gaussian and by the classical CLT we know that all distributions X with
finite variance belong to the domain of attraction of the Gauss Law. However, there are also some
distribution with infinite variance that belong to it. More precisely, it can be shown [25] that random
variable X with the distribution function Fx belongs to the domain of the attraction of the Gauss Law

if and only if
2[1—F Fx(—
lim S0+ (0] (11)
X—+00 fix tzdFX(t)
7z 3. CLT for a population of Gaussian random variables
78 We reviewed the fundamental theorems related to the classical CLT, having the Gaussian

7o distribution as limit distribution of the sum of random variables S,,. The recurrent and sufficient
s (but not necessary) condition leading to the classical CLT description is that the variance of the
s1 1.i.d. random variables that are summed should be finite. However, there exist distributions with
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2 infinite variance that fall in the Gaussian domain of attraction [15,25]. In this paragraph we provide a
es preparatory example to introduce the role of the CLT in the HEBP. The sum of a population of a priori
s« known Gaussian variables which variances can tend to infinity, is here rewritten as the sum of i.i.d.
es random variables with finite variance, thus satisfying the standard CLT conditions.

86 Let us consider partial sums of independent Gaussian random variables
n
Su=Y X, (12)
k=1

sz where, denoting with f;(x;) the PDF of Xj, we have:

fi(x) ~ N(0,07). (13)

s8 The distribution of the sum of n random variables can be exploited in term of a convolution
s integral. Thus, we can derive explicitly the limit distribution of equation (12) by inverting the
oo characteristic function ¢(w) of S,, which corresponds to the product of the characteristics ¢y (w)

o1 Of XkZ
p(w) = T ¢ (w) (14)
o2 which gives
? 2
plw) = T, (320k> (15)
_ ST (16)
03 Assuming o ~ VA, with A distributed according to a generic PDF f(A). If the first moment of A

s exists in the limit of large n, by applying the law of large numbers, we can rewrite equation (16) in
os terms of EA:

Plw) = e~ T MEA, (17)

o which is indeed the characteristic function of a Gaussian distribution with variance n - EA for finite

oz expectation of f(A) even if the supremum of A does not exists.

98 The convergence of S;, can be proven using the CLT for the sequence of independent, identically

oo distributed random variables X, X7, Xy, ... with X ~ N (0, A). These variables in general won't have a
10 Gaussian shape and can equivalently be defined as the product

X=VA-Z, (18)

101 where Z ~ f1(z) = N(0,1), A ~ f2(A), A € R;. The PDF f(x) of X can be represented by the integral
102 form [26]

o A
x) = X/ VA fo(A)—=. 19
f) = [ AIVRRW (19)
103 Since Z is a Gaussian distribution, it follows that ﬁ fi(x/v/A) = N(0, A). Using Fubini’s theorem,
10 NOW it is easy to compute the second moment of X:
VarX = /oo ¥ /oo AV f(A) iy (20)
—0c0 0 \/X

- /00o Af2(A)dA = EA. (21)
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108 If EA < oo the partial sums S, = X; + --- 4+ X, of ii.d. random variables X; converge in
106 distribution to a Gaussian

Sy L N(0,1-EA). 22)

107 In general, in the case of infinite EA, the distribution f(x) does not fall in the Gaussian domain

10s  Of attraction. For example by choosing A to be the extremal Lévy density distribution, f(x) is the
10 symmetric Lévy stable distribution [27], solution of space fractional diffusion equation [10], and of
10 Lévy-Feller random walk. Since in this case f(x) is itself a stable distribution, it belongs to its own
1z domain of attraction. Nevertheless, under certain constraints on the tail of the distribution f(x), it
12 satisfies (11) and falls in Gaussian domain of attraction, for example if its PDF for large x is proportional
us tox3,x3log(x),x73/log(x) [15].

14 4. Application of the CLT in the HEBP

115 In the HEBP Langevin model [1] the anomalous time scaling of the ensemble averaged MSD is
ue generated by the superposition of a population of Bm processes in a similar way to equation (12),
1z where each single process is characterized by its own independent timescale, and with frequency of
ues appearance of such timescale described by the same PDF.

110 CLT applicability guarantees that after averaging over a properly chosen timescale distribution
120 the shape of the PDF will remain Gaussian despite the time scaling will change from being linear in
121 time to be a power low of time in the long time limit, following equation (1). In order to show this
122 applicability let first introduce the HEPB construction.

123 Let us start with the classic Langevin equation describing the dynamics of a free particle moving
124 in a viscous medium (or Bm):

dv = —%th +V2vdW (23)

125 where V is the random process representing the particle velocity, T in classical approach corresponds
126 to the characteristic time scale of the process, i.e. the scale of decorrelation of the system. In the classic
127 Langevin description the timescale is defined by the ratio %, with m being the mass of the diffusing
128 particle and <y the Stoke’s drag force coefficient of the velocity. The multiplicative constant of the
120 Wiener noise increment dW in the square root, v, represents the velocity diffusivity and is related to
130 the drag term by the fluctuation dissipation theorem (FDT) [28]. This relation does not depend on the
131 mass of the particle but on the average energy of the environment (the fluid) and the cross-sectional
1:2  interaction between the medium and the particle moving. The Wiener increment dW is the increment
133 per infinitesimal time induced by the presence of a Gaussian white noise with unit variance and is
13« hence fully characterized by its first two moments:

dW() =0, (dW(t)?) =t. (24)

135 The presence of Gaussian increments in the stochastic equation leads to the stationary state
16V ~ N(0,kT/m) and, being V = dX/dt, to the stationary increments process X(t) ~ N(xq,02(t)),
137 with U%(t) = Vth.

138 Let now the parameters v and 7 be time independent random variables: v ~ p,(v) and T ~ p-(T).
1o The way it will affect V(t) and X(f) is clear in the case of v, but more complicated to specify in the case
10 Of T.

141 Let us consider the velocity defined as a product of random variables V = /vV’'. It is easy

122 to show that /v factorizes out from the stochastic differential equation, resulting in the following
13 description of the evolution of V':

v’ — —%V’dt VW (25)
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s Therefore, the PDF associated to the processes V() and X(t) can be derived by applying the same
s integral formula of equation (19), eventually producing non Gaussian PDF and weak ergodicity
1es  breaking stochastic processes as result [29-31].

147 Dealing with random timescales is much more tricky because the variable T is embedded in the
s correlation functions and is not possible to factorize it out without simultaneously transforming the
1o time variable. Furthermore, because of the time variable transformation different realizations of the
10 process would not be comparable directly anymore without reverse transformation.

151 To avoid these complications, we define V' as the superposition of N; independent Bm processes
12 each with its own timescale:

V() = 3 TVt (26)

15 where V() can still be described by the equation (25). If the resulting process V' (t) is still a Gaussian
1sa  process, the previously described approach to derive V. = /vV’ can be applied without further
15 changes. However, all the correlation functions of V' and moments will become the sum of the
s correlation functions of the single processes V" (#|7), which is equivalent to averaging with respect to
157 pr(T). A careful choice of this distribution permits to obtain non linear time scaling of the MSD of V'.
158 Let us demonstrate the applicability of the CLT explicitly making use of the equation (17).
1ss  Assuming that a global stationary state (in the sense of stationary increments) has been reached,
10 the relation between the MSD and the VACF determined by the free particle Langevin dynamics can
11 be expressed by:

o2t 1) = 2/()t(t —5)R(s,T)ds, (27)

12 where R(t,7) = vte™!/7, with v being an arbitrary constant, is the stationary VACF of the process

13 associated to the realization T of the timescale, V"' (¢|7).

164 By omitting time dependence for sake of conciseness, we can define A = ¢ = f(1), which
15 can be considered as a random variable itself distributed according to the PDF P(A) = p(f~1(A)) -
s 9, (f71(A)). The average over A is thus equivalent to computation of the expectation (f(7)) with
167 respect to 7.

168 In principle we may compute the expectation after the integration of equation (27), however it is
160 much easier to compute it before performing the integration to avoid self canceling terms:

) =2 [ (1= )RGs, D) s, @)

170 For a generic PDF p.(7) we obtain:
(R(t,T))r = v /0 " e Tp(v)dr. 29)
171 This expression is finite for any value of time only if () is finite. Moreover, this is a very important

12 physical condition. In fact, when times goes to zero, (R(t = 0, 7))+ is proportional to the average
173 kinetic energy of the system.

174 The distribution p.(7) should have a power law tail to introduce the desired anomalous time
s scaling of A but a finite value of the first moment of T to maintain CLT applicability. The importance
1ze  Of this assumption can be seen explicitly by solving the integral in equation (29) for the distribution
177 employed in [1]:

v 1., 7T

p-(T) = T/ a(c)' (30)

17s  where the constant C = (1) w serves to control the value of the average.
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179 By considering the integral representation of the extremal Lévy density distribution and the
1.0 Euler’s gamma function with some more simplification, the result in (29) can be represented by the
11 integral form:

B 1 e T(z/a+ 1) (—z) [ t)*
R() = “<T>ﬁ/,,,~m rz+1) \c) & (5D
162 This expression can be solved through the residues theorem considering the poles z/a +1 = —n

w3 orz = n, withn = 0,1,2,...,00, to obtain the short or the long time scaling of the variable. An
12a  interested reader can verify the explicit derivation in [1,32]. By plugging this result in equation (28),
1ss  without any assumption about time values, we observe that the condition of finite () is necessary to
1ss  guarantee (A) to be finite too, ensuring the Gaussian form of the PDF.

187 5. Discussion

188 The CLT has a fundamental role in the HEBP approach and, generally, in the theory of stochastic
10 processes. The domain of attraction of the distribution of the increments determines the shape of the
1o PDF of the stochastic process in the long time limit. In this work we reviewed the main conditions of
11 the classical CLT, by including also the less known case of distributions with infinite variance which
102 fall in the Gaussian domain (with slower convergence). We proposed and analysed a preparatory
103 exercise to give the mathematical foundations to understand the approach used in HEBP to generate
10 PDFs with Gaussian shape and non linear scaling of the variance in time for the long time limit. It is
105 shown that the sum of such population of Gaussian random variables is mathematically defined by
106 the sum of a more complex, and in general non-Gaussian, i.i.d. random variables. The population of
17 Gaussian distributions can be interpreted, within a Bayesian approach, as the likelihood modulated
s by the prior distribution of a parameter of the model. The formal randomization of the parameter of
100 the distribution (equation (19)) is equivalent to the computation of the marginal likelihood, which
200 correspond indeed to the PDF of the i.i.d. random variables. This approach could be easily generalized
201 to other distributions and parameters for statistical application purposes. The role of CLT in HEPB is
202 then clarified. After recalling the derivation of the model, the conditions obtained in the preparatory
203 example have been explicitly proven.
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213 Abbreviations

214 The following abbreviations are used in this manuscript:

MDPI  Multidisciplinary Digital Publishing Institute
CLT Central Limit Theorem
MSD  Mean squared displacement

216 VACF  Velocity auto-correlation function
Bm Brownian motion
HEPB Heterogeneous ensemble of Brownian particles
PDF Probability density function
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